Properties

Label 464.2.u.f.401.1
Level $464$
Weight $2$
Character 464.401
Analytic conductor $3.705$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [464,2,Mod(49,464)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(464, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 0, 12]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("464.49");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 464 = 2^{4} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 464.u (of order \(7\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(3.70505865379\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 401.1
Root \(0.222521 - 0.974928i\) of defining polynomial
Character \(\chi\) \(=\) 464.401
Dual form 464.2.u.f.81.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.0990311 + 0.433884i) q^{3} +(0.222521 + 0.279032i) q^{5} +(-0.900969 - 3.94740i) q^{7} +(2.52446 - 1.21572i) q^{9} +(2.62349 + 1.26341i) q^{11} +(-4.67241 - 2.25011i) q^{13} +(-0.0990311 + 0.124181i) q^{15} +1.10992 q^{17} +(0.455927 - 1.99755i) q^{19} +(1.62349 - 0.781831i) q^{21} +(2.57942 - 3.23449i) q^{23} +(1.08426 - 4.75046i) q^{25} +(1.60992 + 2.01877i) q^{27} +(4.38404 + 3.12733i) q^{29} +(3.96346 + 4.97002i) q^{31} +(-0.288364 + 1.26341i) q^{33} +(0.900969 - 1.12978i) q^{35} +(2.62349 - 1.26341i) q^{37} +(0.513574 - 2.25011i) q^{39} +0.396125 q^{41} +(-3.57942 + 4.48845i) q^{43} +(0.900969 + 0.433884i) q^{45} +(-7.02930 - 3.38513i) q^{47} +(-8.46346 + 4.07579i) q^{49} +(0.109916 + 0.481575i) q^{51} +(-2.71648 - 3.40636i) q^{53} +(0.231250 + 1.01317i) q^{55} +0.911854 q^{57} +9.10992 q^{59} +(1.34601 + 5.89726i) q^{61} +(-7.07338 - 8.86973i) q^{63} +(-0.411854 - 1.80445i) q^{65} +(0.337282 - 0.162426i) q^{67} +(1.65883 + 0.798852i) q^{69} +(-10.2763 - 4.94880i) q^{71} +(-5.57942 + 6.99637i) q^{73} +2.16852 q^{75} +(2.62349 - 11.4943i) q^{77} +(-0.535344 + 0.257808i) q^{79} +(4.52446 - 5.67349i) q^{81} +(-2.09903 + 9.19646i) q^{83} +(0.246980 + 0.309703i) q^{85} +(-0.922739 + 2.21187i) q^{87} +(0.887395 + 1.11276i) q^{89} +(-4.67241 + 20.4712i) q^{91} +(-1.76391 + 2.21187i) q^{93} +(0.658834 - 0.317278i) q^{95} +(-3.50484 + 15.3557i) q^{97} +8.15883 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 5 q^{3} + q^{5} - q^{7} + 6 q^{9} + 11 q^{11} - 5 q^{13} - 5 q^{15} + 8 q^{17} - q^{19} + 5 q^{21} + 7 q^{23} - 24 q^{25} + 11 q^{27} + 6 q^{29} - 5 q^{31} + q^{33} + q^{35} + 11 q^{37} - 3 q^{39}+ \cdots + 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/464\mathbb{Z}\right)^\times\).

\(n\) \(117\) \(175\) \(321\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{2}{7}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.0990311 + 0.433884i 0.0571757 + 0.250503i 0.995437 0.0954255i \(-0.0304212\pi\)
−0.938261 + 0.345928i \(0.887564\pi\)
\(4\) 0 0
\(5\) 0.222521 + 0.279032i 0.0995144 + 0.124787i 0.829095 0.559108i \(-0.188856\pi\)
−0.729581 + 0.683895i \(0.760285\pi\)
\(6\) 0 0
\(7\) −0.900969 3.94740i −0.340534 1.49198i −0.797949 0.602725i \(-0.794082\pi\)
0.457415 0.889253i \(-0.348775\pi\)
\(8\) 0 0
\(9\) 2.52446 1.21572i 0.841486 0.405238i
\(10\) 0 0
\(11\) 2.62349 + 1.26341i 0.791012 + 0.380931i 0.785349 0.619053i \(-0.212483\pi\)
0.00566249 + 0.999984i \(0.498198\pi\)
\(12\) 0 0
\(13\) −4.67241 2.25011i −1.29589 0.624069i −0.346467 0.938062i \(-0.612619\pi\)
−0.949425 + 0.313993i \(0.898333\pi\)
\(14\) 0 0
\(15\) −0.0990311 + 0.124181i −0.0255697 + 0.0320634i
\(16\) 0 0
\(17\) 1.10992 0.269194 0.134597 0.990900i \(-0.457026\pi\)
0.134597 + 0.990900i \(0.457026\pi\)
\(18\) 0 0
\(19\) 0.455927 1.99755i 0.104597 0.458269i −0.895321 0.445422i \(-0.853054\pi\)
0.999917 0.0128465i \(-0.00408927\pi\)
\(20\) 0 0
\(21\) 1.62349 0.781831i 0.354275 0.170610i
\(22\) 0 0
\(23\) 2.57942 3.23449i 0.537846 0.674437i −0.436445 0.899731i \(-0.643763\pi\)
0.974291 + 0.225294i \(0.0723342\pi\)
\(24\) 0 0
\(25\) 1.08426 4.75046i 0.216852 0.950092i
\(26\) 0 0
\(27\) 1.60992 + 2.01877i 0.309829 + 0.388513i
\(28\) 0 0
\(29\) 4.38404 + 3.12733i 0.814096 + 0.580730i
\(30\) 0 0
\(31\) 3.96346 + 4.97002i 0.711858 + 0.892642i 0.997847 0.0655910i \(-0.0208932\pi\)
−0.285988 + 0.958233i \(0.592322\pi\)
\(32\) 0 0
\(33\) −0.288364 + 1.26341i −0.0501978 + 0.219931i
\(34\) 0 0
\(35\) 0.900969 1.12978i 0.152292 0.190968i
\(36\) 0 0
\(37\) 2.62349 1.26341i 0.431299 0.207703i −0.205622 0.978631i \(-0.565922\pi\)
0.636921 + 0.770929i \(0.280208\pi\)
\(38\) 0 0
\(39\) 0.513574 2.25011i 0.0822376 0.360306i
\(40\) 0 0
\(41\) 0.396125 0.0618643 0.0309321 0.999521i \(-0.490152\pi\)
0.0309321 + 0.999521i \(0.490152\pi\)
\(42\) 0 0
\(43\) −3.57942 + 4.48845i −0.545856 + 0.684482i −0.975873 0.218339i \(-0.929936\pi\)
0.430017 + 0.902821i \(0.358508\pi\)
\(44\) 0 0
\(45\) 0.900969 + 0.433884i 0.134309 + 0.0646796i
\(46\) 0 0
\(47\) −7.02930 3.38513i −1.02533 0.493773i −0.155870 0.987778i \(-0.549818\pi\)
−0.869459 + 0.494005i \(0.835532\pi\)
\(48\) 0 0
\(49\) −8.46346 + 4.07579i −1.20907 + 0.582255i
\(50\) 0 0
\(51\) 0.109916 + 0.481575i 0.0153914 + 0.0674339i
\(52\) 0 0
\(53\) −2.71648 3.40636i −0.373137 0.467899i 0.559439 0.828871i \(-0.311016\pi\)
−0.932577 + 0.360972i \(0.882445\pi\)
\(54\) 0 0
\(55\) 0.231250 + 1.01317i 0.0311818 + 0.136616i
\(56\) 0 0
\(57\) 0.911854 0.120778
\(58\) 0 0
\(59\) 9.10992 1.18601 0.593005 0.805199i \(-0.297941\pi\)
0.593005 + 0.805199i \(0.297941\pi\)
\(60\) 0 0
\(61\) 1.34601 + 5.89726i 0.172339 + 0.755067i 0.985032 + 0.172374i \(0.0551437\pi\)
−0.812693 + 0.582693i \(0.801999\pi\)
\(62\) 0 0
\(63\) −7.07338 8.86973i −0.891162 1.11748i
\(64\) 0 0
\(65\) −0.411854 1.80445i −0.0510842 0.223815i
\(66\) 0 0
\(67\) 0.337282 0.162426i 0.0412055 0.0198435i −0.413168 0.910655i \(-0.635578\pi\)
0.454373 + 0.890812i \(0.349863\pi\)
\(68\) 0 0
\(69\) 1.65883 + 0.798852i 0.199700 + 0.0961705i
\(70\) 0 0
\(71\) −10.2763 4.94880i −1.21957 0.587314i −0.290379 0.956912i \(-0.593781\pi\)
−0.929192 + 0.369598i \(0.879495\pi\)
\(72\) 0 0
\(73\) −5.57942 + 6.99637i −0.653021 + 0.818863i −0.992563 0.121728i \(-0.961156\pi\)
0.339542 + 0.940591i \(0.389728\pi\)
\(74\) 0 0
\(75\) 2.16852 0.250399
\(76\) 0 0
\(77\) 2.62349 11.4943i 0.298974 1.30989i
\(78\) 0 0
\(79\) −0.535344 + 0.257808i −0.0602309 + 0.0290057i −0.463757 0.885963i \(-0.653499\pi\)
0.403526 + 0.914968i \(0.367785\pi\)
\(80\) 0 0
\(81\) 4.52446 5.67349i 0.502718 0.630388i
\(82\) 0 0
\(83\) −2.09903 + 9.19646i −0.230399 + 1.00944i 0.718912 + 0.695101i \(0.244641\pi\)
−0.949310 + 0.314341i \(0.898217\pi\)
\(84\) 0 0
\(85\) 0.246980 + 0.309703i 0.0267887 + 0.0335920i
\(86\) 0 0
\(87\) −0.922739 + 2.21187i −0.0989280 + 0.237137i
\(88\) 0 0
\(89\) 0.887395 + 1.11276i 0.0940637 + 0.117952i 0.826636 0.562737i \(-0.190252\pi\)
−0.732572 + 0.680689i \(0.761680\pi\)
\(90\) 0 0
\(91\) −4.67241 + 20.4712i −0.489801 + 2.14596i
\(92\) 0 0
\(93\) −1.76391 + 2.21187i −0.182908 + 0.229360i
\(94\) 0 0
\(95\) 0.658834 0.317278i 0.0675949 0.0325520i
\(96\) 0 0
\(97\) −3.50484 + 15.3557i −0.355863 + 1.55914i 0.407523 + 0.913195i \(0.366393\pi\)
−0.763386 + 0.645943i \(0.776464\pi\)
\(98\) 0 0
\(99\) 8.15883 0.819994
\(100\) 0 0
\(101\) −10.8753 + 13.6372i −1.08213 + 1.35695i −0.152570 + 0.988293i \(0.548755\pi\)
−0.929564 + 0.368661i \(0.879816\pi\)
\(102\) 0 0
\(103\) −2.53534 1.22096i −0.249815 0.120304i 0.304786 0.952421i \(-0.401415\pi\)
−0.554601 + 0.832116i \(0.687129\pi\)
\(104\) 0 0
\(105\) 0.579417 + 0.279032i 0.0565453 + 0.0272308i
\(106\) 0 0
\(107\) −6.72132 + 3.23682i −0.649775 + 0.312915i −0.729580 0.683895i \(-0.760284\pi\)
0.0798052 + 0.996810i \(0.474570\pi\)
\(108\) 0 0
\(109\) 0.367781 + 1.61135i 0.0352270 + 0.154340i 0.989482 0.144653i \(-0.0462066\pi\)
−0.954255 + 0.298993i \(0.903349\pi\)
\(110\) 0 0
\(111\) 0.807979 + 1.01317i 0.0766899 + 0.0961661i
\(112\) 0 0
\(113\) −1.92274 8.42407i −0.180876 0.792470i −0.981214 0.192921i \(-0.938204\pi\)
0.800338 0.599549i \(-0.204653\pi\)
\(114\) 0 0
\(115\) 1.47650 0.137684
\(116\) 0 0
\(117\) −14.5308 −1.34337
\(118\) 0 0
\(119\) −1.00000 4.38129i −0.0916698 0.401632i
\(120\) 0 0
\(121\) −1.57188 1.97108i −0.142899 0.179189i
\(122\) 0 0
\(123\) 0.0392287 + 0.171872i 0.00353713 + 0.0154972i
\(124\) 0 0
\(125\) 3.17456 1.52879i 0.283942 0.136739i
\(126\) 0 0
\(127\) 9.43512 + 4.54371i 0.837231 + 0.403189i 0.802822 0.596219i \(-0.203331\pi\)
0.0344090 + 0.999408i \(0.489045\pi\)
\(128\) 0 0
\(129\) −2.30194 1.10855i −0.202674 0.0976028i
\(130\) 0 0
\(131\) 0.283520 0.355523i 0.0247712 0.0310622i −0.769292 0.638898i \(-0.779391\pi\)
0.794063 + 0.607836i \(0.207962\pi\)
\(132\) 0 0
\(133\) −8.29590 −0.719345
\(134\) 0 0
\(135\) −0.205063 + 0.898438i −0.0176490 + 0.0773252i
\(136\) 0 0
\(137\) 11.9291 5.74474i 1.01917 0.490806i 0.151769 0.988416i \(-0.451503\pi\)
0.867401 + 0.497610i \(0.165789\pi\)
\(138\) 0 0
\(139\) 1.74363 2.18644i 0.147893 0.185451i −0.702367 0.711815i \(-0.747873\pi\)
0.850260 + 0.526364i \(0.176445\pi\)
\(140\) 0 0
\(141\) 0.772635 3.38513i 0.0650676 0.285080i
\(142\) 0 0
\(143\) −9.41521 11.8063i −0.787339 0.987292i
\(144\) 0 0
\(145\) 0.102916 + 1.91919i 0.00854671 + 0.159380i
\(146\) 0 0
\(147\) −2.60656 3.26853i −0.214986 0.269584i
\(148\) 0 0
\(149\) −0.602679 + 2.64051i −0.0493734 + 0.216319i −0.993596 0.112988i \(-0.963958\pi\)
0.944223 + 0.329307i \(0.106815\pi\)
\(150\) 0 0
\(151\) 1.51842 1.90404i 0.123567 0.154948i −0.716200 0.697895i \(-0.754120\pi\)
0.839767 + 0.542947i \(0.182692\pi\)
\(152\) 0 0
\(153\) 2.80194 1.34934i 0.226523 0.109088i
\(154\) 0 0
\(155\) −0.504844 + 2.21187i −0.0405501 + 0.177661i
\(156\) 0 0
\(157\) 17.6775 1.41082 0.705411 0.708799i \(-0.250762\pi\)
0.705411 + 0.708799i \(0.250762\pi\)
\(158\) 0 0
\(159\) 1.20895 1.51597i 0.0958758 0.120224i
\(160\) 0 0
\(161\) −15.0918 7.26782i −1.18940 0.572785i
\(162\) 0 0
\(163\) −4.47434 2.15473i −0.350458 0.168772i 0.250370 0.968150i \(-0.419448\pi\)
−0.600827 + 0.799379i \(0.705162\pi\)
\(164\) 0 0
\(165\) −0.416698 + 0.200671i −0.0324399 + 0.0156222i
\(166\) 0 0
\(167\) 3.21864 + 14.1018i 0.249066 + 1.09123i 0.932487 + 0.361203i \(0.117634\pi\)
−0.683422 + 0.730024i \(0.739509\pi\)
\(168\) 0 0
\(169\) 8.66301 + 10.8631i 0.666386 + 0.835621i
\(170\) 0 0
\(171\) −1.27748 5.59700i −0.0976913 0.428013i
\(172\) 0 0
\(173\) 10.5133 0.799314 0.399657 0.916665i \(-0.369129\pi\)
0.399657 + 0.916665i \(0.369129\pi\)
\(174\) 0 0
\(175\) −19.7289 −1.49136
\(176\) 0 0
\(177\) 0.902165 + 3.95264i 0.0678109 + 0.297099i
\(178\) 0 0
\(179\) 3.57942 + 4.48845i 0.267538 + 0.335482i 0.897394 0.441230i \(-0.145458\pi\)
−0.629856 + 0.776712i \(0.716886\pi\)
\(180\) 0 0
\(181\) 1.47770 + 6.47421i 0.109836 + 0.481225i 0.999688 + 0.0249747i \(0.00795053\pi\)
−0.889852 + 0.456250i \(0.849192\pi\)
\(182\) 0 0
\(183\) −2.42543 + 1.16802i −0.179293 + 0.0863428i
\(184\) 0 0
\(185\) 0.936313 + 0.450904i 0.0688391 + 0.0331512i
\(186\) 0 0
\(187\) 2.91185 + 1.40227i 0.212936 + 0.102545i
\(188\) 0 0
\(189\) 6.51842 8.17384i 0.474145 0.594559i
\(190\) 0 0
\(191\) 18.8116 1.36116 0.680581 0.732673i \(-0.261728\pi\)
0.680581 + 0.732673i \(0.261728\pi\)
\(192\) 0 0
\(193\) −2.42208 + 10.6118i −0.174345 + 0.763854i 0.809832 + 0.586662i \(0.199558\pi\)
−0.984176 + 0.177192i \(0.943299\pi\)
\(194\) 0 0
\(195\) 0.742135 0.357394i 0.0531454 0.0255935i
\(196\) 0 0
\(197\) −5.23759 + 6.56773i −0.373163 + 0.467931i −0.932584 0.360952i \(-0.882452\pi\)
0.559422 + 0.828883i \(0.311023\pi\)
\(198\) 0 0
\(199\) −1.47339 + 6.45532i −0.104446 + 0.457606i 0.895476 + 0.445109i \(0.146835\pi\)
−0.999922 + 0.0124967i \(0.996022\pi\)
\(200\) 0 0
\(201\) 0.103875 + 0.130256i 0.00732681 + 0.00918753i
\(202\) 0 0
\(203\) 8.39493 20.1232i 0.589208 1.41237i
\(204\) 0 0
\(205\) 0.0881460 + 0.110532i 0.00615638 + 0.00771986i
\(206\) 0 0
\(207\) 2.57942 11.3012i 0.179282 0.785485i
\(208\) 0 0
\(209\) 3.71983 4.66452i 0.257306 0.322652i
\(210\) 0 0
\(211\) −7.29805 + 3.51456i −0.502419 + 0.241952i −0.667887 0.744263i \(-0.732801\pi\)
0.165468 + 0.986215i \(0.447087\pi\)
\(212\) 0 0
\(213\) 1.12953 4.94880i 0.0773942 0.339086i
\(214\) 0 0
\(215\) −2.04892 −0.139735
\(216\) 0 0
\(217\) 16.0477 20.1232i 1.08939 1.36605i
\(218\) 0 0
\(219\) −3.58815 1.72796i −0.242464 0.116765i
\(220\) 0 0
\(221\) −5.18598 2.49744i −0.348847 0.167996i
\(222\) 0 0
\(223\) 19.7485 9.51036i 1.32246 0.636861i 0.366512 0.930413i \(-0.380552\pi\)
0.955943 + 0.293552i \(0.0948374\pi\)
\(224\) 0 0
\(225\) −3.03803 13.3105i −0.202535 0.887366i
\(226\) 0 0
\(227\) 11.3964 + 14.2907i 0.756407 + 0.948504i 0.999770 0.0214309i \(-0.00682218\pi\)
−0.243363 + 0.969935i \(0.578251\pi\)
\(228\) 0 0
\(229\) −3.56584 15.6230i −0.235638 1.03240i −0.944876 0.327427i \(-0.893818\pi\)
0.709239 0.704968i \(-0.249039\pi\)
\(230\) 0 0
\(231\) 5.24698 0.345226
\(232\) 0 0
\(233\) 1.95646 0.128172 0.0640860 0.997944i \(-0.479587\pi\)
0.0640860 + 0.997944i \(0.479587\pi\)
\(234\) 0 0
\(235\) −0.619605 2.71467i −0.0404186 0.177085i
\(236\) 0 0
\(237\) −0.164874 0.206746i −0.0107097 0.0134296i
\(238\) 0 0
\(239\) −1.99449 8.73844i −0.129013 0.565243i −0.997571 0.0696554i \(-0.977810\pi\)
0.868558 0.495587i \(-0.165047\pi\)
\(240\) 0 0
\(241\) −17.9291 + 8.63419i −1.15491 + 0.556177i −0.910506 0.413496i \(-0.864308\pi\)
−0.244407 + 0.969673i \(0.578593\pi\)
\(242\) 0 0
\(243\) 9.88889 + 4.76224i 0.634372 + 0.305498i
\(244\) 0 0
\(245\) −3.02057 1.45463i −0.192977 0.0929330i
\(246\) 0 0
\(247\) −6.62498 + 8.30746i −0.421537 + 0.528591i
\(248\) 0 0
\(249\) −4.19806 −0.266041
\(250\) 0 0
\(251\) 5.74214 25.1579i 0.362440 1.58795i −0.384540 0.923108i \(-0.625640\pi\)
0.746980 0.664847i \(-0.231503\pi\)
\(252\) 0 0
\(253\) 10.8535 5.22679i 0.682356 0.328606i
\(254\) 0 0
\(255\) −0.109916 + 0.137831i −0.00688322 + 0.00863129i
\(256\) 0 0
\(257\) −2.65937 + 11.6514i −0.165887 + 0.726797i 0.821726 + 0.569883i \(0.193012\pi\)
−0.987612 + 0.156914i \(0.949846\pi\)
\(258\) 0 0
\(259\) −7.35086 9.21768i −0.456760 0.572759i
\(260\) 0 0
\(261\) 14.8693 + 2.56506i 0.920385 + 0.158773i
\(262\) 0 0
\(263\) 0.207455 + 0.260141i 0.0127923 + 0.0160410i 0.788186 0.615437i \(-0.211020\pi\)
−0.775394 + 0.631477i \(0.782449\pi\)
\(264\) 0 0
\(265\) 0.346011 1.51597i 0.0212553 0.0931254i
\(266\) 0 0
\(267\) −0.394928 + 0.495224i −0.0241692 + 0.0303072i
\(268\) 0 0
\(269\) 0.958615 0.461645i 0.0584478 0.0281470i −0.404432 0.914568i \(-0.632531\pi\)
0.462879 + 0.886421i \(0.346816\pi\)
\(270\) 0 0
\(271\) −3.66368 + 16.0516i −0.222553 + 0.975067i 0.732996 + 0.680233i \(0.238121\pi\)
−0.955549 + 0.294834i \(0.904736\pi\)
\(272\) 0 0
\(273\) −9.34481 −0.565574
\(274\) 0 0
\(275\) 8.84631 11.0929i 0.533452 0.668928i
\(276\) 0 0
\(277\) −5.94116 2.86111i −0.356970 0.171907i 0.246800 0.969066i \(-0.420621\pi\)
−0.603769 + 0.797159i \(0.706335\pi\)
\(278\) 0 0
\(279\) 16.0477 + 7.72818i 0.960752 + 0.462674i
\(280\) 0 0
\(281\) 27.5112 13.2487i 1.64118 0.790350i 0.641448 0.767166i \(-0.278334\pi\)
0.999731 0.0231840i \(-0.00738037\pi\)
\(282\) 0 0
\(283\) −0.791053 3.46583i −0.0470232 0.206022i 0.945959 0.324286i \(-0.105124\pi\)
−0.992982 + 0.118264i \(0.962267\pi\)
\(284\) 0 0
\(285\) 0.202907 + 0.254437i 0.0120191 + 0.0150715i
\(286\) 0 0
\(287\) −0.356896 1.56366i −0.0210669 0.0923001i
\(288\) 0 0
\(289\) −15.7681 −0.927534
\(290\) 0 0
\(291\) −7.00969 −0.410915
\(292\) 0 0
\(293\) −7.31647 32.0556i −0.427433 1.87271i −0.485246 0.874378i \(-0.661270\pi\)
0.0578127 0.998327i \(-0.481587\pi\)
\(294\) 0 0
\(295\) 2.02715 + 2.54196i 0.118025 + 0.147999i
\(296\) 0 0
\(297\) 1.67307 + 7.33020i 0.0970814 + 0.425342i
\(298\) 0 0
\(299\) −19.3300 + 9.30886i −1.11789 + 0.538345i
\(300\) 0 0
\(301\) 20.9426 + 10.0854i 1.20711 + 0.581316i
\(302\) 0 0
\(303\) −6.99396 3.36811i −0.401792 0.193493i
\(304\) 0 0
\(305\) −1.34601 + 1.68784i −0.0770724 + 0.0966457i
\(306\) 0 0
\(307\) −14.6703 −0.837275 −0.418638 0.908153i \(-0.637492\pi\)
−0.418638 + 0.908153i \(0.637492\pi\)
\(308\) 0 0
\(309\) 0.278676 1.22096i 0.0158533 0.0694578i
\(310\) 0 0
\(311\) 16.6918 8.03834i 0.946504 0.455812i 0.104045 0.994573i \(-0.466821\pi\)
0.842459 + 0.538760i \(0.181107\pi\)
\(312\) 0 0
\(313\) 14.3354 17.9760i 0.810286 1.01607i −0.189132 0.981952i \(-0.560567\pi\)
0.999418 0.0341147i \(-0.0108612\pi\)
\(314\) 0 0
\(315\) 0.900969 3.94740i 0.0507638 0.222411i
\(316\) 0 0
\(317\) 8.76540 + 10.9915i 0.492314 + 0.617342i 0.964476 0.264170i \(-0.0850979\pi\)
−0.472162 + 0.881512i \(0.656526\pi\)
\(318\) 0 0
\(319\) 7.55041 + 13.7433i 0.422742 + 0.769479i
\(320\) 0 0
\(321\) −2.07002 2.59573i −0.115537 0.144879i
\(322\) 0 0
\(323\) 0.506041 2.21711i 0.0281569 0.123363i
\(324\) 0 0
\(325\) −15.7552 + 19.7564i −0.873940 + 1.09589i
\(326\) 0 0
\(327\) −0.662718 + 0.319148i −0.0366484 + 0.0176489i
\(328\) 0 0
\(329\) −7.02930 + 30.7974i −0.387538 + 1.69792i
\(330\) 0 0
\(331\) −13.9565 −0.767116 −0.383558 0.923517i \(-0.625301\pi\)
−0.383558 + 0.923517i \(0.625301\pi\)
\(332\) 0 0
\(333\) 5.08695 6.37883i 0.278763 0.349558i
\(334\) 0 0
\(335\) 0.120374 + 0.0579692i 0.00657676 + 0.00316720i
\(336\) 0 0
\(337\) 12.6114 + 6.07333i 0.686987 + 0.330836i 0.744607 0.667503i \(-0.232637\pi\)
−0.0576199 + 0.998339i \(0.518351\pi\)
\(338\) 0 0
\(339\) 3.46466 1.66849i 0.188174 0.0906200i
\(340\) 0 0
\(341\) 4.11894 + 18.0463i 0.223053 + 0.977260i
\(342\) 0 0
\(343\) 6.04288 + 7.57753i 0.326285 + 0.409148i
\(344\) 0 0
\(345\) 0.146220 + 0.640630i 0.00787220 + 0.0344903i
\(346\) 0 0
\(347\) 19.8538 1.06581 0.532905 0.846175i \(-0.321100\pi\)
0.532905 + 0.846175i \(0.321100\pi\)
\(348\) 0 0
\(349\) −26.9202 −1.44101 −0.720503 0.693452i \(-0.756089\pi\)
−0.720503 + 0.693452i \(0.756089\pi\)
\(350\) 0 0
\(351\) −2.97972 13.0550i −0.159046 0.696825i
\(352\) 0 0
\(353\) −2.50335 3.13910i −0.133240 0.167078i 0.710736 0.703459i \(-0.248362\pi\)
−0.843976 + 0.536382i \(0.819791\pi\)
\(354\) 0 0
\(355\) −0.905813 3.96863i −0.0480756 0.210633i
\(356\) 0 0
\(357\) 1.80194 0.867767i 0.0953687 0.0459271i
\(358\) 0 0
\(359\) −0.672407 0.323814i −0.0354883 0.0170903i 0.416055 0.909339i \(-0.363412\pi\)
−0.451544 + 0.892249i \(0.649127\pi\)
\(360\) 0 0
\(361\) 13.3361 + 6.42232i 0.701899 + 0.338017i
\(362\) 0 0
\(363\) 0.699554 0.877213i 0.0367171 0.0460418i
\(364\) 0 0
\(365\) −3.19375 −0.167169
\(366\) 0 0
\(367\) −7.57660 + 33.1952i −0.395495 + 1.73278i 0.249304 + 0.968425i \(0.419798\pi\)
−0.644799 + 0.764352i \(0.723059\pi\)
\(368\) 0 0
\(369\) 1.00000 0.481575i 0.0520579 0.0250698i
\(370\) 0 0
\(371\) −10.9988 + 13.7921i −0.571029 + 0.716048i
\(372\) 0 0
\(373\) −6.23072 + 27.2986i −0.322614 + 1.41347i 0.510268 + 0.860015i \(0.329546\pi\)
−0.832882 + 0.553450i \(0.813311\pi\)
\(374\) 0 0
\(375\) 0.977697 + 1.22599i 0.0504881 + 0.0633100i
\(376\) 0 0
\(377\) −13.4472 24.4767i −0.692566 1.26062i
\(378\) 0 0
\(379\) −14.2661 17.8891i −0.732798 0.918900i 0.266188 0.963921i \(-0.414236\pi\)
−0.998986 + 0.0450211i \(0.985664\pi\)
\(380\) 0 0
\(381\) −1.03707 + 4.54371i −0.0531308 + 0.232781i
\(382\) 0 0
\(383\) −7.39344 + 9.27108i −0.377787 + 0.473730i −0.933981 0.357323i \(-0.883690\pi\)
0.556194 + 0.831052i \(0.312261\pi\)
\(384\) 0 0
\(385\) 3.79105 1.82567i 0.193210 0.0930450i
\(386\) 0 0
\(387\) −3.57942 + 15.6824i −0.181952 + 0.797184i
\(388\) 0 0
\(389\) −10.3913 −0.526862 −0.263431 0.964678i \(-0.584854\pi\)
−0.263431 + 0.964678i \(0.584854\pi\)
\(390\) 0 0
\(391\) 2.86294 3.59001i 0.144785 0.181555i
\(392\) 0 0
\(393\) 0.182333 + 0.0878068i 0.00919747 + 0.00442927i
\(394\) 0 0
\(395\) −0.191062 0.0920106i −0.00961337 0.00462956i
\(396\) 0 0
\(397\) −7.40366 + 3.56541i −0.371579 + 0.178943i −0.610348 0.792133i \(-0.708970\pi\)
0.238769 + 0.971076i \(0.423256\pi\)
\(398\) 0 0
\(399\) −0.821552 3.59945i −0.0411290 0.180198i
\(400\) 0 0
\(401\) 15.5130 + 19.4527i 0.774684 + 0.971423i 0.999996 0.00286337i \(-0.000911439\pi\)
−0.225312 + 0.974287i \(0.572340\pi\)
\(402\) 0 0
\(403\) −7.33579 32.1402i −0.365422 1.60102i
\(404\) 0 0
\(405\) 2.58987 0.128692
\(406\) 0 0
\(407\) 8.47889 0.420283
\(408\) 0 0
\(409\) −4.20464 18.4217i −0.207906 0.910895i −0.965958 0.258701i \(-0.916706\pi\)
0.758052 0.652194i \(-0.226151\pi\)
\(410\) 0 0
\(411\) 3.67390 + 4.60692i 0.181220 + 0.227243i
\(412\) 0 0
\(413\) −8.20775 35.9605i −0.403877 1.76950i
\(414\) 0 0
\(415\) −3.03319 + 1.46071i −0.148893 + 0.0717033i
\(416\) 0 0
\(417\) 1.12133 + 0.540006i 0.0549120 + 0.0264442i
\(418\) 0 0
\(419\) −9.81378 4.72607i −0.479435 0.230884i 0.178527 0.983935i \(-0.442867\pi\)
−0.657962 + 0.753051i \(0.728581\pi\)
\(420\) 0 0
\(421\) −12.4453 + 15.6060i −0.606549 + 0.760588i −0.986383 0.164467i \(-0.947410\pi\)
0.379834 + 0.925055i \(0.375981\pi\)
\(422\) 0 0
\(423\) −21.8605 −1.06290
\(424\) 0 0
\(425\) 1.20344 5.27261i 0.0583754 0.255759i
\(426\) 0 0
\(427\) 22.0661 10.6265i 1.06786 0.514252i
\(428\) 0 0
\(429\) 4.19016 5.25430i 0.202303 0.253680i
\(430\) 0 0
\(431\) −6.71797 + 29.4334i −0.323593 + 1.41776i 0.507514 + 0.861643i \(0.330564\pi\)
−0.831108 + 0.556112i \(0.812293\pi\)
\(432\) 0 0
\(433\) −12.5891 15.7862i −0.604994 0.758638i 0.381153 0.924512i \(-0.375527\pi\)
−0.986147 + 0.165874i \(0.946956\pi\)
\(434\) 0 0
\(435\) −0.822512 + 0.234713i −0.0394364 + 0.0112536i
\(436\) 0 0
\(437\) −5.28501 6.62720i −0.252816 0.317022i
\(438\) 0 0
\(439\) −2.37316 + 10.3975i −0.113265 + 0.496245i 0.886193 + 0.463316i \(0.153341\pi\)
−0.999458 + 0.0329287i \(0.989517\pi\)
\(440\) 0 0
\(441\) −16.4107 + 20.5783i −0.781460 + 0.979920i
\(442\) 0 0
\(443\) −18.3349 + 8.82962i −0.871117 + 0.419508i −0.815372 0.578937i \(-0.803468\pi\)
−0.0557448 + 0.998445i \(0.517753\pi\)
\(444\) 0 0
\(445\) −0.113032 + 0.495224i −0.00535822 + 0.0234759i
\(446\) 0 0
\(447\) −1.20536 −0.0570115
\(448\) 0 0
\(449\) 12.1102 15.1857i 0.571516 0.716659i −0.409124 0.912479i \(-0.634166\pi\)
0.980640 + 0.195820i \(0.0627369\pi\)
\(450\) 0 0
\(451\) 1.03923 + 0.500466i 0.0489354 + 0.0235660i
\(452\) 0 0
\(453\) 0.976501 + 0.470258i 0.0458800 + 0.0220946i
\(454\) 0 0
\(455\) −6.75182 + 3.25151i −0.316530 + 0.152433i
\(456\) 0 0
\(457\) 2.76391 + 12.1095i 0.129290 + 0.566457i 0.997526 + 0.0703045i \(0.0223971\pi\)
−0.868236 + 0.496152i \(0.834746\pi\)
\(458\) 0 0
\(459\) 1.78687 + 2.24067i 0.0834041 + 0.104585i
\(460\) 0 0
\(461\) 4.88351 + 21.3961i 0.227448 + 0.996514i 0.951712 + 0.306991i \(0.0993223\pi\)
−0.724265 + 0.689522i \(0.757821\pi\)
\(462\) 0 0
\(463\) 33.0073 1.53398 0.766990 0.641660i \(-0.221754\pi\)
0.766990 + 0.641660i \(0.221754\pi\)
\(464\) 0 0
\(465\) −1.00969 −0.0468232
\(466\) 0 0
\(467\) −5.80851 25.4487i −0.268786 1.17763i −0.911427 0.411461i \(-0.865019\pi\)
0.642642 0.766167i \(-0.277838\pi\)
\(468\) 0 0
\(469\) −0.945042 1.18505i −0.0436380 0.0547203i
\(470\) 0 0
\(471\) 1.75063 + 7.67000i 0.0806647 + 0.353415i
\(472\) 0 0
\(473\) −15.0613 + 7.25314i −0.692519 + 0.333500i
\(474\) 0 0
\(475\) −8.99492 4.33172i −0.412715 0.198753i
\(476\) 0 0
\(477\) −10.9988 5.29674i −0.503601 0.242521i
\(478\) 0 0
\(479\) −20.6163 + 25.8520i −0.941981 + 1.18121i 0.0413068 + 0.999147i \(0.486848\pi\)
−0.983287 + 0.182060i \(0.941724\pi\)
\(480\) 0 0
\(481\) −15.1008 −0.688538
\(482\) 0 0
\(483\) 1.65883 7.26782i 0.0754795 0.330697i
\(484\) 0 0
\(485\) −5.06465 + 2.43901i −0.229974 + 0.110750i
\(486\) 0 0
\(487\) 6.33244 7.94063i 0.286950 0.359824i −0.617375 0.786669i \(-0.711804\pi\)
0.904325 + 0.426845i \(0.140375\pi\)
\(488\) 0 0
\(489\) 0.491803 2.15473i 0.0222401 0.0974403i
\(490\) 0 0
\(491\) 12.2714 + 15.3879i 0.553802 + 0.694446i 0.977399 0.211405i \(-0.0678039\pi\)
−0.423596 + 0.905851i \(0.639232\pi\)
\(492\) 0 0
\(493\) 4.86592 + 3.47107i 0.219150 + 0.156329i
\(494\) 0 0
\(495\) 1.81551 + 2.27658i 0.0816012 + 0.102325i
\(496\) 0 0
\(497\) −10.2763 + 45.0233i −0.460954 + 2.01957i
\(498\) 0 0
\(499\) −17.3639 + 21.7736i −0.777315 + 0.974722i −1.00000 0.000168534i \(-0.999946\pi\)
0.222685 + 0.974890i \(0.428518\pi\)
\(500\) 0 0
\(501\) −5.79978 + 2.79303i −0.259115 + 0.124783i
\(502\) 0 0
\(503\) −0.0501138 + 0.219563i −0.00223446 + 0.00978982i −0.976033 0.217623i \(-0.930170\pi\)
0.973798 + 0.227413i \(0.0730267\pi\)
\(504\) 0 0
\(505\) −6.22521 −0.277018
\(506\) 0 0
\(507\) −3.85540 + 4.83452i −0.171224 + 0.214709i
\(508\) 0 0
\(509\) 22.7974 + 10.9786i 1.01048 + 0.486620i 0.864481 0.502665i \(-0.167647\pi\)
0.145995 + 0.989285i \(0.453362\pi\)
\(510\) 0 0
\(511\) 32.6444 + 15.7207i 1.44410 + 0.695443i
\(512\) 0 0
\(513\) 4.76659 2.29547i 0.210450 0.101348i
\(514\) 0 0
\(515\) −0.223480 0.979132i −0.00984772 0.0431457i
\(516\) 0 0
\(517\) −14.1645 17.7617i −0.622954 0.781160i
\(518\) 0 0
\(519\) 1.04115 + 4.56157i 0.0457013 + 0.200231i
\(520\) 0 0
\(521\) 23.5797 1.03305 0.516523 0.856273i \(-0.327226\pi\)
0.516523 + 0.856273i \(0.327226\pi\)
\(522\) 0 0
\(523\) −3.96508 −0.173381 −0.0866905 0.996235i \(-0.527629\pi\)
−0.0866905 + 0.996235i \(0.527629\pi\)
\(524\) 0 0
\(525\) −1.95377 8.56003i −0.0852696 0.373590i
\(526\) 0 0
\(527\) 4.39911 + 5.51631i 0.191628 + 0.240294i
\(528\) 0 0
\(529\) 1.30947 + 5.73717i 0.0569335 + 0.249442i
\(530\) 0 0
\(531\) 22.9976 11.0751i 0.998011 0.480617i
\(532\) 0 0
\(533\) −1.85086 0.891325i −0.0801694 0.0386076i
\(534\) 0 0
\(535\) −2.39881 1.15521i −0.103710 0.0499440i
\(536\) 0 0
\(537\) −1.59299 + 1.99755i −0.0687426 + 0.0862005i
\(538\) 0 0
\(539\) −27.3532 −1.17818
\(540\) 0 0
\(541\) 5.48739 24.0418i 0.235921 1.03364i −0.708709 0.705501i \(-0.750722\pi\)
0.944630 0.328137i \(-0.106421\pi\)
\(542\) 0 0
\(543\) −2.66272 + 1.28230i −0.114268 + 0.0550287i
\(544\) 0 0
\(545\) −0.367781 + 0.461183i −0.0157540 + 0.0197549i
\(546\) 0 0
\(547\) 5.52768 24.2183i 0.236347 1.03550i −0.707913 0.706300i \(-0.750363\pi\)
0.944259 0.329202i \(-0.106780\pi\)
\(548\) 0 0
\(549\) 10.5673 + 13.2510i 0.451003 + 0.565540i
\(550\) 0 0
\(551\) 8.24578 7.33150i 0.351282 0.312332i
\(552\) 0 0
\(553\) 1.50000 + 1.88094i 0.0637865 + 0.0799857i
\(554\) 0 0
\(555\) −0.102916 + 0.450904i −0.00436854 + 0.0191398i
\(556\) 0 0
\(557\) 4.84146 6.07100i 0.205139 0.257237i −0.668610 0.743613i \(-0.733110\pi\)
0.873749 + 0.486377i \(0.161682\pi\)
\(558\) 0 0
\(559\) 26.8240 12.9178i 1.13453 0.546363i
\(560\) 0 0
\(561\) −0.320060 + 1.40227i −0.0135129 + 0.0592041i
\(562\) 0 0
\(563\) −20.8009 −0.876652 −0.438326 0.898816i \(-0.644429\pi\)
−0.438326 + 0.898816i \(0.644429\pi\)
\(564\) 0 0
\(565\) 1.92274 2.41104i 0.0808902 0.101433i
\(566\) 0 0
\(567\) −26.4720 12.7482i −1.11172 0.535375i
\(568\) 0 0
\(569\) −2.53103 1.21888i −0.106106 0.0510981i 0.380078 0.924955i \(-0.375897\pi\)
−0.486184 + 0.873856i \(0.661612\pi\)
\(570\) 0 0
\(571\) 2.60603 1.25500i 0.109059 0.0525201i −0.378559 0.925577i \(-0.623580\pi\)
0.487618 + 0.873057i \(0.337866\pi\)
\(572\) 0 0
\(573\) 1.86294 + 8.16206i 0.0778253 + 0.340975i
\(574\) 0 0
\(575\) −12.5685 15.7604i −0.524144 0.657256i
\(576\) 0 0
\(577\) −1.59970 7.00872i −0.0665962 0.291777i 0.930653 0.365904i \(-0.119240\pi\)
−0.997249 + 0.0741270i \(0.976383\pi\)
\(578\) 0 0
\(579\) −4.84415 −0.201316
\(580\) 0 0
\(581\) 38.1933 1.58452
\(582\) 0 0
\(583\) −2.82304 12.3686i −0.116919 0.512254i
\(584\) 0 0
\(585\) −3.23341 4.05456i −0.133685 0.167636i
\(586\) 0 0
\(587\) −6.90635 30.2587i −0.285055 1.24891i −0.891220 0.453570i \(-0.850150\pi\)
0.606165 0.795339i \(-0.292707\pi\)
\(588\) 0 0
\(589\) 11.7349 5.65123i 0.483528 0.232855i
\(590\) 0 0
\(591\) −3.36831 1.62209i −0.138554 0.0667240i
\(592\) 0 0
\(593\) −32.8560 15.8226i −1.34923 0.649757i −0.387025 0.922069i \(-0.626497\pi\)
−0.962209 + 0.272312i \(0.912212\pi\)
\(594\) 0 0
\(595\) 1.00000 1.25396i 0.0409960 0.0514074i
\(596\) 0 0
\(597\) −2.94677 −0.120603
\(598\) 0 0
\(599\) 6.69083 29.3144i 0.273380 1.19775i −0.632615 0.774466i \(-0.718019\pi\)
0.905995 0.423288i \(-0.139124\pi\)
\(600\) 0 0
\(601\) 29.8995 14.3989i 1.21963 0.587342i 0.290420 0.956899i \(-0.406205\pi\)
0.929208 + 0.369558i \(0.120491\pi\)
\(602\) 0 0
\(603\) 0.653989 0.820077i 0.0266325 0.0333961i
\(604\) 0 0
\(605\) 0.200218 0.877213i 0.00814003 0.0356638i
\(606\) 0 0
\(607\) 9.42729 + 11.8214i 0.382642 + 0.479818i 0.935434 0.353502i \(-0.115009\pi\)
−0.552792 + 0.833319i \(0.686438\pi\)
\(608\) 0 0
\(609\) 9.56249 + 1.64960i 0.387492 + 0.0668451i
\(610\) 0 0
\(611\) 25.2268 + 31.6334i 1.02057 + 1.27975i
\(612\) 0 0
\(613\) −0.835658 + 3.66126i −0.0337519 + 0.147877i −0.988996 0.147942i \(-0.952735\pi\)
0.955244 + 0.295818i \(0.0955923\pi\)
\(614\) 0 0
\(615\) −0.0392287 + 0.0491912i −0.00158185 + 0.00198358i
\(616\) 0 0
\(617\) −26.8995 + 12.9541i −1.08293 + 0.521514i −0.888254 0.459353i \(-0.848081\pi\)
−0.194681 + 0.980867i \(0.562367\pi\)
\(618\) 0 0
\(619\) −10.2622 + 44.9615i −0.412472 + 1.80716i 0.159866 + 0.987139i \(0.448894\pi\)
−0.572338 + 0.820018i \(0.693963\pi\)
\(620\) 0 0
\(621\) 10.6823 0.428667
\(622\) 0 0
\(623\) 3.59299 4.50547i 0.143950 0.180508i
\(624\) 0 0
\(625\) −20.8174 10.0251i −0.832697 0.401006i
\(626\) 0 0
\(627\) 2.39224 + 1.15204i 0.0955368 + 0.0460081i
\(628\) 0 0
\(629\) 2.91185 1.40227i 0.116103 0.0559124i
\(630\) 0 0
\(631\) 2.81043 + 12.3133i 0.111881 + 0.490185i 0.999558 + 0.0297178i \(0.00946085\pi\)
−0.887677 + 0.460467i \(0.847682\pi\)
\(632\) 0 0
\(633\) −2.24764 2.81846i −0.0893358 0.112024i
\(634\) 0 0
\(635\) 0.831668 + 3.64377i 0.0330037 + 0.144599i
\(636\) 0 0
\(637\) 48.7157 1.93019
\(638\) 0 0
\(639\) −31.9584 −1.26425
\(640\) 0 0
\(641\) −8.67874 38.0241i −0.342790 1.50186i −0.793157 0.609017i \(-0.791564\pi\)
0.450368 0.892843i \(-0.351293\pi\)
\(642\) 0 0
\(643\) −25.7479 32.2869i −1.01540 1.27327i −0.961523 0.274723i \(-0.911414\pi\)
−0.0538762 0.998548i \(-0.517158\pi\)
\(644\) 0 0
\(645\) −0.202907 0.888992i −0.00798944 0.0350040i
\(646\) 0 0
\(647\) −16.1368 + 7.77109i −0.634404 + 0.305513i −0.723306 0.690527i \(-0.757378\pi\)
0.0889021 + 0.996040i \(0.471664\pi\)
\(648\) 0 0
\(649\) 23.8998 + 11.5095i 0.938148 + 0.451788i
\(650\) 0 0
\(651\) 10.3204 + 4.97002i 0.404487 + 0.194790i
\(652\) 0 0
\(653\) −8.30529 + 10.4145i −0.325011 + 0.407551i −0.917314 0.398164i \(-0.869647\pi\)
0.592303 + 0.805715i \(0.298219\pi\)
\(654\) 0 0
\(655\) 0.162291 0.00634125
\(656\) 0 0
\(657\) −5.57942 + 24.4450i −0.217674 + 0.953691i
\(658\) 0 0
\(659\) 16.9073 8.14213i 0.658615 0.317172i −0.0745557 0.997217i \(-0.523754\pi\)
0.733171 + 0.680045i \(0.238040\pi\)
\(660\) 0 0
\(661\) −15.4182 + 19.3338i −0.599698 + 0.751998i −0.985331 0.170655i \(-0.945412\pi\)
0.385633 + 0.922652i \(0.373983\pi\)
\(662\) 0 0
\(663\) 0.570024 2.49744i 0.0221379 0.0969924i
\(664\) 0 0
\(665\) −1.84601 2.31482i −0.0715852 0.0897650i
\(666\) 0 0
\(667\) 21.4236 6.11345i 0.829524 0.236714i
\(668\) 0 0
\(669\) 6.08211 + 7.62672i 0.235148 + 0.294866i
\(670\) 0 0
\(671\) −3.91939 + 17.1720i −0.151306 + 0.662916i
\(672\) 0 0
\(673\) 15.8632 19.8919i 0.611483 0.766775i −0.375636 0.926767i \(-0.622576\pi\)
0.987118 + 0.159992i \(0.0511470\pi\)
\(674\) 0 0
\(675\) 11.3357 5.45897i 0.436310 0.210116i
\(676\) 0 0
\(677\) −0.137195 + 0.601090i −0.00527283 + 0.0231018i −0.977496 0.210954i \(-0.932343\pi\)
0.972223 + 0.234056i \(0.0752000\pi\)
\(678\) 0 0
\(679\) 63.7730 2.44738
\(680\) 0 0
\(681\) −5.07188 + 6.35994i −0.194355 + 0.243713i
\(682\) 0 0
\(683\) 16.2371 + 7.81935i 0.621294 + 0.299199i 0.717924 0.696121i \(-0.245092\pi\)
−0.0966308 + 0.995320i \(0.530807\pi\)
\(684\) 0 0
\(685\) 4.25744 + 2.05027i 0.162668 + 0.0783369i
\(686\) 0 0
\(687\) 6.42543 3.09432i 0.245145 0.118056i
\(688\) 0 0
\(689\) 5.02781 + 22.0283i 0.191544 + 0.839211i
\(690\) 0 0
\(691\) −7.69769 9.65260i −0.292834 0.367202i 0.613551 0.789655i \(-0.289741\pi\)
−0.906385 + 0.422453i \(0.861169\pi\)
\(692\) 0 0
\(693\) −7.35086 32.2062i −0.279236 1.22341i
\(694\) 0 0
\(695\) 0.998081 0.0378594
\(696\) 0 0
\(697\) 0.439665 0.0166535
\(698\) 0 0
\(699\) 0.193750 + 0.848876i 0.00732831 + 0.0321074i
\(700\) 0 0
\(701\) −21.2594 26.6584i −0.802955 1.00687i −0.999651 0.0264091i \(-0.991593\pi\)
0.196696 0.980464i \(-0.436979\pi\)
\(702\) 0 0
\(703\) −1.32759 5.81656i −0.0500711 0.219376i
\(704\) 0 0
\(705\) 1.11649 0.537673i 0.0420494 0.0202499i
\(706\) 0 0
\(707\) 63.6299 + 30.6425i 2.39305 + 1.15243i
\(708\) 0 0
\(709\) −37.9267 18.2645i −1.42437 0.685939i −0.446426 0.894821i \(-0.647303\pi\)
−0.977941 + 0.208882i \(0.933018\pi\)
\(710\) 0 0
\(711\) −1.03803 + 1.30165i −0.0389292 + 0.0488157i
\(712\) 0 0
\(713\) 26.2989 0.984901
\(714\) 0 0
\(715\) 1.19926 5.25430i 0.0448497 0.196500i
\(716\) 0 0
\(717\) 3.59395 1.73076i 0.134219 0.0646362i
\(718\) 0 0
\(719\) 32.5800 40.8540i 1.21503 1.52360i 0.431667 0.902033i \(-0.357926\pi\)
0.783362 0.621566i \(-0.213503\pi\)
\(720\) 0 0
\(721\) −2.53534 + 11.1081i −0.0944211 + 0.413686i
\(722\) 0 0
\(723\) −5.52177 6.92408i −0.205357 0.257509i
\(724\) 0 0
\(725\) 19.6097 17.4354i 0.728285 0.647534i
\(726\) 0 0
\(727\) −18.6953 23.4432i −0.693370 0.869459i 0.303138 0.952947i \(-0.401966\pi\)
−0.996509 + 0.0834876i \(0.973394\pi\)
\(728\) 0 0
\(729\) 3.75733 16.4619i 0.139160 0.609702i
\(730\) 0 0
\(731\) −3.97285 + 4.98180i −0.146941 + 0.184259i
\(732\) 0 0
\(733\) −2.71595 + 1.30793i −0.100316 + 0.0483096i −0.483369 0.875417i \(-0.660587\pi\)
0.383053 + 0.923726i \(0.374873\pi\)
\(734\) 0 0
\(735\) 0.332010 1.45463i 0.0122464 0.0536549i
\(736\) 0 0
\(737\) 1.09006 0.0401531
\(738\) 0 0
\(739\) 12.9919 16.2914i 0.477916 0.599288i −0.483174 0.875525i \(-0.660516\pi\)
0.961090 + 0.276237i \(0.0890874\pi\)
\(740\) 0 0
\(741\) −4.26055 2.05177i −0.156515 0.0753738i
\(742\) 0 0
\(743\) −27.7189 13.3487i −1.01691 0.489718i −0.150266 0.988646i \(-0.548013\pi\)
−0.866643 + 0.498928i \(0.833727\pi\)
\(744\) 0 0
\(745\) −0.870896 + 0.419402i −0.0319072 + 0.0153657i
\(746\) 0 0
\(747\) 5.88135 + 25.7679i 0.215188 + 0.942798i
\(748\) 0 0
\(749\) 18.8327 + 23.6155i 0.688133 + 0.862892i
\(750\) 0 0
\(751\) −0.994492 4.35715i −0.0362895 0.158995i 0.953537 0.301277i \(-0.0974130\pi\)
−0.989826 + 0.142283i \(0.954556\pi\)
\(752\) 0 0
\(753\) 11.4843 0.418510
\(754\) 0 0
\(755\) 0.869167 0.0316322
\(756\) 0 0
\(757\) 1.88159 + 8.24379i 0.0683876 + 0.299626i 0.997542 0.0700652i \(-0.0223207\pi\)
−0.929155 + 0.369691i \(0.879464\pi\)
\(758\) 0 0
\(759\) 3.34266 + 4.19156i 0.121331 + 0.152144i
\(760\) 0 0
\(761\) −5.49516 24.0759i −0.199199 0.872749i −0.971415 0.237388i \(-0.923709\pi\)
0.772216 0.635361i \(-0.219149\pi\)
\(762\) 0 0
\(763\) 6.02930 2.90356i 0.218275 0.105116i
\(764\) 0 0
\(765\) 1.00000 + 0.481575i 0.0361551 + 0.0174114i
\(766\) 0 0
\(767\) −42.5652 20.4983i −1.53694 0.740152i
\(768\) 0 0
\(769\) 18.7939 23.5668i 0.677724 0.849839i −0.317418 0.948286i \(-0.602816\pi\)
0.995142 + 0.0984462i \(0.0313872\pi\)
\(770\) 0 0
\(771\) −5.31873 −0.191549
\(772\) 0 0
\(773\) −1.26324 + 5.53462i −0.0454356 + 0.199067i −0.992552 0.121825i \(-0.961125\pi\)
0.947116 + 0.320892i \(0.103982\pi\)
\(774\) 0 0
\(775\) 27.9073 13.4394i 1.00246 0.482759i
\(776\) 0 0
\(777\) 3.27144 4.10225i 0.117362 0.147168i
\(778\) 0 0
\(779\) 0.180604 0.791277i 0.00647081 0.0283504i
\(780\) 0 0
\(781\) −20.7074 25.9662i −0.740968 0.929145i
\(782\) 0 0
\(783\) 0.744587 + 13.8851i 0.0266094 + 0.496213i
\(784\) 0 0
\(785\) 3.93362 + 4.93261i 0.140397 + 0.176052i
\(786\) 0 0
\(787\) −0.803134 + 3.51876i −0.0286286 + 0.125430i −0.987223 0.159345i \(-0.949062\pi\)
0.958594 + 0.284775i \(0.0919190\pi\)
\(788\) 0 0
\(789\) −0.0923264 + 0.115774i −0.00328691 + 0.00412165i
\(790\) 0 0
\(791\) −31.5209 + 15.1797i −1.12075 + 0.539726i
\(792\) 0 0
\(793\) 6.98039 30.5831i 0.247881 1.08604i
\(794\) 0 0
\(795\) 0.692021 0.0245435
\(796\) 0 0
\(797\) −19.1930 + 24.0672i −0.679850 + 0.852505i −0.995340 0.0964236i \(-0.969260\pi\)
0.315490 + 0.948929i \(0.397831\pi\)
\(798\) 0 0
\(799\) −7.80194 3.75722i −0.276013 0.132921i
\(800\) 0 0
\(801\) 3.59299 + 1.73029i 0.126952 + 0.0611369i
\(802\) 0 0
\(803\) −23.4768 + 11.3058i −0.828478 + 0.398974i
\(804\) 0 0
\(805\) −1.33028 5.82834i −0.0468863 0.205422i
\(806\) 0 0
\(807\) 0.295233 + 0.370210i 0.0103927 + 0.0130320i
\(808\) 0 0
\(809\) −1.16541 5.10598i −0.0409735 0.179517i 0.950300 0.311334i \(-0.100776\pi\)
−0.991274 + 0.131817i \(0.957919\pi\)
\(810\) 0 0
\(811\) −41.8646 −1.47006 −0.735032 0.678032i \(-0.762833\pi\)
−0.735032 + 0.678032i \(0.762833\pi\)
\(812\) 0 0
\(813\) −7.32736 −0.256982
\(814\) 0 0
\(815\) −0.394396 1.72796i −0.0138151 0.0605278i
\(816\) 0 0
\(817\) 7.33393 + 9.19646i 0.256582 + 0.321743i
\(818\) 0 0
\(819\) 13.0918 + 57.3589i 0.457464 + 2.00428i
\(820\) 0 0
\(821\) −13.8802 + 6.68433i −0.484421 + 0.233285i −0.660121 0.751159i \(-0.729495\pi\)
0.175701 + 0.984444i \(0.443781\pi\)
\(822\) 0 0
\(823\) −32.1247 15.4705i −1.11980 0.539266i −0.219968 0.975507i \(-0.570595\pi\)
−0.899830 + 0.436241i \(0.856310\pi\)
\(824\) 0 0
\(825\) 5.68910 + 2.73972i 0.198069 + 0.0953850i
\(826\) 0 0
\(827\) 32.4550 40.6973i 1.12857 1.41518i 0.231760 0.972773i \(-0.425552\pi\)
0.896812 0.442411i \(-0.145877\pi\)
\(828\) 0 0
\(829\) −13.4168 −0.465986 −0.232993 0.972478i \(-0.574852\pi\)
−0.232993 + 0.972478i \(0.574852\pi\)
\(830\) 0 0
\(831\) 0.653030 2.86111i 0.0226534 0.0992508i
\(832\) 0 0
\(833\) −9.39373 + 4.52378i −0.325474 + 0.156740i
\(834\) 0 0
\(835\) −3.21864 + 4.03604i −0.111385 + 0.139673i
\(836\) 0 0
\(837\) −3.65250 + 16.0026i −0.126249 + 0.553132i
\(838\) 0 0
\(839\) 19.3602 + 24.2769i 0.668387 + 0.838131i 0.994227 0.107294i \(-0.0342185\pi\)
−0.325840 + 0.945425i \(0.605647\pi\)
\(840\) 0 0
\(841\) 9.43967 + 27.4207i 0.325506 + 0.945540i
\(842\) 0 0
\(843\) 8.47285 + 10.6246i 0.291821 + 0.365931i
\(844\) 0 0
\(845\) −1.10345 + 4.83452i −0.0379598 + 0.166313i
\(846\) 0 0
\(847\) −6.36443 + 7.98074i −0.218684 + 0.274222i
\(848\) 0 0
\(849\) 1.42543 0.686450i 0.0489205 0.0235589i
\(850\) 0 0
\(851\) 2.68060 11.7445i 0.0918899 0.402596i
\(852\) 0 0
\(853\) 21.3357 0.730521 0.365261 0.930905i \(-0.380980\pi\)
0.365261 + 0.930905i \(0.380980\pi\)
\(854\) 0 0
\(855\) 1.27748 1.60191i 0.0436889 0.0547841i
\(856\) 0 0
\(857\) 8.85839 + 4.26597i 0.302597 + 0.145723i 0.579021 0.815313i \(-0.303435\pi\)
−0.276424 + 0.961036i \(0.589149\pi\)
\(858\) 0 0
\(859\) −46.6555 22.4681i −1.59187 0.766602i −0.592623 0.805480i \(-0.701907\pi\)
−0.999244 + 0.0388778i \(0.987622\pi\)
\(860\) 0 0
\(861\) 0.643104 0.309703i 0.0219169 0.0105546i
\(862\) 0 0
\(863\) −3.62147 15.8667i −0.123276 0.540108i −0.998417 0.0562402i \(-0.982089\pi\)
0.875141 0.483868i \(-0.160768\pi\)
\(864\) 0 0
\(865\) 2.33944 + 2.93356i 0.0795433 + 0.0997441i
\(866\) 0 0
\(867\) −1.56153 6.84152i −0.0530324 0.232350i
\(868\) 0 0
\(869\) −1.73019 −0.0586925
\(870\) 0 0
\(871\) −1.94139 −0.0657816
\(872\) 0 0
\(873\) 9.82036 + 43.0258i 0.332369 + 1.45620i
\(874\) 0 0
\(875\) −8.89493 11.1539i −0.300703 0.377070i
\(876\) 0 0
\(877\) −3.29470 14.4350i −0.111254 0.487436i −0.999601 0.0282623i \(-0.991003\pi\)
0.888346 0.459174i \(-0.151855\pi\)
\(878\) 0 0
\(879\) 13.1838 6.34900i 0.444679 0.214146i
\(880\) 0 0
\(881\) 16.7920 + 8.08661i 0.565737 + 0.272445i 0.694813 0.719190i \(-0.255487\pi\)
−0.129076 + 0.991635i \(0.541201\pi\)
\(882\) 0 0
\(883\) −29.1857 14.0551i −0.982178 0.472992i −0.127325 0.991861i \(-0.540639\pi\)
−0.854854 + 0.518869i \(0.826353\pi\)
\(884\) 0 0
\(885\) −0.902165 + 1.13128i −0.0303260 + 0.0380275i
\(886\) 0 0
\(887\) 6.16288 0.206929 0.103465 0.994633i \(-0.467007\pi\)
0.103465 + 0.994633i \(0.467007\pi\)
\(888\) 0 0
\(889\) 9.43512 41.3379i 0.316444 1.38643i
\(890\) 0 0
\(891\) 19.0378 9.16812i 0.637790 0.307144i
\(892\) 0 0
\(893\) −9.96681 + 12.4980i −0.333527 + 0.418229i
\(894\) 0 0
\(895\) −0.455927 + 1.99755i −0.0152400 + 0.0667706i
\(896\) 0 0
\(897\) −5.95324 7.46513i −0.198773 0.249253i
\(898\) 0 0
\(899\) 1.83310 + 34.1838i 0.0611373 + 1.14009i
\(900\) 0 0
\(901\) −3.01507 3.78077i −0.100446 0.125956i
\(902\) 0 0
\(903\) −2.30194 + 10.0854i −0.0766037 + 0.335623i
\(904\) 0 0
\(905\) −1.47770 + 1.85297i −0.0491203 + 0.0615949i
\(906\) 0 0
\(907\) 39.6284 19.0840i 1.31584 0.633675i 0.361492 0.932375i \(-0.382267\pi\)
0.954347 + 0.298700i \(0.0965531\pi\)
\(908\) 0 0
\(909\) −10.8753 + 47.6479i −0.360711 + 1.58038i
\(910\) 0 0
\(911\) 25.6233 0.848936 0.424468 0.905443i \(-0.360461\pi\)
0.424468 + 0.905443i \(0.360461\pi\)
\(912\) 0 0
\(913\) −17.1256 + 21.4749i −0.566776 + 0.710715i
\(914\) 0 0
\(915\) −0.865625 0.416863i −0.0286167 0.0137811i
\(916\) 0 0
\(917\) −1.65883 0.798852i −0.0547795 0.0263804i
\(918\) 0 0
\(919\) −5.62349 + 2.70813i −0.185502 + 0.0893330i −0.524329 0.851516i \(-0.675684\pi\)
0.338828 + 0.940848i \(0.389970\pi\)
\(920\) 0 0
\(921\) −1.45281 6.36518i −0.0478718 0.209740i
\(922\) 0 0
\(923\) 36.8796 + 46.2456i 1.21391 + 1.52219i
\(924\) 0 0
\(925\) −3.15721 13.8326i −0.103808 0.454814i
\(926\) 0 0
\(927\) −7.88471 −0.258968
\(928\) 0 0
\(929\) −24.5133 −0.804256 −0.402128 0.915583i \(-0.631729\pi\)
−0.402128 + 0.915583i \(0.631729\pi\)
\(930\) 0 0
\(931\) 4.28286 + 18.7644i 0.140365 + 0.614979i
\(932\) 0 0
\(933\) 5.14071 + 6.44625i 0.168299 + 0.211041i
\(934\) 0 0
\(935\) 0.256668 + 1.12454i 0.00839395 + 0.0367763i
\(936\) 0 0
\(937\) 3.68449 1.77436i 0.120367 0.0579657i −0.372731 0.927939i \(-0.621579\pi\)
0.493098 + 0.869974i \(0.335864\pi\)
\(938\) 0 0
\(939\) 9.21917 + 4.43972i 0.300856 + 0.144885i
\(940\) 0 0
\(941\) −5.55280 2.67409i −0.181016 0.0871728i 0.341181 0.939998i \(-0.389173\pi\)
−0.522197 + 0.852825i \(0.674887\pi\)
\(942\) 0 0
\(943\) 1.02177 1.28126i 0.0332734 0.0417235i
\(944\) 0 0
\(945\) 3.73125 0.121378
\(946\) 0 0
\(947\) −11.0598 + 48.4562i −0.359395 + 1.57461i 0.395309 + 0.918548i \(0.370638\pi\)
−0.754704 + 0.656065i \(0.772220\pi\)
\(948\) 0 0
\(949\) 41.8119 20.1356i 1.35727 0.653628i
\(950\) 0 0
\(951\) −3.90097 + 4.89166i −0.126498 + 0.158623i
\(952\) 0 0
\(953\) −3.93541 + 17.2422i −0.127480 + 0.558529i 0.870335 + 0.492461i \(0.163902\pi\)
−0.997815 + 0.0660678i \(0.978955\pi\)
\(954\) 0 0
\(955\) 4.18598 + 5.24905i 0.135455 + 0.169855i
\(956\) 0 0
\(957\) −5.21528 + 4.63702i −0.168586 + 0.149893i
\(958\) 0 0
\(959\) −33.4245 41.9130i −1.07933 1.35344i
\(960\) 0 0
\(961\) −2.09395 + 9.17419i −0.0675468 + 0.295942i
\(962\) 0 0
\(963\) −13.0327 + 16.3424i −0.419971 + 0.526628i
\(964\) 0 0
\(965\) −3.50000 + 1.68551i −0.112669 + 0.0542585i
\(966\) 0 0
\(967\) −2.86904 + 12.5701i −0.0922620 + 0.404226i −0.999879 0.0155736i \(-0.995043\pi\)
0.907617 + 0.419800i \(0.137900\pi\)
\(968\) 0 0
\(969\) 1.01208 0.0325127
\(970\) 0 0
\(971\) −3.01610 + 3.78207i −0.0967912 + 0.121372i −0.827868 0.560923i \(-0.810447\pi\)
0.731077 + 0.682295i \(0.239018\pi\)
\(972\) 0 0
\(973\) −10.2017 4.91288i −0.327052 0.157500i
\(974\) 0 0
\(975\) −10.1322 4.87942i −0.324491 0.156266i
\(976\) 0 0
\(977\) −14.8138 + 7.13394i −0.473935 + 0.228235i −0.655575 0.755130i \(-0.727574\pi\)
0.181640 + 0.983365i \(0.441859\pi\)
\(978\) 0 0
\(979\) 0.922207 + 4.04045i 0.0294739 + 0.129133i
\(980\) 0 0
\(981\) 2.88740 + 3.62068i 0.0921874 + 0.115599i
\(982\) 0 0
\(983\) 5.89666 + 25.8349i 0.188074 + 0.824007i 0.977631 + 0.210329i \(0.0674535\pi\)
−0.789557 + 0.613678i \(0.789689\pi\)
\(984\) 0 0
\(985\) −2.99808 −0.0955268
\(986\) 0 0
\(987\) −14.0586 −0.447490
\(988\) 0 0
\(989\) 5.28501 + 23.1551i 0.168054 + 0.736291i
\(990\) 0 0
\(991\) −25.1930 31.5910i −0.800281 1.00352i −0.999721 0.0236111i \(-0.992484\pi\)
0.199440 0.979910i \(-0.436088\pi\)
\(992\) 0 0
\(993\) −1.38212 6.05548i −0.0438604 0.192165i
\(994\) 0 0
\(995\) −2.12910 + 1.02532i −0.0674971 + 0.0325049i
\(996\) 0 0
\(997\) 21.1325 + 10.1769i 0.669273 + 0.322305i 0.737483 0.675366i \(-0.236014\pi\)
−0.0682093 + 0.997671i \(0.521729\pi\)
\(998\) 0 0
\(999\) 6.77413 + 3.26225i 0.214324 + 0.103213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 464.2.u.f.401.1 6
4.3 odd 2 29.2.d.a.24.1 yes 6
12.11 even 2 261.2.k.a.82.1 6
20.3 even 4 725.2.r.b.24.1 12
20.7 even 4 725.2.r.b.24.2 12
20.19 odd 2 725.2.l.b.401.1 6
29.23 even 7 inner 464.2.u.f.81.1 6
116.3 even 28 841.2.e.b.651.2 12
116.7 odd 14 841.2.d.e.190.1 6
116.11 even 28 841.2.e.c.236.1 12
116.15 even 28 841.2.e.d.267.1 12
116.19 even 28 841.2.e.c.196.2 12
116.23 odd 14 29.2.d.a.23.1 6
116.27 even 28 841.2.e.b.270.2 12
116.31 even 28 841.2.e.b.270.1 12
116.35 odd 14 841.2.d.d.574.1 6
116.39 even 28 841.2.e.c.196.1 12
116.43 even 28 841.2.e.d.267.2 12
116.47 even 28 841.2.e.c.236.2 12
116.51 odd 14 841.2.d.a.190.1 6
116.55 even 28 841.2.e.b.651.1 12
116.63 odd 14 841.2.d.a.571.1 6
116.67 odd 14 841.2.a.f.1.3 3
116.71 odd 14 841.2.d.c.605.1 6
116.75 even 4 841.2.e.d.63.1 12
116.79 even 28 841.2.b.c.840.6 6
116.83 odd 14 841.2.d.b.645.1 6
116.91 odd 14 841.2.d.c.645.1 6
116.95 even 28 841.2.b.c.840.1 6
116.99 even 4 841.2.e.d.63.2 12
116.103 odd 14 841.2.d.b.605.1 6
116.107 odd 14 841.2.a.e.1.1 3
116.111 odd 14 841.2.d.e.571.1 6
116.115 odd 2 841.2.d.d.778.1 6
348.23 even 14 261.2.k.a.226.1 6
348.107 even 14 7569.2.a.r.1.3 3
348.299 even 14 7569.2.a.p.1.1 3
580.23 even 28 725.2.r.b.574.2 12
580.139 odd 14 725.2.l.b.226.1 6
580.487 even 28 725.2.r.b.574.1 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.23.1 6 116.23 odd 14
29.2.d.a.24.1 yes 6 4.3 odd 2
261.2.k.a.82.1 6 12.11 even 2
261.2.k.a.226.1 6 348.23 even 14
464.2.u.f.81.1 6 29.23 even 7 inner
464.2.u.f.401.1 6 1.1 even 1 trivial
725.2.l.b.226.1 6 580.139 odd 14
725.2.l.b.401.1 6 20.19 odd 2
725.2.r.b.24.1 12 20.3 even 4
725.2.r.b.24.2 12 20.7 even 4
725.2.r.b.574.1 12 580.487 even 28
725.2.r.b.574.2 12 580.23 even 28
841.2.a.e.1.1 3 116.107 odd 14
841.2.a.f.1.3 3 116.67 odd 14
841.2.b.c.840.1 6 116.95 even 28
841.2.b.c.840.6 6 116.79 even 28
841.2.d.a.190.1 6 116.51 odd 14
841.2.d.a.571.1 6 116.63 odd 14
841.2.d.b.605.1 6 116.103 odd 14
841.2.d.b.645.1 6 116.83 odd 14
841.2.d.c.605.1 6 116.71 odd 14
841.2.d.c.645.1 6 116.91 odd 14
841.2.d.d.574.1 6 116.35 odd 14
841.2.d.d.778.1 6 116.115 odd 2
841.2.d.e.190.1 6 116.7 odd 14
841.2.d.e.571.1 6 116.111 odd 14
841.2.e.b.270.1 12 116.31 even 28
841.2.e.b.270.2 12 116.27 even 28
841.2.e.b.651.1 12 116.55 even 28
841.2.e.b.651.2 12 116.3 even 28
841.2.e.c.196.1 12 116.39 even 28
841.2.e.c.196.2 12 116.19 even 28
841.2.e.c.236.1 12 116.11 even 28
841.2.e.c.236.2 12 116.47 even 28
841.2.e.d.63.1 12 116.75 even 4
841.2.e.d.63.2 12 116.99 even 4
841.2.e.d.267.1 12 116.15 even 28
841.2.e.d.267.2 12 116.43 even 28
7569.2.a.p.1.1 3 348.299 even 14
7569.2.a.r.1.3 3 348.107 even 14