Properties

Label 648.2.d.k.325.4
Level $648$
Weight $2$
Character 648.325
Analytic conductor $5.174$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [648,2,Mod(325,648)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(648, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("648.325");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 648 = 2^{3} \cdot 3^{4} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 648.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.17430605098\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.31435290000.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} - 2x^{4} - 8x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 72)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 325.4
Root \(-0.295065 - 1.38309i\) of defining polynomial
Character \(\chi\) \(=\) 648.325
Dual form 648.2.d.k.325.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.295065 + 1.38309i) q^{2} +(-1.82587 - 0.816201i) q^{4} -0.696047i q^{5} -1.59013 q^{7} +(1.66763 - 2.28452i) q^{8} +(0.962695 + 0.205379i) q^{10} -2.73921i q^{11} +5.50539i q^{13} +(0.469191 - 2.19929i) q^{14} +(2.66763 + 2.98056i) q^{16} +5.65175 q^{17} -0.963328i q^{19} +(-0.568114 + 1.27089i) q^{20} +(3.78857 + 0.808243i) q^{22} +6.57714 q^{23} +4.51552 q^{25} +(-7.61444 - 1.62444i) q^{26} +(2.90338 + 1.29787i) q^{28} -3.29178i q^{29} +7.39688 q^{31} +(-4.90951 + 2.81011i) q^{32} +(-1.66763 + 7.81687i) q^{34} +1.10680i q^{35} +6.25538i q^{37} +(1.33237 + 0.284244i) q^{38} +(-1.59013 - 1.16075i) q^{40} -1.86377 q^{41} -3.46223i q^{43} +(-2.23574 + 5.00145i) q^{44} +(-1.94068 + 9.09677i) q^{46} +7.71337 q^{47} -4.47149 q^{49} +(-1.33237 + 6.24537i) q^{50} +(4.49350 - 10.0521i) q^{52} -2.54179i q^{53} -1.90662 q^{55} +(-2.65175 + 3.63267i) q^{56} +(4.55282 + 0.971287i) q^{58} -5.33494i q^{59} +9.16503i q^{61} +(-2.18256 + 10.2305i) q^{62} +(-2.43802 - 7.61945i) q^{64} +3.83201 q^{65} -6.87947i q^{67} +(-10.3194 - 4.61296i) q^{68} +(-1.53081 - 0.326579i) q^{70} -3.68351 q^{71} +2.83201 q^{73} +(-8.65175 - 1.84574i) q^{74} +(-0.786270 + 1.75892i) q^{76} +4.35569i q^{77} -5.75740 q^{79} +(2.07461 - 1.85680i) q^{80} +(0.549933 - 2.57776i) q^{82} +6.63916i q^{83} -3.93388i q^{85} +(4.78857 + 1.02158i) q^{86} +(-6.25776 - 4.56798i) q^{88} +2.98701 q^{89} -8.75427i q^{91} +(-12.0090 - 5.36827i) q^{92} +(-2.27594 + 10.6683i) q^{94} -0.670522 q^{95} +2.49675 q^{97} +(1.31938 - 6.18447i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + q^{2} + q^{4} - 6 q^{7} + q^{8} - 8 q^{10} + 16 q^{14} + 9 q^{16} + 14 q^{17} - 8 q^{20} - q^{22} - 10 q^{23} - 2 q^{25} - 14 q^{26} + 2 q^{28} + 10 q^{31} + 11 q^{32} - q^{34} + 23 q^{38} - 6 q^{40}+ \cdots - 33 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/648\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(487\) \(569\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.295065 + 1.38309i −0.208642 + 0.977992i
\(3\) 0 0
\(4\) −1.82587 0.816201i −0.912937 0.408101i
\(5\) 0.696047i 0.311282i −0.987814 0.155641i \(-0.950256\pi\)
0.987814 0.155641i \(-0.0497442\pi\)
\(6\) 0 0
\(7\) −1.59013 −0.601012 −0.300506 0.953780i \(-0.597156\pi\)
−0.300506 + 0.953780i \(0.597156\pi\)
\(8\) 1.66763 2.28452i 0.589596 0.807698i
\(9\) 0 0
\(10\) 0.962695 + 0.205379i 0.304431 + 0.0649464i
\(11\) 2.73921i 0.825902i −0.910753 0.412951i \(-0.864498\pi\)
0.910753 0.412951i \(-0.135502\pi\)
\(12\) 0 0
\(13\) 5.50539i 1.52692i 0.645855 + 0.763460i \(0.276501\pi\)
−0.645855 + 0.763460i \(0.723499\pi\)
\(14\) 0.469191 2.19929i 0.125396 0.587785i
\(15\) 0 0
\(16\) 2.66763 + 2.98056i 0.666908 + 0.745140i
\(17\) 5.65175 1.37075 0.685375 0.728190i \(-0.259638\pi\)
0.685375 + 0.728190i \(0.259638\pi\)
\(18\) 0 0
\(19\) 0.963328i 0.221003i −0.993876 0.110501i \(-0.964754\pi\)
0.993876 0.110501i \(-0.0352457\pi\)
\(20\) −0.568114 + 1.27089i −0.127034 + 0.284180i
\(21\) 0 0
\(22\) 3.78857 + 0.808243i 0.807726 + 0.172318i
\(23\) 6.57714 1.37143 0.685714 0.727871i \(-0.259490\pi\)
0.685714 + 0.727871i \(0.259490\pi\)
\(24\) 0 0
\(25\) 4.51552 0.903104
\(26\) −7.61444 1.62444i −1.49332 0.318580i
\(27\) 0 0
\(28\) 2.90338 + 1.29787i 0.548686 + 0.245274i
\(29\) 3.29178i 0.611268i −0.952149 0.305634i \(-0.901132\pi\)
0.952149 0.305634i \(-0.0988684\pi\)
\(30\) 0 0
\(31\) 7.39688 1.32852 0.664259 0.747502i \(-0.268747\pi\)
0.664259 + 0.747502i \(0.268747\pi\)
\(32\) −4.90951 + 2.81011i −0.867886 + 0.496763i
\(33\) 0 0
\(34\) −1.66763 + 7.81687i −0.285996 + 1.34058i
\(35\) 1.10680i 0.187084i
\(36\) 0 0
\(37\) 6.25538i 1.02838i 0.857677 + 0.514189i \(0.171907\pi\)
−0.857677 + 0.514189i \(0.828093\pi\)
\(38\) 1.33237 + 0.284244i 0.216139 + 0.0461105i
\(39\) 0 0
\(40\) −1.59013 1.16075i −0.251421 0.183530i
\(41\) −1.86377 −0.291072 −0.145536 0.989353i \(-0.546491\pi\)
−0.145536 + 0.989353i \(0.546491\pi\)
\(42\) 0 0
\(43\) 3.46223i 0.527985i −0.964525 0.263992i \(-0.914961\pi\)
0.964525 0.263992i \(-0.0850393\pi\)
\(44\) −2.23574 + 5.00145i −0.337051 + 0.753996i
\(45\) 0 0
\(46\) −1.94068 + 9.09677i −0.286138 + 1.34125i
\(47\) 7.71337 1.12511 0.562555 0.826760i \(-0.309818\pi\)
0.562555 + 0.826760i \(0.309818\pi\)
\(48\) 0 0
\(49\) −4.47149 −0.638784
\(50\) −1.33237 + 6.24537i −0.188426 + 0.883228i
\(51\) 0 0
\(52\) 4.49350 10.0521i 0.623137 1.39398i
\(53\) 2.54179i 0.349141i −0.984645 0.174571i \(-0.944146\pi\)
0.984645 0.174571i \(-0.0558537\pi\)
\(54\) 0 0
\(55\) −1.90662 −0.257088
\(56\) −2.65175 + 3.63267i −0.354355 + 0.485436i
\(57\) 0 0
\(58\) 4.55282 + 0.971287i 0.597815 + 0.127536i
\(59\) 5.33494i 0.694550i −0.937763 0.347275i \(-0.887107\pi\)
0.937763 0.347275i \(-0.112893\pi\)
\(60\) 0 0
\(61\) 9.16503i 1.17346i 0.809782 + 0.586731i \(0.199585\pi\)
−0.809782 + 0.586731i \(0.800415\pi\)
\(62\) −2.18256 + 10.2305i −0.277185 + 1.29928i
\(63\) 0 0
\(64\) −2.43802 7.61945i −0.304752 0.952432i
\(65\) 3.83201 0.475302
\(66\) 0 0
\(67\) 6.87947i 0.840461i −0.907417 0.420231i \(-0.861949\pi\)
0.907417 0.420231i \(-0.138051\pi\)
\(68\) −10.3194 4.61296i −1.25141 0.559404i
\(69\) 0 0
\(70\) −1.53081 0.326579i −0.182967 0.0390336i
\(71\) −3.68351 −0.437153 −0.218576 0.975820i \(-0.570141\pi\)
−0.218576 + 0.975820i \(0.570141\pi\)
\(72\) 0 0
\(73\) 2.83201 0.331461 0.165731 0.986171i \(-0.447002\pi\)
0.165731 + 0.986171i \(0.447002\pi\)
\(74\) −8.65175 1.84574i −1.00575 0.214563i
\(75\) 0 0
\(76\) −0.786270 + 1.75892i −0.0901914 + 0.201762i
\(77\) 4.35569i 0.496377i
\(78\) 0 0
\(79\) −5.75740 −0.647758 −0.323879 0.946099i \(-0.604987\pi\)
−0.323879 + 0.946099i \(0.604987\pi\)
\(80\) 2.07461 1.85680i 0.231948 0.207596i
\(81\) 0 0
\(82\) 0.549933 2.57776i 0.0607299 0.284666i
\(83\) 6.63916i 0.728743i 0.931254 + 0.364371i \(0.118716\pi\)
−0.931254 + 0.364371i \(0.881284\pi\)
\(84\) 0 0
\(85\) 3.93388i 0.426689i
\(86\) 4.78857 + 1.02158i 0.516365 + 0.110160i
\(87\) 0 0
\(88\) −6.25776 4.56798i −0.667079 0.486949i
\(89\) 2.98701 0.316622 0.158311 0.987389i \(-0.449395\pi\)
0.158311 + 0.987389i \(0.449395\pi\)
\(90\) 0 0
\(91\) 8.75427i 0.917697i
\(92\) −12.0090 5.36827i −1.25203 0.559681i
\(93\) 0 0
\(94\) −2.27594 + 10.6683i −0.234745 + 1.10035i
\(95\) −0.670522 −0.0687941
\(96\) 0 0
\(97\) 2.49675 0.253506 0.126753 0.991934i \(-0.459544\pi\)
0.126753 + 0.991934i \(0.459544\pi\)
\(98\) 1.31938 6.18447i 0.133277 0.624726i
\(99\) 0 0
\(100\) −8.24477 3.68557i −0.824477 0.368557i
\(101\) 9.49321i 0.944610i 0.881435 + 0.472305i \(0.156578\pi\)
−0.881435 + 0.472305i \(0.843422\pi\)
\(102\) 0 0
\(103\) −14.7444 −1.45281 −0.726405 0.687267i \(-0.758810\pi\)
−0.726405 + 0.687267i \(0.758810\pi\)
\(104\) 12.5771 + 9.18095i 1.23329 + 0.900266i
\(105\) 0 0
\(106\) 3.51552 + 0.749991i 0.341457 + 0.0728456i
\(107\) 7.83384i 0.757325i −0.925535 0.378663i \(-0.876384\pi\)
0.925535 0.378663i \(-0.123616\pi\)
\(108\) 0 0
\(109\) 0.242400i 0.0232177i −0.999933 0.0116089i \(-0.996305\pi\)
0.999933 0.0116089i \(-0.00369529\pi\)
\(110\) 0.562575 2.63702i 0.0536394 0.251430i
\(111\) 0 0
\(112\) −4.24188 4.73948i −0.400820 0.447839i
\(113\) 8.69578 0.818030 0.409015 0.912528i \(-0.365872\pi\)
0.409015 + 0.912528i \(0.365872\pi\)
\(114\) 0 0
\(115\) 4.57799i 0.426900i
\(116\) −2.68675 + 6.01037i −0.249459 + 0.558049i
\(117\) 0 0
\(118\) 7.37870 + 1.57415i 0.679264 + 0.144912i
\(119\) −8.98701 −0.823838
\(120\) 0 0
\(121\) 3.49675 0.317886
\(122\) −12.6761 2.70428i −1.14764 0.244834i
\(123\) 0 0
\(124\) −13.5058 6.03734i −1.21285 0.542169i
\(125\) 6.62325i 0.592401i
\(126\) 0 0
\(127\) −1.72754 −0.153295 −0.0766473 0.997058i \(-0.524422\pi\)
−0.0766473 + 0.997058i \(0.524422\pi\)
\(128\) 11.2578 1.12377i 0.995055 0.0993279i
\(129\) 0 0
\(130\) −1.13069 + 5.30001i −0.0991680 + 0.464841i
\(131\) 6.63916i 0.580066i 0.957017 + 0.290033i \(0.0936663\pi\)
−0.957017 + 0.290033i \(0.906334\pi\)
\(132\) 0 0
\(133\) 1.53182i 0.132825i
\(134\) 9.51493 + 2.02989i 0.821964 + 0.175356i
\(135\) 0 0
\(136\) 9.42503 12.9115i 0.808189 1.10715i
\(137\) 3.62649 0.309832 0.154916 0.987928i \(-0.450489\pi\)
0.154916 + 0.987928i \(0.450489\pi\)
\(138\) 0 0
\(139\) 17.3111i 1.46831i −0.678981 0.734155i \(-0.737578\pi\)
0.678981 0.734155i \(-0.262422\pi\)
\(140\) 0.903375 2.02088i 0.0763491 0.170796i
\(141\) 0 0
\(142\) 1.08687 5.09463i 0.0912085 0.427532i
\(143\) 15.0804 1.26109
\(144\) 0 0
\(145\) −2.29123 −0.190276
\(146\) −0.835625 + 3.91692i −0.0691568 + 0.324166i
\(147\) 0 0
\(148\) 5.10565 11.4215i 0.419682 0.938844i
\(149\) 21.6218i 1.77133i −0.464324 0.885665i \(-0.653703\pi\)
0.464324 0.885665i \(-0.346297\pi\)
\(150\) 0 0
\(151\) 12.7004 1.03354 0.516771 0.856124i \(-0.327134\pi\)
0.516771 + 0.856124i \(0.327134\pi\)
\(152\) −2.20074 1.60648i −0.178503 0.130302i
\(153\) 0 0
\(154\) −6.02431 1.28521i −0.485453 0.103565i
\(155\) 5.14857i 0.413543i
\(156\) 0 0
\(157\) 17.4689i 1.39417i 0.716990 + 0.697083i \(0.245519\pi\)
−0.716990 + 0.697083i \(0.754481\pi\)
\(158\) 1.69880 7.96299i 0.135150 0.633502i
\(159\) 0 0
\(160\) 1.95597 + 3.41725i 0.154633 + 0.270157i
\(161\) −10.4585 −0.824245
\(162\) 0 0
\(163\) 8.56748i 0.671057i −0.942030 0.335528i \(-0.891085\pi\)
0.942030 0.335528i \(-0.108915\pi\)
\(164\) 3.40301 + 1.52121i 0.265731 + 0.118787i
\(165\) 0 0
\(166\) −9.18256 1.95898i −0.712705 0.152046i
\(167\) −11.9506 −0.924769 −0.462384 0.886680i \(-0.653006\pi\)
−0.462384 + 0.886680i \(0.653006\pi\)
\(168\) 0 0
\(169\) −17.3093 −1.33148
\(170\) 5.44091 + 1.16075i 0.417299 + 0.0890254i
\(171\) 0 0
\(172\) −2.82587 + 6.32159i −0.215471 + 0.482017i
\(173\) 13.0450i 0.991791i −0.868382 0.495895i \(-0.834840\pi\)
0.868382 0.495895i \(-0.165160\pi\)
\(174\) 0 0
\(175\) −7.18026 −0.542777
\(176\) 8.16438 7.30719i 0.615413 0.550800i
\(177\) 0 0
\(178\) −0.881360 + 4.13130i −0.0660607 + 0.309654i
\(179\) 3.31875i 0.248055i 0.992279 + 0.124028i \(0.0395811\pi\)
−0.992279 + 0.124028i \(0.960419\pi\)
\(180\) 0 0
\(181\) 14.9128i 1.10846i 0.832363 + 0.554231i \(0.186987\pi\)
−0.832363 + 0.554231i \(0.813013\pi\)
\(182\) 12.1079 + 2.58308i 0.897501 + 0.191470i
\(183\) 0 0
\(184\) 10.9682 15.0256i 0.808589 1.10770i
\(185\) 4.35403 0.320115
\(186\) 0 0
\(187\) 15.4813i 1.13211i
\(188\) −14.0836 6.29566i −1.02715 0.459158i
\(189\) 0 0
\(190\) 0.197847 0.927391i 0.0143533 0.0672800i
\(191\) 7.31767 0.529488 0.264744 0.964319i \(-0.414713\pi\)
0.264744 + 0.964319i \(0.414713\pi\)
\(192\) 0 0
\(193\) 20.4708 1.47352 0.736759 0.676156i \(-0.236355\pi\)
0.736759 + 0.676156i \(0.236355\pi\)
\(194\) −0.736701 + 3.45322i −0.0528920 + 0.247927i
\(195\) 0 0
\(196\) 8.16438 + 3.64964i 0.583170 + 0.260688i
\(197\) 20.5437i 1.46368i 0.681479 + 0.731838i \(0.261337\pi\)
−0.681479 + 0.731838i \(0.738663\pi\)
\(198\) 0 0
\(199\) 1.95597 0.138655 0.0693275 0.997594i \(-0.477915\pi\)
0.0693275 + 0.997594i \(0.477915\pi\)
\(200\) 7.53022 10.3158i 0.532467 0.729435i
\(201\) 0 0
\(202\) −13.1300 2.80111i −0.923821 0.197085i
\(203\) 5.23435i 0.367379i
\(204\) 0 0
\(205\) 1.29727i 0.0906054i
\(206\) 4.35055 20.3928i 0.303117 1.42084i
\(207\) 0 0
\(208\) −16.4091 + 14.6863i −1.13777 + 1.01831i
\(209\) −2.63876 −0.182527
\(210\) 0 0
\(211\) 10.5191i 0.724165i 0.932146 + 0.362082i \(0.117934\pi\)
−0.932146 + 0.362082i \(0.882066\pi\)
\(212\) −2.07461 + 4.64098i −0.142485 + 0.318744i
\(213\) 0 0
\(214\) 10.8349 + 2.31149i 0.740658 + 0.158010i
\(215\) −2.40987 −0.164352
\(216\) 0 0
\(217\) −11.7620 −0.798456
\(218\) 0.335261 + 0.0715236i 0.0227067 + 0.00484419i
\(219\) 0 0
\(220\) 3.48124 + 1.55618i 0.234705 + 0.104918i
\(221\) 31.1151i 2.09303i
\(222\) 0 0
\(223\) −3.86259 −0.258658 −0.129329 0.991602i \(-0.541282\pi\)
−0.129329 + 0.991602i \(0.541282\pi\)
\(224\) 7.80675 4.46844i 0.521610 0.298560i
\(225\) 0 0
\(226\) −2.56582 + 12.0270i −0.170676 + 0.800027i
\(227\) 16.0715i 1.06670i −0.845894 0.533351i \(-0.820933\pi\)
0.845894 0.533351i \(-0.179067\pi\)
\(228\) 0 0
\(229\) 8.61775i 0.569477i −0.958605 0.284739i \(-0.908093\pi\)
0.958605 0.284739i \(-0.0919068\pi\)
\(230\) 6.33178 + 1.35080i 0.417505 + 0.0890694i
\(231\) 0 0
\(232\) −7.52012 5.48947i −0.493720 0.360401i
\(233\) −24.1535 −1.58235 −0.791176 0.611589i \(-0.790531\pi\)
−0.791176 + 0.611589i \(0.790531\pi\)
\(234\) 0 0
\(235\) 5.36886i 0.350226i
\(236\) −4.35438 + 9.74092i −0.283446 + 0.634080i
\(237\) 0 0
\(238\) 2.65175 12.4298i 0.171887 0.805707i
\(239\) −4.02985 −0.260670 −0.130335 0.991470i \(-0.541605\pi\)
−0.130335 + 0.991470i \(0.541605\pi\)
\(240\) 0 0
\(241\) −5.63297 −0.362852 −0.181426 0.983405i \(-0.558071\pi\)
−0.181426 + 0.983405i \(0.558071\pi\)
\(242\) −1.03177 + 4.83631i −0.0663244 + 0.310890i
\(243\) 0 0
\(244\) 7.48051 16.7342i 0.478891 1.07130i
\(245\) 3.11237i 0.198842i
\(246\) 0 0
\(247\) 5.30350 0.337453
\(248\) 12.3353 16.8983i 0.783290 1.07304i
\(249\) 0 0
\(250\) 9.16054 + 1.95428i 0.579364 + 0.123600i
\(251\) 13.8828i 0.876276i 0.898908 + 0.438138i \(0.144362\pi\)
−0.898908 + 0.438138i \(0.855638\pi\)
\(252\) 0 0
\(253\) 18.0161i 1.13267i
\(254\) 0.509737 2.38935i 0.0319837 0.149921i
\(255\) 0 0
\(256\) −1.76750 + 15.9021i −0.110469 + 0.993880i
\(257\) −10.8508 −0.676853 −0.338427 0.940993i \(-0.609895\pi\)
−0.338427 + 0.940993i \(0.609895\pi\)
\(258\) 0 0
\(259\) 9.94686i 0.618068i
\(260\) −6.99676 3.12769i −0.433921 0.193971i
\(261\) 0 0
\(262\) −9.18256 1.95898i −0.567300 0.121026i
\(263\) −23.2101 −1.43120 −0.715598 0.698512i \(-0.753846\pi\)
−0.715598 + 0.698512i \(0.753846\pi\)
\(264\) 0 0
\(265\) −1.76920 −0.108681
\(266\) −2.11864 0.451985i −0.129902 0.0277130i
\(267\) 0 0
\(268\) −5.61504 + 12.5610i −0.342993 + 0.767288i
\(269\) 4.01966i 0.245083i 0.992463 + 0.122541i \(0.0391044\pi\)
−0.992463 + 0.122541i \(0.960896\pi\)
\(270\) 0 0
\(271\) −6.75621 −0.410411 −0.205205 0.978719i \(-0.565786\pi\)
−0.205205 + 0.978719i \(0.565786\pi\)
\(272\) 15.0768 + 16.8454i 0.914164 + 1.02140i
\(273\) 0 0
\(274\) −1.07005 + 5.01576i −0.0646440 + 0.303013i
\(275\) 12.3689i 0.745875i
\(276\) 0 0
\(277\) 2.11997i 0.127377i 0.997970 + 0.0636885i \(0.0202864\pi\)
−0.997970 + 0.0636885i \(0.979714\pi\)
\(278\) 23.9428 + 5.10790i 1.43600 + 0.306352i
\(279\) 0 0
\(280\) 2.52851 + 1.84574i 0.151107 + 0.110304i
\(281\) −26.1160 −1.55795 −0.778976 0.627054i \(-0.784261\pi\)
−0.778976 + 0.627054i \(0.784261\pi\)
\(282\) 0 0
\(283\) 19.0960i 1.13514i 0.823326 + 0.567569i \(0.192116\pi\)
−0.823326 + 0.567569i \(0.807884\pi\)
\(284\) 6.72563 + 3.00649i 0.399093 + 0.178402i
\(285\) 0 0
\(286\) −4.44969 + 20.8575i −0.263116 + 1.23333i
\(287\) 2.96364 0.174938
\(288\) 0 0
\(289\) 14.9423 0.878956
\(290\) 0.676061 3.16898i 0.0396997 0.186089i
\(291\) 0 0
\(292\) −5.17089 2.31149i −0.302603 0.135270i
\(293\) 5.85568i 0.342092i −0.985263 0.171046i \(-0.945285\pi\)
0.985263 0.171046i \(-0.0547147\pi\)
\(294\) 0 0
\(295\) −3.71337 −0.216201
\(296\) 14.2905 + 10.4317i 0.830619 + 0.606328i
\(297\) 0 0
\(298\) 29.9049 + 6.37984i 1.73235 + 0.369574i
\(299\) 36.2097i 2.09406i
\(300\) 0 0
\(301\) 5.50539i 0.317325i
\(302\) −3.74743 + 17.5658i −0.215640 + 1.01080i
\(303\) 0 0
\(304\) 2.87126 2.56980i 0.164678 0.147388i
\(305\) 6.37929 0.365277
\(306\) 0 0
\(307\) 13.7071i 0.782305i 0.920326 + 0.391152i \(0.127923\pi\)
−0.920326 + 0.391152i \(0.872077\pi\)
\(308\) 3.55512 7.95295i 0.202572 0.453161i
\(309\) 0 0
\(310\) 7.12094 + 1.51916i 0.404442 + 0.0862826i
\(311\) −19.1596 −1.08644 −0.543221 0.839590i \(-0.682795\pi\)
−0.543221 + 0.839590i \(0.682795\pi\)
\(312\) 0 0
\(313\) 25.2205 1.42555 0.712773 0.701395i \(-0.247439\pi\)
0.712773 + 0.701395i \(0.247439\pi\)
\(314\) −24.1610 5.15444i −1.36348 0.290882i
\(315\) 0 0
\(316\) 10.5123 + 4.69919i 0.591362 + 0.264350i
\(317\) 2.47026i 0.138744i −0.997591 0.0693719i \(-0.977900\pi\)
0.997591 0.0693719i \(-0.0220995\pi\)
\(318\) 0 0
\(319\) −9.01686 −0.504847
\(320\) −5.30350 + 1.69697i −0.296474 + 0.0948637i
\(321\) 0 0
\(322\) 3.08593 14.4650i 0.171972 0.806105i
\(323\) 5.44449i 0.302939i
\(324\) 0 0
\(325\) 24.8597i 1.37897i
\(326\) 11.8496 + 2.52796i 0.656288 + 0.140011i
\(327\) 0 0
\(328\) −3.10808 + 4.25781i −0.171615 + 0.235098i
\(329\) −12.2652 −0.676205
\(330\) 0 0
\(331\) 28.2213i 1.55118i 0.631235 + 0.775592i \(0.282548\pi\)
−0.631235 + 0.775592i \(0.717452\pi\)
\(332\) 5.41889 12.1223i 0.297400 0.665296i
\(333\) 0 0
\(334\) 3.52621 16.5288i 0.192946 0.904416i
\(335\) −4.78843 −0.261620
\(336\) 0 0
\(337\) −11.2113 −0.610718 −0.305359 0.952237i \(-0.598777\pi\)
−0.305359 + 0.952237i \(0.598777\pi\)
\(338\) 5.10735 23.9403i 0.277803 1.30218i
\(339\) 0 0
\(340\) −3.21084 + 7.18277i −0.174132 + 0.389540i
\(341\) 20.2616i 1.09723i
\(342\) 0 0
\(343\) 18.2411 0.984929
\(344\) −7.90951 5.77371i −0.426452 0.311298i
\(345\) 0 0
\(346\) 18.0424 + 3.84911i 0.969963 + 0.206929i
\(347\) 20.5887i 1.10526i 0.833428 + 0.552628i \(0.186375\pi\)
−0.833428 + 0.552628i \(0.813625\pi\)
\(348\) 0 0
\(349\) 3.39445i 0.181701i 0.995865 + 0.0908505i \(0.0289585\pi\)
−0.995865 + 0.0908505i \(0.971041\pi\)
\(350\) 2.11864 9.93094i 0.113246 0.530831i
\(351\) 0 0
\(352\) 7.69748 + 13.4482i 0.410277 + 0.716789i
\(353\) −1.00648 −0.0535696 −0.0267848 0.999641i \(-0.508527\pi\)
−0.0267848 + 0.999641i \(0.508527\pi\)
\(354\) 0 0
\(355\) 2.56390i 0.136078i
\(356\) −5.45390 2.43800i −0.289056 0.129214i
\(357\) 0 0
\(358\) −4.59013 0.979246i −0.242596 0.0517547i
\(359\) −31.4772 −1.66131 −0.830653 0.556791i \(-0.812032\pi\)
−0.830653 + 0.556791i \(0.812032\pi\)
\(360\) 0 0
\(361\) 18.0720 0.951158
\(362\) −20.6258 4.40024i −1.08407 0.231272i
\(363\) 0 0
\(364\) −7.14525 + 15.9842i −0.374513 + 0.837800i
\(365\) 1.97121i 0.103178i
\(366\) 0 0
\(367\) 17.3333 0.904793 0.452397 0.891817i \(-0.350569\pi\)
0.452397 + 0.891817i \(0.350569\pi\)
\(368\) 17.5454 + 19.6036i 0.914616 + 1.02191i
\(369\) 0 0
\(370\) −1.28472 + 6.02202i −0.0667895 + 0.313070i
\(371\) 4.04177i 0.209838i
\(372\) 0 0
\(373\) 13.0183i 0.674064i −0.941493 0.337032i \(-0.890577\pi\)
0.941493 0.337032i \(-0.109423\pi\)
\(374\) 21.4120 + 4.56798i 1.10719 + 0.236205i
\(375\) 0 0
\(376\) 12.8630 17.6213i 0.663361 0.908749i
\(377\) 18.1225 0.933357
\(378\) 0 0
\(379\) 22.8643i 1.17446i 0.809421 + 0.587229i \(0.199781\pi\)
−0.809421 + 0.587229i \(0.800219\pi\)
\(380\) 1.22429 + 0.547281i 0.0628046 + 0.0280749i
\(381\) 0 0
\(382\) −2.15919 + 10.1210i −0.110474 + 0.517835i
\(383\) 30.0234 1.53412 0.767061 0.641574i \(-0.221718\pi\)
0.767061 + 0.641574i \(0.221718\pi\)
\(384\) 0 0
\(385\) 3.03177 0.154513
\(386\) −6.04020 + 28.3129i −0.307438 + 1.44109i
\(387\) 0 0
\(388\) −4.55874 2.03785i −0.231435 0.103456i
\(389\) 38.0444i 1.92893i 0.264218 + 0.964463i \(0.414886\pi\)
−0.264218 + 0.964463i \(0.585114\pi\)
\(390\) 0 0
\(391\) 37.1723 1.87989
\(392\) −7.45679 + 10.2152i −0.376625 + 0.515945i
\(393\) 0 0
\(394\) −28.4137 6.06171i −1.43146 0.305385i
\(395\) 4.00742i 0.201635i
\(396\) 0 0
\(397\) 37.4510i 1.87961i −0.341709 0.939806i \(-0.611006\pi\)
0.341709 0.939806i \(-0.388994\pi\)
\(398\) −0.577138 + 2.70528i −0.0289293 + 0.135604i
\(399\) 0 0
\(400\) 12.0457 + 13.4588i 0.602287 + 0.672939i
\(401\) −4.70804 −0.235108 −0.117554 0.993066i \(-0.537505\pi\)
−0.117554 + 0.993066i \(0.537505\pi\)
\(402\) 0 0
\(403\) 40.7227i 2.02854i
\(404\) 7.74837 17.3334i 0.385496 0.862369i
\(405\) 0 0
\(406\) −7.23958 1.54447i −0.359294 0.0766508i
\(407\) 17.1348 0.849339
\(408\) 0 0
\(409\) −10.7275 −0.530443 −0.265221 0.964188i \(-0.585445\pi\)
−0.265221 + 0.964188i \(0.585445\pi\)
\(410\) −1.79424 0.382779i −0.0886114 0.0189041i
\(411\) 0 0
\(412\) 26.9214 + 12.0344i 1.32632 + 0.592893i
\(413\) 8.48324i 0.417433i
\(414\) 0 0
\(415\) 4.62117 0.226844
\(416\) −15.4708 27.0287i −0.758517 1.32519i
\(417\) 0 0
\(418\) 0.778603 3.64964i 0.0380827 0.178510i
\(419\) 4.12921i 0.201725i −0.994900 0.100863i \(-0.967840\pi\)
0.994900 0.100863i \(-0.0321602\pi\)
\(420\) 0 0
\(421\) 15.8565i 0.772797i −0.922332 0.386399i \(-0.873719\pi\)
0.922332 0.386399i \(-0.126281\pi\)
\(422\) −14.5489 3.10381i −0.708227 0.151091i
\(423\) 0 0
\(424\) −5.80675 4.23876i −0.282001 0.205852i
\(425\) 25.5206 1.23793
\(426\) 0 0
\(427\) 14.5736i 0.705265i
\(428\) −6.39399 + 14.3036i −0.309065 + 0.691390i
\(429\) 0 0
\(430\) 0.711067 3.33307i 0.0342907 0.160735i
\(431\) −16.1853 −0.779619 −0.389810 0.920895i \(-0.627459\pi\)
−0.389810 + 0.920895i \(0.627459\pi\)
\(432\) 0 0
\(433\) −32.8306 −1.57774 −0.788868 0.614563i \(-0.789332\pi\)
−0.788868 + 0.614563i \(0.789332\pi\)
\(434\) 3.47055 16.2679i 0.166592 0.780884i
\(435\) 0 0
\(436\) −0.197847 + 0.442592i −0.00947516 + 0.0211963i
\(437\) 6.33594i 0.303089i
\(438\) 0 0
\(439\) −21.8546 −1.04307 −0.521533 0.853231i \(-0.674640\pi\)
−0.521533 + 0.853231i \(0.674640\pi\)
\(440\) −3.17953 + 4.35569i −0.151578 + 0.207650i
\(441\) 0 0
\(442\) −43.0349 9.18095i −2.04696 0.436693i
\(443\) 35.1606i 1.67053i −0.549848 0.835265i \(-0.685314\pi\)
0.549848 0.835265i \(-0.314686\pi\)
\(444\) 0 0
\(445\) 2.07910i 0.0985587i
\(446\) 1.13971 5.34230i 0.0539669 0.252965i
\(447\) 0 0
\(448\) 3.87676 + 12.1159i 0.183160 + 0.572423i
\(449\) −3.21851 −0.151891 −0.0759453 0.997112i \(-0.524197\pi\)
−0.0759453 + 0.997112i \(0.524197\pi\)
\(450\) 0 0
\(451\) 5.10526i 0.240397i
\(452\) −15.8774 7.09751i −0.746810 0.333839i
\(453\) 0 0
\(454\) 22.2283 + 4.74212i 1.04323 + 0.222559i
\(455\) −6.09338 −0.285662
\(456\) 0 0
\(457\) −8.11025 −0.379381 −0.189691 0.981844i \(-0.560749\pi\)
−0.189691 + 0.981844i \(0.560749\pi\)
\(458\) 11.9191 + 2.54279i 0.556944 + 0.118817i
\(459\) 0 0
\(460\) −3.73657 + 8.35884i −0.174218 + 0.389733i
\(461\) 20.9940i 0.977788i −0.872343 0.488894i \(-0.837401\pi\)
0.872343 0.488894i \(-0.162599\pi\)
\(462\) 0 0
\(463\) 8.90011 0.413623 0.206812 0.978381i \(-0.433691\pi\)
0.206812 + 0.978381i \(0.433691\pi\)
\(464\) 9.81135 8.78125i 0.455480 0.407659i
\(465\) 0 0
\(466\) 7.12686 33.4065i 0.330145 1.54753i
\(467\) 26.0527i 1.20557i −0.797902 0.602787i \(-0.794057\pi\)
0.797902 0.602787i \(-0.205943\pi\)
\(468\) 0 0
\(469\) 10.9392i 0.505128i
\(470\) 7.42562 + 1.58416i 0.342518 + 0.0730719i
\(471\) 0 0
\(472\) −12.1877 8.89671i −0.560987 0.409504i
\(473\) −9.48375 −0.436063
\(474\) 0 0
\(475\) 4.34993i 0.199588i
\(476\) 16.4091 + 7.33521i 0.752112 + 0.336209i
\(477\) 0 0
\(478\) 1.18907 5.57365i 0.0543866 0.254933i
\(479\) 17.4229 0.796071 0.398035 0.917370i \(-0.369692\pi\)
0.398035 + 0.917370i \(0.369692\pi\)
\(480\) 0 0
\(481\) −34.4383 −1.57025
\(482\) 1.66209 7.79091i 0.0757062 0.354866i
\(483\) 0 0
\(484\) −6.38462 2.85405i −0.290210 0.129729i
\(485\) 1.73785i 0.0789118i
\(486\) 0 0
\(487\) −29.7367 −1.34750 −0.673750 0.738959i \(-0.735318\pi\)
−0.673750 + 0.738959i \(0.735318\pi\)
\(488\) 20.9377 + 15.2839i 0.947803 + 0.691869i
\(489\) 0 0
\(490\) −4.30468 0.918349i −0.194466 0.0414868i
\(491\) 23.8268i 1.07529i −0.843171 0.537645i \(-0.819314\pi\)
0.843171 0.537645i \(-0.180686\pi\)
\(492\) 0 0
\(493\) 18.6043i 0.837895i
\(494\) −1.56487 + 7.33521i −0.0704070 + 0.330027i
\(495\) 0 0
\(496\) 19.7321 + 22.0469i 0.885999 + 0.989933i
\(497\) 5.85726 0.262734
\(498\) 0 0
\(499\) 19.4708i 0.871632i −0.900036 0.435816i \(-0.856460\pi\)
0.900036 0.435816i \(-0.143540\pi\)
\(500\) −5.40590 + 12.0932i −0.241759 + 0.540825i
\(501\) 0 0
\(502\) −19.2012 4.09633i −0.856991 0.182828i
\(503\) −1.23494 −0.0550631 −0.0275316 0.999621i \(-0.508765\pi\)
−0.0275316 + 0.999621i \(0.508765\pi\)
\(504\) 0 0
\(505\) 6.60772 0.294040
\(506\) 24.9179 + 5.31592i 1.10774 + 0.236322i
\(507\) 0 0
\(508\) 3.15428 + 1.41002i 0.139948 + 0.0625596i
\(509\) 0.453647i 0.0201075i −0.999949 0.0100538i \(-0.996800\pi\)
0.999949 0.0100538i \(-0.00320027\pi\)
\(510\) 0 0
\(511\) −4.50325 −0.199212
\(512\) −21.4725 7.13674i −0.948958 0.315403i
\(513\) 0 0
\(514\) 3.20168 15.0076i 0.141220 0.661957i
\(515\) 10.2628i 0.452233i
\(516\) 0 0
\(517\) 21.1285i 0.929231i
\(518\) 13.7574 + 2.93497i 0.604465 + 0.128955i
\(519\) 0 0
\(520\) 6.39037 8.75427i 0.280236 0.383900i
\(521\) 29.0873 1.27434 0.637170 0.770724i \(-0.280105\pi\)
0.637170 + 0.770724i \(0.280105\pi\)
\(522\) 0 0
\(523\) 2.95874i 0.129377i 0.997906 + 0.0646883i \(0.0206053\pi\)
−0.997906 + 0.0646883i \(0.979395\pi\)
\(524\) 5.41889 12.1223i 0.236725 0.529564i
\(525\) 0 0
\(526\) 6.84848 32.1017i 0.298608 1.39970i
\(527\) 41.8053 1.82107
\(528\) 0 0
\(529\) 20.2587 0.880815
\(530\) 0.522029 2.44697i 0.0226755 0.106289i
\(531\) 0 0
\(532\) 1.25027 2.79690i 0.0542061 0.121261i
\(533\) 10.2608i 0.444444i
\(534\) 0 0
\(535\) −5.45272 −0.235741
\(536\) −15.7163 11.4724i −0.678839 0.495533i
\(537\) 0 0
\(538\) −5.55955 1.18606i −0.239689 0.0511346i
\(539\) 12.2483i 0.527573i
\(540\) 0 0
\(541\) 14.9753i 0.643838i −0.946767 0.321919i \(-0.895672\pi\)
0.946767 0.321919i \(-0.104328\pi\)
\(542\) 1.99352 9.34444i 0.0856289 0.401378i
\(543\) 0 0
\(544\) −27.7473 + 15.8821i −1.18966 + 0.680937i
\(545\) −0.168722 −0.00722724
\(546\) 0 0
\(547\) 18.2132i 0.778741i −0.921081 0.389370i \(-0.872693\pi\)
0.921081 0.389370i \(-0.127307\pi\)
\(548\) −6.62152 2.95995i −0.282857 0.126443i
\(549\) 0 0
\(550\) 17.1074 + 3.64964i 0.729460 + 0.155621i
\(551\) −3.17106 −0.135092
\(552\) 0 0
\(553\) 9.15500 0.389310
\(554\) −2.93211 0.625529i −0.124574 0.0265762i
\(555\) 0 0
\(556\) −14.1294 + 31.6079i −0.599219 + 1.34048i
\(557\) 35.7359i 1.51418i −0.653310 0.757090i \(-0.726620\pi\)
0.653310 0.757090i \(-0.273380\pi\)
\(558\) 0 0
\(559\) 19.0609 0.806190
\(560\) −3.29890 + 2.95254i −0.139404 + 0.124768i
\(561\) 0 0
\(562\) 7.70591 36.1208i 0.325054 1.52366i
\(563\) 9.28675i 0.391390i 0.980665 + 0.195695i \(0.0626962\pi\)
−0.980665 + 0.195695i \(0.937304\pi\)
\(564\) 0 0
\(565\) 6.05267i 0.254638i
\(566\) −26.4114 5.63454i −1.11016 0.236838i
\(567\) 0 0
\(568\) −6.14274 + 8.41504i −0.257744 + 0.353087i
\(569\) −11.3345 −0.475168 −0.237584 0.971367i \(-0.576356\pi\)
−0.237584 + 0.971367i \(0.576356\pi\)
\(570\) 0 0
\(571\) 43.6296i 1.82584i 0.408138 + 0.912920i \(0.366178\pi\)
−0.408138 + 0.912920i \(0.633822\pi\)
\(572\) −27.5349 12.3086i −1.15129 0.514650i
\(573\) 0 0
\(574\) −0.874464 + 4.09898i −0.0364994 + 0.171088i
\(575\) 29.6992 1.23854
\(576\) 0 0
\(577\) 6.98123 0.290632 0.145316 0.989385i \(-0.453580\pi\)
0.145316 + 0.989385i \(0.453580\pi\)
\(578\) −4.40893 + 20.6665i −0.183387 + 0.859612i
\(579\) 0 0
\(580\) 4.18350 + 1.87011i 0.173710 + 0.0776519i
\(581\) 10.5571i 0.437983i
\(582\) 0 0
\(583\) −6.96248 −0.288356
\(584\) 4.72274 6.46976i 0.195428 0.267721i
\(585\) 0 0
\(586\) 8.09892 + 1.72780i 0.334563 + 0.0713749i
\(587\) 8.48213i 0.350095i 0.984560 + 0.175048i \(0.0560079\pi\)
−0.984560 + 0.175048i \(0.943992\pi\)
\(588\) 0 0
\(589\) 7.12562i 0.293606i
\(590\) 1.09568 5.13592i 0.0451085 0.211442i
\(591\) 0 0
\(592\) −18.6445 + 16.6870i −0.766286 + 0.685833i
\(593\) 9.40869 0.386368 0.193184 0.981163i \(-0.438119\pi\)
0.193184 + 0.981163i \(0.438119\pi\)
\(594\) 0 0
\(595\) 6.25538i 0.256445i
\(596\) −17.6478 + 39.4788i −0.722881 + 1.61711i
\(597\) 0 0
\(598\) −50.0812 10.6842i −2.04797 0.436909i
\(599\) −29.9247 −1.22269 −0.611344 0.791365i \(-0.709371\pi\)
−0.611344 + 0.791365i \(0.709371\pi\)
\(600\) 0 0
\(601\) −3.63946 −0.148456 −0.0742282 0.997241i \(-0.523649\pi\)
−0.0742282 + 0.997241i \(0.523649\pi\)
\(602\) −7.61444 1.62444i −0.310342 0.0662074i
\(603\) 0 0
\(604\) −23.1893 10.3661i −0.943558 0.421789i
\(605\) 2.43390i 0.0989520i
\(606\) 0 0
\(607\) −7.26716 −0.294965 −0.147482 0.989065i \(-0.547117\pi\)
−0.147482 + 0.989065i \(0.547117\pi\)
\(608\) 2.70706 + 4.72947i 0.109786 + 0.191805i
\(609\) 0 0
\(610\) −1.88230 + 8.82313i −0.0762122 + 0.357238i
\(611\) 42.4651i 1.71795i
\(612\) 0 0
\(613\) 32.6469i 1.31859i −0.751882 0.659297i \(-0.770854\pi\)
0.751882 0.659297i \(-0.229146\pi\)
\(614\) −18.9581 4.04448i −0.765088 0.163222i
\(615\) 0 0
\(616\) 9.95065 + 7.26369i 0.400923 + 0.292662i
\(617\) 31.3502 1.26211 0.631056 0.775737i \(-0.282622\pi\)
0.631056 + 0.775737i \(0.282622\pi\)
\(618\) 0 0
\(619\) 1.99289i 0.0801010i −0.999198 0.0400505i \(-0.987248\pi\)
0.999198 0.0400505i \(-0.0127519\pi\)
\(620\) −4.20227 + 9.40065i −0.168767 + 0.377539i
\(621\) 0 0
\(622\) 5.65332 26.4994i 0.226677 1.06253i
\(623\) −4.74973 −0.190294
\(624\) 0 0
\(625\) 17.9675 0.718700
\(626\) −7.44167 + 34.8822i −0.297429 + 1.39417i
\(627\) 0 0
\(628\) 14.2581 31.8959i 0.568960 1.27279i
\(629\) 35.3538i 1.40965i
\(630\) 0 0
\(631\) −15.4643 −0.615623 −0.307812 0.951447i \(-0.599597\pi\)
−0.307812 + 0.951447i \(0.599597\pi\)
\(632\) −9.60121 + 13.1529i −0.381916 + 0.523193i
\(633\) 0 0
\(634\) 3.41660 + 0.728887i 0.135690 + 0.0289478i
\(635\) 1.20245i 0.0477178i
\(636\) 0 0
\(637\) 24.6173i 0.975372i
\(638\) 2.66056 12.4711i 0.105332 0.493737i
\(639\) 0 0
\(640\) −0.782194 7.83593i −0.0309189 0.309742i
\(641\) −24.7275 −0.976679 −0.488340 0.872654i \(-0.662397\pi\)
−0.488340 + 0.872654i \(0.662397\pi\)
\(642\) 0 0
\(643\) 46.2084i 1.82228i 0.412096 + 0.911141i \(0.364797\pi\)
−0.412096 + 0.911141i \(0.635203\pi\)
\(644\) 19.0959 + 8.53624i 0.752484 + 0.336375i
\(645\) 0 0
\(646\) 7.53022 + 1.60648i 0.296272 + 0.0632059i
\(647\) 6.36971 0.250419 0.125210 0.992130i \(-0.460040\pi\)
0.125210 + 0.992130i \(0.460040\pi\)
\(648\) 0 0
\(649\) −14.6135 −0.573630
\(650\) −34.3832 7.33521i −1.34862 0.287711i
\(651\) 0 0
\(652\) −6.99279 + 15.6431i −0.273859 + 0.612633i
\(653\) 36.8174i 1.44078i 0.693571 + 0.720389i \(0.256037\pi\)
−0.693571 + 0.720389i \(0.743963\pi\)
\(654\) 0 0
\(655\) 4.62117 0.180564
\(656\) −4.97185 5.55509i −0.194118 0.216890i
\(657\) 0 0
\(658\) 3.61904 16.9639i 0.141085 0.661323i
\(659\) 7.46589i 0.290830i −0.989371 0.145415i \(-0.953548\pi\)
0.989371 0.145415i \(-0.0464517\pi\)
\(660\) 0 0
\(661\) 2.90965i 0.113172i −0.998398 0.0565862i \(-0.981978\pi\)
0.998398 0.0565862i \(-0.0180216\pi\)
\(662\) −39.0326 8.32711i −1.51705 0.323642i
\(663\) 0 0
\(664\) 15.1673 + 11.0717i 0.588604 + 0.429664i
\(665\) 1.06622 0.0413461
\(666\) 0 0
\(667\) 21.6505i 0.838310i
\(668\) 21.8204 + 9.75413i 0.844255 + 0.377399i
\(669\) 0 0
\(670\) 1.41290 6.62283i 0.0545850 0.255862i
\(671\) 25.1049 0.969165
\(672\) 0 0
\(673\) −42.1054 −1.62304 −0.811522 0.584323i \(-0.801360\pi\)
−0.811522 + 0.584323i \(0.801360\pi\)
\(674\) 3.30806 15.5062i 0.127422 0.597278i
\(675\) 0 0
\(676\) 31.6046 + 14.1279i 1.21556 + 0.543379i
\(677\) 38.0983i 1.46424i −0.681177 0.732119i \(-0.738532\pi\)
0.681177 0.732119i \(-0.261468\pi\)
\(678\) 0 0
\(679\) −3.97015 −0.152360
\(680\) −8.98701 6.56026i −0.344636 0.251574i
\(681\) 0 0
\(682\) 28.0236 + 5.97848i 1.07308 + 0.228928i
\(683\) 47.0728i 1.80119i −0.434659 0.900595i \(-0.643131\pi\)
0.434659 0.900595i \(-0.356869\pi\)
\(684\) 0 0
\(685\) 2.52421i 0.0964450i
\(686\) −5.38232 + 25.2291i −0.205498 + 0.963253i
\(687\) 0 0
\(688\) 10.3194 9.23594i 0.393423 0.352117i
\(689\) 13.9935 0.533111
\(690\) 0 0
\(691\) 3.90892i 0.148702i 0.997232 + 0.0743512i \(0.0236886\pi\)
−0.997232 + 0.0743512i \(0.976311\pi\)
\(692\) −10.6473 + 23.8185i −0.404750 + 0.905442i
\(693\) 0 0
\(694\) −28.4760 6.07498i −1.08093 0.230603i
\(695\) −12.0494 −0.457058
\(696\) 0 0
\(697\) −10.5336 −0.398987
\(698\) −4.69484 1.00158i −0.177702 0.0379105i
\(699\) 0 0
\(700\) 13.1102 + 5.86054i 0.495521 + 0.221507i
\(701\) 16.4480i 0.621231i 0.950536 + 0.310615i \(0.100535\pi\)
−0.950536 + 0.310615i \(0.899465\pi\)
\(702\) 0 0
\(703\) 6.02598 0.227274
\(704\) −20.8713 + 6.67824i −0.786615 + 0.251695i
\(705\) 0 0
\(706\) 0.296977 1.39205i 0.0111769 0.0523907i
\(707\) 15.0954i 0.567722i
\(708\) 0 0
\(709\) 7.90745i 0.296971i −0.988915 0.148485i \(-0.952560\pi\)
0.988915 0.148485i \(-0.0474398\pi\)
\(710\) −3.54610 0.756515i −0.133083 0.0283915i
\(711\) 0 0
\(712\) 4.98123 6.82387i 0.186679 0.255735i
\(713\) 48.6503 1.82197
\(714\) 0 0
\(715\) 10.4967i 0.392553i
\(716\) 2.70877 6.05962i 0.101231 0.226459i
\(717\) 0 0
\(718\) 9.28782 43.5358i 0.346618 1.62474i
\(719\) 37.0556 1.38194 0.690970 0.722884i \(-0.257184\pi\)
0.690970 + 0.722884i \(0.257184\pi\)
\(720\) 0 0
\(721\) 23.4455 0.873156
\(722\) −5.33241 + 24.9952i −0.198452 + 0.930225i
\(723\) 0 0
\(724\) 12.1719 27.2289i 0.452364 1.01196i
\(725\) 14.8641i 0.552038i
\(726\) 0 0
\(727\) −5.66934 −0.210264 −0.105132 0.994458i \(-0.533527\pi\)
−0.105132 + 0.994458i \(0.533527\pi\)
\(728\) −19.9993 14.5989i −0.741222 0.541071i
\(729\) 0 0
\(730\) 2.72636 + 0.581634i 0.100907 + 0.0215272i
\(731\) 19.5676i 0.723735i
\(732\) 0 0
\(733\) 12.5335i 0.462937i −0.972842 0.231469i \(-0.925647\pi\)
0.972842 0.231469i \(-0.0743530\pi\)
\(734\) −5.11446 + 23.9736i −0.188778 + 0.884881i
\(735\) 0 0
\(736\) −32.2905 + 18.4825i −1.19024 + 0.681274i
\(737\) −18.8443 −0.694139
\(738\) 0 0
\(739\) 1.83358i 0.0674492i −0.999431 0.0337246i \(-0.989263\pi\)
0.999431 0.0337246i \(-0.0107369\pi\)
\(740\) −7.94992 3.55377i −0.292245 0.130639i
\(741\) 0 0
\(742\) −5.59013 1.19258i −0.205220 0.0437811i
\(743\) −31.3177 −1.14893 −0.574467 0.818528i \(-0.694791\pi\)
−0.574467 + 0.818528i \(0.694791\pi\)
\(744\) 0 0
\(745\) −15.0498 −0.551382
\(746\) 18.0055 + 3.84125i 0.659230 + 0.140638i
\(747\) 0 0
\(748\) −12.6359 + 28.2669i −0.462013 + 1.03354i
\(749\) 12.4568i 0.455162i
\(750\) 0 0
\(751\) −7.28932 −0.265991 −0.132996 0.991117i \(-0.542460\pi\)
−0.132996 + 0.991117i \(0.542460\pi\)
\(752\) 20.5764 + 22.9902i 0.750344 + 0.838365i
\(753\) 0 0
\(754\) −5.34731 + 25.0651i −0.194738 + 0.912815i
\(755\) 8.84005i 0.321722i
\(756\) 0 0
\(757\) 12.8156i 0.465792i −0.972502 0.232896i \(-0.925180\pi\)
0.972502 0.232896i \(-0.0748202\pi\)
\(758\) −31.6233 6.74643i −1.14861 0.245042i
\(759\) 0 0
\(760\) −1.11818 + 1.53182i −0.0405607 + 0.0555648i
\(761\) 25.1600 0.912050 0.456025 0.889967i \(-0.349273\pi\)
0.456025 + 0.889967i \(0.349273\pi\)
\(762\) 0 0
\(763\) 0.385447i 0.0139541i
\(764\) −13.3611 5.97269i −0.483389 0.216084i
\(765\) 0 0
\(766\) −8.85883 + 41.5250i −0.320083 + 1.50036i
\(767\) 29.3709 1.06052
\(768\) 0 0
\(769\) 21.4636 0.773996 0.386998 0.922081i \(-0.373512\pi\)
0.386998 + 0.922081i \(0.373512\pi\)
\(770\) −0.894567 + 4.19320i −0.0322379 + 0.151113i
\(771\) 0 0
\(772\) −37.3770 16.7083i −1.34523 0.601344i
\(773\) 20.2122i 0.726981i −0.931598 0.363491i \(-0.881585\pi\)
0.931598 0.363491i \(-0.118415\pi\)
\(774\) 0 0
\(775\) 33.4007 1.19979
\(776\) 4.16365 5.70385i 0.149466 0.204756i
\(777\) 0 0
\(778\) −52.6188 11.2255i −1.88647 0.402455i
\(779\) 1.79542i 0.0643277i
\(780\) 0 0
\(781\) 10.0899i 0.361045i
\(782\) −10.9682 + 51.4127i −0.392223 + 1.83851i
\(783\) 0 0
\(784\) −11.9283 13.3276i −0.426010 0.475984i
\(785\) 12.1591 0.433978
\(786\) 0 0
\(787\) 20.2911i 0.723299i −0.932314 0.361649i \(-0.882214\pi\)
0.932314 0.361649i \(-0.117786\pi\)
\(788\) 16.7678 37.5102i 0.597327 1.33624i
\(789\) 0 0
\(790\) −5.54262 1.18245i −0.197197 0.0420696i
\(791\) −13.8274 −0.491646
\(792\) 0 0
\(793\) −50.4570 −1.79178
\(794\) 51.7981 + 11.0505i 1.83825 + 0.392166i
\(795\) 0 0
\(796\) −3.57136 1.59647i −0.126583 0.0565852i
\(797\) 33.3429i 1.18107i −0.807013 0.590533i \(-0.798917\pi\)
0.807013 0.590533i \(-0.201083\pi\)
\(798\) 0 0
\(799\) 43.5940 1.54224
\(800\) −22.1690 + 12.6891i −0.783792 + 0.448628i
\(801\) 0 0
\(802\) 1.38918 6.51164i 0.0490535 0.229934i
\(803\) 7.75745i 0.273754i
\(804\) 0 0
\(805\) 7.27960i 0.256572i
\(806\) −56.3231 12.0158i −1.98390 0.423239i
\(807\) 0 0
\(808\) 21.6874 + 15.8312i 0.762959 + 0.556939i
\(809\) −30.6920 −1.07907 −0.539536 0.841962i \(-0.681400\pi\)
−0.539536 + 0.841962i \(0.681400\pi\)
\(810\) 0 0
\(811\) 49.5457i 1.73978i 0.493241 + 0.869892i \(0.335812\pi\)
−0.493241 + 0.869892i \(0.664188\pi\)
\(812\) 4.27229 9.55727i 0.149928 0.335394i
\(813\) 0 0
\(814\) −5.05586 + 23.6989i −0.177208 + 0.830647i
\(815\) −5.96337 −0.208888
\(816\) 0 0
\(817\) −3.33526 −0.116686
\(818\) 3.16532 14.8372i 0.110673 0.518769i
\(819\) 0 0
\(820\) 1.05884 2.36865i 0.0369761 0.0827170i
\(821\) 38.0750i 1.32883i 0.747365 + 0.664414i \(0.231319\pi\)
−0.747365 + 0.664414i \(0.768681\pi\)
\(822\) 0 0
\(823\) −22.5252 −0.785178 −0.392589 0.919714i \(-0.628421\pi\)
−0.392589 + 0.919714i \(0.628421\pi\)
\(824\) −24.5882 + 33.6838i −0.856571 + 1.17343i
\(825\) 0 0
\(826\) −11.7331 2.50310i −0.408246 0.0870941i
\(827\) 33.5317i 1.16601i 0.812468 + 0.583006i \(0.198124\pi\)
−0.812468 + 0.583006i \(0.801876\pi\)
\(828\) 0 0
\(829\) 37.7559i 1.31132i 0.755058 + 0.655658i \(0.227609\pi\)
−0.755058 + 0.655658i \(0.772391\pi\)
\(830\) −1.36354 + 6.39149i −0.0473293 + 0.221852i
\(831\) 0 0
\(832\) 41.9480 13.4222i 1.45429 0.465332i
\(833\) −25.2717 −0.875614
\(834\) 0 0
\(835\) 8.31821i 0.287863i
\(836\) 4.81804 + 2.15376i 0.166635 + 0.0744892i
\(837\) 0 0
\(838\) 5.71107 + 1.21838i 0.197286 + 0.0420884i
\(839\) −19.8121 −0.683989 −0.341994 0.939702i \(-0.611102\pi\)
−0.341994 + 0.939702i \(0.611102\pi\)
\(840\) 0 0
\(841\) 18.1642 0.626352
\(842\) 21.9309 + 4.67868i 0.755790 + 0.161238i
\(843\) 0 0
\(844\) 8.58570 19.2065i 0.295532 0.661117i
\(845\) 12.0481i 0.414466i
\(846\) 0 0
\(847\) −5.56028 −0.191053
\(848\) 7.57595 6.78055i 0.260159 0.232845i
\(849\) 0 0
\(850\) −7.53022 + 35.2972i −0.258284 + 1.21069i
\(851\) 41.1425i 1.41035i
\(852\) 0 0
\(853\) 6.87537i 0.235408i −0.993049 0.117704i \(-0.962447\pi\)
0.993049 0.117704i \(-0.0375534\pi\)
\(854\) 20.1566 + 4.30015i 0.689744 + 0.147148i
\(855\) 0 0
\(856\) −17.8965 13.0639i −0.611690 0.446516i
\(857\) −7.74632 −0.264609 −0.132305 0.991209i \(-0.542238\pi\)
−0.132305 + 0.991209i \(0.542238\pi\)
\(858\) 0 0
\(859\) 0.686576i 0.0234257i −0.999931 0.0117128i \(-0.996272\pi\)
0.999931 0.0117128i \(-0.00372839\pi\)
\(860\) 4.40012 + 1.96694i 0.150043 + 0.0670721i
\(861\) 0 0
\(862\) 4.77571 22.3857i 0.162661 0.762461i
\(863\) 42.9194 1.46099 0.730496 0.682917i \(-0.239289\pi\)
0.730496 + 0.682917i \(0.239289\pi\)
\(864\) 0 0
\(865\) −9.07991 −0.308726
\(866\) 9.68713 45.4076i 0.329182 1.54301i
\(867\) 0 0
\(868\) 21.4759 + 9.60016i 0.728940 + 0.325851i
\(869\) 15.7707i 0.534984i
\(870\) 0 0
\(871\) 37.8742 1.28332
\(872\) −0.553766 0.404233i −0.0187529 0.0136891i
\(873\) 0 0
\(874\) 8.76318 + 1.86951i 0.296419 + 0.0632372i
\(875\) 10.5318i 0.356040i
\(876\) 0 0
\(877\) 17.0328i 0.575157i −0.957757 0.287578i \(-0.907150\pi\)
0.957757 0.287578i \(-0.0928501\pi\)
\(878\) 6.44853 30.2269i 0.217627 1.02011i
\(879\) 0 0
\(880\) −5.08615 5.68279i −0.171454 0.191567i
\(881\) 7.90546 0.266342 0.133171 0.991093i \(-0.457484\pi\)
0.133171 + 0.991093i \(0.457484\pi\)
\(882\) 0 0
\(883\) 7.53298i 0.253505i 0.991934 + 0.126752i \(0.0404554\pi\)
−0.991934 + 0.126752i \(0.959545\pi\)
\(884\) 25.3962 56.8122i 0.854165 1.91080i
\(885\) 0 0
\(886\) 48.6302 + 10.3746i 1.63376 + 0.348543i
\(887\) 14.0544 0.471900 0.235950 0.971765i \(-0.424180\pi\)
0.235950 + 0.971765i \(0.424180\pi\)
\(888\) 0 0
\(889\) 2.74702 0.0921320
\(890\) 2.87558 + 0.613468i 0.0963896 + 0.0205635i
\(891\) 0 0
\(892\) 7.05260 + 3.15265i 0.236138 + 0.105558i
\(893\) 7.43051i 0.248652i
\(894\) 0 0
\(895\) 2.31001 0.0772150
\(896\) −17.9013 + 1.78693i −0.598040 + 0.0596973i
\(897\) 0 0
\(898\) 0.949667 4.45148i 0.0316908 0.148548i
\(899\) 24.3489i 0.812081i
\(900\) 0 0
\(901\) 14.3655i 0.478585i
\(902\) −7.06103 1.50638i −0.235106 0.0501570i
\(903\) 0 0
\(904\) 14.5013 19.8656i 0.482307 0.660721i
\(905\) 10.3800 0.345043
\(906\) 0 0
\(907\) 45.9522i 1.52582i 0.646505 + 0.762910i \(0.276230\pi\)
−0.646505 + 0.762910i \(0.723770\pi\)
\(908\) −13.1176 + 29.3445i −0.435322 + 0.973831i
\(909\) 0 0
\(910\) 1.79794 8.42770i 0.0596012 0.279375i
\(911\) 51.5822 1.70899 0.854497 0.519456i \(-0.173865\pi\)
0.854497 + 0.519456i \(0.173865\pi\)
\(912\) 0 0
\(913\) 18.1860 0.601870
\(914\) 2.39305 11.2172i 0.0791549 0.371032i
\(915\) 0 0
\(916\) −7.03382 + 15.7349i −0.232404 + 0.519897i
\(917\) 10.5571i 0.348627i
\(918\) 0 0
\(919\) −21.2048 −0.699481 −0.349741 0.936847i \(-0.613730\pi\)
−0.349741 + 0.936847i \(0.613730\pi\)
\(920\) −10.4585 7.63440i −0.344806 0.251699i
\(921\) 0 0
\(922\) 29.0366 + 6.19458i 0.956269 + 0.204008i
\(923\) 20.2792i 0.667497i
\(924\) 0 0
\(925\) 28.2463i 0.928732i
\(926\) −2.62611 + 12.3096i −0.0862992 + 0.404520i
\(927\) 0 0
\(928\) 9.25027 + 16.1610i 0.303655 + 0.530511i
\(929\) 3.41033 0.111889 0.0559446 0.998434i \(-0.482183\pi\)
0.0559446 + 0.998434i \(0.482183\pi\)
\(930\) 0 0
\(931\) 4.30751i 0.141173i
\(932\) 44.1013 + 19.7142i 1.44459 + 0.645759i
\(933\) 0 0
\(934\) 36.0332 + 7.68722i 1.17904 + 0.251534i
\(935\) −10.7757 −0.352403
\(936\) 0 0
\(937\) 29.4448 0.961919 0.480959 0.876743i \(-0.340288\pi\)
0.480959 + 0.876743i \(0.340288\pi\)
\(938\) −15.1300 3.22778i −0.494011 0.105391i
\(939\) 0 0
\(940\) −4.38207 + 9.80287i −0.142927 + 0.319734i
\(941\) 46.8670i 1.52782i −0.645323 0.763910i \(-0.723277\pi\)
0.645323 0.763910i \(-0.276723\pi\)
\(942\) 0 0
\(943\) −12.2583 −0.399185
\(944\) 15.9011 14.2316i 0.517537 0.463201i
\(945\) 0 0
\(946\) 2.79832 13.1169i 0.0909812 0.426467i
\(947\) 36.4679i 1.18505i 0.805553 + 0.592524i \(0.201869\pi\)
−0.805553 + 0.592524i \(0.798131\pi\)
\(948\) 0 0
\(949\) 15.5913i 0.506115i
\(950\) 6.01634 + 1.28351i 0.195196 + 0.0416425i
\(951\) 0 0
\(952\) −14.9870 + 20.5310i −0.485732 + 0.665412i
\(953\) −38.0590 −1.23285 −0.616426 0.787413i \(-0.711420\pi\)
−0.616426 + 0.787413i \(0.711420\pi\)
\(954\) 0 0
\(955\) 5.09344i 0.164820i
\(956\) 7.35800 + 3.28917i 0.237975 + 0.106379i
\(957\) 0 0
\(958\) −5.14087 + 24.0974i −0.166094 + 0.778551i
\(959\) −5.76659 −0.186213
\(960\) 0 0
\(961\) 23.7138 0.764962
\(962\) 10.1615 47.6312i 0.327620 1.53569i
\(963\) 0 0
\(964\) 10.2851 + 4.59764i 0.331261 + 0.148080i
\(965\) 14.2486i 0.458679i
\(966\) 0 0
\(967\) −22.9728 −0.738756 −0.369378 0.929279i \(-0.620429\pi\)
−0.369378 + 0.929279i \(0.620429\pi\)
\(968\) 5.83128 7.98837i 0.187424 0.256756i
\(969\) 0 0
\(970\) 2.40360 + 0.512778i 0.0771751 + 0.0164643i
\(971\) 53.8829i 1.72919i −0.502474 0.864593i \(-0.667577\pi\)
0.502474 0.864593i \(-0.332423\pi\)
\(972\) 0 0
\(973\) 27.5269i 0.882473i
\(974\) 8.77426 41.1286i 0.281145 1.31784i
\(975\) 0 0
\(976\) −27.3169 + 24.4489i −0.874394 + 0.782591i
\(977\) 38.2048 1.22228 0.611140 0.791523i \(-0.290711\pi\)
0.611140 + 0.791523i \(0.290711\pi\)
\(978\) 0 0
\(979\) 8.18203i 0.261499i
\(980\) 2.54032 5.68279i 0.0811475 0.181530i
\(981\) 0 0
\(982\) 32.9547 + 7.03045i 1.05163 + 0.224351i
\(983\) −48.6614 −1.55206 −0.776028 0.630698i \(-0.782769\pi\)
−0.776028 + 0.630698i \(0.782769\pi\)
\(984\) 0 0
\(985\) 14.2994 0.455615
\(986\) 25.7314 + 5.48947i 0.819455 + 0.174820i
\(987\) 0 0
\(988\) −9.68351 4.32872i −0.308074 0.137715i
\(989\) 22.7715i 0.724093i
\(990\) 0 0
\(991\) −12.7822 −0.406040 −0.203020 0.979175i \(-0.565076\pi\)
−0.203020 + 0.979175i \(0.565076\pi\)
\(992\) −36.3150 + 20.7861i −1.15300 + 0.659958i
\(993\) 0 0
\(994\) −1.72827 + 8.10112i −0.0548174 + 0.256952i
\(995\) 1.36145i 0.0431608i
\(996\) 0 0
\(997\) 24.3827i 0.772209i 0.922455 + 0.386104i \(0.126180\pi\)
−0.922455 + 0.386104i \(0.873820\pi\)
\(998\) 26.9299 + 5.74514i 0.852450 + 0.181859i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 648.2.d.k.325.4 8
3.2 odd 2 648.2.d.j.325.5 8
4.3 odd 2 2592.2.d.k.1297.4 8
8.3 odd 2 2592.2.d.k.1297.5 8
8.5 even 2 inner 648.2.d.k.325.3 8
9.2 odd 6 72.2.n.b.13.1 16
9.4 even 3 216.2.n.b.181.2 16
9.5 odd 6 72.2.n.b.61.7 yes 16
9.7 even 3 216.2.n.b.37.8 16
12.11 even 2 2592.2.d.j.1297.5 8
24.5 odd 2 648.2.d.j.325.6 8
24.11 even 2 2592.2.d.j.1297.4 8
36.7 odd 6 864.2.r.b.145.5 16
36.11 even 6 288.2.r.b.49.2 16
36.23 even 6 288.2.r.b.241.7 16
36.31 odd 6 864.2.r.b.721.4 16
72.5 odd 6 72.2.n.b.61.1 yes 16
72.11 even 6 288.2.r.b.49.7 16
72.13 even 6 216.2.n.b.181.8 16
72.29 odd 6 72.2.n.b.13.7 yes 16
72.43 odd 6 864.2.r.b.145.4 16
72.59 even 6 288.2.r.b.241.2 16
72.61 even 6 216.2.n.b.37.2 16
72.67 odd 6 864.2.r.b.721.5 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
72.2.n.b.13.1 16 9.2 odd 6
72.2.n.b.13.7 yes 16 72.29 odd 6
72.2.n.b.61.1 yes 16 72.5 odd 6
72.2.n.b.61.7 yes 16 9.5 odd 6
216.2.n.b.37.2 16 72.61 even 6
216.2.n.b.37.8 16 9.7 even 3
216.2.n.b.181.2 16 9.4 even 3
216.2.n.b.181.8 16 72.13 even 6
288.2.r.b.49.2 16 36.11 even 6
288.2.r.b.49.7 16 72.11 even 6
288.2.r.b.241.2 16 72.59 even 6
288.2.r.b.241.7 16 36.23 even 6
648.2.d.j.325.5 8 3.2 odd 2
648.2.d.j.325.6 8 24.5 odd 2
648.2.d.k.325.3 8 8.5 even 2 inner
648.2.d.k.325.4 8 1.1 even 1 trivial
864.2.r.b.145.4 16 72.43 odd 6
864.2.r.b.145.5 16 36.7 odd 6
864.2.r.b.721.4 16 36.31 odd 6
864.2.r.b.721.5 16 72.67 odd 6
2592.2.d.j.1297.4 8 24.11 even 2
2592.2.d.j.1297.5 8 12.11 even 2
2592.2.d.k.1297.4 8 4.3 odd 2
2592.2.d.k.1297.5 8 8.3 odd 2