Properties

Label 261.2.k.a.82.1
Level $261$
Weight $2$
Character 261.82
Analytic conductor $2.084$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [261,2,Mod(82,261)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(261, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("261.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 261 = 3^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 261.k (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.08409549276\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 82.1
Root \(0.222521 - 0.974928i\) of defining polynomial
Character \(\chi\) \(=\) 261.82
Dual form 261.2.k.a.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12349 + 1.40881i) q^{2} +(-0.277479 + 1.21572i) q^{4} +(-0.222521 - 0.279032i) q^{5} +(0.900969 + 3.94740i) q^{7} +(1.22252 - 0.588735i) q^{8} +(0.143104 - 0.626980i) q^{10} +(2.62349 + 1.26341i) q^{11} +(-4.67241 - 2.25011i) q^{13} +(-4.54892 + 5.70416i) q^{14} +(4.44989 + 2.14295i) q^{16} -1.10992 q^{17} +(-0.455927 + 1.99755i) q^{19} +(0.400969 - 0.193096i) q^{20} +(1.16756 + 5.11543i) q^{22} +(2.57942 - 3.23449i) q^{23} +(1.08426 - 4.75046i) q^{25} +(-2.07942 - 9.11052i) q^{26} -5.04892 q^{28} +(-4.38404 - 3.12733i) q^{29} +(-3.96346 - 4.97002i) q^{31} +(1.37651 + 6.03089i) q^{32} +(-1.24698 - 1.56366i) q^{34} +(0.900969 - 1.12978i) q^{35} +(2.62349 - 1.26341i) q^{37} +(-3.32640 + 1.60191i) q^{38} +(-0.436313 - 0.210117i) q^{40} -0.396125 q^{41} +(3.57942 - 4.48845i) q^{43} +(-2.26391 + 2.83885i) q^{44} +7.45473 q^{46} +(-7.02930 - 3.38513i) q^{47} +(-8.46346 + 4.07579i) q^{49} +(7.91066 - 3.80957i) q^{50} +(4.03199 - 5.05596i) q^{52} +(2.71648 + 3.40636i) q^{53} +(-0.231250 - 1.01317i) q^{55} +(3.42543 + 4.29535i) q^{56} +(-0.519614 - 9.68981i) q^{58} +9.10992 q^{59} +(1.34601 + 5.89726i) q^{61} +(2.54892 - 11.1675i) q^{62} +(-0.791053 + 0.991949i) q^{64} +(0.411854 + 1.80445i) q^{65} +(-0.337282 + 0.162426i) q^{67} +(0.307979 - 1.34934i) q^{68} +2.60388 q^{70} +(-10.2763 - 4.94880i) q^{71} +(-5.57942 + 6.99637i) q^{73} +(4.72737 + 2.27658i) q^{74} +(-2.30194 - 1.10855i) q^{76} +(-2.62349 + 11.4943i) q^{77} +(0.535344 - 0.257808i) q^{79} +(-0.392240 - 1.71851i) q^{80} +(-0.445042 - 0.558065i) q^{82} +(-2.09903 + 9.19646i) q^{83} +(0.246980 + 0.309703i) q^{85} +10.3448 q^{86} +3.95108 q^{88} +(-0.887395 - 1.11276i) q^{89} +(4.67241 - 20.4712i) q^{91} +(3.21648 + 4.03334i) q^{92} +(-3.12833 - 13.7061i) q^{94} +(0.658834 - 0.317278i) q^{95} +(-3.50484 + 15.3557i) q^{97} +(-15.2506 - 7.34432i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} - 2 q^{4} - q^{5} + q^{7} + 7 q^{8} + 9 q^{10} + 11 q^{11} - 5 q^{13} - 9 q^{14} + 4 q^{16} - 8 q^{17} + q^{19} - 2 q^{20} + 6 q^{22} + 7 q^{23} - 24 q^{25} - 4 q^{26} - 12 q^{28} - 6 q^{29}+ \cdots - 19 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/261\mathbb{Z}\right)^\times\).

\(n\) \(118\) \(146\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12349 + 1.40881i 0.794427 + 0.996180i 0.999847 + 0.0175063i \(0.00557270\pi\)
−0.205419 + 0.978674i \(0.565856\pi\)
\(3\) 0 0
\(4\) −0.277479 + 1.21572i −0.138740 + 0.607858i
\(5\) −0.222521 0.279032i −0.0995144 0.124787i 0.729581 0.683895i \(-0.239715\pi\)
−0.829095 + 0.559108i \(0.811144\pi\)
\(6\) 0 0
\(7\) 0.900969 + 3.94740i 0.340534 + 1.49198i 0.797949 + 0.602725i \(0.205918\pi\)
−0.457415 + 0.889253i \(0.651225\pi\)
\(8\) 1.22252 0.588735i 0.432226 0.208149i
\(9\) 0 0
\(10\) 0.143104 0.626980i 0.0452535 0.198269i
\(11\) 2.62349 + 1.26341i 0.791012 + 0.380931i 0.785349 0.619053i \(-0.212483\pi\)
0.00566249 + 0.999984i \(0.498198\pi\)
\(12\) 0 0
\(13\) −4.67241 2.25011i −1.29589 0.624069i −0.346467 0.938062i \(-0.612619\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(14\) −4.54892 + 5.70416i −1.21575 + 1.52450i
\(15\) 0 0
\(16\) 4.44989 + 2.14295i 1.11247 + 0.535738i
\(17\) −1.10992 −0.269194 −0.134597 0.990900i \(-0.542974\pi\)
−0.134597 + 0.990900i \(0.542974\pi\)
\(18\) 0 0
\(19\) −0.455927 + 1.99755i −0.104597 + 0.458269i 0.895321 + 0.445422i \(0.146946\pi\)
−0.999917 + 0.0128465i \(0.995911\pi\)
\(20\) 0.400969 0.193096i 0.0896594 0.0431777i
\(21\) 0 0
\(22\) 1.16756 + 5.11543i 0.248925 + 1.09061i
\(23\) 2.57942 3.23449i 0.537846 0.674437i −0.436445 0.899731i \(-0.643763\pi\)
0.974291 + 0.225294i \(0.0723342\pi\)
\(24\) 0 0
\(25\) 1.08426 4.75046i 0.216852 0.950092i
\(26\) −2.07942 9.11052i −0.407807 1.78672i
\(27\) 0 0
\(28\) −5.04892 −0.954156
\(29\) −4.38404 3.12733i −0.814096 0.580730i
\(30\) 0 0
\(31\) −3.96346 4.97002i −0.711858 0.892642i 0.285988 0.958233i \(-0.407678\pi\)
−0.997847 + 0.0655910i \(0.979107\pi\)
\(32\) 1.37651 + 6.03089i 0.243335 + 1.06612i
\(33\) 0 0
\(34\) −1.24698 1.56366i −0.213855 0.268166i
\(35\) 0.900969 1.12978i 0.152292 0.190968i
\(36\) 0 0
\(37\) 2.62349 1.26341i 0.431299 0.207703i −0.205622 0.978631i \(-0.565922\pi\)
0.636921 + 0.770929i \(0.280208\pi\)
\(38\) −3.32640 + 1.60191i −0.539613 + 0.259864i
\(39\) 0 0
\(40\) −0.436313 0.210117i −0.0689871 0.0332224i
\(41\) −0.396125 −0.0618643 −0.0309321 0.999521i \(-0.509848\pi\)
−0.0309321 + 0.999521i \(0.509848\pi\)
\(42\) 0 0
\(43\) 3.57942 4.48845i 0.545856 0.684482i −0.430017 0.902821i \(-0.641492\pi\)
0.975873 + 0.218339i \(0.0700639\pi\)
\(44\) −2.26391 + 2.83885i −0.341297 + 0.427972i
\(45\) 0 0
\(46\) 7.45473 1.09914
\(47\) −7.02930 3.38513i −1.02533 0.493773i −0.155870 0.987778i \(-0.549818\pi\)
−0.869459 + 0.494005i \(0.835532\pi\)
\(48\) 0 0
\(49\) −8.46346 + 4.07579i −1.20907 + 0.582255i
\(50\) 7.91066 3.80957i 1.11874 0.538755i
\(51\) 0 0
\(52\) 4.03199 5.05596i 0.559137 0.701135i
\(53\) 2.71648 + 3.40636i 0.373137 + 0.467899i 0.932577 0.360972i \(-0.117555\pi\)
−0.559439 + 0.828871i \(0.688984\pi\)
\(54\) 0 0
\(55\) −0.231250 1.01317i −0.0311818 0.136616i
\(56\) 3.42543 + 4.29535i 0.457742 + 0.573990i
\(57\) 0 0
\(58\) −0.519614 9.68981i −0.0682287 1.27233i
\(59\) 9.10992 1.18601 0.593005 0.805199i \(-0.297941\pi\)
0.593005 + 0.805199i \(0.297941\pi\)
\(60\) 0 0
\(61\) 1.34601 + 5.89726i 0.172339 + 0.755067i 0.985032 + 0.172374i \(0.0551437\pi\)
−0.812693 + 0.582693i \(0.801999\pi\)
\(62\) 2.54892 11.1675i 0.323713 1.41828i
\(63\) 0 0
\(64\) −0.791053 + 0.991949i −0.0988816 + 0.123994i
\(65\) 0.411854 + 1.80445i 0.0510842 + 0.223815i
\(66\) 0 0
\(67\) −0.337282 + 0.162426i −0.0412055 + 0.0198435i −0.454373 0.890812i \(-0.650137\pi\)
0.413168 + 0.910655i \(0.364422\pi\)
\(68\) 0.307979 1.34934i 0.0373479 0.163632i
\(69\) 0 0
\(70\) 2.60388 0.311223
\(71\) −10.2763 4.94880i −1.21957 0.587314i −0.290379 0.956912i \(-0.593781\pi\)
−0.929192 + 0.369598i \(0.879495\pi\)
\(72\) 0 0
\(73\) −5.57942 + 6.99637i −0.653021 + 0.818863i −0.992563 0.121728i \(-0.961156\pi\)
0.339542 + 0.940591i \(0.389728\pi\)
\(74\) 4.72737 + 2.27658i 0.549545 + 0.264647i
\(75\) 0 0
\(76\) −2.30194 1.10855i −0.264050 0.127160i
\(77\) −2.62349 + 11.4943i −0.298974 + 1.30989i
\(78\) 0 0
\(79\) 0.535344 0.257808i 0.0602309 0.0290057i −0.403526 0.914968i \(-0.632215\pi\)
0.463757 + 0.885963i \(0.346501\pi\)
\(80\) −0.392240 1.71851i −0.0438537 0.192136i
\(81\) 0 0
\(82\) −0.445042 0.558065i −0.0491467 0.0616280i
\(83\) −2.09903 + 9.19646i −0.230399 + 1.00944i 0.718912 + 0.695101i \(0.244641\pi\)
−0.949310 + 0.314341i \(0.898217\pi\)
\(84\) 0 0
\(85\) 0.246980 + 0.309703i 0.0267887 + 0.0335920i
\(86\) 10.3448 1.11551
\(87\) 0 0
\(88\) 3.95108 0.421187
\(89\) −0.887395 1.11276i −0.0940637 0.117952i 0.732572 0.680689i \(-0.238320\pi\)
−0.826636 + 0.562737i \(0.809748\pi\)
\(90\) 0 0
\(91\) 4.67241 20.4712i 0.489801 2.14596i
\(92\) 3.21648 + 4.03334i 0.335341 + 0.420505i
\(93\) 0 0
\(94\) −3.12833 13.7061i −0.322663 1.41368i
\(95\) 0.658834 0.317278i 0.0675949 0.0325520i
\(96\) 0 0
\(97\) −3.50484 + 15.3557i −0.355863 + 1.55914i 0.407523 + 0.913195i \(0.366393\pi\)
−0.763386 + 0.645943i \(0.776464\pi\)
\(98\) −15.2506 7.34432i −1.54055 0.741888i
\(99\) 0 0
\(100\) 5.47434 + 2.63631i 0.547434 + 0.263631i
\(101\) 10.8753 13.6372i 1.08213 1.35695i 0.152570 0.988293i \(-0.451245\pi\)
0.929564 0.368661i \(-0.120184\pi\)
\(102\) 0 0
\(103\) 2.53534 + 1.22096i 0.249815 + 0.120304i 0.554601 0.832116i \(-0.312871\pi\)
−0.304786 + 0.952421i \(0.598585\pi\)
\(104\) −7.03684 −0.690019
\(105\) 0 0
\(106\) −1.74698 + 7.65402i −0.169682 + 0.743424i
\(107\) −6.72132 + 3.23682i −0.649775 + 0.312915i −0.729580 0.683895i \(-0.760284\pi\)
0.0798052 + 0.996810i \(0.474570\pi\)
\(108\) 0 0
\(109\) 0.367781 + 1.61135i 0.0352270 + 0.154340i 0.989482 0.144653i \(-0.0462066\pi\)
−0.954255 + 0.298993i \(0.903349\pi\)
\(110\) 1.16756 1.46408i 0.111323 0.139594i
\(111\) 0 0
\(112\) −4.44989 + 19.4962i −0.420475 + 1.84222i
\(113\) 1.92274 + 8.42407i 0.180876 + 0.792470i 0.981214 + 0.192921i \(0.0617961\pi\)
−0.800338 + 0.599549i \(0.795347\pi\)
\(114\) 0 0
\(115\) −1.47650 −0.137684
\(116\) 5.01842 4.46198i 0.465948 0.414284i
\(117\) 0 0
\(118\) 10.2349 + 12.8342i 0.942199 + 1.18148i
\(119\) −1.00000 4.38129i −0.0916698 0.401632i
\(120\) 0 0
\(121\) −1.57188 1.97108i −0.142899 0.179189i
\(122\) −6.79590 + 8.52179i −0.615272 + 0.771526i
\(123\) 0 0
\(124\) 7.14191 3.43936i 0.641362 0.308864i
\(125\) −3.17456 + 1.52879i −0.283942 + 0.136739i
\(126\) 0 0
\(127\) −9.43512 4.54371i −0.837231 0.403189i −0.0344090 0.999408i \(-0.510955\pi\)
−0.802822 + 0.596219i \(0.796669\pi\)
\(128\) 10.0858 0.891463
\(129\) 0 0
\(130\) −2.07942 + 2.60751i −0.182377 + 0.228693i
\(131\) 0.283520 0.355523i 0.0247712 0.0310622i −0.769292 0.638898i \(-0.779391\pi\)
0.794063 + 0.607836i \(0.207962\pi\)
\(132\) 0 0
\(133\) −8.29590 −0.719345
\(134\) −0.607760 0.292682i −0.0525025 0.0252839i
\(135\) 0 0
\(136\) −1.35690 + 0.653447i −0.116353 + 0.0560326i
\(137\) −11.9291 + 5.74474i −1.01917 + 0.490806i −0.867401 0.497610i \(-0.834211\pi\)
−0.151769 + 0.988416i \(0.548497\pi\)
\(138\) 0 0
\(139\) −1.74363 + 2.18644i −0.147893 + 0.185451i −0.850260 0.526364i \(-0.823555\pi\)
0.702367 + 0.711815i \(0.252127\pi\)
\(140\) 1.12349 + 1.40881i 0.0949522 + 0.119066i
\(141\) 0 0
\(142\) −4.57338 20.0373i −0.383789 1.68149i
\(143\) −9.41521 11.8063i −0.787339 0.987292i
\(144\) 0 0
\(145\) 0.102916 + 1.91919i 0.00854671 + 0.159380i
\(146\) −16.1250 −1.33451
\(147\) 0 0
\(148\) 0.807979 + 3.53999i 0.0664154 + 0.290985i
\(149\) 0.602679 2.64051i 0.0493734 0.216319i −0.944223 0.329307i \(-0.893185\pi\)
0.993596 + 0.112988i \(0.0360421\pi\)
\(150\) 0 0
\(151\) −1.51842 + 1.90404i −0.123567 + 0.154948i −0.839767 0.542947i \(-0.817308\pi\)
0.716200 + 0.697895i \(0.245880\pi\)
\(152\) 0.618645 + 2.71046i 0.0501788 + 0.219848i
\(153\) 0 0
\(154\) −19.1407 + 9.21768i −1.54240 + 0.742782i
\(155\) −0.504844 + 2.21187i −0.0405501 + 0.177661i
\(156\) 0 0
\(157\) 17.6775 1.41082 0.705411 0.708799i \(-0.250762\pi\)
0.705411 + 0.708799i \(0.250762\pi\)
\(158\) 0.964656 + 0.464554i 0.0767439 + 0.0369579i
\(159\) 0 0
\(160\) 1.37651 1.72609i 0.108823 0.136459i
\(161\) 15.0918 + 7.26782i 1.18940 + 0.572785i
\(162\) 0 0
\(163\) 4.47434 + 2.15473i 0.350458 + 0.168772i 0.600827 0.799379i \(-0.294838\pi\)
−0.250370 + 0.968150i \(0.580552\pi\)
\(164\) 0.109916 0.481575i 0.00858302 0.0376047i
\(165\) 0 0
\(166\) −15.3143 + 7.37499i −1.18862 + 0.572410i
\(167\) 3.21864 + 14.1018i 0.249066 + 1.09123i 0.932487 + 0.361203i \(0.117634\pi\)
−0.683422 + 0.730024i \(0.739509\pi\)
\(168\) 0 0
\(169\) 8.66301 + 10.8631i 0.666386 + 0.835621i
\(170\) −0.158834 + 0.695895i −0.0121820 + 0.0533727i
\(171\) 0 0
\(172\) 4.46346 + 5.59700i 0.340336 + 0.426767i
\(173\) −10.5133 −0.799314 −0.399657 0.916665i \(-0.630871\pi\)
−0.399657 + 0.916665i \(0.630871\pi\)
\(174\) 0 0
\(175\) 19.7289 1.49136
\(176\) 8.96681 + 11.2440i 0.675899 + 0.847550i
\(177\) 0 0
\(178\) 0.570688 2.50035i 0.0427748 0.187409i
\(179\) 3.57942 + 4.48845i 0.267538 + 0.335482i 0.897394 0.441230i \(-0.145458\pi\)
−0.629856 + 0.776712i \(0.716886\pi\)
\(180\) 0 0
\(181\) 1.47770 + 6.47421i 0.109836 + 0.481225i 0.999688 + 0.0249747i \(0.00795053\pi\)
−0.889852 + 0.456250i \(0.849192\pi\)
\(182\) 34.0894 16.4166i 2.52687 1.21688i
\(183\) 0 0
\(184\) 1.24914 5.47282i 0.0920875 0.403462i
\(185\) −0.936313 0.450904i −0.0688391 0.0331512i
\(186\) 0 0
\(187\) −2.91185 1.40227i −0.212936 0.102545i
\(188\) 6.06584 7.60633i 0.442397 0.554748i
\(189\) 0 0
\(190\) 1.18718 + 0.571714i 0.0861269 + 0.0414765i
\(191\) 18.8116 1.36116 0.680581 0.732673i \(-0.261728\pi\)
0.680581 + 0.732673i \(0.261728\pi\)
\(192\) 0 0
\(193\) −2.42208 + 10.6118i −0.174345 + 0.763854i 0.809832 + 0.586662i \(0.199558\pi\)
−0.984176 + 0.177192i \(0.943299\pi\)
\(194\) −25.5710 + 12.3143i −1.83589 + 0.884118i
\(195\) 0 0
\(196\) −2.60656 11.4201i −0.186183 0.815722i
\(197\) 5.23759 6.56773i 0.373163 0.467931i −0.559422 0.828883i \(-0.688977\pi\)
0.932584 + 0.360952i \(0.117548\pi\)
\(198\) 0 0
\(199\) 1.47339 6.45532i 0.104446 0.457606i −0.895476 0.445109i \(-0.853165\pi\)
0.999922 0.0124967i \(-0.00397793\pi\)
\(200\) −1.47123 6.44588i −0.104032 0.455792i
\(201\) 0 0
\(202\) 31.4306 2.21145
\(203\) 8.39493 20.1232i 0.589208 1.41237i
\(204\) 0 0
\(205\) 0.0881460 + 0.110532i 0.00615638 + 0.00771986i
\(206\) 1.12833 + 4.94355i 0.0786148 + 0.344434i
\(207\) 0 0
\(208\) −15.9698 20.0255i −1.10731 1.38852i
\(209\) −3.71983 + 4.66452i −0.257306 + 0.322652i
\(210\) 0 0
\(211\) 7.29805 3.51456i 0.502419 0.241952i −0.165468 0.986215i \(-0.552913\pi\)
0.667887 + 0.744263i \(0.267199\pi\)
\(212\) −4.89493 + 2.35727i −0.336185 + 0.161898i
\(213\) 0 0
\(214\) −12.1114 5.83255i −0.827919 0.398705i
\(215\) −2.04892 −0.139735
\(216\) 0 0
\(217\) 16.0477 20.1232i 1.08939 1.36605i
\(218\) −1.85690 + 2.32847i −0.125765 + 0.157704i
\(219\) 0 0
\(220\) 1.29590 0.0873694
\(221\) 5.18598 + 2.49744i 0.348847 + 0.167996i
\(222\) 0 0
\(223\) −19.7485 + 9.51036i −1.32246 + 0.636861i −0.955943 0.293552i \(-0.905163\pi\)
−0.366512 + 0.930413i \(0.619448\pi\)
\(224\) −22.5661 + 10.8673i −1.50776 + 0.726101i
\(225\) 0 0
\(226\) −9.70775 + 12.1731i −0.645750 + 0.809745i
\(227\) 11.3964 + 14.2907i 0.756407 + 0.948504i 0.999770 0.0214309i \(-0.00682218\pi\)
−0.243363 + 0.969935i \(0.578251\pi\)
\(228\) 0 0
\(229\) −3.56584 15.6230i −0.235638 1.03240i −0.944876 0.327427i \(-0.893818\pi\)
0.709239 0.704968i \(-0.249039\pi\)
\(230\) −1.65883 2.08011i −0.109380 0.137158i
\(231\) 0 0
\(232\) −7.20075 1.24218i −0.472752 0.0815532i
\(233\) −1.95646 −0.128172 −0.0640860 0.997944i \(-0.520413\pi\)
−0.0640860 + 0.997944i \(0.520413\pi\)
\(234\) 0 0
\(235\) 0.619605 + 2.71467i 0.0404186 + 0.177085i
\(236\) −2.52781 + 11.0751i −0.164546 + 0.720925i
\(237\) 0 0
\(238\) 5.04892 6.33114i 0.327273 0.410387i
\(239\) −1.99449 8.73844i −0.129013 0.565243i −0.997571 0.0696554i \(-0.977810\pi\)
0.868558 0.495587i \(-0.165047\pi\)
\(240\) 0 0
\(241\) −17.9291 + 8.63419i −1.15491 + 0.556177i −0.910506 0.413496i \(-0.864308\pi\)
−0.244407 + 0.969673i \(0.578593\pi\)
\(242\) 1.01089 4.42898i 0.0649822 0.284705i
\(243\) 0 0
\(244\) −7.54288 −0.482883
\(245\) 3.02057 + 1.45463i 0.192977 + 0.0929330i
\(246\) 0 0
\(247\) 6.62498 8.30746i 0.421537 0.528591i
\(248\) −7.77144 3.74253i −0.493487 0.237651i
\(249\) 0 0
\(250\) −5.72037 2.75478i −0.361788 0.174228i
\(251\) 5.74214 25.1579i 0.362440 1.58795i −0.384540 0.923108i \(-0.625640\pi\)
0.746980 0.664847i \(-0.231503\pi\)
\(252\) 0 0
\(253\) 10.8535 5.22679i 0.682356 0.328606i
\(254\) −4.19902 18.3971i −0.263470 1.15434i
\(255\) 0 0
\(256\) 12.9133 + 16.1928i 0.807084 + 1.01205i
\(257\) 2.65937 11.6514i 0.165887 0.726797i −0.821726 0.569883i \(-0.806988\pi\)
0.987612 0.156914i \(-0.0501545\pi\)
\(258\) 0 0
\(259\) 7.35086 + 9.21768i 0.456760 + 0.572759i
\(260\) −2.30798 −0.143135
\(261\) 0 0
\(262\) 0.819396 0.0506225
\(263\) 0.207455 + 0.260141i 0.0127923 + 0.0160410i 0.788186 0.615437i \(-0.211020\pi\)
−0.775394 + 0.631477i \(0.782449\pi\)
\(264\) 0 0
\(265\) 0.346011 1.51597i 0.0212553 0.0931254i
\(266\) −9.32036 11.6874i −0.571468 0.716598i
\(267\) 0 0
\(268\) −0.103875 0.455108i −0.00634520 0.0278002i
\(269\) −0.958615 + 0.461645i −0.0584478 + 0.0281470i −0.462879 0.886421i \(-0.653184\pi\)
0.404432 + 0.914568i \(0.367469\pi\)
\(270\) 0 0
\(271\) 3.66368 16.0516i 0.222553 0.975067i −0.732996 0.680233i \(-0.761879\pi\)
0.955549 0.294834i \(-0.0952642\pi\)
\(272\) −4.93900 2.37850i −0.299471 0.144218i
\(273\) 0 0
\(274\) −21.4955 10.3517i −1.29859 0.625367i
\(275\) 8.84631 11.0929i 0.533452 0.668928i
\(276\) 0 0
\(277\) −5.94116 2.86111i −0.356970 0.171907i 0.246800 0.969066i \(-0.420621\pi\)
−0.603769 + 0.797159i \(0.706335\pi\)
\(278\) −5.03923 −0.302233
\(279\) 0 0
\(280\) 0.436313 1.91161i 0.0260747 0.114241i
\(281\) −27.5112 + 13.2487i −1.64118 + 0.790350i −0.641448 + 0.767166i \(0.721666\pi\)
−0.999731 + 0.0231840i \(0.992620\pi\)
\(282\) 0 0
\(283\) 0.791053 + 3.46583i 0.0470232 + 0.206022i 0.992982 0.118264i \(-0.0377330\pi\)
−0.945959 + 0.324286i \(0.894876\pi\)
\(284\) 8.86778 11.1198i 0.526206 0.659841i
\(285\) 0 0
\(286\) 6.05496 26.5285i 0.358037 1.56866i
\(287\) −0.356896 1.56366i −0.0210669 0.0923001i
\(288\) 0 0
\(289\) −15.7681 −0.927534
\(290\) −2.58815 + 2.30117i −0.151981 + 0.135130i
\(291\) 0 0
\(292\) −6.95742 8.72433i −0.407152 0.510553i
\(293\) 7.31647 + 32.0556i 0.427433 + 1.87271i 0.485246 + 0.874378i \(0.338730\pi\)
−0.0578127 + 0.998327i \(0.518413\pi\)
\(294\) 0 0
\(295\) −2.02715 2.54196i −0.118025 0.147999i
\(296\) 2.46346 3.08908i 0.143186 0.179549i
\(297\) 0 0
\(298\) 4.39708 2.11752i 0.254716 0.122665i
\(299\) −19.3300 + 9.30886i −1.11789 + 0.538345i
\(300\) 0 0
\(301\) 20.9426 + 10.0854i 1.20711 + 0.581316i
\(302\) −4.38835 −0.252521
\(303\) 0 0
\(304\) −6.30947 + 7.91183i −0.361873 + 0.453774i
\(305\) 1.34601 1.68784i 0.0770724 0.0966457i
\(306\) 0 0
\(307\) 14.6703 0.837275 0.418638 0.908153i \(-0.362508\pi\)
0.418638 + 0.908153i \(0.362508\pi\)
\(308\) −13.2458 6.37883i −0.754749 0.363468i
\(309\) 0 0
\(310\) −3.68329 + 1.77378i −0.209197 + 0.100744i
\(311\) 16.6918 8.03834i 0.946504 0.455812i 0.104045 0.994573i \(-0.466821\pi\)
0.842459 + 0.538760i \(0.181107\pi\)
\(312\) 0 0
\(313\) 14.3354 17.9760i 0.810286 1.01607i −0.189132 0.981952i \(-0.560567\pi\)
0.999418 0.0341147i \(-0.0108612\pi\)
\(314\) 19.8605 + 24.9043i 1.12080 + 1.40543i
\(315\) 0 0
\(316\) 0.164874 + 0.722362i 0.00927491 + 0.0406360i
\(317\) −8.76540 10.9915i −0.492314 0.617342i 0.472162 0.881512i \(-0.343474\pi\)
−0.964476 + 0.264170i \(0.914902\pi\)
\(318\) 0 0
\(319\) −7.55041 13.7433i −0.422742 0.769479i
\(320\) 0.452812 0.0253129
\(321\) 0 0
\(322\) 6.71648 + 29.4268i 0.374295 + 1.63989i
\(323\) 0.506041 2.21711i 0.0281569 0.123363i
\(324\) 0 0
\(325\) −15.7552 + 19.7564i −0.873940 + 1.09589i
\(326\) 1.99127 + 8.72433i 0.110286 + 0.483196i
\(327\) 0 0
\(328\) −0.484271 + 0.233212i −0.0267394 + 0.0128770i
\(329\) 7.02930 30.7974i 0.387538 1.69792i
\(330\) 0 0
\(331\) 13.9565 0.767116 0.383558 0.923517i \(-0.374699\pi\)
0.383558 + 0.923517i \(0.374699\pi\)
\(332\) −10.5978 5.10365i −0.581632 0.280099i
\(333\) 0 0
\(334\) −16.2506 + 20.3776i −0.889195 + 1.11501i
\(335\) 0.120374 + 0.0579692i 0.00657676 + 0.00316720i
\(336\) 0 0
\(337\) 12.6114 + 6.07333i 0.686987 + 0.330836i 0.744607 0.667503i \(-0.232637\pi\)
−0.0576199 + 0.998339i \(0.518351\pi\)
\(338\) −5.57122 + 24.4091i −0.303034 + 1.32768i
\(339\) 0 0
\(340\) −0.445042 + 0.214321i −0.0241358 + 0.0116232i
\(341\) −4.11894 18.0463i −0.223053 0.977260i
\(342\) 0 0
\(343\) −6.04288 7.57753i −0.326285 0.409148i
\(344\) 1.73341 7.59455i 0.0934590 0.409471i
\(345\) 0 0
\(346\) −11.8116 14.8113i −0.634997 0.796261i
\(347\) 19.8538 1.06581 0.532905 0.846175i \(-0.321100\pi\)
0.532905 + 0.846175i \(0.321100\pi\)
\(348\) 0 0
\(349\) −26.9202 −1.44101 −0.720503 0.693452i \(-0.756089\pi\)
−0.720503 + 0.693452i \(0.756089\pi\)
\(350\) 22.1652 + 27.7942i 1.18478 + 1.48566i
\(351\) 0 0
\(352\) −4.00820 + 17.5611i −0.213638 + 0.936007i
\(353\) 2.50335 + 3.13910i 0.133240 + 0.167078i 0.843976 0.536382i \(-0.180209\pi\)
−0.710736 + 0.703459i \(0.751638\pi\)
\(354\) 0 0
\(355\) 0.905813 + 3.96863i 0.0480756 + 0.210633i
\(356\) 1.59903 0.770053i 0.0847485 0.0408127i
\(357\) 0 0
\(358\) −2.30194 + 10.0854i −0.121661 + 0.533032i
\(359\) −0.672407 0.323814i −0.0354883 0.0170903i 0.416055 0.909339i \(-0.363412\pi\)
−0.451544 + 0.892249i \(0.649127\pi\)
\(360\) 0 0
\(361\) 13.3361 + 6.42232i 0.701899 + 0.338017i
\(362\) −7.46077 + 9.35551i −0.392129 + 0.491715i
\(363\) 0 0
\(364\) 23.5906 + 11.3606i 1.23648 + 0.595459i
\(365\) 3.19375 0.167169
\(366\) 0 0
\(367\) 7.57660 33.1952i 0.395495 1.73278i −0.249304 0.968425i \(-0.580202\pi\)
0.644799 0.764352i \(-0.276941\pi\)
\(368\) 18.4095 8.86553i 0.959659 0.462148i
\(369\) 0 0
\(370\) −0.416698 1.82567i −0.0216631 0.0949123i
\(371\) −10.9988 + 13.7921i −0.571029 + 0.716048i
\(372\) 0 0
\(373\) −6.23072 + 27.2986i −0.322614 + 1.41347i 0.510268 + 0.860015i \(0.329546\pi\)
−0.832882 + 0.553450i \(0.813311\pi\)
\(374\) −1.29590 5.67770i −0.0670092 0.293587i
\(375\) 0 0
\(376\) −10.5864 −0.545953
\(377\) 13.4472 + 24.4767i 0.692566 + 1.26062i
\(378\) 0 0
\(379\) 14.2661 + 17.8891i 0.732798 + 0.918900i 0.998986 0.0450211i \(-0.0143355\pi\)
−0.266188 + 0.963921i \(0.585764\pi\)
\(380\) 0.202907 + 0.888992i 0.0104089 + 0.0456043i
\(381\) 0 0
\(382\) 21.1347 + 26.5020i 1.08134 + 1.35596i
\(383\) −7.39344 + 9.27108i −0.377787 + 0.473730i −0.933981 0.357323i \(-0.883690\pi\)
0.556194 + 0.831052i \(0.312261\pi\)
\(384\) 0 0
\(385\) 3.79105 1.82567i 0.193210 0.0930450i
\(386\) −17.6712 + 8.51001i −0.899441 + 0.433148i
\(387\) 0 0
\(388\) −17.6957 8.52179i −0.898362 0.432628i
\(389\) 10.3913 0.526862 0.263431 0.964678i \(-0.415146\pi\)
0.263431 + 0.964678i \(0.415146\pi\)
\(390\) 0 0
\(391\) −2.86294 + 3.59001i −0.144785 + 0.181555i
\(392\) −7.94720 + 9.96547i −0.401394 + 0.503332i
\(393\) 0 0
\(394\) 15.1371 0.762594
\(395\) −0.191062 0.0920106i −0.00961337 0.00462956i
\(396\) 0 0
\(397\) −7.40366 + 3.56541i −0.371579 + 0.178943i −0.610348 0.792133i \(-0.708970\pi\)
0.238769 + 0.971076i \(0.423256\pi\)
\(398\) 10.7497 5.17677i 0.538832 0.259488i
\(399\) 0 0
\(400\) 15.0048 18.8155i 0.750242 0.940774i
\(401\) −15.5130 19.4527i −0.774684 0.971423i 0.225312 0.974287i \(-0.427660\pi\)
−0.999996 + 0.00286337i \(0.999089\pi\)
\(402\) 0 0
\(403\) 7.33579 + 32.1402i 0.365422 + 1.60102i
\(404\) 13.5613 + 17.0053i 0.674700 + 0.846047i
\(405\) 0 0
\(406\) 37.7814 10.7813i 1.87506 0.535069i
\(407\) 8.47889 0.420283
\(408\) 0 0
\(409\) −4.20464 18.4217i −0.207906 0.910895i −0.965958 0.258701i \(-0.916706\pi\)
0.758052 0.652194i \(-0.226151\pi\)
\(410\) −0.0566871 + 0.248362i −0.00279957 + 0.0122657i
\(411\) 0 0
\(412\) −2.18784 + 2.74347i −0.107787 + 0.135161i
\(413\) 8.20775 + 35.9605i 0.403877 + 1.76950i
\(414\) 0 0
\(415\) 3.03319 1.46071i 0.148893 0.0717033i
\(416\) 7.13856 31.2761i 0.349996 1.53343i
\(417\) 0 0
\(418\) −10.7506 −0.525830
\(419\) −9.81378 4.72607i −0.479435 0.230884i 0.178527 0.983935i \(-0.442867\pi\)
−0.657962 + 0.753051i \(0.728581\pi\)
\(420\) 0 0
\(421\) −12.4453 + 15.6060i −0.606549 + 0.760588i −0.986383 0.164467i \(-0.947410\pi\)
0.379834 + 0.925055i \(0.375981\pi\)
\(422\) 13.1506 + 6.33301i 0.640163 + 0.308286i
\(423\) 0 0
\(424\) 5.32640 + 2.56506i 0.258673 + 0.124570i
\(425\) −1.20344 + 5.27261i −0.0583754 + 0.255759i
\(426\) 0 0
\(427\) −22.0661 + 10.6265i −1.06786 + 0.514252i
\(428\) −2.07002 9.06937i −0.100058 0.438384i
\(429\) 0 0
\(430\) −2.30194 2.88654i −0.111009 0.139201i
\(431\) −6.71797 + 29.4334i −0.323593 + 1.41776i 0.507514 + 0.861643i \(0.330564\pi\)
−0.831108 + 0.556112i \(0.812293\pi\)
\(432\) 0 0
\(433\) −12.5891 15.7862i −0.604994 0.758638i 0.381153 0.924512i \(-0.375527\pi\)
−0.986147 + 0.165874i \(0.946956\pi\)
\(434\) 46.3793 2.22628
\(435\) 0 0
\(436\) −2.06100 −0.0987039
\(437\) 5.28501 + 6.62720i 0.252816 + 0.317022i
\(438\) 0 0
\(439\) 2.37316 10.3975i 0.113265 0.496245i −0.886193 0.463316i \(-0.846659\pi\)
0.999458 0.0329287i \(-0.0104834\pi\)
\(440\) −0.879199 1.10248i −0.0419141 0.0525587i
\(441\) 0 0
\(442\) 2.30798 + 10.1119i 0.109779 + 0.480975i
\(443\) −18.3349 + 8.82962i −0.871117 + 0.419508i −0.815372 0.578937i \(-0.803468\pi\)
−0.0557448 + 0.998445i \(0.517753\pi\)
\(444\) 0 0
\(445\) −0.113032 + 0.495224i −0.00535822 + 0.0234759i
\(446\) −35.5855 17.1371i −1.68502 0.811464i
\(447\) 0 0
\(448\) −4.62833 2.22889i −0.218668 0.105305i
\(449\) −12.1102 + 15.1857i −0.571516 + 0.716659i −0.980640 0.195820i \(-0.937263\pi\)
0.409124 + 0.912479i \(0.365834\pi\)
\(450\) 0 0
\(451\) −1.03923 0.500466i −0.0489354 0.0235660i
\(452\) −10.7748 −0.506804
\(453\) 0 0
\(454\) −7.32908 + 32.1108i −0.343971 + 1.50704i
\(455\) −6.75182 + 3.25151i −0.316530 + 0.152433i
\(456\) 0 0
\(457\) 2.76391 + 12.1095i 0.129290 + 0.566457i 0.997526 + 0.0703045i \(0.0223971\pi\)
−0.868236 + 0.496152i \(0.834746\pi\)
\(458\) 18.0036 22.5759i 0.841255 1.05490i
\(459\) 0 0
\(460\) 0.409698 1.79500i 0.0191023 0.0836925i
\(461\) −4.88351 21.3961i −0.227448 0.996514i −0.951712 0.306991i \(-0.900678\pi\)
0.724265 0.689522i \(-0.242179\pi\)
\(462\) 0 0
\(463\) −33.0073 −1.53398 −0.766990 0.641660i \(-0.778246\pi\)
−0.766990 + 0.641660i \(0.778246\pi\)
\(464\) −12.8068 23.3110i −0.594540 1.08219i
\(465\) 0 0
\(466\) −2.19806 2.75628i −0.101823 0.127682i
\(467\) −5.80851 25.4487i −0.268786 1.17763i −0.911427 0.411461i \(-0.865019\pi\)
0.642642 0.766167i \(-0.277838\pi\)
\(468\) 0 0
\(469\) −0.945042 1.18505i −0.0436380 0.0547203i
\(470\) −3.12833 + 3.92281i −0.144299 + 0.180946i
\(471\) 0 0
\(472\) 11.1371 5.36333i 0.512625 0.246867i
\(473\) 15.0613 7.25314i 0.692519 0.333500i
\(474\) 0 0
\(475\) 8.99492 + 4.33172i 0.412715 + 0.198753i
\(476\) 5.60388 0.256853
\(477\) 0 0
\(478\) 10.0700 12.6274i 0.460592 0.577564i
\(479\) −20.6163 + 25.8520i −0.941981 + 1.18121i 0.0413068 + 0.999147i \(0.486848\pi\)
−0.983287 + 0.182060i \(0.941724\pi\)
\(480\) 0 0
\(481\) −15.1008 −0.688538
\(482\) −32.3071 15.5583i −1.47155 0.708660i
\(483\) 0 0
\(484\) 2.83244 1.36403i 0.128747 0.0620014i
\(485\) 5.06465 2.43901i 0.229974 0.110750i
\(486\) 0 0
\(487\) −6.33244 + 7.94063i −0.286950 + 0.359824i −0.904325 0.426845i \(-0.859625\pi\)
0.617375 + 0.786669i \(0.288196\pi\)
\(488\) 5.11745 + 6.41708i 0.231656 + 0.290487i
\(489\) 0 0
\(490\) 1.34428 + 5.88968i 0.0607285 + 0.266069i
\(491\) 12.2714 + 15.3879i 0.553802 + 0.694446i 0.977399 0.211405i \(-0.0678039\pi\)
−0.423596 + 0.905851i \(0.639232\pi\)
\(492\) 0 0
\(493\) 4.86592 + 3.47107i 0.219150 + 0.156329i
\(494\) 19.1468 0.861453
\(495\) 0 0
\(496\) −6.98643 30.6095i −0.313700 1.37441i
\(497\) 10.2763 45.0233i 0.460954 2.01957i
\(498\) 0 0
\(499\) 17.3639 21.7736i 0.777315 0.974722i −0.222685 0.974890i \(-0.571482\pi\)
1.00000 0.000168534i \(5.36461e-5\pi\)
\(500\) −0.977697 4.28357i −0.0437240 0.191567i
\(501\) 0 0
\(502\) 41.8940 20.1751i 1.86982 0.900459i
\(503\) −0.0501138 + 0.219563i −0.00223446 + 0.00978982i −0.976033 0.217623i \(-0.930170\pi\)
0.973798 + 0.227413i \(0.0730267\pi\)
\(504\) 0 0
\(505\) −6.22521 −0.277018
\(506\) 19.5574 + 9.41835i 0.869433 + 0.418697i
\(507\) 0 0
\(508\) 8.14191 10.2096i 0.361239 0.452979i
\(509\) −22.7974 10.9786i −1.01048 0.486620i −0.145995 0.989285i \(-0.546638\pi\)
−0.864481 + 0.502665i \(0.832353\pi\)
\(510\) 0 0
\(511\) −32.6444 15.7207i −1.44410 0.695443i
\(512\) −3.81604 + 16.7192i −0.168647 + 0.738890i
\(513\) 0 0
\(514\) 19.4025 9.34373i 0.855806 0.412134i
\(515\) −0.223480 0.979132i −0.00984772 0.0431457i
\(516\) 0 0
\(517\) −14.1645 17.7617i −0.622954 0.781160i
\(518\) −4.72737 + 20.7119i −0.207709 + 0.910030i
\(519\) 0 0
\(520\) 1.56584 + 1.96351i 0.0686668 + 0.0861054i
\(521\) −23.5797 −1.03305 −0.516523 0.856273i \(-0.672774\pi\)
−0.516523 + 0.856273i \(0.672774\pi\)
\(522\) 0 0
\(523\) 3.96508 0.173381 0.0866905 0.996235i \(-0.472371\pi\)
0.0866905 + 0.996235i \(0.472371\pi\)
\(524\) 0.353543 + 0.443330i 0.0154446 + 0.0193669i
\(525\) 0 0
\(526\) −0.133415 + 0.584531i −0.00581719 + 0.0254868i
\(527\) 4.39911 + 5.51631i 0.191628 + 0.240294i
\(528\) 0 0
\(529\) 1.30947 + 5.73717i 0.0569335 + 0.249442i
\(530\) 2.52446 1.21572i 0.109655 0.0528073i
\(531\) 0 0
\(532\) 2.30194 10.0854i 0.0998017 0.437260i
\(533\) 1.85086 + 0.891325i 0.0801694 + 0.0386076i
\(534\) 0 0
\(535\) 2.39881 + 1.15521i 0.103710 + 0.0499440i
\(536\) −0.316708 + 0.397139i −0.0136797 + 0.0171538i
\(537\) 0 0
\(538\) −1.72737 0.831855i −0.0744720 0.0358638i
\(539\) −27.3532 −1.17818
\(540\) 0 0
\(541\) 5.48739 24.0418i 0.235921 1.03364i −0.708709 0.705501i \(-0.750722\pi\)
0.944630 0.328137i \(-0.106421\pi\)
\(542\) 26.7298 12.8724i 1.14814 0.552917i
\(543\) 0 0
\(544\) −1.52781 6.69378i −0.0655044 0.286993i
\(545\) 0.367781 0.461183i 0.0157540 0.0197549i
\(546\) 0 0
\(547\) −5.52768 + 24.2183i −0.236347 + 1.03550i 0.707913 + 0.706300i \(0.249637\pi\)
−0.944259 + 0.329202i \(0.893220\pi\)
\(548\) −3.67390 16.0964i −0.156941 0.687604i
\(549\) 0 0
\(550\) 25.5666 1.09016
\(551\) 8.24578 7.33150i 0.351282 0.312332i
\(552\) 0 0
\(553\) 1.50000 + 1.88094i 0.0637865 + 0.0799857i
\(554\) −2.64406 11.5844i −0.112335 0.492174i
\(555\) 0 0
\(556\) −2.17427 2.72645i −0.0922095 0.115627i
\(557\) −4.84146 + 6.07100i −0.205139 + 0.257237i −0.873749 0.486377i \(-0.838318\pi\)
0.668610 + 0.743613i \(0.266890\pi\)
\(558\) 0 0
\(559\) −26.8240 + 12.9178i −1.13453 + 0.546363i
\(560\) 6.43027 3.09666i 0.271729 0.130858i
\(561\) 0 0
\(562\) −49.5734 23.8733i −2.09113 1.00703i
\(563\) −20.8009 −0.876652 −0.438326 0.898816i \(-0.644429\pi\)
−0.438326 + 0.898816i \(0.644429\pi\)
\(564\) 0 0
\(565\) 1.92274 2.41104i 0.0808902 0.101433i
\(566\) −3.99396 + 5.00827i −0.167879 + 0.210513i
\(567\) 0 0
\(568\) −15.4765 −0.649380
\(569\) 2.53103 + 1.21888i 0.106106 + 0.0510981i 0.486184 0.873856i \(-0.338388\pi\)
−0.380078 + 0.924955i \(0.624103\pi\)
\(570\) 0 0
\(571\) −2.60603 + 1.25500i −0.109059 + 0.0525201i −0.487618 0.873057i \(-0.662134\pi\)
0.378559 + 0.925577i \(0.376420\pi\)
\(572\) 16.9656 8.17021i 0.709368 0.341614i
\(573\) 0 0
\(574\) 1.80194 2.25956i 0.0752114 0.0943121i
\(575\) −12.5685 15.7604i −0.524144 0.657256i
\(576\) 0 0
\(577\) −1.59970 7.00872i −0.0665962 0.291777i 0.930653 0.365904i \(-0.119240\pi\)
−0.997249 + 0.0741270i \(0.976383\pi\)
\(578\) −17.7153 22.2143i −0.736859 0.923992i
\(579\) 0 0
\(580\) −2.36174 0.407417i −0.0980659 0.0169171i
\(581\) −38.1933 −1.58452
\(582\) 0 0
\(583\) 2.82304 + 12.3686i 0.116919 + 0.512254i
\(584\) −2.70195 + 11.8380i −0.111807 + 0.489860i
\(585\) 0 0
\(586\) −36.9403 + 46.3216i −1.52599 + 1.91353i
\(587\) −6.90635 30.2587i −0.285055 1.24891i −0.891220 0.453570i \(-0.850150\pi\)
0.606165 0.795339i \(-0.292707\pi\)
\(588\) 0 0
\(589\) 11.7349 5.65123i 0.483528 0.232855i
\(590\) 1.30367 5.71174i 0.0536711 0.235148i
\(591\) 0 0
\(592\) 14.3817 0.591082
\(593\) 32.8560 + 15.8226i 1.34923 + 0.649757i 0.962209 0.272312i \(-0.0877884\pi\)
0.387025 + 0.922069i \(0.373503\pi\)
\(594\) 0 0
\(595\) −1.00000 + 1.25396i −0.0409960 + 0.0514074i
\(596\) 3.04288 + 1.46537i 0.124641 + 0.0600240i
\(597\) 0 0
\(598\) −34.8315 16.7740i −1.42437 0.685939i
\(599\) 6.69083 29.3144i 0.273380 1.19775i −0.632615 0.774466i \(-0.718019\pi\)
0.905995 0.423288i \(-0.139124\pi\)
\(600\) 0 0
\(601\) 29.8995 14.3989i 1.21963 0.587342i 0.290420 0.956899i \(-0.406205\pi\)
0.929208 + 0.369558i \(0.120491\pi\)
\(602\) 9.32036 + 40.8351i 0.379869 + 1.66432i
\(603\) 0 0
\(604\) −1.89344 2.37429i −0.0770428 0.0966086i
\(605\) −0.200218 + 0.877213i −0.00814003 + 0.0356638i
\(606\) 0 0
\(607\) −9.42729 11.8214i −0.382642 0.479818i 0.552792 0.833319i \(-0.313562\pi\)
−0.935434 + 0.353502i \(0.884991\pi\)
\(608\) −12.6746 −0.514021
\(609\) 0 0
\(610\) 3.89008 0.157505
\(611\) 25.2268 + 31.6334i 1.02057 + 1.27975i
\(612\) 0 0
\(613\) −0.835658 + 3.66126i −0.0337519 + 0.147877i −0.988996 0.147942i \(-0.952735\pi\)
0.955244 + 0.295818i \(0.0955923\pi\)
\(614\) 16.4819 + 20.6676i 0.665154 + 0.834077i
\(615\) 0 0
\(616\) 3.55980 + 15.5965i 0.143429 + 0.628401i
\(617\) 26.8995 12.9541i 1.08293 0.521514i 0.194681 0.980867i \(-0.437633\pi\)
0.888254 + 0.459353i \(0.151919\pi\)
\(618\) 0 0
\(619\) 10.2622 44.9615i 0.412472 1.80716i −0.159866 0.987139i \(-0.551106\pi\)
0.572338 0.820018i \(-0.306037\pi\)
\(620\) −2.54892 1.22749i −0.102367 0.0492973i
\(621\) 0 0
\(622\) 30.0776 + 14.4846i 1.20600 + 0.580779i
\(623\) 3.59299 4.50547i 0.143950 0.180508i
\(624\) 0 0
\(625\) −20.8174 10.0251i −0.832697 0.401006i
\(626\) 41.4306 1.65590
\(627\) 0 0
\(628\) −4.90515 + 21.4909i −0.195737 + 0.857579i
\(629\) −2.91185 + 1.40227i −0.116103 + 0.0559124i
\(630\) 0 0
\(631\) −2.81043 12.3133i −0.111881 0.490185i −0.999558 0.0297178i \(-0.990539\pi\)
0.887677 0.460467i \(-0.152318\pi\)
\(632\) 0.502688 0.630351i 0.0199959 0.0250740i
\(633\) 0 0
\(634\) 5.63706 24.6976i 0.223876 0.980867i
\(635\) 0.831668 + 3.64377i 0.0330037 + 0.144599i
\(636\) 0 0
\(637\) 48.7157 1.93019
\(638\) 10.8790 26.0776i 0.430702 1.03242i
\(639\) 0 0
\(640\) −2.24429 2.81425i −0.0887134 0.111243i
\(641\) 8.67874 + 38.0241i 0.342790 + 1.50186i 0.793157 + 0.609017i \(0.208436\pi\)
−0.450368 + 0.892843i \(0.648707\pi\)
\(642\) 0 0
\(643\) 25.7479 + 32.2869i 1.01540 + 1.27327i 0.961523 + 0.274723i \(0.0885862\pi\)
0.0538762 + 0.998548i \(0.482842\pi\)
\(644\) −13.0233 + 16.3307i −0.513188 + 0.643518i
\(645\) 0 0
\(646\) 3.69202 1.77798i 0.145261 0.0699538i
\(647\) −16.1368 + 7.77109i −0.634404 + 0.305513i −0.723306 0.690527i \(-0.757378\pi\)
0.0889021 + 0.996040i \(0.471664\pi\)
\(648\) 0 0
\(649\) 23.8998 + 11.5095i 0.938148 + 0.451788i
\(650\) −45.5338 −1.78598
\(651\) 0 0
\(652\) −3.86108 + 4.84164i −0.151211 + 0.189613i
\(653\) 8.30529 10.4145i 0.325011 0.407551i −0.592303 0.805715i \(-0.701781\pi\)
0.917314 + 0.398164i \(0.130353\pi\)
\(654\) 0 0
\(655\) −0.162291 −0.00634125
\(656\) −1.76271 0.848876i −0.0688222 0.0331430i
\(657\) 0 0
\(658\) 51.2851 24.6976i 1.99930 0.962812i
\(659\) 16.9073 8.14213i 0.658615 0.317172i −0.0745557 0.997217i \(-0.523754\pi\)
0.733171 + 0.680045i \(0.238040\pi\)
\(660\) 0 0
\(661\) −15.4182 + 19.3338i −0.599698 + 0.751998i −0.985331 0.170655i \(-0.945412\pi\)
0.385633 + 0.922652i \(0.373983\pi\)
\(662\) 15.6799 + 19.6620i 0.609418 + 0.764186i
\(663\) 0 0
\(664\) 2.84817 + 12.4786i 0.110530 + 0.484265i
\(665\) 1.84601 + 2.31482i 0.0715852 + 0.0897650i
\(666\) 0 0
\(667\) −21.4236 + 6.11345i −0.829524 + 0.236714i
\(668\) −18.0368 −0.697866
\(669\) 0 0
\(670\) 0.0535716 + 0.234713i 0.00206965 + 0.00906774i
\(671\) −3.91939 + 17.1720i −0.151306 + 0.662916i
\(672\) 0 0
\(673\) 15.8632 19.8919i 0.611483 0.766775i −0.375636 0.926767i \(-0.622576\pi\)
0.987118 + 0.159992i \(0.0511470\pi\)
\(674\) 5.61260 + 24.5904i 0.216189 + 0.947188i
\(675\) 0 0
\(676\) −15.6102 + 7.51748i −0.600393 + 0.289134i
\(677\) 0.137195 0.601090i 0.00527283 0.0231018i −0.972223 0.234056i \(-0.924800\pi\)
0.977496 + 0.210954i \(0.0676572\pi\)
\(678\) 0 0
\(679\) −63.7730 −2.44738
\(680\) 0.484271 + 0.233212i 0.0185709 + 0.00894329i
\(681\) 0 0
\(682\) 20.7962 26.0776i 0.796327 0.998563i
\(683\) 16.2371 + 7.81935i 0.621294 + 0.299199i 0.717924 0.696121i \(-0.245092\pi\)
−0.0966308 + 0.995320i \(0.530807\pi\)
\(684\) 0 0
\(685\) 4.25744 + 2.05027i 0.162668 + 0.0783369i
\(686\) 3.88620 17.0265i 0.148376 0.650077i
\(687\) 0 0
\(688\) 25.5465 12.3026i 0.973952 0.469031i
\(689\) −5.02781 22.0283i −0.191544 0.839211i
\(690\) 0 0
\(691\) 7.69769 + 9.65260i 0.292834 + 0.367202i 0.906385 0.422453i \(-0.138831\pi\)
−0.613551 + 0.789655i \(0.710259\pi\)
\(692\) 2.91723 12.7812i 0.110896 0.485869i
\(693\) 0 0
\(694\) 22.3056 + 27.9703i 0.846708 + 1.06174i
\(695\) 0.998081 0.0378594
\(696\) 0 0
\(697\) 0.439665 0.0166535
\(698\) −30.2446 37.9255i −1.14477 1.43550i
\(699\) 0 0
\(700\) −5.47434 + 23.9847i −0.206911 + 0.906535i
\(701\) 21.2594 + 26.6584i 0.802955 + 1.00687i 0.999651 + 0.0264091i \(0.00840724\pi\)
−0.196696 + 0.980464i \(0.563021\pi\)
\(702\) 0 0
\(703\) 1.32759 + 5.81656i 0.0500711 + 0.219376i
\(704\) −3.32855 + 1.60295i −0.125450 + 0.0604133i
\(705\) 0 0
\(706\) −1.60992 + 7.05350i −0.0605900 + 0.265462i
\(707\) 63.6299 + 30.6425i 2.39305 + 1.15243i
\(708\) 0 0
\(709\) −37.9267 18.2645i −1.42437 0.685939i −0.446426 0.894821i \(-0.647303\pi\)
−0.977941 + 0.208882i \(0.933018\pi\)
\(710\) −4.57338 + 5.73483i −0.171636 + 0.215224i
\(711\) 0 0
\(712\) −1.73998 0.837930i −0.0652085 0.0314028i
\(713\) −26.2989 −0.984901
\(714\) 0 0
\(715\) −1.19926 + 5.25430i −0.0448497 + 0.196500i
\(716\) −6.44989 + 3.10610i −0.241044 + 0.116080i
\(717\) 0 0
\(718\) −0.299249 1.31110i −0.0111679 0.0489297i
\(719\) 32.5800 40.8540i 1.21503 1.52360i 0.431667 0.902033i \(-0.357926\pi\)
0.783362 0.621566i \(-0.213503\pi\)
\(720\) 0 0
\(721\) −2.53534 + 11.1081i −0.0944211 + 0.413686i
\(722\) 5.93512 + 26.0034i 0.220882 + 0.967748i
\(723\) 0 0
\(724\) −8.28083 −0.307755
\(725\) −19.6097 + 17.4354i −0.728285 + 0.647534i
\(726\) 0 0
\(727\) 18.6953 + 23.4432i 0.693370 + 0.869459i 0.996509 0.0834876i \(-0.0266059\pi\)
−0.303138 + 0.952947i \(0.598034\pi\)
\(728\) −6.33997 27.7772i −0.234975 1.02949i
\(729\) 0 0
\(730\) 3.58815 + 4.49939i 0.132803 + 0.166530i
\(731\) −3.97285 + 4.98180i −0.146941 + 0.184259i
\(732\) 0 0
\(733\) −2.71595 + 1.30793i −0.100316 + 0.0483096i −0.483369 0.875417i \(-0.660587\pi\)
0.383053 + 0.923726i \(0.374873\pi\)
\(734\) 55.2781 26.6205i 2.04035 0.982581i
\(735\) 0 0
\(736\) 23.0574 + 11.1039i 0.849907 + 0.409294i
\(737\) −1.09006 −0.0401531
\(738\) 0 0
\(739\) −12.9919 + 16.2914i −0.477916 + 0.599288i −0.961090 0.276237i \(-0.910913\pi\)
0.483174 + 0.875525i \(0.339484\pi\)
\(740\) 0.807979 1.01317i 0.0297019 0.0372450i
\(741\) 0 0
\(742\) −31.7875 −1.16695
\(743\) −27.7189 13.3487i −1.01691 0.489718i −0.150266 0.988646i \(-0.548013\pi\)
−0.866643 + 0.498928i \(0.833727\pi\)
\(744\) 0 0
\(745\) −0.870896 + 0.419402i −0.0319072 + 0.0153657i
\(746\) −45.4587 + 21.8917i −1.66436 + 0.801514i
\(747\) 0 0
\(748\) 2.51275 3.15088i 0.0918751 0.115208i
\(749\) −18.8327 23.6155i −0.688133 0.862892i
\(750\) 0 0
\(751\) 0.994492 + 4.35715i 0.0362895 + 0.158995i 0.989826 0.142283i \(-0.0454442\pi\)
−0.953537 + 0.301277i \(0.902587\pi\)
\(752\) −24.0254 30.1269i −0.876117 1.09862i
\(753\) 0 0
\(754\) −19.3753 + 46.4439i −0.705607 + 1.69139i
\(755\) 0.869167 0.0316322
\(756\) 0 0
\(757\) 1.88159 + 8.24379i 0.0683876 + 0.299626i 0.997542 0.0700652i \(-0.0223207\pi\)
−0.929155 + 0.369691i \(0.879464\pi\)
\(758\) −9.17456 + 40.1964i −0.333235 + 1.46000i
\(759\) 0 0
\(760\) 0.618645 0.775757i 0.0224406 0.0281397i
\(761\) 5.49516 + 24.0759i 0.199199 + 0.872749i 0.971415 + 0.237388i \(0.0762914\pi\)
−0.772216 + 0.635361i \(0.780851\pi\)
\(762\) 0 0
\(763\) −6.02930 + 2.90356i −0.218275 + 0.105116i
\(764\) −5.21983 + 22.8696i −0.188847 + 0.827392i
\(765\) 0 0
\(766\) −21.3676 −0.772045
\(767\) −42.5652 20.4983i −1.53694 0.740152i
\(768\) 0 0
\(769\) 18.7939 23.5668i 0.677724 0.849839i −0.317418 0.948286i \(-0.602816\pi\)
0.995142 + 0.0984462i \(0.0313872\pi\)
\(770\) 6.83124 + 3.28975i 0.246181 + 0.118554i
\(771\) 0 0
\(772\) −12.2289 5.88911i −0.440126 0.211954i
\(773\) 1.26324 5.53462i 0.0454356 0.199067i −0.947116 0.320892i \(-0.896018\pi\)
0.992552 + 0.121825i \(0.0388747\pi\)
\(774\) 0 0
\(775\) −27.9073 + 13.4394i −1.00246 + 0.482759i
\(776\) 4.75571 + 20.8361i 0.170720 + 0.747973i
\(777\) 0 0
\(778\) 11.6746 + 14.6394i 0.418553 + 0.524849i
\(779\) 0.180604 0.791277i 0.00647081 0.0283504i
\(780\) 0 0
\(781\) −20.7074 25.9662i −0.740968 0.929145i
\(782\) −8.27413 −0.295882
\(783\) 0 0
\(784\) −46.3957 −1.65699
\(785\) −3.93362 4.93261i −0.140397 0.176052i
\(786\) 0 0
\(787\) 0.803134 3.51876i 0.0286286 0.125430i −0.958594 0.284775i \(-0.908081\pi\)
0.987223 + 0.159345i \(0.0509382\pi\)
\(788\) 6.53116 + 8.18982i 0.232663 + 0.291750i
\(789\) 0 0
\(790\) −0.0850306 0.372543i −0.00302525 0.0132545i
\(791\) −31.5209 + 15.1797i −1.12075 + 0.539726i
\(792\) 0 0
\(793\) 6.98039 30.5831i 0.247881 1.08604i
\(794\) −13.3409 6.42465i −0.473452 0.228002i
\(795\) 0 0
\(796\) 7.43900 + 3.58243i 0.263668 + 0.126976i
\(797\) 19.1930 24.0672i 0.679850 0.852505i −0.315490 0.948929i \(-0.602169\pi\)
0.995340 + 0.0964236i \(0.0307403\pi\)
\(798\) 0 0
\(799\) 7.80194 + 3.75722i 0.276013 + 0.132921i
\(800\) 30.1420 1.06568
\(801\) 0 0
\(802\) 9.97650 43.7099i 0.352282 1.54345i
\(803\) −23.4768 + 11.3058i −0.828478 + 0.398974i
\(804\) 0 0
\(805\) −1.33028 5.82834i −0.0468863 0.205422i
\(806\) −37.0378 + 46.4439i −1.30460 + 1.63592i
\(807\) 0 0
\(808\) 5.26659 23.0745i 0.185278 0.811757i
\(809\) 1.16541 + 5.10598i 0.0409735 + 0.179517i 0.991274 0.131817i \(-0.0420813\pi\)
−0.950300 + 0.311334i \(0.899224\pi\)
\(810\) 0 0
\(811\) 41.8646 1.47006 0.735032 0.678032i \(-0.237167\pi\)
0.735032 + 0.678032i \(0.237167\pi\)
\(812\) 22.1347 + 15.7896i 0.776775 + 0.554107i
\(813\) 0 0
\(814\) 9.52595 + 11.9452i 0.333884 + 0.418678i
\(815\) −0.394396 1.72796i −0.0138151 0.0605278i
\(816\) 0 0
\(817\) 7.33393 + 9.19646i 0.256582 + 0.321743i
\(818\) 21.2289 26.6201i 0.742250 0.930752i
\(819\) 0 0
\(820\) −0.158834 + 0.0764902i −0.00554671 + 0.00267115i
\(821\) 13.8802 6.68433i 0.484421 0.233285i −0.175701 0.984444i \(-0.556219\pi\)
0.660121 + 0.751159i \(0.270505\pi\)
\(822\) 0 0
\(823\) 32.1247 + 15.4705i 1.11980 + 0.539266i 0.899830 0.436241i \(-0.143690\pi\)
0.219968 + 0.975507i \(0.429405\pi\)
\(824\) 3.81833 0.133018
\(825\) 0 0
\(826\) −41.4403 + 51.9644i −1.44189 + 1.80807i
\(827\) 32.4550 40.6973i 1.12857 1.41518i 0.231760 0.972773i \(-0.425552\pi\)
0.896812 0.442411i \(-0.145877\pi\)
\(828\) 0 0
\(829\) −13.4168 −0.465986 −0.232993 0.972478i \(-0.574852\pi\)
−0.232993 + 0.972478i \(0.574852\pi\)
\(830\) 5.46562 + 2.63210i 0.189714 + 0.0913616i
\(831\) 0 0
\(832\) 5.92812 2.85483i 0.205520 0.0989734i
\(833\) 9.39373 4.52378i 0.325474 0.156740i
\(834\) 0 0
\(835\) 3.21864 4.03604i 0.111385 0.139673i
\(836\) −4.63856 5.81656i −0.160428 0.201170i
\(837\) 0 0
\(838\) −4.36754 19.1355i −0.150874 0.661024i
\(839\) 19.3602 + 24.2769i 0.668387 + 0.838131i 0.994227 0.107294i \(-0.0342185\pi\)
−0.325840 + 0.945425i \(0.605647\pi\)
\(840\) 0 0
\(841\) 9.43967 + 27.4207i 0.325506 + 0.945540i
\(842\) −35.9681 −1.23954
\(843\) 0 0
\(844\) 2.24764 + 9.84757i 0.0773671 + 0.338967i
\(845\) 1.10345 4.83452i 0.0379598 0.166313i
\(846\) 0 0
\(847\) 6.36443 7.98074i 0.218684 0.274222i
\(848\) 4.78836 + 20.9792i 0.164433 + 0.720428i
\(849\) 0 0
\(850\) −8.78017 + 4.22831i −0.301157 + 0.145030i
\(851\) 2.68060 11.7445i 0.0918899 0.402596i
\(852\) 0 0
\(853\) 21.3357 0.730521 0.365261 0.930905i \(-0.380980\pi\)
0.365261 + 0.930905i \(0.380980\pi\)
\(854\) −39.7618 19.1483i −1.36062 0.655241i
\(855\) 0 0
\(856\) −6.31133 + 7.91416i −0.215717 + 0.270500i
\(857\) −8.85839 4.26597i −0.302597 0.145723i 0.276424 0.961036i \(-0.410851\pi\)
−0.579021 + 0.815313i \(0.696565\pi\)
\(858\) 0 0
\(859\) 46.6555 + 22.4681i 1.59187 + 0.766602i 0.999244 0.0388778i \(-0.0123783\pi\)
0.592623 + 0.805480i \(0.298093\pi\)
\(860\) 0.568532 2.49090i 0.0193868 0.0849390i
\(861\) 0 0
\(862\) −49.0136 + 23.6037i −1.66941 + 0.803946i
\(863\) −3.62147 15.8667i −0.123276 0.540108i −0.998417 0.0562402i \(-0.982089\pi\)
0.875141 0.483868i \(-0.160768\pi\)
\(864\) 0 0
\(865\) 2.33944 + 2.93356i 0.0795433 + 0.0997441i
\(866\) 8.09611 35.4714i 0.275117 1.20537i
\(867\) 0 0
\(868\) 20.0112 + 25.0932i 0.679224 + 0.851720i
\(869\) 1.73019 0.0586925
\(870\) 0 0
\(871\) 1.94139 0.0657816
\(872\) 1.39828 + 1.75339i 0.0473518 + 0.0593772i
\(873\) 0 0
\(874\) −3.39881 + 14.8912i −0.114967 + 0.503701i
\(875\) −8.89493 11.1539i −0.300703 0.377070i
\(876\) 0 0
\(877\) −3.29470 14.4350i −0.111254 0.487436i −0.999601 0.0282623i \(-0.991003\pi\)
0.888346 0.459174i \(-0.151855\pi\)
\(878\) 17.3143 8.33813i 0.584330 0.281398i
\(879\) 0 0
\(880\) 1.14214 5.00406i 0.0385017 0.168687i
\(881\) −16.7920 8.08661i −0.565737 0.272445i 0.129076 0.991635i \(-0.458799\pi\)
−0.694813 + 0.719190i \(0.744513\pi\)
\(882\) 0 0
\(883\) 29.1857 + 14.0551i 0.982178 + 0.472992i 0.854854 0.518869i \(-0.173647\pi\)
0.127325 + 0.991861i \(0.459361\pi\)
\(884\) −4.47517 + 5.61169i −0.150516 + 0.188742i
\(885\) 0 0
\(886\) −33.0383 15.9104i −1.10994 0.534521i
\(887\) 6.16288 0.206929 0.103465 0.994633i \(-0.467007\pi\)
0.103465 + 0.994633i \(0.467007\pi\)
\(888\) 0 0
\(889\) 9.43512 41.3379i 0.316444 1.38643i
\(890\) −0.824667 + 0.397139i −0.0276429 + 0.0133121i
\(891\) 0 0
\(892\) −6.08211 26.6474i −0.203644 0.892222i
\(893\) 9.96681 12.4980i 0.333527 0.418229i
\(894\) 0 0
\(895\) 0.455927 1.99755i 0.0152400 0.0667706i
\(896\) 9.08695 + 39.8125i 0.303574 + 1.33004i
\(897\) 0 0
\(898\) −34.9995 −1.16795
\(899\) 1.83310 + 34.1838i 0.0611373 + 1.14009i
\(900\) 0 0
\(901\) −3.01507 3.78077i −0.100446 0.125956i
\(902\) −0.462500 2.02635i −0.0153996 0.0674699i
\(903\) 0 0
\(904\) 7.31013 + 9.16662i 0.243131 + 0.304877i
\(905\) 1.47770 1.85297i 0.0491203 0.0615949i
\(906\) 0 0
\(907\) −39.6284 + 19.0840i −1.31584 + 0.633675i −0.954347 0.298700i \(-0.903447\pi\)
−0.361492 + 0.932375i \(0.617733\pi\)
\(908\) −20.5356 + 9.88944i −0.681499 + 0.328193i
\(909\) 0 0
\(910\) −12.1664 5.85901i −0.403311 0.194224i
\(911\) 25.6233 0.848936 0.424468 0.905443i \(-0.360461\pi\)
0.424468 + 0.905443i \(0.360461\pi\)
\(912\) 0 0
\(913\) −17.1256 + 21.4749i −0.566776 + 0.710715i
\(914\) −13.9547 + 17.4987i −0.461581 + 0.578805i
\(915\) 0 0
\(916\) 19.9825 0.660242
\(917\) 1.65883 + 0.798852i 0.0547795 + 0.0263804i
\(918\) 0 0
\(919\) 5.62349 2.70813i 0.185502 0.0893330i −0.338828 0.940848i \(-0.610030\pi\)
0.524329 + 0.851516i \(0.324316\pi\)
\(920\) −1.80505 + 0.869268i −0.0595108 + 0.0286589i
\(921\) 0 0
\(922\) 24.6564 30.9182i 0.812017 1.01824i
\(923\) 36.8796 + 46.2456i 1.21391 + 1.52219i
\(924\) 0 0
\(925\) −3.15721 13.8326i −0.103808 0.454814i
\(926\) −37.0834 46.5011i −1.21863 1.52812i
\(927\) 0 0
\(928\) 12.8259 30.7445i 0.421030 1.00924i
\(929\) 24.5133 0.804256 0.402128 0.915583i \(-0.368271\pi\)
0.402128 + 0.915583i \(0.368271\pi\)
\(930\) 0 0
\(931\) −4.28286 18.7644i −0.140365 0.614979i
\(932\) 0.542877 2.37850i 0.0177825 0.0779103i
\(933\) 0 0
\(934\) 29.3267 36.7745i 0.959599 1.20330i
\(935\) 0.256668 + 1.12454i 0.00839395 + 0.0367763i
\(936\) 0 0
\(937\) 3.68449 1.77436i 0.120367 0.0579657i −0.372731 0.927939i \(-0.621579\pi\)
0.493098 + 0.869974i \(0.335864\pi\)
\(938\) 0.607760 2.66277i 0.0198441 0.0869426i
\(939\) 0 0
\(940\) −3.47219 −0.113250
\(941\) 5.55280 + 2.67409i 0.181016 + 0.0871728i 0.522197 0.852825i \(-0.325113\pi\)
−0.341181 + 0.939998i \(0.610827\pi\)
\(942\) 0 0
\(943\) −1.02177 + 1.28126i −0.0332734 + 0.0417235i
\(944\) 40.5381 + 19.5221i 1.31940 + 0.635391i
\(945\) 0 0
\(946\) 27.1395 + 13.0697i 0.882382 + 0.424933i
\(947\) −11.0598 + 48.4562i −0.359395 + 1.57461i 0.395309 + 0.918548i \(0.370638\pi\)
−0.754704 + 0.656065i \(0.772220\pi\)
\(948\) 0 0
\(949\) 41.8119 20.1356i 1.35727 0.653628i
\(950\) 4.00312 + 17.5388i 0.129878 + 0.569034i
\(951\) 0 0
\(952\) −3.80194 4.76748i −0.123222 0.154515i
\(953\) 3.93541 17.2422i 0.127480 0.558529i −0.870335 0.492461i \(-0.836098\pi\)
0.997815 0.0660678i \(-0.0210454\pi\)
\(954\) 0 0
\(955\) −4.18598 5.24905i −0.135455 0.169855i
\(956\) 11.1769 0.361486
\(957\) 0 0
\(958\) −59.5827 −1.92503
\(959\) −33.4245 41.9130i −1.07933 1.35344i
\(960\) 0 0
\(961\) −2.09395 + 9.17419i −0.0675468 + 0.295942i
\(962\) −16.9656 21.2742i −0.546993 0.685908i
\(963\) 0 0
\(964\) −5.52177 24.1925i −0.177844 0.779187i
\(965\) 3.50000 1.68551i 0.112669 0.0542585i
\(966\) 0 0
\(967\) 2.86904 12.5701i 0.0922620 0.404226i −0.907617 0.419800i \(-0.862100\pi\)
0.999879 + 0.0155736i \(0.00495744\pi\)
\(968\) −3.08211 1.48426i −0.0990626 0.0477060i
\(969\) 0 0
\(970\) 9.12618 + 4.39494i 0.293024 + 0.141113i
\(971\) −3.01610 + 3.78207i −0.0967912 + 0.121372i −0.827868 0.560923i \(-0.810447\pi\)
0.731077 + 0.682295i \(0.239018\pi\)
\(972\) 0 0
\(973\) −10.2017 4.91288i −0.327052 0.157500i
\(974\) −18.3013 −0.586411
\(975\) 0 0
\(976\) −6.64795 + 29.1266i −0.212796 + 0.932319i
\(977\) 14.8138 7.13394i 0.473935 0.228235i −0.181640 0.983365i \(-0.558141\pi\)
0.655575 + 0.755130i \(0.272426\pi\)
\(978\) 0 0
\(979\) −0.922207 4.04045i −0.0294739 0.129133i
\(980\) −2.60656 + 3.26853i −0.0832636 + 0.104409i
\(981\) 0 0
\(982\) −7.89181 + 34.5763i −0.251838 + 1.10337i
\(983\) 5.89666 + 25.8349i 0.188074 + 0.824007i 0.977631 + 0.210329i \(0.0674535\pi\)
−0.789557 + 0.613678i \(0.789689\pi\)
\(984\) 0 0
\(985\) −2.99808 −0.0955268
\(986\) 0.576728 + 10.7549i 0.0183668 + 0.342505i
\(987\) 0 0
\(988\) 8.26122 + 10.3592i 0.262824 + 0.329571i
\(989\) −5.28501 23.1551i −0.168054 0.736291i
\(990\) 0 0
\(991\) 25.1930 + 31.5910i 0.800281 + 1.00352i 0.999721 + 0.0236111i \(0.00751634\pi\)
−0.199440 + 0.979910i \(0.563912\pi\)
\(992\) 24.5179 30.7445i 0.778444 0.976137i
\(993\) 0 0
\(994\) 74.9747 36.1059i 2.37805 1.14521i
\(995\) −2.12910 + 1.02532i −0.0674971 + 0.0325049i
\(996\) 0 0
\(997\) 21.1325 + 10.1769i 0.669273 + 0.322305i 0.737483 0.675366i \(-0.236014\pi\)
−0.0682093 + 0.997671i \(0.521729\pi\)
\(998\) 50.1831 1.58852
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 261.2.k.a.82.1 6
3.2 odd 2 29.2.d.a.24.1 yes 6
12.11 even 2 464.2.u.f.401.1 6
15.2 even 4 725.2.r.b.24.2 12
15.8 even 4 725.2.r.b.24.1 12
15.14 odd 2 725.2.l.b.401.1 6
29.9 even 14 7569.2.a.p.1.1 3
29.20 even 7 7569.2.a.r.1.3 3
29.23 even 7 inner 261.2.k.a.226.1 6
87.2 even 28 841.2.e.b.270.1 12
87.5 odd 14 841.2.d.a.571.1 6
87.8 even 28 841.2.b.c.840.1 6
87.11 even 28 841.2.e.c.236.1 12
87.14 even 28 841.2.e.d.267.2 12
87.17 even 4 841.2.e.d.63.1 12
87.20 odd 14 841.2.a.e.1.1 3
87.23 odd 14 29.2.d.a.23.1 6
87.26 even 28 841.2.e.b.651.1 12
87.32 even 28 841.2.e.b.651.2 12
87.35 odd 14 841.2.d.d.574.1 6
87.38 odd 14 841.2.a.f.1.3 3
87.41 even 4 841.2.e.d.63.2 12
87.44 even 28 841.2.e.d.267.1 12
87.47 even 28 841.2.e.c.236.2 12
87.50 even 28 841.2.b.c.840.6 6
87.53 odd 14 841.2.d.e.571.1 6
87.56 even 28 841.2.e.b.270.2 12
87.62 odd 14 841.2.d.c.645.1 6
87.65 odd 14 841.2.d.e.190.1 6
87.68 even 28 841.2.e.c.196.1 12
87.71 odd 14 841.2.d.c.605.1 6
87.74 odd 14 841.2.d.b.605.1 6
87.77 even 28 841.2.e.c.196.2 12
87.80 odd 14 841.2.d.a.190.1 6
87.83 odd 14 841.2.d.b.645.1 6
87.86 odd 2 841.2.d.d.778.1 6
348.23 even 14 464.2.u.f.81.1 6
435.23 even 28 725.2.r.b.574.2 12
435.197 even 28 725.2.r.b.574.1 12
435.284 odd 14 725.2.l.b.226.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.23.1 6 87.23 odd 14
29.2.d.a.24.1 yes 6 3.2 odd 2
261.2.k.a.82.1 6 1.1 even 1 trivial
261.2.k.a.226.1 6 29.23 even 7 inner
464.2.u.f.81.1 6 348.23 even 14
464.2.u.f.401.1 6 12.11 even 2
725.2.l.b.226.1 6 435.284 odd 14
725.2.l.b.401.1 6 15.14 odd 2
725.2.r.b.24.1 12 15.8 even 4
725.2.r.b.24.2 12 15.2 even 4
725.2.r.b.574.1 12 435.197 even 28
725.2.r.b.574.2 12 435.23 even 28
841.2.a.e.1.1 3 87.20 odd 14
841.2.a.f.1.3 3 87.38 odd 14
841.2.b.c.840.1 6 87.8 even 28
841.2.b.c.840.6 6 87.50 even 28
841.2.d.a.190.1 6 87.80 odd 14
841.2.d.a.571.1 6 87.5 odd 14
841.2.d.b.605.1 6 87.74 odd 14
841.2.d.b.645.1 6 87.83 odd 14
841.2.d.c.605.1 6 87.71 odd 14
841.2.d.c.645.1 6 87.62 odd 14
841.2.d.d.574.1 6 87.35 odd 14
841.2.d.d.778.1 6 87.86 odd 2
841.2.d.e.190.1 6 87.65 odd 14
841.2.d.e.571.1 6 87.53 odd 14
841.2.e.b.270.1 12 87.2 even 28
841.2.e.b.270.2 12 87.56 even 28
841.2.e.b.651.1 12 87.26 even 28
841.2.e.b.651.2 12 87.32 even 28
841.2.e.c.196.1 12 87.68 even 28
841.2.e.c.196.2 12 87.77 even 28
841.2.e.c.236.1 12 87.11 even 28
841.2.e.c.236.2 12 87.47 even 28
841.2.e.d.63.1 12 87.17 even 4
841.2.e.d.63.2 12 87.41 even 4
841.2.e.d.267.1 12 87.44 even 28
841.2.e.d.267.2 12 87.14 even 28
7569.2.a.p.1.1 3 29.9 even 14
7569.2.a.r.1.3 3 29.20 even 7