Properties

Label 2600.2.k.c.2001.7
Level $2600$
Weight $2$
Character 2600.2001
Analytic conductor $20.761$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2600,2,Mod(2001,2600)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2600, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2600.2001");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2600 = 2^{3} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2600.k (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.7611045255\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 2x^{7} + 2x^{6} + 6x^{5} + 36x^{4} - 52x^{3} + 50x^{2} + 140x + 196 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 520)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 2001.7
Root \(-0.772270 - 0.772270i\) of defining polynomial
Character \(\chi\) \(=\) 2600.2001
Dual form 2600.2.k.c.2001.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.80720 q^{3} -3.54454i q^{7} +4.88037 q^{9} -1.26266i q^{11} +(-2.80720 + 2.26266i) q^{13} +5.42491 q^{17} -0.926831i q^{19} -9.95023i q^{21} +7.33252 q^{23} +5.27857 q^{27} -7.49477 q^{29} -8.16225i q^{31} -3.54454i q^{33} +7.15894i q^{37} +(-7.88037 + 6.35174i) q^{39} -2.18949i q^{41} +7.14303 q^{43} -7.30528i q^{47} -5.56376 q^{49} +15.2288 q^{51} +2.18949 q^{53} -2.60180i q^{57} -4.68757i q^{59} +10.2594 q^{61} -17.2987i q^{63} +9.83060i q^{67} +20.5838 q^{69} -14.1125i q^{71} -0.980781i q^{73} -4.47555 q^{77} -12.1397 q^{79} +0.176891 q^{81} -1.15894i q^{83} -21.0393 q^{87} +11.0891i q^{89} +(8.02009 + 9.95023i) q^{91} -22.9131i q^{93} -14.1397i q^{97} -6.16225i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{3} + 16 q^{9} + 4 q^{13} + 4 q^{17} + 12 q^{23} - 4 q^{27} + 16 q^{29} - 40 q^{39} + 24 q^{43} - 32 q^{49} + 16 q^{51} + 4 q^{53} + 32 q^{61} + 56 q^{69} + 44 q^{77} - 24 q^{79} + 64 q^{81} - 76 q^{87}+ \cdots - 32 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2600\mathbb{Z}\right)^\times\).

\(n\) \(1301\) \(1601\) \(1951\) \(1977\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.80720 1.62074 0.810369 0.585920i \(-0.199267\pi\)
0.810369 + 0.585920i \(0.199267\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 3.54454i 1.33971i −0.742492 0.669855i \(-0.766356\pi\)
0.742492 0.669855i \(-0.233644\pi\)
\(8\) 0 0
\(9\) 4.88037 1.62679
\(10\) 0 0
\(11\) 1.26266i 0.380706i −0.981716 0.190353i \(-0.939037\pi\)
0.981716 0.190353i \(-0.0609633\pi\)
\(12\) 0 0
\(13\) −2.80720 + 2.26266i −0.778577 + 0.627549i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 5.42491 1.31573 0.657867 0.753134i \(-0.271459\pi\)
0.657867 + 0.753134i \(0.271459\pi\)
\(18\) 0 0
\(19\) 0.926831i 0.212630i −0.994333 0.106315i \(-0.966095\pi\)
0.994333 0.106315i \(-0.0339051\pi\)
\(20\) 0 0
\(21\) 9.95023i 2.17132i
\(22\) 0 0
\(23\) 7.33252 1.52894 0.764468 0.644662i \(-0.223002\pi\)
0.764468 + 0.644662i \(0.223002\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.27857 1.01586
\(28\) 0 0
\(29\) −7.49477 −1.39174 −0.695872 0.718166i \(-0.744982\pi\)
−0.695872 + 0.718166i \(0.744982\pi\)
\(30\) 0 0
\(31\) 8.16225i 1.46598i −0.680238 0.732991i \(-0.738124\pi\)
0.680238 0.732991i \(-0.261876\pi\)
\(32\) 0 0
\(33\) 3.54454i 0.617025i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 7.15894i 1.17692i 0.808526 + 0.588461i \(0.200266\pi\)
−0.808526 + 0.588461i \(0.799734\pi\)
\(38\) 0 0
\(39\) −7.88037 + 6.35174i −1.26187 + 1.01709i
\(40\) 0 0
\(41\) 2.18949i 0.341941i −0.985276 0.170971i \(-0.945310\pi\)
0.985276 0.170971i \(-0.0546903\pi\)
\(42\) 0 0
\(43\) 7.14303 1.08930 0.544651 0.838663i \(-0.316662\pi\)
0.544651 + 0.838663i \(0.316662\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 7.30528i 1.06558i −0.846246 0.532792i \(-0.821143\pi\)
0.846246 0.532792i \(-0.178857\pi\)
\(48\) 0 0
\(49\) −5.56376 −0.794823
\(50\) 0 0
\(51\) 15.2288 2.13246
\(52\) 0 0
\(53\) 2.18949 0.300750 0.150375 0.988629i \(-0.451952\pi\)
0.150375 + 0.988629i \(0.451952\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 2.60180i 0.344617i
\(58\) 0 0
\(59\) 4.68757i 0.610269i −0.952309 0.305135i \(-0.901299\pi\)
0.952309 0.305135i \(-0.0987015\pi\)
\(60\) 0 0
\(61\) 10.2594 1.31358 0.656788 0.754076i \(-0.271915\pi\)
0.656788 + 0.754076i \(0.271915\pi\)
\(62\) 0 0
\(63\) 17.2987i 2.17943i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.83060i 1.20100i 0.799625 + 0.600499i \(0.205031\pi\)
−0.799625 + 0.600499i \(0.794969\pi\)
\(68\) 0 0
\(69\) 20.5838 2.47800
\(70\) 0 0
\(71\) 14.1125i 1.67484i −0.546558 0.837421i \(-0.684062\pi\)
0.546558 0.837421i \(-0.315938\pi\)
\(72\) 0 0
\(73\) 0.980781i 0.114792i −0.998351 0.0573959i \(-0.981720\pi\)
0.998351 0.0573959i \(-0.0182797\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −4.47555 −0.510036
\(78\) 0 0
\(79\) −12.1397 −1.36583 −0.682913 0.730500i \(-0.739287\pi\)
−0.682913 + 0.730500i \(0.739287\pi\)
\(80\) 0 0
\(81\) 0.176891 0.0196546
\(82\) 0 0
\(83\) 1.15894i 0.127210i −0.997975 0.0636050i \(-0.979740\pi\)
0.997975 0.0636050i \(-0.0202598\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −21.0393 −2.25565
\(88\) 0 0
\(89\) 11.0891i 1.17544i 0.809064 + 0.587720i \(0.199974\pi\)
−0.809064 + 0.587720i \(0.800026\pi\)
\(90\) 0 0
\(91\) 8.02009 + 9.95023i 0.840734 + 1.04307i
\(92\) 0 0
\(93\) 22.9131i 2.37597i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 14.1397i 1.43567i −0.696213 0.717835i \(-0.745133\pi\)
0.696213 0.717835i \(-0.254867\pi\)
\(98\) 0 0
\(99\) 6.16225i 0.619329i
\(100\) 0 0
\(101\) −11.6144 −1.15568 −0.577838 0.816152i \(-0.696103\pi\)
−0.577838 + 0.816152i \(0.696103\pi\)
\(102\) 0 0
\(103\) −14.4103 −1.41989 −0.709943 0.704259i \(-0.751279\pi\)
−0.709943 + 0.704259i \(0.751279\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 3.84651 0.371856 0.185928 0.982563i \(-0.440471\pi\)
0.185928 + 0.982563i \(0.440471\pi\)
\(108\) 0 0
\(109\) 2.91092i 0.278816i 0.990235 + 0.139408i \(0.0445199\pi\)
−0.990235 + 0.139408i \(0.955480\pi\)
\(110\) 0 0
\(111\) 20.0966i 1.90748i
\(112\) 0 0
\(113\) 2.33583 0.219736 0.109868 0.993946i \(-0.464957\pi\)
0.109868 + 0.993946i \(0.464957\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) −13.7002 + 11.0426i −1.26658 + 1.02089i
\(118\) 0 0
\(119\) 19.2288i 1.76270i
\(120\) 0 0
\(121\) 9.40569 0.855063
\(122\) 0 0
\(123\) 6.14634i 0.554197i
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 6.05395 0.537201 0.268601 0.963252i \(-0.413439\pi\)
0.268601 + 0.963252i \(0.413439\pi\)
\(128\) 0 0
\(129\) 20.0519 1.76547
\(130\) 0 0
\(131\) −2.71010 −0.236782 −0.118391 0.992967i \(-0.537774\pi\)
−0.118391 + 0.992967i \(0.537774\pi\)
\(132\) 0 0
\(133\) −3.28519 −0.284862
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 11.2354i 0.959906i 0.877294 + 0.479953i \(0.159346\pi\)
−0.877294 + 0.479953i \(0.840654\pi\)
\(138\) 0 0
\(139\) 1.28990 0.109408 0.0547041 0.998503i \(-0.482578\pi\)
0.0547041 + 0.998503i \(0.482578\pi\)
\(140\) 0 0
\(141\) 20.5074i 1.72703i
\(142\) 0 0
\(143\) 2.85697 + 3.54454i 0.238912 + 0.296409i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −15.6186 −1.28820
\(148\) 0 0
\(149\) 16.9895i 1.39184i 0.718121 + 0.695918i \(0.245003\pi\)
−0.718121 + 0.695918i \(0.754997\pi\)
\(150\) 0 0
\(151\) 17.0168i 1.38481i 0.721511 + 0.692403i \(0.243448\pi\)
−0.721511 + 0.692403i \(0.756552\pi\)
\(152\) 0 0
\(153\) 26.4755 2.14042
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 17.2354 1.37554 0.687768 0.725931i \(-0.258591\pi\)
0.687768 + 0.725931i \(0.258591\pi\)
\(158\) 0 0
\(159\) 6.14634 0.487436
\(160\) 0 0
\(161\) 25.9904i 2.04833i
\(162\) 0 0
\(163\) 14.3944i 1.12745i 0.825962 + 0.563726i \(0.190633\pi\)
−0.825962 + 0.563726i \(0.809367\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 10.7415i 0.831204i 0.909547 + 0.415602i \(0.136429\pi\)
−0.909547 + 0.415602i \(0.863571\pi\)
\(168\) 0 0
\(169\) 2.76074 12.7035i 0.212364 0.977191i
\(170\) 0 0
\(171\) 4.52328i 0.345904i
\(172\) 0 0
\(173\) −12.8996 −0.980737 −0.490369 0.871515i \(-0.663138\pi\)
−0.490369 + 0.871515i \(0.663138\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 13.1589i 0.989086i
\(178\) 0 0
\(179\) 2.28606 0.170868 0.0854340 0.996344i \(-0.472772\pi\)
0.0854340 + 0.996344i \(0.472772\pi\)
\(180\) 0 0
\(181\) −18.5838 −1.38133 −0.690663 0.723177i \(-0.742681\pi\)
−0.690663 + 0.723177i \(0.742681\pi\)
\(182\) 0 0
\(183\) 28.8000 2.12896
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 6.84982i 0.500908i
\(188\) 0 0
\(189\) 18.7101i 1.36096i
\(190\) 0 0
\(191\) 8.00000 0.578860 0.289430 0.957199i \(-0.406534\pi\)
0.289430 + 0.957199i \(0.406534\pi\)
\(192\) 0 0
\(193\) 19.6144i 1.41188i 0.708274 + 0.705938i \(0.249474\pi\)
−0.708274 + 0.705938i \(0.750526\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.7035i 1.33257i 0.745698 + 0.666284i \(0.232116\pi\)
−0.745698 + 0.666284i \(0.767884\pi\)
\(198\) 0 0
\(199\) −2.28606 −0.162054 −0.0810272 0.996712i \(-0.525820\pi\)
−0.0810272 + 0.996712i \(0.525820\pi\)
\(200\) 0 0
\(201\) 27.5964i 1.94650i
\(202\) 0 0
\(203\) 26.5655i 1.86453i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 35.7854 2.48726
\(208\) 0 0
\(209\) −1.17027 −0.0809494
\(210\) 0 0
\(211\) 13.6144 0.937254 0.468627 0.883396i \(-0.344749\pi\)
0.468627 + 0.883396i \(0.344749\pi\)
\(212\) 0 0
\(213\) 39.6165i 2.71448i
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) −28.9314 −1.96399
\(218\) 0 0
\(219\) 2.75325i 0.186047i
\(220\) 0 0
\(221\) −15.2288 + 12.2747i −1.02440 + 0.825687i
\(222\) 0 0
\(223\) 25.8624i 1.73188i −0.500152 0.865938i \(-0.666722\pi\)
0.500152 0.865938i \(-0.333278\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 25.6776i 1.70428i 0.523310 + 0.852142i \(0.324697\pi\)
−0.523310 + 0.852142i \(0.675303\pi\)
\(228\) 0 0
\(229\) 14.8996i 0.984592i 0.870428 + 0.492296i \(0.163842\pi\)
−0.870428 + 0.492296i \(0.836158\pi\)
\(230\) 0 0
\(231\) −12.5638 −0.826635
\(232\) 0 0
\(233\) 10.8114 0.708277 0.354138 0.935193i \(-0.384774\pi\)
0.354138 + 0.935193i \(0.384774\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) −34.0786 −2.21364
\(238\) 0 0
\(239\) 22.1011i 1.42960i 0.699327 + 0.714802i \(0.253483\pi\)
−0.699327 + 0.714802i \(0.746517\pi\)
\(240\) 0 0
\(241\) 2.42875i 0.156450i −0.996936 0.0782249i \(-0.975075\pi\)
0.996936 0.0782249i \(-0.0249252\pi\)
\(242\) 0 0
\(243\) −15.3391 −0.984006
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 2.09710 + 2.60180i 0.133435 + 0.165549i
\(248\) 0 0
\(249\) 3.25337i 0.206174i
\(250\) 0 0
\(251\) −0.703477 −0.0444031 −0.0222015 0.999754i \(-0.507068\pi\)
−0.0222015 + 0.999754i \(0.507068\pi\)
\(252\) 0 0
\(253\) 9.25848i 0.582076i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −17.5215 −1.09296 −0.546480 0.837472i \(-0.684032\pi\)
−0.546480 + 0.837472i \(0.684032\pi\)
\(258\) 0 0
\(259\) 25.3751 1.57673
\(260\) 0 0
\(261\) −36.5772 −2.26407
\(262\) 0 0
\(263\) −1.24257 −0.0766203 −0.0383101 0.999266i \(-0.512197\pi\)
−0.0383101 + 0.999266i \(0.512197\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 31.1293i 1.90508i
\(268\) 0 0
\(269\) −13.7926 −0.840947 −0.420473 0.907305i \(-0.638136\pi\)
−0.420473 + 0.907305i \(0.638136\pi\)
\(270\) 0 0
\(271\) 12.8771i 0.782226i 0.920343 + 0.391113i \(0.127910\pi\)
−0.920343 + 0.391113i \(0.872090\pi\)
\(272\) 0 0
\(273\) 22.5140 + 27.9323i 1.36261 + 1.69054i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 28.2681 1.69847 0.849233 0.528018i \(-0.177065\pi\)
0.849233 + 0.528018i \(0.177065\pi\)
\(278\) 0 0
\(279\) 39.8348i 2.38485i
\(280\) 0 0
\(281\) 23.3572i 1.39337i 0.717376 + 0.696686i \(0.245343\pi\)
−0.717376 + 0.696686i \(0.754657\pi\)
\(282\) 0 0
\(283\) 5.42073 0.322229 0.161114 0.986936i \(-0.448491\pi\)
0.161114 + 0.986936i \(0.448491\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −7.76074 −0.458102
\(288\) 0 0
\(289\) 12.4296 0.731154
\(290\) 0 0
\(291\) 39.6930i 2.32685i
\(292\) 0 0
\(293\) 14.0088i 0.818400i −0.912445 0.409200i \(-0.865808\pi\)
0.912445 0.409200i \(-0.134192\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 6.66504i 0.386745i
\(298\) 0 0
\(299\) −20.5838 + 16.5910i −1.19039 + 0.959482i
\(300\) 0 0
\(301\) 25.3187i 1.45935i
\(302\) 0 0
\(303\) −32.6039 −1.87305
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 5.69088i 0.324796i 0.986725 + 0.162398i \(0.0519228\pi\)
−0.986725 + 0.162398i \(0.948077\pi\)
\(308\) 0 0
\(309\) −40.4525 −2.30126
\(310\) 0 0
\(311\) 16.4642 0.933600 0.466800 0.884363i \(-0.345407\pi\)
0.466800 + 0.884363i \(0.345407\pi\)
\(312\) 0 0
\(313\) −24.7934 −1.40141 −0.700704 0.713452i \(-0.747130\pi\)
−0.700704 + 0.713452i \(0.747130\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 15.0192i 0.843563i −0.906697 0.421782i \(-0.861405\pi\)
0.906697 0.421782i \(-0.138595\pi\)
\(318\) 0 0
\(319\) 9.46334i 0.529846i
\(320\) 0 0
\(321\) 10.7979 0.602681
\(322\) 0 0
\(323\) 5.02797i 0.279764i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 8.17154i 0.451887i
\(328\) 0 0
\(329\) −25.8938 −1.42757
\(330\) 0 0
\(331\) 5.96614i 0.327929i 0.986466 + 0.163964i \(0.0524282\pi\)
−0.986466 + 0.163964i \(0.947572\pi\)
\(332\) 0 0
\(333\) 34.9383i 1.91460i
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −6.09657 −0.332101 −0.166051 0.986117i \(-0.553101\pi\)
−0.166051 + 0.986117i \(0.553101\pi\)
\(338\) 0 0
\(339\) 6.55714 0.356135
\(340\) 0 0
\(341\) −10.3061 −0.558109
\(342\) 0 0
\(343\) 5.09082i 0.274878i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −7.04646 −0.378274 −0.189137 0.981951i \(-0.560569\pi\)
−0.189137 + 0.981951i \(0.560569\pi\)
\(348\) 0 0
\(349\) 6.26810i 0.335524i −0.985828 0.167762i \(-0.946346\pi\)
0.985828 0.167762i \(-0.0536540\pi\)
\(350\) 0 0
\(351\) −14.8180 + 11.9436i −0.790926 + 0.637503i
\(352\) 0 0
\(353\) 8.58856i 0.457123i −0.973529 0.228561i \(-0.926598\pi\)
0.973529 0.228561i \(-0.0734022\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 53.9791i 2.85688i
\(358\) 0 0
\(359\) 2.11248i 0.111492i 0.998445 + 0.0557461i \(0.0177537\pi\)
−0.998445 + 0.0557461i \(0.982246\pi\)
\(360\) 0 0
\(361\) 18.1410 0.954789
\(362\) 0 0
\(363\) 26.4036 1.38583
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 28.3718 1.48100 0.740499 0.672058i \(-0.234589\pi\)
0.740499 + 0.672058i \(0.234589\pi\)
\(368\) 0 0
\(369\) 10.6855i 0.556266i
\(370\) 0 0
\(371\) 7.76074i 0.402917i
\(372\) 0 0
\(373\) −8.10790 −0.419811 −0.209906 0.977722i \(-0.567316\pi\)
−0.209906 + 0.977722i \(0.567316\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.0393 16.9581i 1.08358 0.873387i
\(378\) 0 0
\(379\) 9.93432i 0.510292i 0.966903 + 0.255146i \(0.0821235\pi\)
−0.966903 + 0.255146i \(0.917877\pi\)
\(380\) 0 0
\(381\) 16.9946 0.870662
\(382\) 0 0
\(383\) 38.0874i 1.94617i 0.230439 + 0.973087i \(0.425984\pi\)
−0.230439 + 0.973087i \(0.574016\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 34.8606 1.77206
\(388\) 0 0
\(389\) −22.2794 −1.12961 −0.564806 0.825224i \(-0.691049\pi\)
−0.564806 + 0.825224i \(0.691049\pi\)
\(390\) 0 0
\(391\) 39.7782 2.01167
\(392\) 0 0
\(393\) −7.60778 −0.383762
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 11.2987i 0.567063i −0.958963 0.283532i \(-0.908494\pi\)
0.958963 0.283532i \(-0.0915061\pi\)
\(398\) 0 0
\(399\) −9.22218 −0.461686
\(400\) 0 0
\(401\) 7.62102i 0.380575i −0.981728 0.190288i \(-0.939058\pi\)
0.981728 0.190288i \(-0.0609421\pi\)
\(402\) 0 0
\(403\) 18.4684 + 22.9131i 0.919976 + 1.14138i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 9.03931 0.448062
\(408\) 0 0
\(409\) 15.9887i 0.790589i −0.918555 0.395294i \(-0.870643\pi\)
0.918555 0.395294i \(-0.129357\pi\)
\(410\) 0 0
\(411\) 31.5401i 1.55576i
\(412\) 0 0
\(413\) −16.6153 −0.817584
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 3.62102 0.177322
\(418\) 0 0
\(419\) 29.3751 1.43507 0.717535 0.696523i \(-0.245271\pi\)
0.717535 + 0.696523i \(0.245271\pi\)
\(420\) 0 0
\(421\) 24.3179i 1.18518i −0.805504 0.592590i \(-0.798105\pi\)
0.805504 0.592590i \(-0.201895\pi\)
\(422\) 0 0
\(423\) 35.6524i 1.73348i
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 36.3647i 1.75981i
\(428\) 0 0
\(429\) 8.02009 + 9.95023i 0.387213 + 0.480402i
\(430\) 0 0
\(431\) 3.83775i 0.184858i 0.995719 + 0.0924290i \(0.0294631\pi\)
−0.995719 + 0.0924290i \(0.970537\pi\)
\(432\) 0 0
\(433\) −4.87248 −0.234157 −0.117078 0.993123i \(-0.537353\pi\)
−0.117078 + 0.993123i \(0.537353\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 6.79601i 0.325097i
\(438\) 0 0
\(439\) −9.18200 −0.438233 −0.219117 0.975699i \(-0.570317\pi\)
−0.219117 + 0.975699i \(0.570317\pi\)
\(440\) 0 0
\(441\) −27.1532 −1.29301
\(442\) 0 0
\(443\) −27.0322 −1.28434 −0.642168 0.766564i \(-0.721965\pi\)
−0.642168 + 0.766564i \(0.721965\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 47.6930i 2.25580i
\(448\) 0 0
\(449\) 17.6576i 0.833311i −0.909064 0.416656i \(-0.863202\pi\)
0.909064 0.416656i \(-0.136798\pi\)
\(450\) 0 0
\(451\) −2.76458 −0.130179
\(452\) 0 0
\(453\) 47.7695i 2.24441i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 28.3179i 1.32465i −0.749215 0.662327i \(-0.769569\pi\)
0.749215 0.662327i \(-0.230431\pi\)
\(458\) 0 0
\(459\) 28.6358 1.33660
\(460\) 0 0
\(461\) 2.15105i 0.100185i 0.998745 + 0.0500923i \(0.0159515\pi\)
−0.998745 + 0.0500923i \(0.984048\pi\)
\(462\) 0 0
\(463\) 15.1523i 0.704188i 0.935965 + 0.352094i \(0.114530\pi\)
−0.935965 + 0.352094i \(0.885470\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 24.5613 1.13656 0.568281 0.822834i \(-0.307609\pi\)
0.568281 + 0.822834i \(0.307609\pi\)
\(468\) 0 0
\(469\) 34.8449 1.60899
\(470\) 0 0
\(471\) 48.3833 2.22938
\(472\) 0 0
\(473\) 9.01922i 0.414704i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 10.6855 0.489257
\(478\) 0 0
\(479\) 23.6416i 1.08021i 0.841596 + 0.540107i \(0.181616\pi\)
−0.841596 + 0.540107i \(0.818384\pi\)
\(480\) 0 0
\(481\) −16.1982 20.0966i −0.738576 0.916325i
\(482\) 0 0
\(483\) 72.9602i 3.31981i
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 37.9026i 1.71753i −0.512369 0.858765i \(-0.671232\pi\)
0.512369 0.858765i \(-0.328768\pi\)
\(488\) 0 0
\(489\) 40.4078i 1.82730i
\(490\) 0 0
\(491\) −32.6584 −1.47385 −0.736927 0.675972i \(-0.763724\pi\)
−0.736927 + 0.675972i \(0.763724\pi\)
\(492\) 0 0
\(493\) −40.6584 −1.83116
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −50.0222 −2.24380
\(498\) 0 0
\(499\) 6.78049i 0.303537i 0.988416 + 0.151768i \(0.0484967\pi\)
−0.988416 + 0.151768i \(0.951503\pi\)
\(500\) 0 0
\(501\) 30.1536i 1.34716i
\(502\) 0 0
\(503\) −24.6542 −1.09928 −0.549639 0.835402i \(-0.685235\pi\)
−0.549639 + 0.835402i \(0.685235\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 7.74994 35.6612i 0.344187 1.58377i
\(508\) 0 0
\(509\) 23.6576i 1.04860i −0.851533 0.524301i \(-0.824327\pi\)
0.851533 0.524301i \(-0.175673\pi\)
\(510\) 0 0
\(511\) −3.47642 −0.153788
\(512\) 0 0
\(513\) 4.89234i 0.216002i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −9.22408 −0.405675
\(518\) 0 0
\(519\) −36.2117 −1.58952
\(520\) 0 0
\(521\) 41.0414 1.79806 0.899029 0.437889i \(-0.144274\pi\)
0.899029 + 0.437889i \(0.144274\pi\)
\(522\) 0 0
\(523\) −17.4722 −0.764008 −0.382004 0.924161i \(-0.624766\pi\)
−0.382004 + 0.924161i \(0.624766\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 44.2794i 1.92884i
\(528\) 0 0
\(529\) 30.7658 1.33765
\(530\) 0 0
\(531\) 22.8771i 0.992780i
\(532\) 0 0
\(533\) 4.95407 + 6.14634i 0.214585 + 0.266227i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 6.41742 0.276932
\(538\) 0 0
\(539\) 7.02514i 0.302594i
\(540\) 0 0
\(541\) 9.24013i 0.397264i 0.980074 + 0.198632i \(0.0636499\pi\)
−0.980074 + 0.198632i \(0.936350\pi\)
\(542\) 0 0
\(543\) −52.1686 −2.23877
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 6.43955 0.275335 0.137668 0.990478i \(-0.456039\pi\)
0.137668 + 0.990478i \(0.456039\pi\)
\(548\) 0 0
\(549\) 50.0694 2.13691
\(550\) 0 0
\(551\) 6.94638i 0.295926i
\(552\) 0 0
\(553\) 43.0297i 1.82981i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.8174i 1.00917i 0.863361 + 0.504587i \(0.168355\pi\)
−0.863361 + 0.504587i \(0.831645\pi\)
\(558\) 0 0
\(559\) −20.0519 + 16.1622i −0.848105 + 0.683590i
\(560\) 0 0
\(561\) 19.2288i 0.811840i
\(562\) 0 0
\(563\) 41.2216 1.73729 0.868643 0.495439i \(-0.164993\pi\)
0.868643 + 0.495439i \(0.164993\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0.626999i 0.0263315i
\(568\) 0 0
\(569\) −20.8699 −0.874912 −0.437456 0.899240i \(-0.644120\pi\)
−0.437456 + 0.899240i \(0.644120\pi\)
\(570\) 0 0
\(571\) −25.8394 −1.08134 −0.540672 0.841234i \(-0.681830\pi\)
−0.540672 + 0.841234i \(0.681830\pi\)
\(572\) 0 0
\(573\) 22.4576 0.938180
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 35.0367i 1.45860i 0.684195 + 0.729299i \(0.260154\pi\)
−0.684195 + 0.729299i \(0.739846\pi\)
\(578\) 0 0
\(579\) 55.0615i 2.28828i
\(580\) 0 0
\(581\) −4.10790 −0.170424
\(582\) 0 0
\(583\) 2.76458i 0.114497i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.4939i 0.433130i −0.976268 0.216565i \(-0.930515\pi\)
0.976268 0.216565i \(-0.0694852\pi\)
\(588\) 0 0
\(589\) −7.56502 −0.311711
\(590\) 0 0
\(591\) 52.5044i 2.15974i
\(592\) 0 0
\(593\) 42.6892i 1.75303i 0.481371 + 0.876517i \(0.340139\pi\)
−0.481371 + 0.876517i \(0.659861\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −6.41742 −0.262647
\(598\) 0 0
\(599\) −8.85643 −0.361864 −0.180932 0.983496i \(-0.557911\pi\)
−0.180932 + 0.983496i \(0.557911\pi\)
\(600\) 0 0
\(601\) −36.8366 −1.50260 −0.751298 0.659963i \(-0.770572\pi\)
−0.751298 + 0.659963i \(0.770572\pi\)
\(602\) 0 0
\(603\) 47.9769i 1.95377i
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 23.1477 0.939538 0.469769 0.882789i \(-0.344337\pi\)
0.469769 + 0.882789i \(0.344337\pi\)
\(608\) 0 0
\(609\) 74.5746i 3.02192i
\(610\) 0 0
\(611\) 16.5294 + 20.5074i 0.668706 + 0.829639i
\(612\) 0 0
\(613\) 10.6717i 0.431024i −0.976501 0.215512i \(-0.930858\pi\)
0.976501 0.215512i \(-0.0691421\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 43.0363i 1.73258i 0.499544 + 0.866289i \(0.333501\pi\)
−0.499544 + 0.866289i \(0.666499\pi\)
\(618\) 0 0
\(619\) 10.1941i 0.409734i −0.978790 0.204867i \(-0.934324\pi\)
0.978790 0.204867i \(-0.0656762\pi\)
\(620\) 0 0
\(621\) 38.7052 1.55319
\(622\) 0 0
\(623\) 39.3057 1.57475
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −3.28519 −0.131198
\(628\) 0 0
\(629\) 38.8366i 1.54852i
\(630\) 0 0
\(631\) 3.40536i 0.135565i 0.997700 + 0.0677826i \(0.0215924\pi\)
−0.997700 + 0.0677826i \(0.978408\pi\)
\(632\) 0 0
\(633\) 38.2183 1.51904
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 15.6186 12.5889i 0.618831 0.498790i
\(638\) 0 0
\(639\) 68.8741i 2.72462i
\(640\) 0 0
\(641\) −6.09954 −0.240917 −0.120459 0.992718i \(-0.538437\pi\)
−0.120459 + 0.992718i \(0.538437\pi\)
\(642\) 0 0
\(643\) 42.8135i 1.68840i 0.536028 + 0.844200i \(0.319924\pi\)
−0.536028 + 0.844200i \(0.680076\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −39.1766 −1.54019 −0.770095 0.637929i \(-0.779791\pi\)
−0.770095 + 0.637929i \(0.779791\pi\)
\(648\) 0 0
\(649\) −5.91881 −0.232333
\(650\) 0 0
\(651\) −81.2162 −3.18311
\(652\) 0 0
\(653\) −24.6266 −0.963713 −0.481857 0.876250i \(-0.660037\pi\)
−0.481857 + 0.876250i \(0.660037\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 4.78657i 0.186742i
\(658\) 0 0
\(659\) 3.55329 0.138417 0.0692083 0.997602i \(-0.477953\pi\)
0.0692083 + 0.997602i \(0.477953\pi\)
\(660\) 0 0
\(661\) 29.6078i 1.15161i −0.817587 0.575805i \(-0.804689\pi\)
0.817587 0.575805i \(-0.195311\pi\)
\(662\) 0 0
\(663\) −42.7503 + 34.4576i −1.66028 + 1.33822i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −54.9555 −2.12789
\(668\) 0 0
\(669\) 72.6010i 2.80692i
\(670\) 0 0
\(671\) 12.9541i 0.500087i
\(672\) 0 0
\(673\) 27.3638 1.05480 0.527399 0.849618i \(-0.323167\pi\)
0.527399 + 0.849618i \(0.323167\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 0.443730 0.0170539 0.00852697 0.999964i \(-0.497286\pi\)
0.00852697 + 0.999964i \(0.497286\pi\)
\(678\) 0 0
\(679\) −50.1188 −1.92338
\(680\) 0 0
\(681\) 72.0823i 2.76220i
\(682\) 0 0
\(683\) 4.02199i 0.153897i −0.997035 0.0769486i \(-0.975482\pi\)
0.997035 0.0769486i \(-0.0245177\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 41.8261i 1.59577i
\(688\) 0 0
\(689\) −6.14634 + 4.95407i −0.234157 + 0.188735i
\(690\) 0 0
\(691\) 5.69506i 0.216650i −0.994116 0.108325i \(-0.965451\pi\)
0.994116 0.108325i \(-0.0345487\pi\)
\(692\) 0 0
\(693\) −21.8423 −0.829721
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 11.8778i 0.449903i
\(698\) 0 0
\(699\) 30.3497 1.14793
\(700\) 0 0
\(701\) −16.3856 −0.618876 −0.309438 0.950920i \(-0.600141\pi\)
−0.309438 + 0.950920i \(0.600141\pi\)
\(702\) 0 0
\(703\) 6.63512 0.250248
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 41.1677i 1.54827i
\(708\) 0 0
\(709\) 10.4672i 0.393104i −0.980493 0.196552i \(-0.937026\pi\)
0.980493 0.196552i \(-0.0629744\pi\)
\(710\) 0 0
\(711\) −59.2463 −2.22191
\(712\) 0 0
\(713\) 59.8498i 2.24139i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 62.0423i 2.31701i
\(718\) 0 0
\(719\) 5.96156 0.222329 0.111164 0.993802i \(-0.464542\pi\)
0.111164 + 0.993802i \(0.464542\pi\)
\(720\) 0 0
\(721\) 51.0777i 1.90223i
\(722\) 0 0
\(723\) 6.81800i 0.253564i
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −6.38142 −0.236674 −0.118337 0.992973i \(-0.537756\pi\)
−0.118337 + 0.992973i \(0.537756\pi\)
\(728\) 0 0
\(729\) −43.5907 −1.61447
\(730\) 0 0
\(731\) 38.7503 1.43323
\(732\) 0 0
\(733\) 19.7314i 0.728798i −0.931243 0.364399i \(-0.881274\pi\)
0.931243 0.364399i \(-0.118726\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 12.4127 0.457228
\(738\) 0 0
\(739\) 20.7164i 0.762065i −0.924562 0.381033i \(-0.875569\pi\)
0.924562 0.381033i \(-0.124431\pi\)
\(740\) 0 0
\(741\) 5.88699 + 7.30377i 0.216264 + 0.268311i
\(742\) 0 0
\(743\) 0.649668i 0.0238340i −0.999929 0.0119170i \(-0.996207\pi\)
0.999929 0.0119170i \(-0.00379339\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 5.65604i 0.206944i
\(748\) 0 0
\(749\) 13.6341i 0.498179i
\(750\) 0 0
\(751\) −45.5550 −1.66233 −0.831163 0.556028i \(-0.812325\pi\)
−0.831163 + 0.556028i \(0.812325\pi\)
\(752\) 0 0
\(753\) −1.97480 −0.0719657
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 35.7494 1.29933 0.649667 0.760219i \(-0.274908\pi\)
0.649667 + 0.760219i \(0.274908\pi\)
\(758\) 0 0
\(759\) 25.9904i 0.943392i
\(760\) 0 0
\(761\) 38.2952i 1.38820i −0.719879 0.694100i \(-0.755803\pi\)
0.719879 0.694100i \(-0.244197\pi\)
\(762\) 0 0
\(763\) 10.3179 0.373532
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 10.6064 + 13.1589i 0.382974 + 0.475142i
\(768\) 0 0
\(769\) 39.4548i 1.42278i −0.702799 0.711389i \(-0.748067\pi\)
0.702799 0.711389i \(-0.251933\pi\)
\(770\) 0 0
\(771\) −49.1863 −1.77140
\(772\) 0 0
\(773\) 36.3091i 1.30595i −0.757380 0.652974i \(-0.773521\pi\)
0.757380 0.652974i \(-0.226479\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 71.2331 2.55547
\(778\) 0 0
\(779\) −2.02929 −0.0727068
\(780\) 0 0
\(781\) −17.8193 −0.637623
\(782\) 0 0
\(783\) −39.5616 −1.41382
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 39.1380i 1.39512i −0.716527 0.697560i \(-0.754269\pi\)
0.716527 0.697560i \(-0.245731\pi\)
\(788\) 0 0
\(789\) −3.48815 −0.124181
\(790\) 0 0
\(791\) 8.27944i 0.294383i
\(792\) 0 0
\(793\) −28.8000 + 23.2134i −1.02272 + 0.824333i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 19.4764 0.689890 0.344945 0.938623i \(-0.387898\pi\)
0.344945 + 0.938623i \(0.387898\pi\)
\(798\) 0 0
\(799\) 39.6304i 1.40202i
\(800\) 0 0
\(801\) 54.1188i 1.91219i
\(802\) 0 0
\(803\) −1.23839 −0.0437020
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −38.7185 −1.36295
\(808\) 0 0
\(809\) −21.4431 −0.753899 −0.376949 0.926234i \(-0.623027\pi\)
−0.376949 + 0.926234i \(0.623027\pi\)
\(810\) 0 0
\(811\) 5.88091i 0.206507i −0.994655 0.103253i \(-0.967075\pi\)
0.994655 0.103253i \(-0.0329252\pi\)
\(812\) 0 0
\(813\) 36.1485i 1.26778i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 6.62038i 0.231618i
\(818\) 0 0
\(819\) 39.1410 + 48.5608i 1.36770 + 1.69685i
\(820\) 0 0
\(821\) 12.6969i 0.443123i −0.975146 0.221562i \(-0.928885\pi\)
0.975146 0.221562i \(-0.0711154\pi\)
\(822\) 0 0
\(823\) 20.7425 0.723036 0.361518 0.932365i \(-0.382259\pi\)
0.361518 + 0.932365i \(0.382259\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 24.2480i 0.843186i −0.906785 0.421593i \(-0.861471\pi\)
0.906785 0.421593i \(-0.138529\pi\)
\(828\) 0 0
\(829\) 42.2901 1.46880 0.734398 0.678719i \(-0.237465\pi\)
0.734398 + 0.678719i \(0.237465\pi\)
\(830\) 0 0
\(831\) 79.3542 2.75277
\(832\) 0 0
\(833\) −30.1829 −1.04577
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 43.0850i 1.48924i
\(838\) 0 0
\(839\) 43.2238i 1.49225i −0.665806 0.746125i \(-0.731912\pi\)
0.665806 0.746125i \(-0.268088\pi\)
\(840\) 0 0
\(841\) 27.1715 0.936950
\(842\) 0 0
\(843\) 65.5683i 2.25829i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 33.3388i 1.14554i
\(848\) 0 0
\(849\) 15.2171 0.522248
\(850\) 0 0
\(851\) 52.4931i 1.79944i
\(852\) 0 0
\(853\) 39.8708i 1.36515i 0.730816 + 0.682575i \(0.239140\pi\)
−0.730816 + 0.682575i \(0.760860\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.4960 −0.495175 −0.247588 0.968866i \(-0.579638\pi\)
−0.247588 + 0.968866i \(0.579638\pi\)
\(858\) 0 0
\(859\) −20.3563 −0.694548 −0.347274 0.937764i \(-0.612893\pi\)
−0.347274 + 0.937764i \(0.612893\pi\)
\(860\) 0 0
\(861\) −21.7859 −0.742463
\(862\) 0 0
\(863\) 16.2162i 0.552006i 0.961157 + 0.276003i \(0.0890099\pi\)
−0.961157 + 0.276003i \(0.910990\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 34.8924 1.18501
\(868\) 0 0
\(869\) 15.3283i 0.519978i
\(870\) 0 0
\(871\) −22.2433 27.5964i −0.753685 0.935070i
\(872\) 0 0
\(873\) 69.0070i 2.33553i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 25.8009i 0.871235i 0.900132 + 0.435617i \(0.143470\pi\)
−0.900132 + 0.435617i \(0.856530\pi\)
\(878\) 0 0
\(879\) 39.3254i 1.32641i
\(880\) 0 0
\(881\) 21.7274 0.732015 0.366008 0.930612i \(-0.380724\pi\)
0.366008 + 0.930612i \(0.380724\pi\)
\(882\) 0 0
\(883\) −26.0247 −0.875800 −0.437900 0.899024i \(-0.644278\pi\)
−0.437900 + 0.899024i \(0.644278\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −7.38891 −0.248095 −0.124048 0.992276i \(-0.539588\pi\)
−0.124048 + 0.992276i \(0.539588\pi\)
\(888\) 0 0
\(889\) 21.4585i 0.719694i
\(890\) 0 0
\(891\) 0.223354i 0.00748263i
\(892\) 0 0
\(893\) −6.77076 −0.226575
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) −57.7830 + 46.5742i −1.92932 + 1.55507i
\(898\) 0 0
\(899\) 61.1741i 2.04027i
\(900\) 0 0
\(901\) 11.8778 0.395706
\(902\) 0 0
\(903\) 71.0748i 2.36522i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) −26.4684 −0.878869 −0.439434 0.898275i \(-0.644821\pi\)
−0.439434 + 0.898275i \(0.644821\pi\)
\(908\) 0 0
\(909\) −56.6825 −1.88004
\(910\) 0 0
\(911\) 40.0084 1.32554 0.662768 0.748825i \(-0.269382\pi\)
0.662768 + 0.748825i \(0.269382\pi\)
\(912\) 0 0
\(913\) −1.46334 −0.0484296
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 9.60604i 0.317219i
\(918\) 0 0
\(919\) 45.1226 1.48846 0.744229 0.667924i \(-0.232817\pi\)
0.744229 + 0.667924i \(0.232817\pi\)
\(920\) 0 0
\(921\) 15.9754i 0.526408i
\(922\) 0 0
\(923\) 31.9317 + 39.6165i 1.05105 + 1.30399i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −70.3274 −2.30985
\(928\) 0 0
\(929\) 15.1179i 0.496003i 0.968760 + 0.248001i \(0.0797738\pi\)
−0.968760 + 0.248001i \(0.920226\pi\)
\(930\) 0 0
\(931\) 5.15666i 0.169003i
\(932\) 0 0
\(933\) 46.2183 1.51312
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 12.7195 0.415529 0.207764 0.978179i \(-0.433381\pi\)
0.207764 + 0.978179i \(0.433381\pi\)
\(938\) 0 0
\(939\) −69.6001 −2.27131
\(940\) 0 0
\(941\) 58.3309i 1.90153i 0.309906 + 0.950767i \(0.399703\pi\)
−0.309906 + 0.950767i \(0.600297\pi\)
\(942\) 0 0
\(943\) 16.0545i 0.522806i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 34.9581i 1.13599i 0.823033 + 0.567993i \(0.192280\pi\)
−0.823033 + 0.567993i \(0.807720\pi\)
\(948\) 0 0
\(949\) 2.21918 + 2.75325i 0.0720375 + 0.0893742i
\(950\) 0 0
\(951\) 42.1619i 1.36719i
\(952\) 0 0
\(953\) 3.86202 0.125103 0.0625515 0.998042i \(-0.480076\pi\)
0.0625515 + 0.998042i \(0.480076\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 26.5655i 0.858741i
\(958\) 0 0
\(959\) 39.8244 1.28600
\(960\) 0 0
\(961\) −35.6223 −1.14911
\(962\) 0 0
\(963\) 18.7724 0.604931
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 4.56336i 0.146748i 0.997305 + 0.0733739i \(0.0233766\pi\)
−0.997305 + 0.0733739i \(0.976623\pi\)
\(968\) 0 0
\(969\) 14.1145i 0.453424i
\(970\) 0 0
\(971\) −24.1079 −0.773659 −0.386830 0.922151i \(-0.626430\pi\)
−0.386830 + 0.922151i \(0.626430\pi\)
\(972\) 0 0
\(973\) 4.57212i 0.146575i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 5.41318i 0.173183i −0.996244 0.0865914i \(-0.972403\pi\)
0.996244 0.0865914i \(-0.0275975\pi\)
\(978\) 0 0
\(979\) 14.0017 0.447498
\(980\) 0 0
\(981\) 14.2064i 0.453575i
\(982\) 0 0
\(983\) 8.67205i 0.276596i 0.990391 + 0.138298i \(0.0441631\pi\)
−0.990391 + 0.138298i \(0.955837\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) −72.6892 −2.31372
\(988\) 0 0
\(989\) 52.3764 1.66547
\(990\) 0 0
\(991\) −46.8816 −1.48924 −0.744622 0.667486i \(-0.767370\pi\)
−0.744622 + 0.667486i \(0.767370\pi\)
\(992\) 0 0
\(993\) 16.7481i 0.531486i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 11.4794 0.363556 0.181778 0.983340i \(-0.441815\pi\)
0.181778 + 0.983340i \(0.441815\pi\)
\(998\) 0 0
\(999\) 37.7890i 1.19559i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2600.2.k.c.2001.7 8
5.2 odd 4 2600.2.f.f.649.2 8
5.3 odd 4 2600.2.f.e.649.7 8
5.4 even 2 520.2.k.b.441.1 8
13.12 even 2 inner 2600.2.k.c.2001.8 8
15.14 odd 2 4680.2.g.k.2521.7 8
20.19 odd 2 1040.2.k.e.961.7 8
65.12 odd 4 2600.2.f.e.649.2 8
65.34 odd 4 6760.2.a.bd.1.1 4
65.38 odd 4 2600.2.f.f.649.7 8
65.44 odd 4 6760.2.a.bc.1.1 4
65.64 even 2 520.2.k.b.441.2 yes 8
195.194 odd 2 4680.2.g.k.2521.2 8
260.259 odd 2 1040.2.k.e.961.8 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
520.2.k.b.441.1 8 5.4 even 2
520.2.k.b.441.2 yes 8 65.64 even 2
1040.2.k.e.961.7 8 20.19 odd 2
1040.2.k.e.961.8 8 260.259 odd 2
2600.2.f.e.649.2 8 65.12 odd 4
2600.2.f.e.649.7 8 5.3 odd 4
2600.2.f.f.649.2 8 5.2 odd 4
2600.2.f.f.649.7 8 65.38 odd 4
2600.2.k.c.2001.7 8 1.1 even 1 trivial
2600.2.k.c.2001.8 8 13.12 even 2 inner
4680.2.g.k.2521.2 8 195.194 odd 2
4680.2.g.k.2521.7 8 15.14 odd 2
6760.2.a.bc.1.1 4 65.44 odd 4
6760.2.a.bd.1.1 4 65.34 odd 4