Properties

Label 2600.2.d.a
Level 26002600
Weight 22
Character orbit 2600.d
Analytic conductor 20.76120.761
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(1249,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.1249");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 2600=235213 2600 = 2^{3} \cdot 5^{2} \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 2600.d (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 20.761104525520.7611045255
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 1 1
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3iq32iq76q92q11iq132iq174q19+6q21+iq239iq27q292q316iq33+3q39+12q415iq434iq47+3q49++12q99+O(q100) q + 3 i q^{3} - 2 i q^{7} - 6 q^{9} - 2 q^{11} - i q^{13} - 2 i q^{17} - 4 q^{19} + 6 q^{21} + i q^{23} - 9 i q^{27} - q^{29} - 2 q^{31} - 6 i q^{33} + 3 q^{39} + 12 q^{41} - 5 i q^{43} - 4 i q^{47} + 3 q^{49} + \cdots + 12 q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q12q94q118q19+12q212q294q31+6q39+24q41+6q49+12q5116q59+14q616q69+30q79+18q81+36q894q91+24q99+O(q100) 2 q - 12 q^{9} - 4 q^{11} - 8 q^{19} + 12 q^{21} - 2 q^{29} - 4 q^{31} + 6 q^{39} + 24 q^{41} + 6 q^{49} + 12 q^{51} - 16 q^{59} + 14 q^{61} - 6 q^{69} + 30 q^{79} + 18 q^{81} + 36 q^{89} - 4 q^{91} + 24 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/2600Z)×\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times.

nn 13011301 16011601 19511951 19771977
χ(n)\chi(n) 11 11 11 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1249.1
1.00000i
1.00000i
0 3.00000i 0 0 0 2.00000i 0 −6.00000 0
1249.2 0 3.00000i 0 0 0 2.00000i 0 −6.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 2600.2.d.a 2
5.b even 2 1 inner 2600.2.d.a 2
5.c odd 4 1 2600.2.a.a 1
5.c odd 4 1 2600.2.a.m yes 1
20.e even 4 1 5200.2.a.a 1
20.e even 4 1 5200.2.a.bk 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2600.2.a.a 1 5.c odd 4 1
2600.2.a.m yes 1 5.c odd 4 1
2600.2.d.a 2 1.a even 1 1 trivial
2600.2.d.a 2 5.b even 2 1 inner
5200.2.a.a 1 20.e even 4 1
5200.2.a.bk 1 20.e even 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(2600,[χ])S_{2}^{\mathrm{new}}(2600, [\chi]):

T32+9 T_{3}^{2} + 9 Copy content Toggle raw display
T72+4 T_{7}^{2} + 4 Copy content Toggle raw display
T11+2 T_{11} + 2 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2+9 T^{2} + 9 Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+4 T^{2} + 4 Copy content Toggle raw display
1111 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
1313 T2+1 T^{2} + 1 Copy content Toggle raw display
1717 T2+4 T^{2} + 4 Copy content Toggle raw display
1919 (T+4)2 (T + 4)^{2} Copy content Toggle raw display
2323 T2+1 T^{2} + 1 Copy content Toggle raw display
2929 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
3131 (T+2)2 (T + 2)^{2} Copy content Toggle raw display
3737 T2 T^{2} Copy content Toggle raw display
4141 (T12)2 (T - 12)^{2} Copy content Toggle raw display
4343 T2+25 T^{2} + 25 Copy content Toggle raw display
4747 T2+16 T^{2} + 16 Copy content Toggle raw display
5353 T2+81 T^{2} + 81 Copy content Toggle raw display
5959 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
6161 (T7)2 (T - 7)^{2} Copy content Toggle raw display
6767 T2+196 T^{2} + 196 Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T2+36 T^{2} + 36 Copy content Toggle raw display
7979 (T15)2 (T - 15)^{2} Copy content Toggle raw display
8383 T2+16 T^{2} + 16 Copy content Toggle raw display
8989 (T18)2 (T - 18)^{2} Copy content Toggle raw display
9797 T2+256 T^{2} + 256 Copy content Toggle raw display
show more
show less