Properties

Label 725.2.l.b.401.1
Level $725$
Weight $2$
Character 725.401
Analytic conductor $5.789$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(226,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(14))
 
chi = DirichletCharacter(H, H._module([0, 10]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.226");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.l (of order \(7\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: \(\Q(\zeta_{14})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 29)
Sato-Tate group: $\mathrm{SU}(2)[C_{7}]$

Embedding invariants

Embedding label 401.1
Root \(0.222521 - 0.974928i\) of defining polynomial
Character \(\chi\) \(=\) 725.401
Dual form 725.2.l.b.226.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.12349 + 1.40881i) q^{2} +(0.0990311 + 0.433884i) q^{3} +(-0.277479 + 1.21572i) q^{4} +(-0.500000 + 0.626980i) q^{6} +(-0.900969 - 3.94740i) q^{7} +(1.22252 - 0.588735i) q^{8} +(2.52446 - 1.21572i) q^{9} +(-2.62349 - 1.26341i) q^{11} -0.554958 q^{12} +(4.67241 + 2.25011i) q^{13} +(4.54892 - 5.70416i) q^{14} +(4.44989 + 2.14295i) q^{16} -1.10992 q^{17} +(4.54892 + 2.19064i) q^{18} +(-0.455927 + 1.99755i) q^{19} +(1.62349 - 0.781831i) q^{21} +(-1.16756 - 5.11543i) q^{22} +(2.57942 - 3.23449i) q^{23} +(0.376510 + 0.472129i) q^{24} +(2.07942 + 9.11052i) q^{26} +(1.60992 + 2.01877i) q^{27} +5.04892 q^{28} +(4.38404 + 3.12733i) q^{29} +(-3.96346 - 4.97002i) q^{31} +(1.37651 + 6.03089i) q^{32} +(0.288364 - 1.26341i) q^{33} +(-1.24698 - 1.56366i) q^{34} +(0.777479 + 3.40636i) q^{36} +(-2.62349 + 1.26341i) q^{37} +(-3.32640 + 1.60191i) q^{38} +(-0.513574 + 2.25011i) q^{39} +0.396125 q^{41} +(2.92543 + 1.40881i) q^{42} +(-3.57942 + 4.48845i) q^{43} +(2.26391 - 2.83885i) q^{44} +7.45473 q^{46} +(-7.02930 - 3.38513i) q^{47} +(-0.489115 + 2.14295i) q^{48} +(-8.46346 + 4.07579i) q^{49} +(-0.109916 - 0.481575i) q^{51} +(-4.03199 + 5.05596i) q^{52} +(2.71648 + 3.40636i) q^{53} +(-1.03534 + 4.53614i) q^{54} +(-3.42543 - 4.29535i) q^{56} -0.911854 q^{57} +(0.519614 + 9.68981i) q^{58} -9.10992 q^{59} +(1.34601 + 5.89726i) q^{61} +(2.54892 - 11.1675i) q^{62} +(-7.07338 - 8.86973i) q^{63} +(-0.791053 + 0.991949i) q^{64} +(2.10388 - 1.01317i) q^{66} +(0.337282 - 0.162426i) q^{67} +(0.307979 - 1.34934i) q^{68} +(1.65883 + 0.798852i) q^{69} +(10.2763 + 4.94880i) q^{71} +(2.37047 - 2.97247i) q^{72} +(5.57942 - 6.99637i) q^{73} +(-4.72737 - 2.27658i) q^{74} +(-2.30194 - 1.10855i) q^{76} +(-2.62349 + 11.4943i) q^{77} +(-3.74698 + 1.80445i) q^{78} +(0.535344 - 0.257808i) q^{79} +(4.52446 - 5.67349i) q^{81} +(0.445042 + 0.558065i) q^{82} +(-2.09903 + 9.19646i) q^{83} +(0.500000 + 2.19064i) q^{84} -10.3448 q^{86} +(-0.922739 + 2.21187i) q^{87} -3.95108 q^{88} +(0.887395 + 1.11276i) q^{89} +(4.67241 - 20.4712i) q^{91} +(3.21648 + 4.03334i) q^{92} +(1.76391 - 2.21187i) q^{93} +(-3.12833 - 13.7061i) q^{94} +(-2.48039 + 1.19449i) q^{96} +(3.50484 - 15.3557i) q^{97} +(-15.2506 - 7.34432i) q^{98} -8.15883 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 2 q^{2} + 5 q^{3} - 2 q^{4} - 3 q^{6} - q^{7} + 7 q^{8} + 6 q^{9} - 11 q^{11} - 4 q^{12} + 5 q^{13} + 9 q^{14} + 4 q^{16} - 8 q^{17} + 9 q^{18} + q^{19} + 5 q^{21} - 6 q^{22} + 7 q^{23} + 7 q^{24}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{2}{7}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.12349 + 1.40881i 0.794427 + 0.996180i 0.999847 + 0.0175063i \(0.00557270\pi\)
−0.205419 + 0.978674i \(0.565856\pi\)
\(3\) 0.0990311 + 0.433884i 0.0571757 + 0.250503i 0.995437 0.0954255i \(-0.0304212\pi\)
−0.938261 + 0.345928i \(0.887564\pi\)
\(4\) −0.277479 + 1.21572i −0.138740 + 0.607858i
\(5\) 0 0
\(6\) −0.500000 + 0.626980i −0.204124 + 0.255964i
\(7\) −0.900969 3.94740i −0.340534 1.49198i −0.797949 0.602725i \(-0.794082\pi\)
0.457415 0.889253i \(-0.348775\pi\)
\(8\) 1.22252 0.588735i 0.432226 0.208149i
\(9\) 2.52446 1.21572i 0.841486 0.405238i
\(10\) 0 0
\(11\) −2.62349 1.26341i −0.791012 0.380931i −0.00566249 0.999984i \(-0.501802\pi\)
−0.785349 + 0.619053i \(0.787517\pi\)
\(12\) −0.554958 −0.160203
\(13\) 4.67241 + 2.25011i 1.29589 + 0.624069i 0.949425 0.313993i \(-0.101667\pi\)
0.346467 + 0.938062i \(0.387381\pi\)
\(14\) 4.54892 5.70416i 1.21575 1.52450i
\(15\) 0 0
\(16\) 4.44989 + 2.14295i 1.11247 + 0.535738i
\(17\) −1.10992 −0.269194 −0.134597 0.990900i \(-0.542974\pi\)
−0.134597 + 0.990900i \(0.542974\pi\)
\(18\) 4.54892 + 2.19064i 1.07219 + 0.516340i
\(19\) −0.455927 + 1.99755i −0.104597 + 0.458269i 0.895321 + 0.445422i \(0.146946\pi\)
−0.999917 + 0.0128465i \(0.995911\pi\)
\(20\) 0 0
\(21\) 1.62349 0.781831i 0.354275 0.170610i
\(22\) −1.16756 5.11543i −0.248925 1.09061i
\(23\) 2.57942 3.23449i 0.537846 0.674437i −0.436445 0.899731i \(-0.643763\pi\)
0.974291 + 0.225294i \(0.0723342\pi\)
\(24\) 0.376510 + 0.472129i 0.0768548 + 0.0963729i
\(25\) 0 0
\(26\) 2.07942 + 9.11052i 0.407807 + 1.78672i
\(27\) 1.60992 + 2.01877i 0.309829 + 0.388513i
\(28\) 5.04892 0.954156
\(29\) 4.38404 + 3.12733i 0.814096 + 0.580730i
\(30\) 0 0
\(31\) −3.96346 4.97002i −0.711858 0.892642i 0.285988 0.958233i \(-0.407678\pi\)
−0.997847 + 0.0655910i \(0.979107\pi\)
\(32\) 1.37651 + 6.03089i 0.243335 + 1.06612i
\(33\) 0.288364 1.26341i 0.0501978 0.219931i
\(34\) −1.24698 1.56366i −0.213855 0.268166i
\(35\) 0 0
\(36\) 0.777479 + 3.40636i 0.129580 + 0.567726i
\(37\) −2.62349 + 1.26341i −0.431299 + 0.207703i −0.636921 0.770929i \(-0.719792\pi\)
0.205622 + 0.978631i \(0.434078\pi\)
\(38\) −3.32640 + 1.60191i −0.539613 + 0.259864i
\(39\) −0.513574 + 2.25011i −0.0822376 + 0.360306i
\(40\) 0 0
\(41\) 0.396125 0.0618643 0.0309321 0.999521i \(-0.490152\pi\)
0.0309321 + 0.999521i \(0.490152\pi\)
\(42\) 2.92543 + 1.40881i 0.451403 + 0.217384i
\(43\) −3.57942 + 4.48845i −0.545856 + 0.684482i −0.975873 0.218339i \(-0.929936\pi\)
0.430017 + 0.902821i \(0.358508\pi\)
\(44\) 2.26391 2.83885i 0.341297 0.427972i
\(45\) 0 0
\(46\) 7.45473 1.09914
\(47\) −7.02930 3.38513i −1.02533 0.493773i −0.155870 0.987778i \(-0.549818\pi\)
−0.869459 + 0.494005i \(0.835532\pi\)
\(48\) −0.489115 + 2.14295i −0.0705977 + 0.309309i
\(49\) −8.46346 + 4.07579i −1.20907 + 0.582255i
\(50\) 0 0
\(51\) −0.109916 0.481575i −0.0153914 0.0674339i
\(52\) −4.03199 + 5.05596i −0.559137 + 0.701135i
\(53\) 2.71648 + 3.40636i 0.373137 + 0.467899i 0.932577 0.360972i \(-0.117555\pi\)
−0.559439 + 0.828871i \(0.688984\pi\)
\(54\) −1.03534 + 4.53614i −0.140892 + 0.617290i
\(55\) 0 0
\(56\) −3.42543 4.29535i −0.457742 0.573990i
\(57\) −0.911854 −0.120778
\(58\) 0.519614 + 9.68981i 0.0682287 + 1.27233i
\(59\) −9.10992 −1.18601 −0.593005 0.805199i \(-0.702059\pi\)
−0.593005 + 0.805199i \(0.702059\pi\)
\(60\) 0 0
\(61\) 1.34601 + 5.89726i 0.172339 + 0.755067i 0.985032 + 0.172374i \(0.0551437\pi\)
−0.812693 + 0.582693i \(0.801999\pi\)
\(62\) 2.54892 11.1675i 0.323713 1.41828i
\(63\) −7.07338 8.86973i −0.891162 1.11748i
\(64\) −0.791053 + 0.991949i −0.0988816 + 0.123994i
\(65\) 0 0
\(66\) 2.10388 1.01317i 0.258969 0.124713i
\(67\) 0.337282 0.162426i 0.0412055 0.0198435i −0.413168 0.910655i \(-0.635578\pi\)
0.454373 + 0.890812i \(0.349863\pi\)
\(68\) 0.307979 1.34934i 0.0373479 0.163632i
\(69\) 1.65883 + 0.798852i 0.199700 + 0.0961705i
\(70\) 0 0
\(71\) 10.2763 + 4.94880i 1.21957 + 0.587314i 0.929192 0.369598i \(-0.120505\pi\)
0.290379 + 0.956912i \(0.406219\pi\)
\(72\) 2.37047 2.97247i 0.279362 0.350309i
\(73\) 5.57942 6.99637i 0.653021 0.818863i −0.339542 0.940591i \(-0.610272\pi\)
0.992563 + 0.121728i \(0.0388436\pi\)
\(74\) −4.72737 2.27658i −0.549545 0.264647i
\(75\) 0 0
\(76\) −2.30194 1.10855i −0.264050 0.127160i
\(77\) −2.62349 + 11.4943i −0.298974 + 1.30989i
\(78\) −3.74698 + 1.80445i −0.424262 + 0.204314i
\(79\) 0.535344 0.257808i 0.0602309 0.0290057i −0.403526 0.914968i \(-0.632215\pi\)
0.463757 + 0.885963i \(0.346501\pi\)
\(80\) 0 0
\(81\) 4.52446 5.67349i 0.502718 0.630388i
\(82\) 0.445042 + 0.558065i 0.0491467 + 0.0616280i
\(83\) −2.09903 + 9.19646i −0.230399 + 1.00944i 0.718912 + 0.695101i \(0.244641\pi\)
−0.949310 + 0.314341i \(0.898217\pi\)
\(84\) 0.500000 + 2.19064i 0.0545545 + 0.239019i
\(85\) 0 0
\(86\) −10.3448 −1.11551
\(87\) −0.922739 + 2.21187i −0.0989280 + 0.237137i
\(88\) −3.95108 −0.421187
\(89\) 0.887395 + 1.11276i 0.0940637 + 0.117952i 0.826636 0.562737i \(-0.190252\pi\)
−0.732572 + 0.680689i \(0.761680\pi\)
\(90\) 0 0
\(91\) 4.67241 20.4712i 0.489801 2.14596i
\(92\) 3.21648 + 4.03334i 0.335341 + 0.420505i
\(93\) 1.76391 2.21187i 0.182908 0.229360i
\(94\) −3.12833 13.7061i −0.322663 1.41368i
\(95\) 0 0
\(96\) −2.48039 + 1.19449i −0.253153 + 0.121912i
\(97\) 3.50484 15.3557i 0.355863 1.55914i −0.407523 0.913195i \(-0.633607\pi\)
0.763386 0.645943i \(-0.223536\pi\)
\(98\) −15.2506 7.34432i −1.54055 0.741888i
\(99\) −8.15883 −0.819994
\(100\) 0 0
\(101\) −10.8753 + 13.6372i −1.08213 + 1.35695i −0.152570 + 0.988293i \(0.548755\pi\)
−0.929564 + 0.368661i \(0.879816\pi\)
\(102\) 0.554958 0.695895i 0.0549490 0.0689039i
\(103\) −2.53534 1.22096i −0.249815 0.120304i 0.304786 0.952421i \(-0.401415\pi\)
−0.554601 + 0.832116i \(0.687129\pi\)
\(104\) 7.03684 0.690019
\(105\) 0 0
\(106\) −1.74698 + 7.65402i −0.169682 + 0.743424i
\(107\) −6.72132 + 3.23682i −0.649775 + 0.312915i −0.729580 0.683895i \(-0.760284\pi\)
0.0798052 + 0.996810i \(0.474570\pi\)
\(108\) −2.90097 + 1.39703i −0.279146 + 0.134430i
\(109\) 0.367781 + 1.61135i 0.0352270 + 0.154340i 0.989482 0.144653i \(-0.0462066\pi\)
−0.954255 + 0.298993i \(0.903349\pi\)
\(110\) 0 0
\(111\) −0.807979 1.01317i −0.0766899 0.0961661i
\(112\) 4.44989 19.4962i 0.420475 1.84222i
\(113\) 1.92274 + 8.42407i 0.180876 + 0.792470i 0.981214 + 0.192921i \(0.0617961\pi\)
−0.800338 + 0.599549i \(0.795347\pi\)
\(114\) −1.02446 1.28463i −0.0959493 0.120317i
\(115\) 0 0
\(116\) −5.01842 + 4.46198i −0.465948 + 0.414284i
\(117\) 14.5308 1.34337
\(118\) −10.2349 12.8342i −0.942199 1.18148i
\(119\) 1.00000 + 4.38129i 0.0916698 + 0.401632i
\(120\) 0 0
\(121\) −1.57188 1.97108i −0.142899 0.179189i
\(122\) −6.79590 + 8.52179i −0.615272 + 0.771526i
\(123\) 0.0392287 + 0.171872i 0.00353713 + 0.0154972i
\(124\) 7.14191 3.43936i 0.641362 0.308864i
\(125\) 0 0
\(126\) 4.54892 19.9301i 0.405250 1.77552i
\(127\) 9.43512 + 4.54371i 0.837231 + 0.403189i 0.802822 0.596219i \(-0.203331\pi\)
0.0344090 + 0.999408i \(0.489045\pi\)
\(128\) 10.0858 0.891463
\(129\) −2.30194 1.10855i −0.202674 0.0976028i
\(130\) 0 0
\(131\) −0.283520 + 0.355523i −0.0247712 + 0.0310622i −0.794063 0.607836i \(-0.792038\pi\)
0.769292 + 0.638898i \(0.220609\pi\)
\(132\) 1.45593 + 0.701137i 0.126722 + 0.0610262i
\(133\) 8.29590 0.719345
\(134\) 0.607760 + 0.292682i 0.0525025 + 0.0252839i
\(135\) 0 0
\(136\) −1.35690 + 0.653447i −0.116353 + 0.0560326i
\(137\) −11.9291 + 5.74474i −1.01917 + 0.490806i −0.867401 0.497610i \(-0.834211\pi\)
−0.151769 + 0.988416i \(0.548497\pi\)
\(138\) 0.738250 + 3.23449i 0.0628440 + 0.275338i
\(139\) −1.74363 + 2.18644i −0.147893 + 0.185451i −0.850260 0.526364i \(-0.823555\pi\)
0.702367 + 0.711815i \(0.252127\pi\)
\(140\) 0 0
\(141\) 0.772635 3.38513i 0.0650676 0.285080i
\(142\) 4.57338 + 20.0373i 0.383789 + 1.68149i
\(143\) −9.41521 11.8063i −0.787339 0.987292i
\(144\) 13.8388 1.15323
\(145\) 0 0
\(146\) 16.1250 1.33451
\(147\) −2.60656 3.26853i −0.214986 0.269584i
\(148\) −0.807979 3.53999i −0.0664154 0.290985i
\(149\) −0.602679 + 2.64051i −0.0493734 + 0.216319i −0.993596 0.112988i \(-0.963958\pi\)
0.944223 + 0.329307i \(0.106815\pi\)
\(150\) 0 0
\(151\) −1.51842 + 1.90404i −0.123567 + 0.154948i −0.839767 0.542947i \(-0.817308\pi\)
0.716200 + 0.697895i \(0.245880\pi\)
\(152\) 0.618645 + 2.71046i 0.0501788 + 0.219848i
\(153\) −2.80194 + 1.34934i −0.226523 + 0.109088i
\(154\) −19.1407 + 9.21768i −1.54240 + 0.742782i
\(155\) 0 0
\(156\) −2.59299 1.24872i −0.207605 0.0999775i
\(157\) −17.6775 −1.41082 −0.705411 0.708799i \(-0.749238\pi\)
−0.705411 + 0.708799i \(0.749238\pi\)
\(158\) 0.964656 + 0.464554i 0.0767439 + 0.0369579i
\(159\) −1.20895 + 1.51597i −0.0958758 + 0.120224i
\(160\) 0 0
\(161\) −15.0918 7.26782i −1.18940 0.572785i
\(162\) 13.0761 1.02735
\(163\) −4.47434 2.15473i −0.350458 0.168772i 0.250370 0.968150i \(-0.419448\pi\)
−0.600827 + 0.799379i \(0.705162\pi\)
\(164\) −0.109916 + 0.481575i −0.00858302 + 0.0376047i
\(165\) 0 0
\(166\) −15.3143 + 7.37499i −1.18862 + 0.572410i
\(167\) 3.21864 + 14.1018i 0.249066 + 1.09123i 0.932487 + 0.361203i \(0.117634\pi\)
−0.683422 + 0.730024i \(0.739509\pi\)
\(168\) 1.52446 1.91161i 0.117615 0.147484i
\(169\) 8.66301 + 10.8631i 0.666386 + 0.835621i
\(170\) 0 0
\(171\) 1.27748 + 5.59700i 0.0976913 + 0.428013i
\(172\) −4.46346 5.59700i −0.340336 0.426767i
\(173\) −10.5133 −0.799314 −0.399657 0.916665i \(-0.630871\pi\)
−0.399657 + 0.916665i \(0.630871\pi\)
\(174\) −4.15279 + 1.18505i −0.314822 + 0.0898380i
\(175\) 0 0
\(176\) −8.96681 11.2440i −0.675899 0.847550i
\(177\) −0.902165 3.95264i −0.0678109 0.297099i
\(178\) −0.570688 + 2.50035i −0.0427748 + 0.187409i
\(179\) −3.57942 4.48845i −0.267538 0.335482i 0.629856 0.776712i \(-0.283114\pi\)
−0.897394 + 0.441230i \(0.854542\pi\)
\(180\) 0 0
\(181\) 1.47770 + 6.47421i 0.109836 + 0.481225i 0.999688 + 0.0249747i \(0.00795053\pi\)
−0.889852 + 0.456250i \(0.849192\pi\)
\(182\) 34.0894 16.4166i 2.52687 1.21688i
\(183\) −2.42543 + 1.16802i −0.179293 + 0.0863428i
\(184\) 1.24914 5.47282i 0.0920875 0.403462i
\(185\) 0 0
\(186\) 5.09783 0.373791
\(187\) 2.91185 + 1.40227i 0.212936 + 0.102545i
\(188\) 6.06584 7.60633i 0.442397 0.554748i
\(189\) 6.51842 8.17384i 0.474145 0.594559i
\(190\) 0 0
\(191\) −18.8116 −1.36116 −0.680581 0.732673i \(-0.738272\pi\)
−0.680581 + 0.732673i \(0.738272\pi\)
\(192\) −0.508729 0.244991i −0.0367144 0.0176807i
\(193\) 2.42208 10.6118i 0.174345 0.763854i −0.809832 0.586662i \(-0.800442\pi\)
0.984176 0.177192i \(-0.0567013\pi\)
\(194\) 25.5710 12.3143i 1.83589 0.884118i
\(195\) 0 0
\(196\) −2.60656 11.4201i −0.186183 0.815722i
\(197\) 5.23759 6.56773i 0.373163 0.467931i −0.559422 0.828883i \(-0.688977\pi\)
0.932584 + 0.360952i \(0.117548\pi\)
\(198\) −9.16637 11.4943i −0.651425 0.816861i
\(199\) 1.47339 6.45532i 0.104446 0.457606i −0.895476 0.445109i \(-0.853165\pi\)
0.999922 0.0124967i \(-0.00397793\pi\)
\(200\) 0 0
\(201\) 0.103875 + 0.130256i 0.00732681 + 0.00918753i
\(202\) −31.4306 −2.21145
\(203\) 8.39493 20.1232i 0.589208 1.41237i
\(204\) 0.615957 0.0431256
\(205\) 0 0
\(206\) −1.12833 4.94355i −0.0786148 0.344434i
\(207\) 2.57942 11.3012i 0.179282 0.785485i
\(208\) 15.9698 + 20.0255i 1.10731 + 1.38852i
\(209\) 3.71983 4.66452i 0.257306 0.322652i
\(210\) 0 0
\(211\) 7.29805 3.51456i 0.502419 0.241952i −0.165468 0.986215i \(-0.552913\pi\)
0.667887 + 0.744263i \(0.267199\pi\)
\(212\) −4.89493 + 2.35727i −0.336185 + 0.161898i
\(213\) −1.12953 + 4.94880i −0.0773942 + 0.339086i
\(214\) −12.1114 5.83255i −0.827919 0.398705i
\(215\) 0 0
\(216\) 3.15668 + 1.52018i 0.214785 + 0.103435i
\(217\) −16.0477 + 20.1232i −1.08939 + 1.36605i
\(218\) −1.85690 + 2.32847i −0.125765 + 0.157704i
\(219\) 3.58815 + 1.72796i 0.242464 + 0.116765i
\(220\) 0 0
\(221\) −5.18598 2.49744i −0.348847 0.167996i
\(222\) 0.519614 2.27658i 0.0348742 0.152794i
\(223\) 19.7485 9.51036i 1.32246 0.636861i 0.366512 0.930413i \(-0.380552\pi\)
0.955943 + 0.293552i \(0.0948374\pi\)
\(224\) 22.5661 10.8673i 1.50776 0.726101i
\(225\) 0 0
\(226\) −9.70775 + 12.1731i −0.645750 + 0.809745i
\(227\) 11.3964 + 14.2907i 0.756407 + 0.948504i 0.999770 0.0214309i \(-0.00682218\pi\)
−0.243363 + 0.969935i \(0.578251\pi\)
\(228\) 0.253020 1.10855i 0.0167567 0.0734158i
\(229\) −3.56584 15.6230i −0.235638 1.03240i −0.944876 0.327427i \(-0.893818\pi\)
0.709239 0.704968i \(-0.249039\pi\)
\(230\) 0 0
\(231\) −5.24698 −0.345226
\(232\) 7.20075 + 1.24218i 0.472752 + 0.0815532i
\(233\) −1.95646 −0.128172 −0.0640860 0.997944i \(-0.520413\pi\)
−0.0640860 + 0.997944i \(0.520413\pi\)
\(234\) 16.3252 + 20.4712i 1.06721 + 1.33824i
\(235\) 0 0
\(236\) 2.52781 11.0751i 0.164546 0.720925i
\(237\) 0.164874 + 0.206746i 0.0107097 + 0.0134296i
\(238\) −5.04892 + 6.33114i −0.327273 + 0.410387i
\(239\) 1.99449 + 8.73844i 0.129013 + 0.565243i 0.997571 + 0.0696554i \(0.0221900\pi\)
−0.868558 + 0.495587i \(0.834953\pi\)
\(240\) 0 0
\(241\) −17.9291 + 8.63419i −1.15491 + 0.556177i −0.910506 0.413496i \(-0.864308\pi\)
−0.244407 + 0.969673i \(0.578593\pi\)
\(242\) 1.01089 4.42898i 0.0649822 0.284705i
\(243\) 9.88889 + 4.76224i 0.634372 + 0.305498i
\(244\) −7.54288 −0.482883
\(245\) 0 0
\(246\) −0.198062 + 0.248362i −0.0126280 + 0.0158350i
\(247\) −6.62498 + 8.30746i −0.421537 + 0.528591i
\(248\) −7.77144 3.74253i −0.493487 0.237651i
\(249\) −4.19806 −0.266041
\(250\) 0 0
\(251\) −5.74214 + 25.1579i −0.362440 + 1.58795i 0.384540 + 0.923108i \(0.374360\pi\)
−0.746980 + 0.664847i \(0.768497\pi\)
\(252\) 12.7458 6.13805i 0.802909 0.386661i
\(253\) −10.8535 + 5.22679i −0.682356 + 0.328606i
\(254\) 4.19902 + 18.3971i 0.263470 + 1.15434i
\(255\) 0 0
\(256\) 12.9133 + 16.1928i 0.807084 + 1.01205i
\(257\) 2.65937 11.6514i 0.165887 0.726797i −0.821726 0.569883i \(-0.806988\pi\)
0.987612 0.156914i \(-0.0501545\pi\)
\(258\) −1.02446 4.48845i −0.0637800 0.279438i
\(259\) 7.35086 + 9.21768i 0.456760 + 0.572759i
\(260\) 0 0
\(261\) 14.8693 + 2.56506i 0.920385 + 0.158773i
\(262\) −0.819396 −0.0506225
\(263\) 0.207455 + 0.260141i 0.0127923 + 0.0160410i 0.788186 0.615437i \(-0.211020\pi\)
−0.775394 + 0.631477i \(0.782449\pi\)
\(264\) −0.391280 1.71431i −0.0240816 0.105509i
\(265\) 0 0
\(266\) 9.32036 + 11.6874i 0.571468 + 0.716598i
\(267\) −0.394928 + 0.495224i −0.0241692 + 0.0303072i
\(268\) 0.103875 + 0.455108i 0.00634520 + 0.0278002i
\(269\) 0.958615 0.461645i 0.0584478 0.0281470i −0.404432 0.914568i \(-0.632531\pi\)
0.462879 + 0.886421i \(0.346816\pi\)
\(270\) 0 0
\(271\) 3.66368 16.0516i 0.222553 0.975067i −0.732996 0.680233i \(-0.761879\pi\)
0.955549 0.294834i \(-0.0952642\pi\)
\(272\) −4.93900 2.37850i −0.299471 0.144218i
\(273\) 9.34481 0.565574
\(274\) −21.4955 10.3517i −1.29859 0.625367i
\(275\) 0 0
\(276\) −1.43147 + 1.79500i −0.0861643 + 0.108047i
\(277\) 5.94116 + 2.86111i 0.356970 + 0.171907i 0.603769 0.797159i \(-0.293665\pi\)
−0.246800 + 0.969066i \(0.579379\pi\)
\(278\) −5.03923 −0.302233
\(279\) −16.0477 7.72818i −0.960752 0.462674i
\(280\) 0 0
\(281\) 27.5112 13.2487i 1.64118 0.790350i 0.641448 0.767166i \(-0.278334\pi\)
0.999731 0.0231840i \(-0.00738037\pi\)
\(282\) 5.63706 2.71467i 0.335682 0.161656i
\(283\) −0.791053 3.46583i −0.0470232 0.206022i 0.945959 0.324286i \(-0.105124\pi\)
−0.992982 + 0.118264i \(0.962267\pi\)
\(284\) −8.86778 + 11.1198i −0.526206 + 0.659841i
\(285\) 0 0
\(286\) 6.05496 26.5285i 0.358037 1.56866i
\(287\) −0.356896 1.56366i −0.0210669 0.0923001i
\(288\) 10.8068 + 13.5513i 0.636796 + 0.798517i
\(289\) −15.7681 −0.927534
\(290\) 0 0
\(291\) 7.00969 0.410915
\(292\) 6.95742 + 8.72433i 0.407152 + 0.510553i
\(293\) 7.31647 + 32.0556i 0.427433 + 1.87271i 0.485246 + 0.874378i \(0.338730\pi\)
−0.0578127 + 0.998327i \(0.518413\pi\)
\(294\) 1.67629 7.34432i 0.0977633 0.428329i
\(295\) 0 0
\(296\) −2.46346 + 3.08908i −0.143186 + 0.179549i
\(297\) −1.67307 7.33020i −0.0970814 0.425342i
\(298\) −4.39708 + 2.11752i −0.254716 + 0.122665i
\(299\) 19.3300 9.30886i 1.11789 0.538345i
\(300\) 0 0
\(301\) 20.9426 + 10.0854i 1.20711 + 0.581316i
\(302\) −4.38835 −0.252521
\(303\) −6.99396 3.36811i −0.401792 0.193493i
\(304\) −6.30947 + 7.91183i −0.361873 + 0.453774i
\(305\) 0 0
\(306\) −5.04892 2.43143i −0.288627 0.138996i
\(307\) −14.6703 −0.837275 −0.418638 0.908153i \(-0.637492\pi\)
−0.418638 + 0.908153i \(0.637492\pi\)
\(308\) −13.2458 6.37883i −0.754749 0.363468i
\(309\) 0.278676 1.22096i 0.0158533 0.0694578i
\(310\) 0 0
\(311\) −16.6918 + 8.03834i −0.946504 + 0.455812i −0.842459 0.538760i \(-0.818893\pi\)
−0.104045 + 0.994573i \(0.533179\pi\)
\(312\) 0.696866 + 3.05317i 0.0394523 + 0.172852i
\(313\) −14.3354 + 17.9760i −0.810286 + 1.01607i 0.189132 + 0.981952i \(0.439433\pi\)
−0.999418 + 0.0341147i \(0.989139\pi\)
\(314\) −19.8605 24.9043i −1.12080 1.40543i
\(315\) 0 0
\(316\) 0.164874 + 0.722362i 0.00927491 + 0.0406360i
\(317\) −8.76540 10.9915i −0.492314 0.617342i 0.472162 0.881512i \(-0.343474\pi\)
−0.964476 + 0.264170i \(0.914902\pi\)
\(318\) −3.49396 −0.195932
\(319\) −7.55041 13.7433i −0.422742 0.769479i
\(320\) 0 0
\(321\) −2.07002 2.59573i −0.115537 0.144879i
\(322\) −6.71648 29.4268i −0.374295 1.63989i
\(323\) 0.506041 2.21711i 0.0281569 0.123363i
\(324\) 5.64191 + 7.07473i 0.313439 + 0.393040i
\(325\) 0 0
\(326\) −1.99127 8.72433i −0.110286 0.483196i
\(327\) −0.662718 + 0.319148i −0.0366484 + 0.0176489i
\(328\) 0.484271 0.233212i 0.0267394 0.0128770i
\(329\) −7.02930 + 30.7974i −0.387538 + 1.69792i
\(330\) 0 0
\(331\) 13.9565 0.767116 0.383558 0.923517i \(-0.374699\pi\)
0.383558 + 0.923517i \(0.374699\pi\)
\(332\) −10.5978 5.10365i −0.581632 0.280099i
\(333\) −5.08695 + 6.37883i −0.278763 + 0.349558i
\(334\) −16.2506 + 20.3776i −0.889195 + 1.11501i
\(335\) 0 0
\(336\) 8.89977 0.485522
\(337\) −12.6114 6.07333i −0.686987 0.330836i 0.0576199 0.998339i \(-0.481649\pi\)
−0.744607 + 0.667503i \(0.767363\pi\)
\(338\) −5.57122 + 24.4091i −0.303034 + 1.32768i
\(339\) −3.46466 + 1.66849i −0.188174 + 0.0906200i
\(340\) 0 0
\(341\) 4.11894 + 18.0463i 0.223053 + 0.977260i
\(342\) −6.44989 + 8.08790i −0.348770 + 0.437344i
\(343\) 6.04288 + 7.57753i 0.326285 + 0.409148i
\(344\) −1.73341 + 7.59455i −0.0934590 + 0.409471i
\(345\) 0 0
\(346\) −11.8116 14.8113i −0.634997 0.796261i
\(347\) 19.8538 1.06581 0.532905 0.846175i \(-0.321100\pi\)
0.532905 + 0.846175i \(0.321100\pi\)
\(348\) −2.43296 1.73553i −0.130420 0.0930344i
\(349\) −26.9202 −1.44101 −0.720503 0.693452i \(-0.756089\pi\)
−0.720503 + 0.693452i \(0.756089\pi\)
\(350\) 0 0
\(351\) 2.97972 + 13.0550i 0.159046 + 0.696825i
\(352\) 4.00820 17.5611i 0.213638 0.936007i
\(353\) 2.50335 + 3.13910i 0.133240 + 0.167078i 0.843976 0.536382i \(-0.180209\pi\)
−0.710736 + 0.703459i \(0.751638\pi\)
\(354\) 4.55496 5.71174i 0.242093 0.303575i
\(355\) 0 0
\(356\) −1.59903 + 0.770053i −0.0847485 + 0.0408127i
\(357\) −1.80194 + 0.867767i −0.0953687 + 0.0459271i
\(358\) 2.30194 10.0854i 0.121661 0.533032i
\(359\) 0.672407 + 0.323814i 0.0354883 + 0.0170903i 0.451544 0.892249i \(-0.350873\pi\)
−0.416055 + 0.909339i \(0.636588\pi\)
\(360\) 0 0
\(361\) 13.3361 + 6.42232i 0.701899 + 0.338017i
\(362\) −7.46077 + 9.35551i −0.392129 + 0.491715i
\(363\) 0.699554 0.877213i 0.0367171 0.0460418i
\(364\) 23.5906 + 11.3606i 1.23648 + 0.595459i
\(365\) 0 0
\(366\) −4.37047 2.10471i −0.228448 0.110015i
\(367\) −7.57660 + 33.1952i −0.395495 + 1.73278i 0.249304 + 0.968425i \(0.419798\pi\)
−0.644799 + 0.764352i \(0.723059\pi\)
\(368\) 18.4095 8.86553i 0.959659 0.462148i
\(369\) 1.00000 0.481575i 0.0520579 0.0250698i
\(370\) 0 0
\(371\) 10.9988 13.7921i 0.571029 0.716048i
\(372\) 2.19955 + 2.75815i 0.114042 + 0.143004i
\(373\) 6.23072 27.2986i 0.322614 1.41347i −0.510268 0.860015i \(-0.670454\pi\)
0.832882 0.553450i \(-0.186689\pi\)
\(374\) 1.29590 + 5.67770i 0.0670092 + 0.293587i
\(375\) 0 0
\(376\) −10.5864 −0.545953
\(377\) 13.4472 + 24.4767i 0.692566 + 1.26062i
\(378\) 18.8388 0.968962
\(379\) 14.2661 + 17.8891i 0.732798 + 0.918900i 0.998986 0.0450211i \(-0.0143355\pi\)
−0.266188 + 0.963921i \(0.585764\pi\)
\(380\) 0 0
\(381\) −1.03707 + 4.54371i −0.0531308 + 0.232781i
\(382\) −21.1347 26.5020i −1.08134 1.35596i
\(383\) −7.39344 + 9.27108i −0.377787 + 0.473730i −0.933981 0.357323i \(-0.883690\pi\)
0.556194 + 0.831052i \(0.312261\pi\)
\(384\) 0.998804 + 4.37604i 0.0509700 + 0.223314i
\(385\) 0 0
\(386\) 17.6712 8.51001i 0.899441 0.433148i
\(387\) −3.57942 + 15.6824i −0.181952 + 0.797184i
\(388\) 17.6957 + 8.52179i 0.898362 + 0.432628i
\(389\) −10.3913 −0.526862 −0.263431 0.964678i \(-0.584854\pi\)
−0.263431 + 0.964678i \(0.584854\pi\)
\(390\) 0 0
\(391\) −2.86294 + 3.59001i −0.144785 + 0.181555i
\(392\) −7.94720 + 9.96547i −0.401394 + 0.503332i
\(393\) −0.182333 0.0878068i −0.00919747 0.00442927i
\(394\) 15.1371 0.762594
\(395\) 0 0
\(396\) 2.26391 9.91882i 0.113766 0.498439i
\(397\) 7.40366 3.56541i 0.371579 0.178943i −0.238769 0.971076i \(-0.576744\pi\)
0.610348 + 0.792133i \(0.291030\pi\)
\(398\) 10.7497 5.17677i 0.538832 0.259488i
\(399\) 0.821552 + 3.59945i 0.0411290 + 0.180198i
\(400\) 0 0
\(401\) 15.5130 + 19.4527i 0.774684 + 0.971423i 0.999996 0.00286337i \(-0.000911439\pi\)
−0.225312 + 0.974287i \(0.572340\pi\)
\(402\) −0.0668027 + 0.292682i −0.00333182 + 0.0145976i
\(403\) −7.33579 32.1402i −0.365422 1.60102i
\(404\) −13.5613 17.0053i −0.674700 0.846047i
\(405\) 0 0
\(406\) 37.7814 10.7813i 1.87506 0.535069i
\(407\) 8.47889 0.420283
\(408\) −0.417895 0.524023i −0.0206889 0.0259430i
\(409\) −4.20464 18.4217i −0.207906 0.910895i −0.965958 0.258701i \(-0.916706\pi\)
0.758052 0.652194i \(-0.226151\pi\)
\(410\) 0 0
\(411\) −3.67390 4.60692i −0.181220 0.227243i
\(412\) 2.18784 2.74347i 0.107787 0.135161i
\(413\) 8.20775 + 35.9605i 0.403877 + 1.76950i
\(414\) 18.8192 9.06283i 0.924911 0.445414i
\(415\) 0 0
\(416\) −7.13856 + 31.2761i −0.349996 + 1.53343i
\(417\) −1.12133 0.540006i −0.0549120 0.0264442i
\(418\) 10.7506 0.525830
\(419\) 9.81378 + 4.72607i 0.479435 + 0.230884i 0.657962 0.753051i \(-0.271419\pi\)
−0.178527 + 0.983935i \(0.557133\pi\)
\(420\) 0 0
\(421\) −12.4453 + 15.6060i −0.606549 + 0.760588i −0.986383 0.164467i \(-0.947410\pi\)
0.379834 + 0.925055i \(0.375981\pi\)
\(422\) 13.1506 + 6.33301i 0.640163 + 0.308286i
\(423\) −21.8605 −1.06290
\(424\) 5.32640 + 2.56506i 0.258673 + 0.124570i
\(425\) 0 0
\(426\) −8.24094 + 3.96863i −0.399275 + 0.192281i
\(427\) 22.0661 10.6265i 1.06786 0.514252i
\(428\) −2.07002 9.06937i −0.100058 0.438384i
\(429\) 4.19016 5.25430i 0.202303 0.253680i
\(430\) 0 0
\(431\) 6.71797 29.4334i 0.323593 1.41776i −0.507514 0.861643i \(-0.669436\pi\)
0.831108 0.556112i \(-0.187707\pi\)
\(432\) 2.83781 + 12.4333i 0.136534 + 0.598196i
\(433\) 12.5891 + 15.7862i 0.604994 + 0.758638i 0.986147 0.165874i \(-0.0530444\pi\)
−0.381153 + 0.924512i \(0.624473\pi\)
\(434\) −46.3793 −2.22628
\(435\) 0 0
\(436\) −2.06100 −0.0987039
\(437\) 5.28501 + 6.62720i 0.252816 + 0.317022i
\(438\) 1.59688 + 6.99637i 0.0763016 + 0.334299i
\(439\) 2.37316 10.3975i 0.113265 0.496245i −0.886193 0.463316i \(-0.846659\pi\)
0.999458 0.0329287i \(-0.0104834\pi\)
\(440\) 0 0
\(441\) −16.4107 + 20.5783i −0.781460 + 0.979920i
\(442\) −2.30798 10.1119i −0.109779 0.480975i
\(443\) −18.3349 + 8.82962i −0.871117 + 0.419508i −0.815372 0.578937i \(-0.803468\pi\)
−0.0557448 + 0.998445i \(0.517753\pi\)
\(444\) 1.45593 0.701137i 0.0690952 0.0332745i
\(445\) 0 0
\(446\) 35.5855 + 17.1371i 1.68502 + 0.811464i
\(447\) −1.20536 −0.0570115
\(448\) 4.62833 + 2.22889i 0.218668 + 0.105305i
\(449\) 12.1102 15.1857i 0.571516 0.716659i −0.409124 0.912479i \(-0.634166\pi\)
0.980640 + 0.195820i \(0.0627369\pi\)
\(450\) 0 0
\(451\) −1.03923 0.500466i −0.0489354 0.0235660i
\(452\) −10.7748 −0.506804
\(453\) −0.976501 0.470258i −0.0458800 0.0220946i
\(454\) −7.32908 + 32.1108i −0.343971 + 1.50704i
\(455\) 0 0
\(456\) −1.11476 + 0.536840i −0.0522034 + 0.0251399i
\(457\) −2.76391 12.1095i −0.129290 0.566457i −0.997526 0.0703045i \(-0.977603\pi\)
0.868236 0.496152i \(-0.165254\pi\)
\(458\) 18.0036 22.5759i 0.841255 1.05490i
\(459\) −1.78687 2.24067i −0.0834041 0.104585i
\(460\) 0 0
\(461\) 4.88351 + 21.3961i 0.227448 + 0.996514i 0.951712 + 0.306991i \(0.0993223\pi\)
−0.724265 + 0.689522i \(0.757821\pi\)
\(462\) −5.89493 7.39201i −0.274257 0.343907i
\(463\) 33.0073 1.53398 0.766990 0.641660i \(-0.221754\pi\)
0.766990 + 0.641660i \(0.221754\pi\)
\(464\) 12.8068 + 23.3110i 0.594540 + 1.08219i
\(465\) 0 0
\(466\) −2.19806 2.75628i −0.101823 0.127682i
\(467\) −5.80851 25.4487i −0.268786 1.17763i −0.911427 0.411461i \(-0.865019\pi\)
0.642642 0.766167i \(-0.277838\pi\)
\(468\) −4.03199 + 17.6653i −0.186379 + 0.816579i
\(469\) −0.945042 1.18505i −0.0436380 0.0547203i
\(470\) 0 0
\(471\) −1.75063 7.67000i −0.0806647 0.353415i
\(472\) −11.1371 + 5.36333i −0.512625 + 0.246867i
\(473\) 15.0613 7.25314i 0.692519 0.333500i
\(474\) −0.106031 + 0.464554i −0.00487018 + 0.0213377i
\(475\) 0 0
\(476\) −5.60388 −0.256853
\(477\) 10.9988 + 5.29674i 0.503601 + 0.242521i
\(478\) −10.0700 + 12.6274i −0.460592 + 0.577564i
\(479\) 20.6163 25.8520i 0.941981 1.18121i −0.0413068 0.999147i \(-0.513152\pi\)
0.983287 0.182060i \(-0.0582765\pi\)
\(480\) 0 0
\(481\) −15.1008 −0.688538
\(482\) −32.3071 15.5583i −1.47155 0.708660i
\(483\) 1.65883 7.26782i 0.0754795 0.330697i
\(484\) 2.83244 1.36403i 0.128747 0.0620014i
\(485\) 0 0
\(486\) 4.40097 + 19.2819i 0.199632 + 0.874645i
\(487\) 6.33244 7.94063i 0.286950 0.359824i −0.617375 0.786669i \(-0.711804\pi\)
0.904325 + 0.426845i \(0.140375\pi\)
\(488\) 5.11745 + 6.41708i 0.231656 + 0.290487i
\(489\) 0.491803 2.15473i 0.0222401 0.0974403i
\(490\) 0 0
\(491\) −12.2714 15.3879i −0.553802 0.694446i 0.423596 0.905851i \(-0.360768\pi\)
−0.977399 + 0.211405i \(0.932196\pi\)
\(492\) −0.219833 −0.00991082
\(493\) −4.86592 3.47107i −0.219150 0.156329i
\(494\) −19.1468 −0.861453
\(495\) 0 0
\(496\) −6.98643 30.6095i −0.313700 1.37441i
\(497\) 10.2763 45.0233i 0.460954 2.01957i
\(498\) −4.71648 5.91428i −0.211351 0.265025i
\(499\) 17.3639 21.7736i 0.777315 0.974722i −0.222685 0.974890i \(-0.571482\pi\)
1.00000 0.000168534i \(5.36461e-5\pi\)
\(500\) 0 0
\(501\) −5.79978 + 2.79303i −0.259115 + 0.124783i
\(502\) −41.8940 + 20.1751i −1.86982 + 0.900459i
\(503\) −0.0501138 + 0.219563i −0.00223446 + 0.00978982i −0.976033 0.217623i \(-0.930170\pi\)
0.973798 + 0.227413i \(0.0730267\pi\)
\(504\) −13.8693 6.67909i −0.617787 0.297510i
\(505\) 0 0
\(506\) −19.5574 9.41835i −0.869433 0.418697i
\(507\) −3.85540 + 4.83452i −0.171224 + 0.214709i
\(508\) −8.14191 + 10.2096i −0.361239 + 0.452979i
\(509\) 22.7974 + 10.9786i 1.01048 + 0.486620i 0.864481 0.502665i \(-0.167647\pi\)
0.145995 + 0.989285i \(0.453362\pi\)
\(510\) 0 0
\(511\) −32.6444 15.7207i −1.44410 0.695443i
\(512\) −3.81604 + 16.7192i −0.168647 + 0.738890i
\(513\) −4.76659 + 2.29547i −0.210450 + 0.101348i
\(514\) 19.4025 9.34373i 0.855806 0.412134i
\(515\) 0 0
\(516\) 1.98643 2.49090i 0.0874475 0.109656i
\(517\) 14.1645 + 17.7617i 0.622954 + 0.781160i
\(518\) −4.72737 + 20.7119i −0.207709 + 0.910030i
\(519\) −1.04115 4.56157i −0.0457013 0.200231i
\(520\) 0 0
\(521\) 23.5797 1.03305 0.516523 0.856273i \(-0.327226\pi\)
0.516523 + 0.856273i \(0.327226\pi\)
\(522\) 13.0918 + 23.8298i 0.573012 + 1.04300i
\(523\) −3.96508 −0.173381 −0.0866905 0.996235i \(-0.527629\pi\)
−0.0866905 + 0.996235i \(0.527629\pi\)
\(524\) −0.353543 0.443330i −0.0154446 0.0193669i
\(525\) 0 0
\(526\) −0.133415 + 0.584531i −0.00581719 + 0.0254868i
\(527\) 4.39911 + 5.51631i 0.191628 + 0.240294i
\(528\) 3.99061 5.00406i 0.173669 0.217774i
\(529\) 1.30947 + 5.73717i 0.0569335 + 0.249442i
\(530\) 0 0
\(531\) −22.9976 + 11.0751i −0.998011 + 0.480617i
\(532\) −2.30194 + 10.0854i −0.0998017 + 0.437260i
\(533\) 1.85086 + 0.891325i 0.0801694 + 0.0386076i
\(534\) −1.14138 −0.0493921
\(535\) 0 0
\(536\) 0.316708 0.397139i 0.0136797 0.0171538i
\(537\) 1.59299 1.99755i 0.0687426 0.0862005i
\(538\) 1.72737 + 0.831855i 0.0744720 + 0.0358638i
\(539\) 27.3532 1.17818
\(540\) 0 0
\(541\) 5.48739 24.0418i 0.235921 1.03364i −0.708709 0.705501i \(-0.750722\pi\)
0.944630 0.328137i \(-0.106421\pi\)
\(542\) 26.7298 12.8724i 1.14814 0.552917i
\(543\) −2.66272 + 1.28230i −0.114268 + 0.0550287i
\(544\) −1.52781 6.69378i −0.0655044 0.286993i
\(545\) 0 0
\(546\) 10.4988 + 13.1651i 0.449307 + 0.563414i
\(547\) 5.52768 24.2183i 0.236347 1.03550i −0.707913 0.706300i \(-0.750363\pi\)
0.944259 0.329202i \(-0.106780\pi\)
\(548\) −3.67390 16.0964i −0.156941 0.687604i
\(549\) 10.5673 + 13.2510i 0.451003 + 0.565540i
\(550\) 0 0
\(551\) −8.24578 + 7.33150i −0.351282 + 0.312332i
\(552\) 2.49827 0.106333
\(553\) −1.50000 1.88094i −0.0637865 0.0799857i
\(554\) 2.64406 + 11.5844i 0.112335 + 0.492174i
\(555\) 0 0
\(556\) −2.17427 2.72645i −0.0922095 0.115627i
\(557\) −4.84146 + 6.07100i −0.205139 + 0.257237i −0.873749 0.486377i \(-0.838318\pi\)
0.668610 + 0.743613i \(0.266890\pi\)
\(558\) −7.14191 31.2907i −0.302341 1.32464i
\(559\) −26.8240 + 12.9178i −1.13453 + 0.546363i
\(560\) 0 0
\(561\) −0.320060 + 1.40227i −0.0135129 + 0.0592041i
\(562\) 49.5734 + 23.8733i 2.09113 + 1.00703i
\(563\) −20.8009 −0.876652 −0.438326 0.898816i \(-0.644429\pi\)
−0.438326 + 0.898816i \(0.644429\pi\)
\(564\) 3.90097 + 1.87861i 0.164260 + 0.0791036i
\(565\) 0 0
\(566\) 3.99396 5.00827i 0.167879 0.210513i
\(567\) −26.4720 12.7482i −1.11172 0.535375i
\(568\) 15.4765 0.649380
\(569\) −2.53103 1.21888i −0.106106 0.0510981i 0.380078 0.924955i \(-0.375897\pi\)
−0.486184 + 0.873856i \(0.661612\pi\)
\(570\) 0 0
\(571\) −2.60603 + 1.25500i −0.109059 + 0.0525201i −0.487618 0.873057i \(-0.662134\pi\)
0.378559 + 0.925577i \(0.376420\pi\)
\(572\) 16.9656 8.17021i 0.709368 0.341614i
\(573\) −1.86294 8.16206i −0.0778253 0.340975i
\(574\) 1.80194 2.25956i 0.0752114 0.0943121i
\(575\) 0 0
\(576\) −0.791053 + 3.46583i −0.0329605 + 0.144409i
\(577\) 1.59970 + 7.00872i 0.0665962 + 0.291777i 0.997249 0.0741270i \(-0.0236170\pi\)
−0.930653 + 0.365904i \(0.880760\pi\)
\(578\) −17.7153 22.2143i −0.736859 0.923992i
\(579\) 4.84415 0.201316
\(580\) 0 0
\(581\) 38.1933 1.58452
\(582\) 7.87531 + 9.87533i 0.326442 + 0.409346i
\(583\) −2.82304 12.3686i −0.116919 0.512254i
\(584\) 2.70195 11.8380i 0.111807 0.489860i
\(585\) 0 0
\(586\) −36.9403 + 46.3216i −1.52599 + 1.91353i
\(587\) −6.90635 30.2587i −0.285055 1.24891i −0.891220 0.453570i \(-0.850150\pi\)
0.606165 0.795339i \(-0.292707\pi\)
\(588\) 4.69687 2.26189i 0.193695 0.0932788i
\(589\) 11.7349 5.65123i 0.483528 0.232855i
\(590\) 0 0
\(591\) 3.36831 + 1.62209i 0.138554 + 0.0667240i
\(592\) −14.3817 −0.591082
\(593\) 32.8560 + 15.8226i 1.34923 + 0.649757i 0.962209 0.272312i \(-0.0877884\pi\)
0.387025 + 0.922069i \(0.373503\pi\)
\(594\) 8.44720 10.5925i 0.346593 0.434614i
\(595\) 0 0
\(596\) −3.04288 1.46537i −0.124641 0.0600240i
\(597\) 2.94677 0.120603
\(598\) 34.8315 + 16.7740i 1.42437 + 0.685939i
\(599\) −6.69083 + 29.3144i −0.273380 + 1.19775i 0.632615 + 0.774466i \(0.281981\pi\)
−0.905995 + 0.423288i \(0.860876\pi\)
\(600\) 0 0
\(601\) 29.8995 14.3989i 1.21963 0.587342i 0.290420 0.956899i \(-0.406205\pi\)
0.929208 + 0.369558i \(0.120491\pi\)
\(602\) 9.32036 + 40.8351i 0.379869 + 1.66432i
\(603\) 0.653989 0.820077i 0.0266325 0.0333961i
\(604\) −1.89344 2.37429i −0.0770428 0.0966086i
\(605\) 0 0
\(606\) −3.11260 13.6372i −0.126441 0.553974i
\(607\) 9.42729 + 11.8214i 0.382642 + 0.479818i 0.935434 0.353502i \(-0.115009\pi\)
−0.552792 + 0.833319i \(0.686438\pi\)
\(608\) −12.6746 −0.514021
\(609\) 9.56249 + 1.64960i 0.387492 + 0.0668451i
\(610\) 0 0
\(611\) −25.2268 31.6334i −1.02057 1.27975i
\(612\) −0.862937 3.78077i −0.0348821 0.152829i
\(613\) 0.835658 3.66126i 0.0337519 0.147877i −0.955244 0.295818i \(-0.904408\pi\)
0.988996 + 0.147942i \(0.0472648\pi\)
\(614\) −16.4819 20.6676i −0.665154 0.834077i
\(615\) 0 0
\(616\) 3.55980 + 15.5965i 0.143429 + 0.628401i
\(617\) 26.8995 12.9541i 1.08293 0.521514i 0.194681 0.980867i \(-0.437633\pi\)
0.888254 + 0.459353i \(0.151919\pi\)
\(618\) 2.03319 0.979132i 0.0817868 0.0393865i
\(619\) 10.2622 44.9615i 0.412472 1.80716i −0.159866 0.987139i \(-0.551106\pi\)
0.572338 0.820018i \(-0.306037\pi\)
\(620\) 0 0
\(621\) 10.6823 0.428667
\(622\) −30.0776 14.4846i −1.20600 0.580779i
\(623\) 3.59299 4.50547i 0.143950 0.180508i
\(624\) −7.10723 + 8.91218i −0.284517 + 0.356773i
\(625\) 0 0
\(626\) −41.4306 −1.65590
\(627\) 2.39224 + 1.15204i 0.0955368 + 0.0460081i
\(628\) 4.90515 21.4909i 0.195737 0.857579i
\(629\) 2.91185 1.40227i 0.116103 0.0559124i
\(630\) 0 0
\(631\) −2.81043 12.3133i −0.111881 0.490185i −0.999558 0.0297178i \(-0.990539\pi\)
0.887677 0.460467i \(-0.152318\pi\)
\(632\) 0.502688 0.630351i 0.0199959 0.0250740i
\(633\) 2.24764 + 2.81846i 0.0893358 + 0.112024i
\(634\) 5.63706 24.6976i 0.223876 0.980867i
\(635\) 0 0
\(636\) −1.50753 1.89039i −0.0597776 0.0749587i
\(637\) −48.7157 −1.93019
\(638\) 10.8790 26.0776i 0.430702 1.03242i
\(639\) 31.9584 1.26425
\(640\) 0 0
\(641\) −8.67874 38.0241i −0.342790 1.50186i −0.793157 0.609017i \(-0.791564\pi\)
0.450368 0.892843i \(-0.351293\pi\)
\(642\) 1.33124 5.83255i 0.0525399 0.230192i
\(643\) −25.7479 32.2869i −1.01540 1.27327i −0.961523 0.274723i \(-0.911414\pi\)
−0.0538762 0.998548i \(-0.517158\pi\)
\(644\) 13.0233 16.3307i 0.513188 0.643518i
\(645\) 0 0
\(646\) 3.69202 1.77798i 0.145261 0.0699538i
\(647\) −16.1368 + 7.77109i −0.634404 + 0.305513i −0.723306 0.690527i \(-0.757378\pi\)
0.0889021 + 0.996040i \(0.471664\pi\)
\(648\) 2.19106 9.59967i 0.0860730 0.377111i
\(649\) 23.8998 + 11.5095i 0.938148 + 0.451788i
\(650\) 0 0
\(651\) −10.3204 4.97002i −0.404487 0.194790i
\(652\) 3.86108 4.84164i 0.151211 0.189613i
\(653\) 8.30529 10.4145i 0.325011 0.407551i −0.592303 0.805715i \(-0.701781\pi\)
0.917314 + 0.398164i \(0.130353\pi\)
\(654\) −1.19418 0.575086i −0.0466960 0.0224876i
\(655\) 0 0
\(656\) 1.76271 + 0.848876i 0.0688222 + 0.0331430i
\(657\) 5.57942 24.4450i 0.217674 0.953691i
\(658\) −51.2851 + 24.6976i −1.99930 + 0.962812i
\(659\) −16.9073 + 8.14213i −0.658615 + 0.317172i −0.733171 0.680045i \(-0.761960\pi\)
0.0745557 + 0.997217i \(0.476246\pi\)
\(660\) 0 0
\(661\) −15.4182 + 19.3338i −0.599698 + 0.751998i −0.985331 0.170655i \(-0.945412\pi\)
0.385633 + 0.922652i \(0.373983\pi\)
\(662\) 15.6799 + 19.6620i 0.609418 + 0.764186i
\(663\) 0.570024 2.49744i 0.0221379 0.0969924i
\(664\) 2.84817 + 12.4786i 0.110530 + 0.484265i
\(665\) 0 0
\(666\) −14.7017 −0.569680
\(667\) 21.4236 6.11345i 0.829524 0.236714i
\(668\) −18.0368 −0.697866
\(669\) 6.08211 + 7.62672i 0.235148 + 0.294866i
\(670\) 0 0
\(671\) 3.91939 17.1720i 0.151306 0.662916i
\(672\) 6.94989 + 8.71488i 0.268098 + 0.336184i
\(673\) −15.8632 + 19.8919i −0.611483 + 0.766775i −0.987118 0.159992i \(-0.948853\pi\)
0.375636 + 0.926767i \(0.377424\pi\)
\(674\) −5.61260 24.5904i −0.216189 0.947188i
\(675\) 0 0
\(676\) −15.6102 + 7.51748i −0.600393 + 0.289134i
\(677\) 0.137195 0.601090i 0.00527283 0.0231018i −0.972223 0.234056i \(-0.924800\pi\)
0.977496 + 0.210954i \(0.0676572\pi\)
\(678\) −6.24309 3.00652i −0.239765 0.115465i
\(679\) −63.7730 −2.44738
\(680\) 0 0
\(681\) −5.07188 + 6.35994i −0.194355 + 0.243713i
\(682\) −20.7962 + 26.0776i −0.796327 + 0.998563i
\(683\) 16.2371 + 7.81935i 0.621294 + 0.299199i 0.717924 0.696121i \(-0.245092\pi\)
−0.0966308 + 0.995320i \(0.530807\pi\)
\(684\) −7.15883 −0.273725
\(685\) 0 0
\(686\) −3.88620 + 17.0265i −0.148376 + 0.650077i
\(687\) 6.42543 3.09432i 0.245145 0.118056i
\(688\) −25.5465 + 12.3026i −0.973952 + 0.469031i
\(689\) 5.02781 + 22.0283i 0.191544 + 0.839211i
\(690\) 0 0
\(691\) 7.69769 + 9.65260i 0.292834 + 0.367202i 0.906385 0.422453i \(-0.138831\pi\)
−0.613551 + 0.789655i \(0.710259\pi\)
\(692\) 2.91723 12.7812i 0.110896 0.485869i
\(693\) 7.35086 + 32.2062i 0.279236 + 1.22341i
\(694\) 22.3056 + 27.9703i 0.846708 + 1.06174i
\(695\) 0 0
\(696\) 0.174136 + 3.24730i 0.00660061 + 0.123089i
\(697\) −0.439665 −0.0166535
\(698\) −30.2446 37.9255i −1.14477 1.43550i
\(699\) −0.193750 0.848876i −0.00732831 0.0321074i
\(700\) 0 0
\(701\) −21.2594 26.6584i −0.802955 1.00687i −0.999651 0.0264091i \(-0.991593\pi\)
0.196696 0.980464i \(-0.436979\pi\)
\(702\) −15.0444 + 18.8650i −0.567813 + 0.712015i
\(703\) −1.32759 5.81656i −0.0500711 0.219376i
\(704\) 3.32855 1.60295i 0.125450 0.0604133i
\(705\) 0 0
\(706\) −1.60992 + 7.05350i −0.0605900 + 0.265462i
\(707\) 63.6299 + 30.6425i 2.39305 + 1.15243i
\(708\) 5.05562 0.190002
\(709\) −37.9267 18.2645i −1.42437 0.685939i −0.446426 0.894821i \(-0.647303\pi\)
−0.977941 + 0.208882i \(0.933018\pi\)
\(710\) 0 0
\(711\) 1.03803 1.30165i 0.0389292 0.0488157i
\(712\) 1.73998 + 0.837930i 0.0652085 + 0.0314028i
\(713\) −26.2989 −0.984901
\(714\) −3.24698 1.56366i −0.121515 0.0585186i
\(715\) 0 0
\(716\) 6.44989 3.10610i 0.241044 0.116080i
\(717\) −3.59395 + 1.73076i −0.134219 + 0.0646362i
\(718\) 0.299249 + 1.31110i 0.0111679 + 0.0489297i
\(719\) −32.5800 + 40.8540i −1.21503 + 1.52360i −0.431667 + 0.902033i \(0.642074\pi\)
−0.783362 + 0.621566i \(0.786497\pi\)
\(720\) 0 0
\(721\) −2.53534 + 11.1081i −0.0944211 + 0.413686i
\(722\) 5.93512 + 26.0034i 0.220882 + 0.967748i
\(723\) −5.52177 6.92408i −0.205357 0.257509i
\(724\) −8.28083 −0.307755
\(725\) 0 0
\(726\) 2.02177 0.0750349
\(727\) −18.6953 23.4432i −0.693370 0.869459i 0.303138 0.952947i \(-0.401966\pi\)
−0.996509 + 0.0834876i \(0.973394\pi\)
\(728\) −6.33997 27.7772i −0.234975 1.02949i
\(729\) 3.75733 16.4619i 0.139160 0.609702i
\(730\) 0 0
\(731\) 3.97285 4.98180i 0.146941 0.184259i
\(732\) −0.746980 3.27273i −0.0276092 0.120964i
\(733\) 2.71595 1.30793i 0.100316 0.0483096i −0.383053 0.923726i \(-0.625127\pi\)
0.483369 + 0.875417i \(0.339413\pi\)
\(734\) −55.2781 + 26.6205i −2.04035 + 0.982581i
\(735\) 0 0
\(736\) 23.0574 + 11.1039i 0.849907 + 0.409294i
\(737\) −1.09006 −0.0401531
\(738\) 1.80194 + 0.867767i 0.0663302 + 0.0319430i
\(739\) −12.9919 + 16.2914i −0.477916 + 0.599288i −0.961090 0.276237i \(-0.910913\pi\)
0.483174 + 0.875525i \(0.339484\pi\)
\(740\) 0 0
\(741\) −4.26055 2.05177i −0.156515 0.0753738i
\(742\) 31.7875 1.16695
\(743\) −27.7189 13.3487i −1.01691 0.489718i −0.150266 0.988646i \(-0.548013\pi\)
−0.866643 + 0.498928i \(0.833727\pi\)
\(744\) 0.854207 3.74253i 0.0313168 0.137208i
\(745\) 0 0
\(746\) 45.4587 21.8917i 1.66436 0.801514i
\(747\) 5.88135 + 25.7679i 0.215188 + 0.942798i
\(748\) −2.51275 + 3.15088i −0.0918751 + 0.115208i
\(749\) 18.8327 + 23.6155i 0.688133 + 0.862892i
\(750\) 0 0
\(751\) 0.994492 + 4.35715i 0.0362895 + 0.158995i 0.989826 0.142283i \(-0.0454442\pi\)
−0.953537 + 0.301277i \(0.902587\pi\)
\(752\) −24.0254 30.1269i −0.876117 1.09862i
\(753\) −11.4843 −0.418510
\(754\) −19.3753 + 46.4439i −0.705607 + 1.69139i
\(755\) 0 0
\(756\) 8.12833 + 10.1926i 0.295625 + 0.370702i
\(757\) −1.88159 8.24379i −0.0683876 0.299626i 0.929155 0.369691i \(-0.120536\pi\)
−0.997542 + 0.0700652i \(0.977679\pi\)
\(758\) −9.17456 + 40.1964i −0.333235 + 1.46000i
\(759\) −3.34266 4.19156i −0.121331 0.152144i
\(760\) 0 0
\(761\) −5.49516 24.0759i −0.199199 0.872749i −0.971415 0.237388i \(-0.923709\pi\)
0.772216 0.635361i \(-0.219149\pi\)
\(762\) −7.56638 + 3.64377i −0.274101 + 0.132000i
\(763\) 6.02930 2.90356i 0.218275 0.105116i
\(764\) 5.21983 22.8696i 0.188847 0.827392i
\(765\) 0 0
\(766\) −21.3676 −0.772045
\(767\) −42.5652 20.4983i −1.53694 0.740152i
\(768\) −5.74698 + 7.20648i −0.207376 + 0.260042i
\(769\) 18.7939 23.5668i 0.677724 0.849839i −0.317418 0.948286i \(-0.602816\pi\)
0.995142 + 0.0984462i \(0.0313872\pi\)
\(770\) 0 0
\(771\) 5.31873 0.191549
\(772\) 12.2289 + 5.88911i 0.440126 + 0.211954i
\(773\) 1.26324 5.53462i 0.0454356 0.199067i −0.947116 0.320892i \(-0.896018\pi\)
0.992552 + 0.121825i \(0.0388747\pi\)
\(774\) −26.1151 + 12.5763i −0.938686 + 0.452048i
\(775\) 0 0
\(776\) −4.75571 20.8361i −0.170720 0.747973i
\(777\) −3.27144 + 4.10225i −0.117362 + 0.147168i
\(778\) −11.6746 14.6394i −0.418553 0.524849i
\(779\) −0.180604 + 0.791277i −0.00647081 + 0.0283504i
\(780\) 0 0
\(781\) −20.7074 25.9662i −0.740968 0.929145i
\(782\) −8.27413 −0.295882
\(783\) 0.744587 + 13.8851i 0.0266094 + 0.496213i
\(784\) −46.3957 −1.65699
\(785\) 0 0
\(786\) −0.0811457 0.355523i −0.00289437 0.0126811i
\(787\) −0.803134 + 3.51876i −0.0286286 + 0.125430i −0.987223 0.159345i \(-0.949062\pi\)
0.958594 + 0.284775i \(0.0919190\pi\)
\(788\) 6.53116 + 8.18982i 0.232663 + 0.291750i
\(789\) −0.0923264 + 0.115774i −0.00328691 + 0.00412165i
\(790\) 0 0
\(791\) 31.5209 15.1797i 1.12075 0.539726i
\(792\) −9.97434 + 4.80339i −0.354423 + 0.170681i
\(793\) −6.98039 + 30.5831i −0.247881 + 1.08604i
\(794\) 13.3409 + 6.42465i 0.473452 + 0.228002i
\(795\) 0 0
\(796\) 7.43900 + 3.58243i 0.263668 + 0.126976i
\(797\) 19.1930 24.0672i 0.679850 0.852505i −0.315490 0.948929i \(-0.602169\pi\)
0.995340 + 0.0964236i \(0.0307403\pi\)
\(798\) −4.14795 + 5.20136i −0.146836 + 0.184126i
\(799\) 7.80194 + 3.75722i 0.276013 + 0.132921i
\(800\) 0 0
\(801\) 3.59299 + 1.73029i 0.126952 + 0.0611369i
\(802\) −9.97650 + 43.7099i −0.352282 + 1.54345i
\(803\) −23.4768 + 11.3058i −0.828478 + 0.398974i
\(804\) −0.187177 + 0.0901398i −0.00660123 + 0.00317898i
\(805\) 0 0
\(806\) 37.0378 46.4439i 1.30460 1.63592i
\(807\) 0.295233 + 0.370210i 0.0103927 + 0.0130320i
\(808\) −5.26659 + 23.0745i −0.185278 + 0.811757i
\(809\) −1.16541 5.10598i −0.0409735 0.179517i 0.950300 0.311334i \(-0.100776\pi\)
−0.991274 + 0.131817i \(0.957919\pi\)
\(810\) 0 0
\(811\) 41.8646 1.47006 0.735032 0.678032i \(-0.237167\pi\)
0.735032 + 0.678032i \(0.237167\pi\)
\(812\) 22.1347 + 15.7896i 0.776775 + 0.554107i
\(813\) 7.32736 0.256982
\(814\) 9.52595 + 11.9452i 0.333884 + 0.418678i
\(815\) 0 0
\(816\) 0.542877 2.37850i 0.0190045 0.0832641i
\(817\) −7.33393 9.19646i −0.256582 0.321743i
\(818\) 21.2289 26.6201i 0.742250 0.930752i
\(819\) −13.0918 57.3589i −0.457464 2.00428i
\(820\) 0 0
\(821\) −13.8802 + 6.68433i −0.484421 + 0.233285i −0.660121 0.751159i \(-0.729495\pi\)
0.175701 + 0.984444i \(0.443781\pi\)
\(822\) 2.36270 10.3517i 0.0824086 0.361056i
\(823\) −32.1247 15.4705i −1.11980 0.539266i −0.219968 0.975507i \(-0.570595\pi\)
−0.899830 + 0.436241i \(0.856310\pi\)
\(824\) −3.81833 −0.133018
\(825\) 0 0
\(826\) −41.4403 + 51.9644i −1.44189 + 1.80807i
\(827\) 32.4550 40.6973i 1.12857 1.41518i 0.231760 0.972773i \(-0.425552\pi\)
0.896812 0.442411i \(-0.145877\pi\)
\(828\) 13.0233 + 6.27167i 0.452590 + 0.217956i
\(829\) −13.4168 −0.465986 −0.232993 0.972478i \(-0.574852\pi\)
−0.232993 + 0.972478i \(0.574852\pi\)
\(830\) 0 0
\(831\) −0.653030 + 2.86111i −0.0226534 + 0.0992508i
\(832\) −5.92812 + 2.85483i −0.205520 + 0.0989734i
\(833\) 9.39373 4.52378i 0.325474 0.156740i
\(834\) −0.499041 2.18644i −0.0172804 0.0757102i
\(835\) 0 0
\(836\) 4.63856 + 5.81656i 0.160428 + 0.201170i
\(837\) 3.65250 16.0026i 0.126249 0.553132i
\(838\) 4.36754 + 19.1355i 0.150874 + 0.661024i
\(839\) −19.3602 24.2769i −0.668387 0.838131i 0.325840 0.945425i \(-0.394353\pi\)
−0.994227 + 0.107294i \(0.965782\pi\)
\(840\) 0 0
\(841\) 9.43967 + 27.4207i 0.325506 + 0.945540i
\(842\) −35.9681 −1.23954
\(843\) 8.47285 + 10.6246i 0.291821 + 0.365931i
\(844\) 2.24764 + 9.84757i 0.0773671 + 0.338967i
\(845\) 0 0
\(846\) −24.5601 30.7974i −0.844394 1.05884i
\(847\) −6.36443 + 7.98074i −0.218684 + 0.274222i
\(848\) 4.78836 + 20.9792i 0.164433 + 0.720428i
\(849\) 1.42543 0.686450i 0.0489205 0.0235589i
\(850\) 0 0
\(851\) −2.68060 + 11.7445i −0.0918899 + 0.402596i
\(852\) −5.70291 2.74638i −0.195378 0.0940893i
\(853\) −21.3357 −0.730521 −0.365261 0.930905i \(-0.619020\pi\)
−0.365261 + 0.930905i \(0.619020\pi\)
\(854\) 39.7618 + 19.1483i 1.36062 + 0.655241i
\(855\) 0 0
\(856\) −6.31133 + 7.91416i −0.215717 + 0.270500i
\(857\) −8.85839 4.26597i −0.302597 0.145723i 0.276424 0.961036i \(-0.410851\pi\)
−0.579021 + 0.815313i \(0.696565\pi\)
\(858\) 12.1099 0.413426
\(859\) 46.6555 + 22.4681i 1.59187 + 0.766602i 0.999244 0.0388778i \(-0.0123783\pi\)
0.592623 + 0.805480i \(0.298093\pi\)
\(860\) 0 0
\(861\) 0.643104 0.309703i 0.0219169 0.0105546i
\(862\) 49.0136 23.6037i 1.66941 0.803946i
\(863\) −3.62147 15.8667i −0.123276 0.540108i −0.998417 0.0562402i \(-0.982089\pi\)
0.875141 0.483868i \(-0.160768\pi\)
\(864\) −9.95891 + 12.4881i −0.338809 + 0.424853i
\(865\) 0 0
\(866\) −8.09611 + 35.4714i −0.275117 + 1.20537i
\(867\) −1.56153 6.84152i −0.0530324 0.232350i
\(868\) −20.0112 25.0932i −0.679224 0.851720i
\(869\) −1.73019 −0.0586925
\(870\) 0 0
\(871\) 1.94139 0.0657816
\(872\) 1.39828 + 1.75339i 0.0473518 + 0.0593772i
\(873\) −9.82036 43.0258i −0.332369 1.45620i
\(874\) −3.39881 + 14.8912i −0.114967 + 0.503701i
\(875\) 0 0
\(876\) −3.09634 + 3.88269i −0.104616 + 0.131184i
\(877\) 3.29470 + 14.4350i 0.111254 + 0.487436i 0.999601 + 0.0282623i \(0.00899737\pi\)
−0.888346 + 0.459174i \(0.848145\pi\)
\(878\) 17.3143 8.33813i 0.584330 0.281398i
\(879\) −13.1838 + 6.34900i −0.444679 + 0.214146i
\(880\) 0 0
\(881\) 16.7920 + 8.08661i 0.565737 + 0.272445i 0.694813 0.719190i \(-0.255487\pi\)
−0.129076 + 0.991635i \(0.541201\pi\)
\(882\) −47.4282 −1.59699
\(883\) −29.1857 14.0551i −0.982178 0.472992i −0.127325 0.991861i \(-0.540639\pi\)
−0.854854 + 0.518869i \(0.826353\pi\)
\(884\) 4.47517 5.61169i 0.150516 0.188742i
\(885\) 0 0
\(886\) −33.0383 15.9104i −1.10994 0.534521i
\(887\) 6.16288 0.206929 0.103465 0.994633i \(-0.467007\pi\)
0.103465 + 0.994633i \(0.467007\pi\)
\(888\) −1.58426 0.762940i −0.0531643 0.0256026i
\(889\) 9.43512 41.3379i 0.316444 1.38643i
\(890\) 0 0
\(891\) −19.0378 + 9.16812i −0.637790 + 0.307144i
\(892\) 6.08211 + 26.6474i 0.203644 + 0.892222i
\(893\) 9.96681 12.4980i 0.333527 0.418229i
\(894\) −1.35421 1.69812i −0.0452915 0.0567937i
\(895\) 0 0
\(896\) −9.08695 39.8125i −0.303574 1.33004i
\(897\) 5.95324 + 7.46513i 0.198773 + 0.249253i
\(898\) 34.9995 1.16795
\(899\) −1.83310 34.1838i −0.0611373 1.14009i
\(900\) 0 0
\(901\) −3.01507 3.78077i −0.100446 0.125956i
\(902\) −0.462500 2.02635i −0.0153996 0.0674699i
\(903\) −2.30194 + 10.0854i −0.0766037 + 0.335623i
\(904\) 7.31013 + 9.16662i 0.243131 + 0.304877i
\(905\) 0 0
\(906\) −0.434584 1.90404i −0.0144381 0.0632574i
\(907\) 39.6284 19.0840i 1.31584 0.633675i 0.361492 0.932375i \(-0.382267\pi\)
0.954347 + 0.298700i \(0.0965531\pi\)
\(908\) −20.5356 + 9.88944i −0.681499 + 0.328193i
\(909\) −10.8753 + 47.6479i −0.360711 + 1.58038i
\(910\) 0 0
\(911\) −25.6233 −0.848936 −0.424468 0.905443i \(-0.639539\pi\)
−0.424468 + 0.905443i \(0.639539\pi\)
\(912\) −4.05765 1.95406i −0.134362 0.0647054i
\(913\) 17.1256 21.4749i 0.566776 0.710715i
\(914\) 13.9547 17.4987i 0.461581 0.578805i
\(915\) 0 0
\(916\) 19.9825 0.660242
\(917\) 1.65883 + 0.798852i 0.0547795 + 0.0263804i
\(918\) 1.14914 5.03473i 0.0379274 0.166171i
\(919\) 5.62349 2.70813i 0.185502 0.0893330i −0.338828 0.940848i \(-0.610030\pi\)
0.524329 + 0.851516i \(0.324316\pi\)
\(920\) 0 0
\(921\) −1.45281 6.36518i −0.0478718 0.209740i
\(922\) −24.6564 + 30.9182i −0.812017 + 1.01824i
\(923\) 36.8796 + 46.2456i 1.21391 + 1.52219i
\(924\) 1.45593 6.37883i 0.0478965 0.209848i
\(925\) 0 0
\(926\) 37.0834 + 46.5011i 1.21863 + 1.52812i
\(927\) −7.88471 −0.258968
\(928\) −12.8259 + 30.7445i −0.421030 + 1.00924i
\(929\) −24.5133 −0.804256 −0.402128 0.915583i \(-0.631729\pi\)
−0.402128 + 0.915583i \(0.631729\pi\)
\(930\) 0 0
\(931\) −4.28286 18.7644i −0.140365 0.614979i
\(932\) 0.542877 2.37850i 0.0177825 0.0779103i
\(933\) −5.14071 6.44625i −0.168299 0.211041i
\(934\) 29.3267 36.7745i 0.959599 1.20330i
\(935\) 0 0
\(936\) 17.7642 8.55479i 0.580641 0.279622i
\(937\) −3.68449 + 1.77436i −0.120367 + 0.0579657i −0.493098 0.869974i \(-0.664136\pi\)
0.372731 + 0.927939i \(0.378421\pi\)
\(938\) 0.607760 2.66277i 0.0198441 0.0869426i
\(939\) −9.21917 4.43972i −0.300856 0.144885i
\(940\) 0 0
\(941\) −5.55280 2.67409i −0.181016 0.0871728i 0.341181 0.939998i \(-0.389173\pi\)
−0.522197 + 0.852825i \(0.674887\pi\)
\(942\) 8.83877 11.0835i 0.287983 0.361119i
\(943\) 1.02177 1.28126i 0.0332734 0.0417235i
\(944\) −40.5381 19.5221i −1.31940 0.635391i
\(945\) 0 0
\(946\) 27.1395 + 13.0697i 0.882382 + 0.424933i
\(947\) −11.0598 + 48.4562i −0.359395 + 1.57461i 0.395309 + 0.918548i \(0.370638\pi\)
−0.754704 + 0.656065i \(0.772220\pi\)
\(948\) −0.297093 + 0.143073i −0.00964914 + 0.00464678i
\(949\) 41.8119 20.1356i 1.35727 0.653628i
\(950\) 0 0
\(951\) 3.90097 4.89166i 0.126498 0.158623i
\(952\) 3.80194 + 4.76748i 0.123222 + 0.154515i
\(953\) 3.93541 17.2422i 0.127480 0.558529i −0.870335 0.492461i \(-0.836098\pi\)
0.997815 0.0660678i \(-0.0210454\pi\)
\(954\) 4.89493 + 21.4461i 0.158479 + 0.694343i
\(955\) 0 0
\(956\) −11.1769 −0.361486
\(957\) 5.21528 4.63702i 0.168586 0.149893i
\(958\) 59.5827 1.92503
\(959\) 33.4245 + 41.9130i 1.07933 + 1.35344i
\(960\) 0 0
\(961\) −2.09395 + 9.17419i −0.0675468 + 0.295942i
\(962\) −16.9656 21.2742i −0.546993 0.685908i
\(963\) −13.0327 + 16.3424i −0.419971 + 0.526628i
\(964\) −5.52177 24.1925i −0.177844 0.779187i
\(965\) 0 0
\(966\) 12.1027 5.82834i 0.389397 0.187524i
\(967\) −2.86904 + 12.5701i −0.0922620 + 0.404226i −0.999879 0.0155736i \(-0.995043\pi\)
0.907617 + 0.419800i \(0.137900\pi\)
\(968\) −3.08211 1.48426i −0.0990626 0.0477060i
\(969\) 1.01208 0.0325127
\(970\) 0 0
\(971\) 3.01610 3.78207i 0.0967912 0.121372i −0.731077 0.682295i \(-0.760982\pi\)
0.827868 + 0.560923i \(0.189553\pi\)
\(972\) −8.53348 + 10.7006i −0.273712 + 0.343223i
\(973\) 10.2017 + 4.91288i 0.327052 + 0.157500i
\(974\) 18.3013 0.586411
\(975\) 0 0
\(976\) −6.64795 + 29.1266i −0.212796 + 0.932319i
\(977\) 14.8138 7.13394i 0.473935 0.228235i −0.181640 0.983365i \(-0.558141\pi\)
0.655575 + 0.755130i \(0.272426\pi\)
\(978\) 3.58815 1.72796i 0.114736 0.0552541i
\(979\) −0.922207 4.04045i −0.0294739 0.129133i
\(980\) 0 0
\(981\) 2.88740 + 3.62068i 0.0921874 + 0.115599i
\(982\) 7.89181 34.5763i 0.251838 1.10337i
\(983\) 5.89666 + 25.8349i 0.188074 + 0.824007i 0.977631 + 0.210329i \(0.0674535\pi\)
−0.789557 + 0.613678i \(0.789689\pi\)
\(984\) 0.149145 + 0.187022i 0.00475457 + 0.00596204i
\(985\) 0 0
\(986\) −0.576728 10.7549i −0.0183668 0.342505i
\(987\) −14.0586 −0.447490
\(988\) −8.26122 10.3592i −0.262824 0.329571i
\(989\) 5.28501 + 23.1551i 0.168054 + 0.736291i
\(990\) 0 0
\(991\) 25.1930 + 31.5910i 0.800281 + 1.00352i 0.999721 + 0.0236111i \(0.00751634\pi\)
−0.199440 + 0.979910i \(0.563912\pi\)
\(992\) 24.5179 30.7445i 0.778444 0.976137i
\(993\) 1.38212 + 6.05548i 0.0438604 + 0.192165i
\(994\) 74.9747 36.1059i 2.37805 1.14521i
\(995\) 0 0
\(996\) 1.16487 5.10365i 0.0369105 0.161715i
\(997\) −21.1325 10.1769i −0.669273 0.322305i 0.0682093 0.997671i \(-0.478271\pi\)
−0.737483 + 0.675366i \(0.763986\pi\)
\(998\) 50.1831 1.58852
\(999\) −6.77413 3.26225i −0.214324 0.103213i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.l.b.401.1 6
5.2 odd 4 725.2.r.b.24.1 12
5.3 odd 4 725.2.r.b.24.2 12
5.4 even 2 29.2.d.a.24.1 yes 6
15.14 odd 2 261.2.k.a.82.1 6
20.19 odd 2 464.2.u.f.401.1 6
29.23 even 7 inner 725.2.l.b.226.1 6
145.4 even 14 841.2.d.c.645.1 6
145.9 even 14 841.2.a.f.1.3 3
145.14 odd 28 841.2.e.d.267.2 12
145.19 odd 28 841.2.e.c.196.2 12
145.23 odd 28 725.2.r.b.574.1 12
145.24 even 14 841.2.d.e.571.1 6
145.34 even 14 841.2.d.a.571.1 6
145.39 odd 28 841.2.e.c.196.1 12
145.44 odd 28 841.2.e.d.267.1 12
145.49 even 14 841.2.a.e.1.1 3
145.52 odd 28 725.2.r.b.574.2 12
145.54 even 14 841.2.d.b.645.1 6
145.64 even 14 841.2.d.d.574.1 6
145.69 odd 28 841.2.e.c.236.1 12
145.74 even 14 841.2.d.b.605.1 6
145.79 odd 28 841.2.b.c.840.6 6
145.84 odd 28 841.2.e.b.651.1 12
145.89 odd 28 841.2.e.b.270.1 12
145.94 even 14 841.2.d.e.190.1 6
145.99 odd 4 841.2.e.d.63.2 12
145.104 odd 4 841.2.e.d.63.1 12
145.109 even 14 841.2.d.a.190.1 6
145.114 odd 28 841.2.e.b.270.2 12
145.119 odd 28 841.2.e.b.651.2 12
145.124 odd 28 841.2.b.c.840.1 6
145.129 even 14 841.2.d.c.605.1 6
145.134 odd 28 841.2.e.c.236.2 12
145.139 even 14 29.2.d.a.23.1 6
145.144 even 2 841.2.d.d.778.1 6
435.194 odd 14 7569.2.a.r.1.3 3
435.284 odd 14 261.2.k.a.226.1 6
435.299 odd 14 7569.2.a.p.1.1 3
580.139 odd 14 464.2.u.f.81.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
29.2.d.a.23.1 6 145.139 even 14
29.2.d.a.24.1 yes 6 5.4 even 2
261.2.k.a.82.1 6 15.14 odd 2
261.2.k.a.226.1 6 435.284 odd 14
464.2.u.f.81.1 6 580.139 odd 14
464.2.u.f.401.1 6 20.19 odd 2
725.2.l.b.226.1 6 29.23 even 7 inner
725.2.l.b.401.1 6 1.1 even 1 trivial
725.2.r.b.24.1 12 5.2 odd 4
725.2.r.b.24.2 12 5.3 odd 4
725.2.r.b.574.1 12 145.23 odd 28
725.2.r.b.574.2 12 145.52 odd 28
841.2.a.e.1.1 3 145.49 even 14
841.2.a.f.1.3 3 145.9 even 14
841.2.b.c.840.1 6 145.124 odd 28
841.2.b.c.840.6 6 145.79 odd 28
841.2.d.a.190.1 6 145.109 even 14
841.2.d.a.571.1 6 145.34 even 14
841.2.d.b.605.1 6 145.74 even 14
841.2.d.b.645.1 6 145.54 even 14
841.2.d.c.605.1 6 145.129 even 14
841.2.d.c.645.1 6 145.4 even 14
841.2.d.d.574.1 6 145.64 even 14
841.2.d.d.778.1 6 145.144 even 2
841.2.d.e.190.1 6 145.94 even 14
841.2.d.e.571.1 6 145.24 even 14
841.2.e.b.270.1 12 145.89 odd 28
841.2.e.b.270.2 12 145.114 odd 28
841.2.e.b.651.1 12 145.84 odd 28
841.2.e.b.651.2 12 145.119 odd 28
841.2.e.c.196.1 12 145.39 odd 28
841.2.e.c.196.2 12 145.19 odd 28
841.2.e.c.236.1 12 145.69 odd 28
841.2.e.c.236.2 12 145.134 odd 28
841.2.e.d.63.1 12 145.104 odd 4
841.2.e.d.63.2 12 145.99 odd 4
841.2.e.d.267.1 12 145.44 odd 28
841.2.e.d.267.2 12 145.14 odd 28
7569.2.a.p.1.1 3 435.299 odd 14
7569.2.a.r.1.3 3 435.194 odd 14