Properties

Label 2646.2.f.q.883.2
Level $2646$
Weight $2$
Character 2646.883
Analytic conductor $21.128$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(883,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.883");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: no (minimal twist has level 882)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 883.2
Root \(0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 2646.883
Dual form 2646.2.f.q.1765.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.258819 - 0.448288i) q^{5} +1.00000 q^{8} +0.517638 q^{10} +(-0.732051 + 1.26795i) q^{11} +(-1.22474 - 2.12132i) q^{13} +(-0.500000 + 0.866025i) q^{16} -3.48477 q^{17} -0.517638 q^{19} +(-0.258819 + 0.448288i) q^{20} +(-0.732051 - 1.26795i) q^{22} +(3.96410 + 6.86603i) q^{23} +(2.36603 - 4.09808i) q^{25} +2.44949 q^{26} +(1.36603 - 2.36603i) q^{29} +(3.67423 + 6.36396i) q^{31} +(-0.500000 - 0.866025i) q^{32} +(1.74238 - 3.01790i) q^{34} -8.00000 q^{37} +(0.258819 - 0.448288i) q^{38} +(-0.258819 - 0.448288i) q^{40} +(-2.82843 - 4.89898i) q^{41} +(6.09808 - 10.5622i) q^{43} +1.46410 q^{44} -7.92820 q^{46} +(2.31079 - 4.00240i) q^{47} +(2.36603 + 4.09808i) q^{50} +(-1.22474 + 2.12132i) q^{52} -6.73205 q^{53} +0.757875 q^{55} +(1.36603 + 2.36603i) q^{58} +(-7.39924 - 12.8159i) q^{59} +(2.19067 - 3.79435i) q^{61} -7.34847 q^{62} +1.00000 q^{64} +(-0.633975 + 1.09808i) q^{65} +(1.90192 + 3.29423i) q^{67} +(1.74238 + 3.01790i) q^{68} +0.803848 q^{71} -4.62158 q^{73} +(4.00000 - 6.92820i) q^{74} +(0.258819 + 0.448288i) q^{76} +(-7.06218 + 12.2321i) q^{79} +0.517638 q^{80} +5.65685 q^{82} +(4.94975 - 8.57321i) q^{83} +(0.901924 + 1.56218i) q^{85} +(6.09808 + 10.5622i) q^{86} +(-0.732051 + 1.26795i) q^{88} -16.1112 q^{89} +(3.96410 - 6.86603i) q^{92} +(2.31079 + 4.00240i) q^{94} +(0.133975 + 0.232051i) q^{95} +(-0.517638 + 0.896575i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 4 q^{2} - 4 q^{4} + 8 q^{8} + 8 q^{11} - 4 q^{16} + 8 q^{22} + 4 q^{23} + 12 q^{25} + 4 q^{29} - 4 q^{32} - 64 q^{37} + 28 q^{43} - 16 q^{44} - 8 q^{46} + 12 q^{50} - 40 q^{53} + 4 q^{58} + 8 q^{64}+ \cdots + 8 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.258819 0.448288i −0.115747 0.200480i 0.802331 0.596880i \(-0.203593\pi\)
−0.918078 + 0.396399i \(0.870260\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) 0.517638 0.163692
\(11\) −0.732051 + 1.26795i −0.220722 + 0.382301i −0.955027 0.296518i \(-0.904175\pi\)
0.734306 + 0.678819i \(0.237508\pi\)
\(12\) 0 0
\(13\) −1.22474 2.12132i −0.339683 0.588348i 0.644690 0.764444i \(-0.276986\pi\)
−0.984373 + 0.176096i \(0.943653\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −3.48477 −0.845180 −0.422590 0.906321i \(-0.638879\pi\)
−0.422590 + 0.906321i \(0.638879\pi\)
\(18\) 0 0
\(19\) −0.517638 −0.118754 −0.0593772 0.998236i \(-0.518911\pi\)
−0.0593772 + 0.998236i \(0.518911\pi\)
\(20\) −0.258819 + 0.448288i −0.0578737 + 0.100240i
\(21\) 0 0
\(22\) −0.732051 1.26795i −0.156074 0.270328i
\(23\) 3.96410 + 6.86603i 0.826572 + 1.43167i 0.900712 + 0.434417i \(0.143046\pi\)
−0.0741394 + 0.997248i \(0.523621\pi\)
\(24\) 0 0
\(25\) 2.36603 4.09808i 0.473205 0.819615i
\(26\) 2.44949 0.480384
\(27\) 0 0
\(28\) 0 0
\(29\) 1.36603 2.36603i 0.253665 0.439360i −0.710867 0.703326i \(-0.751697\pi\)
0.964532 + 0.263966i \(0.0850307\pi\)
\(30\) 0 0
\(31\) 3.67423 + 6.36396i 0.659912 + 1.14300i 0.980638 + 0.195829i \(0.0627398\pi\)
−0.320726 + 0.947172i \(0.603927\pi\)
\(32\) −0.500000 0.866025i −0.0883883 0.153093i
\(33\) 0 0
\(34\) 1.74238 3.01790i 0.298816 0.517565i
\(35\) 0 0
\(36\) 0 0
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) 0.258819 0.448288i 0.0419860 0.0727219i
\(39\) 0 0
\(40\) −0.258819 0.448288i −0.0409229 0.0708805i
\(41\) −2.82843 4.89898i −0.441726 0.765092i 0.556092 0.831121i \(-0.312300\pi\)
−0.997818 + 0.0660290i \(0.978967\pi\)
\(42\) 0 0
\(43\) 6.09808 10.5622i 0.929948 1.61072i 0.146544 0.989204i \(-0.453185\pi\)
0.783404 0.621513i \(-0.213482\pi\)
\(44\) 1.46410 0.220722
\(45\) 0 0
\(46\) −7.92820 −1.16895
\(47\) 2.31079 4.00240i 0.337063 0.583811i −0.646816 0.762646i \(-0.723900\pi\)
0.983879 + 0.178836i \(0.0572331\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.36603 + 4.09808i 0.334607 + 0.579555i
\(51\) 0 0
\(52\) −1.22474 + 2.12132i −0.169842 + 0.294174i
\(53\) −6.73205 −0.924718 −0.462359 0.886693i \(-0.652997\pi\)
−0.462359 + 0.886693i \(0.652997\pi\)
\(54\) 0 0
\(55\) 0.757875 0.102192
\(56\) 0 0
\(57\) 0 0
\(58\) 1.36603 + 2.36603i 0.179368 + 0.310674i
\(59\) −7.39924 12.8159i −0.963299 1.66848i −0.714118 0.700025i \(-0.753172\pi\)
−0.249180 0.968457i \(-0.580161\pi\)
\(60\) 0 0
\(61\) 2.19067 3.79435i 0.280487 0.485817i −0.691018 0.722838i \(-0.742837\pi\)
0.971505 + 0.237020i \(0.0761708\pi\)
\(62\) −7.34847 −0.933257
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −0.633975 + 1.09808i −0.0786349 + 0.136200i
\(66\) 0 0
\(67\) 1.90192 + 3.29423i 0.232357 + 0.402454i 0.958501 0.285088i \(-0.0920229\pi\)
−0.726144 + 0.687542i \(0.758690\pi\)
\(68\) 1.74238 + 3.01790i 0.211295 + 0.365974i
\(69\) 0 0
\(70\) 0 0
\(71\) 0.803848 0.0953992 0.0476996 0.998862i \(-0.484811\pi\)
0.0476996 + 0.998862i \(0.484811\pi\)
\(72\) 0 0
\(73\) −4.62158 −0.540915 −0.270457 0.962732i \(-0.587175\pi\)
−0.270457 + 0.962732i \(0.587175\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) 0 0
\(76\) 0.258819 + 0.448288i 0.0296886 + 0.0514221i
\(77\) 0 0
\(78\) 0 0
\(79\) −7.06218 + 12.2321i −0.794557 + 1.37621i 0.128563 + 0.991701i \(0.458964\pi\)
−0.923120 + 0.384512i \(0.874370\pi\)
\(80\) 0.517638 0.0578737
\(81\) 0 0
\(82\) 5.65685 0.624695
\(83\) 4.94975 8.57321i 0.543305 0.941033i −0.455406 0.890284i \(-0.650506\pi\)
0.998711 0.0507487i \(-0.0161607\pi\)
\(84\) 0 0
\(85\) 0.901924 + 1.56218i 0.0978274 + 0.169442i
\(86\) 6.09808 + 10.5622i 0.657572 + 1.13895i
\(87\) 0 0
\(88\) −0.732051 + 1.26795i −0.0780369 + 0.135164i
\(89\) −16.1112 −1.70778 −0.853889 0.520455i \(-0.825763\pi\)
−0.853889 + 0.520455i \(0.825763\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.96410 6.86603i 0.413286 0.715833i
\(93\) 0 0
\(94\) 2.31079 + 4.00240i 0.238340 + 0.412816i
\(95\) 0.133975 + 0.232051i 0.0137455 + 0.0238079i
\(96\) 0 0
\(97\) −0.517638 + 0.896575i −0.0525582 + 0.0910334i −0.891108 0.453792i \(-0.850071\pi\)
0.838549 + 0.544826i \(0.183404\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −4.73205 −0.473205
\(101\) −2.89778 + 5.01910i −0.288340 + 0.499419i −0.973414 0.229055i \(-0.926437\pi\)
0.685074 + 0.728474i \(0.259770\pi\)
\(102\) 0 0
\(103\) −5.60609 9.71003i −0.552384 0.956757i −0.998102 0.0615838i \(-0.980385\pi\)
0.445718 0.895174i \(-0.352948\pi\)
\(104\) −1.22474 2.12132i −0.120096 0.208013i
\(105\) 0 0
\(106\) 3.36603 5.83013i 0.326937 0.566272i
\(107\) −3.07180 −0.296962 −0.148481 0.988915i \(-0.547438\pi\)
−0.148481 + 0.988915i \(0.547438\pi\)
\(108\) 0 0
\(109\) 10.5885 1.01419 0.507095 0.861890i \(-0.330719\pi\)
0.507095 + 0.861890i \(0.330719\pi\)
\(110\) −0.378937 + 0.656339i −0.0361303 + 0.0625794i
\(111\) 0 0
\(112\) 0 0
\(113\) −7.33013 12.6962i −0.689560 1.19435i −0.971980 0.235063i \(-0.924470\pi\)
0.282420 0.959291i \(-0.408863\pi\)
\(114\) 0 0
\(115\) 2.05197 3.55412i 0.191347 0.331423i
\(116\) −2.73205 −0.253665
\(117\) 0 0
\(118\) 14.7985 1.36231
\(119\) 0 0
\(120\) 0 0
\(121\) 4.42820 + 7.66987i 0.402564 + 0.697261i
\(122\) 2.19067 + 3.79435i 0.198334 + 0.343525i
\(123\) 0 0
\(124\) 3.67423 6.36396i 0.329956 0.571501i
\(125\) −5.03768 −0.450584
\(126\) 0 0
\(127\) −5.92820 −0.526043 −0.263021 0.964790i \(-0.584719\pi\)
−0.263021 + 0.964790i \(0.584719\pi\)
\(128\) −0.500000 + 0.866025i −0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) −0.633975 1.09808i −0.0556033 0.0963077i
\(131\) −6.24384 10.8147i −0.545527 0.944881i −0.998574 0.0533937i \(-0.982996\pi\)
0.453046 0.891487i \(-0.350337\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) −3.80385 −0.328602
\(135\) 0 0
\(136\) −3.48477 −0.298816
\(137\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(138\) 0 0
\(139\) −10.1075 17.5068i −0.857311 1.48491i −0.874485 0.485053i \(-0.838800\pi\)
0.0171736 0.999853i \(-0.494533\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) −0.401924 + 0.696152i −0.0337287 + 0.0584198i
\(143\) 3.58630 0.299902
\(144\) 0 0
\(145\) −1.41421 −0.117444
\(146\) 2.31079 4.00240i 0.191242 0.331241i
\(147\) 0 0
\(148\) 4.00000 + 6.92820i 0.328798 + 0.569495i
\(149\) −1.19615 2.07180i −0.0979926 0.169728i 0.812861 0.582458i \(-0.197909\pi\)
−0.910854 + 0.412729i \(0.864575\pi\)
\(150\) 0 0
\(151\) 8.69615 15.0622i 0.707683 1.22574i −0.258032 0.966136i \(-0.583074\pi\)
0.965715 0.259606i \(-0.0835928\pi\)
\(152\) −0.517638 −0.0419860
\(153\) 0 0
\(154\) 0 0
\(155\) 1.90192 3.29423i 0.152766 0.264599i
\(156\) 0 0
\(157\) −8.64256 14.9694i −0.689752 1.19469i −0.971918 0.235320i \(-0.924386\pi\)
0.282166 0.959366i \(-0.408947\pi\)
\(158\) −7.06218 12.2321i −0.561837 0.973130i
\(159\) 0 0
\(160\) −0.258819 + 0.448288i −0.0204614 + 0.0354403i
\(161\) 0 0
\(162\) 0 0
\(163\) −7.07180 −0.553906 −0.276953 0.960883i \(-0.589325\pi\)
−0.276953 + 0.960883i \(0.589325\pi\)
\(164\) −2.82843 + 4.89898i −0.220863 + 0.382546i
\(165\) 0 0
\(166\) 4.94975 + 8.57321i 0.384175 + 0.665410i
\(167\) −6.64136 11.5032i −0.513924 0.890143i −0.999870 0.0161534i \(-0.994858\pi\)
0.485945 0.873989i \(-0.338475\pi\)
\(168\) 0 0
\(169\) 3.50000 6.06218i 0.269231 0.466321i
\(170\) −1.80385 −0.138349
\(171\) 0 0
\(172\) −12.1962 −0.929948
\(173\) 9.71003 16.8183i 0.738240 1.27867i −0.215048 0.976604i \(-0.568991\pi\)
0.953287 0.302065i \(-0.0976760\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −0.732051 1.26795i −0.0551804 0.0955753i
\(177\) 0 0
\(178\) 8.05558 13.9527i 0.603791 1.04580i
\(179\) 8.19615 0.612609 0.306305 0.951934i \(-0.400907\pi\)
0.306305 + 0.951934i \(0.400907\pi\)
\(180\) 0 0
\(181\) 20.9730 1.55891 0.779454 0.626459i \(-0.215497\pi\)
0.779454 + 0.626459i \(0.215497\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 3.96410 + 6.86603i 0.292237 + 0.506170i
\(185\) 2.07055 + 3.58630i 0.152230 + 0.263670i
\(186\) 0 0
\(187\) 2.55103 4.41851i 0.186549 0.323113i
\(188\) −4.62158 −0.337063
\(189\) 0 0
\(190\) −0.267949 −0.0194391
\(191\) −3.59808 + 6.23205i −0.260348 + 0.450935i −0.966334 0.257290i \(-0.917171\pi\)
0.705987 + 0.708225i \(0.250504\pi\)
\(192\) 0 0
\(193\) 11.8660 + 20.5526i 0.854135 + 1.47941i 0.877445 + 0.479677i \(0.159246\pi\)
−0.0233098 + 0.999728i \(0.507420\pi\)
\(194\) −0.517638 0.896575i −0.0371642 0.0643704i
\(195\) 0 0
\(196\) 0 0
\(197\) −9.66025 −0.688265 −0.344132 0.938921i \(-0.611827\pi\)
−0.344132 + 0.938921i \(0.611827\pi\)
\(198\) 0 0
\(199\) −11.5911 −0.821672 −0.410836 0.911709i \(-0.634763\pi\)
−0.410836 + 0.911709i \(0.634763\pi\)
\(200\) 2.36603 4.09808i 0.167303 0.289778i
\(201\) 0 0
\(202\) −2.89778 5.01910i −0.203887 0.353142i
\(203\) 0 0
\(204\) 0 0
\(205\) −1.46410 + 2.53590i −0.102257 + 0.177115i
\(206\) 11.2122 0.781189
\(207\) 0 0
\(208\) 2.44949 0.169842
\(209\) 0.378937 0.656339i 0.0262116 0.0453999i
\(210\) 0 0
\(211\) −0.633975 1.09808i −0.0436446 0.0755947i 0.843378 0.537321i \(-0.180564\pi\)
−0.887022 + 0.461726i \(0.847230\pi\)
\(212\) 3.36603 + 5.83013i 0.231180 + 0.400415i
\(213\) 0 0
\(214\) 1.53590 2.66025i 0.104992 0.181851i
\(215\) −6.31319 −0.430556
\(216\) 0 0
\(217\) 0 0
\(218\) −5.29423 + 9.16987i −0.358570 + 0.621062i
\(219\) 0 0
\(220\) −0.378937 0.656339i −0.0255480 0.0442504i
\(221\) 4.26795 + 7.39230i 0.287093 + 0.497260i
\(222\) 0 0
\(223\) 1.88108 3.25813i 0.125967 0.218181i −0.796144 0.605108i \(-0.793130\pi\)
0.922110 + 0.386927i \(0.126463\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 14.6603 0.975186
\(227\) −1.67303 + 2.89778i −0.111043 + 0.192332i −0.916191 0.400742i \(-0.868752\pi\)
0.805148 + 0.593074i \(0.202086\pi\)
\(228\) 0 0
\(229\) 6.90018 + 11.9515i 0.455977 + 0.789775i 0.998744 0.0501083i \(-0.0159567\pi\)
−0.542767 + 0.839883i \(0.682623\pi\)
\(230\) 2.05197 + 3.55412i 0.135303 + 0.234351i
\(231\) 0 0
\(232\) 1.36603 2.36603i 0.0896840 0.155337i
\(233\) −1.39230 −0.0912129 −0.0456065 0.998959i \(-0.514522\pi\)
−0.0456065 + 0.998959i \(0.514522\pi\)
\(234\) 0 0
\(235\) −2.39230 −0.156057
\(236\) −7.39924 + 12.8159i −0.481649 + 0.834241i
\(237\) 0 0
\(238\) 0 0
\(239\) −6.23205 10.7942i −0.403118 0.698221i 0.590983 0.806684i \(-0.298740\pi\)
−0.994100 + 0.108464i \(0.965407\pi\)
\(240\) 0 0
\(241\) 6.36396 11.0227i 0.409939 0.710035i −0.584944 0.811074i \(-0.698883\pi\)
0.994882 + 0.101039i \(0.0322167\pi\)
\(242\) −8.85641 −0.569311
\(243\) 0 0
\(244\) −4.38134 −0.280487
\(245\) 0 0
\(246\) 0 0
\(247\) 0.633975 + 1.09808i 0.0403388 + 0.0698689i
\(248\) 3.67423 + 6.36396i 0.233314 + 0.404112i
\(249\) 0 0
\(250\) 2.51884 4.36276i 0.159305 0.275925i
\(251\) −0.517638 −0.0326730 −0.0163365 0.999867i \(-0.505200\pi\)
−0.0163365 + 0.999867i \(0.505200\pi\)
\(252\) 0 0
\(253\) −11.6077 −0.729770
\(254\) 2.96410 5.13397i 0.185984 0.322134i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −1.88108 3.25813i −0.117339 0.203237i 0.801373 0.598164i \(-0.204103\pi\)
−0.918712 + 0.394928i \(0.870770\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.26795 0.0786349
\(261\) 0 0
\(262\) 12.4877 0.771492
\(263\) 1.33013 2.30385i 0.0820191 0.142061i −0.822098 0.569346i \(-0.807196\pi\)
0.904117 + 0.427285i \(0.140530\pi\)
\(264\) 0 0
\(265\) 1.74238 + 3.01790i 0.107034 + 0.185388i
\(266\) 0 0
\(267\) 0 0
\(268\) 1.90192 3.29423i 0.116178 0.201227i
\(269\) 26.9072 1.64056 0.820281 0.571961i \(-0.193817\pi\)
0.820281 + 0.571961i \(0.193817\pi\)
\(270\) 0 0
\(271\) −14.7985 −0.898943 −0.449472 0.893295i \(-0.648388\pi\)
−0.449472 + 0.893295i \(0.648388\pi\)
\(272\) 1.74238 3.01790i 0.105647 0.182987i
\(273\) 0 0
\(274\) 0 0
\(275\) 3.46410 + 6.00000i 0.208893 + 0.361814i
\(276\) 0 0
\(277\) 8.09808 14.0263i 0.486566 0.842757i −0.513315 0.858201i \(-0.671583\pi\)
0.999881 + 0.0154431i \(0.00491589\pi\)
\(278\) 20.2151 1.21242
\(279\) 0 0
\(280\) 0 0
\(281\) −8.69615 + 15.0622i −0.518769 + 0.898534i 0.480993 + 0.876724i \(0.340276\pi\)
−0.999762 + 0.0218099i \(0.993057\pi\)
\(282\) 0 0
\(283\) 4.88040 + 8.45310i 0.290109 + 0.502484i 0.973835 0.227255i \(-0.0729749\pi\)
−0.683726 + 0.729739i \(0.739642\pi\)
\(284\) −0.401924 0.696152i −0.0238498 0.0413090i
\(285\) 0 0
\(286\) −1.79315 + 3.10583i −0.106031 + 0.183651i
\(287\) 0 0
\(288\) 0 0
\(289\) −4.85641 −0.285671
\(290\) 0.707107 1.22474i 0.0415227 0.0719195i
\(291\) 0 0
\(292\) 2.31079 + 4.00240i 0.135229 + 0.234223i
\(293\) 1.48356 + 2.56961i 0.0866707 + 0.150118i 0.906102 0.423059i \(-0.139044\pi\)
−0.819431 + 0.573178i \(0.805711\pi\)
\(294\) 0 0
\(295\) −3.83013 + 6.63397i −0.222999 + 0.386245i
\(296\) −8.00000 −0.464991
\(297\) 0 0
\(298\) 2.39230 0.138582
\(299\) 9.71003 16.8183i 0.561545 0.972625i
\(300\) 0 0
\(301\) 0 0
\(302\) 8.69615 + 15.0622i 0.500407 + 0.866731i
\(303\) 0 0
\(304\) 0.258819 0.448288i 0.0148443 0.0257111i
\(305\) −2.26795 −0.129862
\(306\) 0 0
\(307\) 11.9329 0.681046 0.340523 0.940236i \(-0.389396\pi\)
0.340523 + 0.940236i \(0.389396\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 1.90192 + 3.29423i 0.108022 + 0.187100i
\(311\) −9.09085 15.7458i −0.515495 0.892863i −0.999838 0.0179854i \(-0.994275\pi\)
0.484343 0.874878i \(-0.339059\pi\)
\(312\) 0 0
\(313\) −3.34607 + 5.79555i −0.189131 + 0.327584i −0.944961 0.327184i \(-0.893900\pi\)
0.755830 + 0.654768i \(0.227234\pi\)
\(314\) 17.2851 0.975456
\(315\) 0 0
\(316\) 14.1244 0.794557
\(317\) 16.2942 28.2224i 0.915175 1.58513i 0.108530 0.994093i \(-0.465386\pi\)
0.806645 0.591037i \(-0.201281\pi\)
\(318\) 0 0
\(319\) 2.00000 + 3.46410i 0.111979 + 0.193952i
\(320\) −0.258819 0.448288i −0.0144684 0.0250600i
\(321\) 0 0
\(322\) 0 0
\(323\) 1.80385 0.100369
\(324\) 0 0
\(325\) −11.5911 −0.642959
\(326\) 3.53590 6.12436i 0.195835 0.339197i
\(327\) 0 0
\(328\) −2.82843 4.89898i −0.156174 0.270501i
\(329\) 0 0
\(330\) 0 0
\(331\) 6.02628 10.4378i 0.331234 0.573715i −0.651520 0.758632i \(-0.725868\pi\)
0.982754 + 0.184917i \(0.0592016\pi\)
\(332\) −9.89949 −0.543305
\(333\) 0 0
\(334\) 13.2827 0.726798
\(335\) 0.984508 1.70522i 0.0537894 0.0931660i
\(336\) 0 0
\(337\) 10.6603 + 18.4641i 0.580701 + 1.00580i 0.995396 + 0.0958434i \(0.0305548\pi\)
−0.414695 + 0.909960i \(0.636112\pi\)
\(338\) 3.50000 + 6.06218i 0.190375 + 0.329739i
\(339\) 0 0
\(340\) 0.901924 1.56218i 0.0489137 0.0847210i
\(341\) −10.7589 −0.582627
\(342\) 0 0
\(343\) 0 0
\(344\) 6.09808 10.5622i 0.328786 0.569474i
\(345\) 0 0
\(346\) 9.71003 + 16.8183i 0.522014 + 0.904155i
\(347\) 10.8564 + 18.8038i 0.582802 + 1.00944i 0.995145 + 0.0984148i \(0.0313772\pi\)
−0.412343 + 0.911029i \(0.635289\pi\)
\(348\) 0 0
\(349\) −17.2987 + 29.9623i −0.925980 + 1.60384i −0.136002 + 0.990709i \(0.543425\pi\)
−0.789978 + 0.613136i \(0.789908\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.46410 0.0780369
\(353\) −0.0507680 + 0.0879327i −0.00270211 + 0.00468019i −0.867373 0.497658i \(-0.834193\pi\)
0.864671 + 0.502338i \(0.167527\pi\)
\(354\) 0 0
\(355\) −0.208051 0.360355i −0.0110422 0.0191257i
\(356\) 8.05558 + 13.9527i 0.426945 + 0.739490i
\(357\) 0 0
\(358\) −4.09808 + 7.09808i −0.216590 + 0.375145i
\(359\) 13.9282 0.735102 0.367551 0.930003i \(-0.380196\pi\)
0.367551 + 0.930003i \(0.380196\pi\)
\(360\) 0 0
\(361\) −18.7321 −0.985897
\(362\) −10.4865 + 18.1631i −0.551157 + 0.954632i
\(363\) 0 0
\(364\) 0 0
\(365\) 1.19615 + 2.07180i 0.0626095 + 0.108443i
\(366\) 0 0
\(367\) −0.138701 + 0.240237i −0.00724012 + 0.0125403i −0.869623 0.493717i \(-0.835638\pi\)
0.862383 + 0.506257i \(0.168971\pi\)
\(368\) −7.92820 −0.413286
\(369\) 0 0
\(370\) −4.14110 −0.215286
\(371\) 0 0
\(372\) 0 0
\(373\) −9.56218 16.5622i −0.495111 0.857557i 0.504873 0.863193i \(-0.331539\pi\)
−0.999984 + 0.00563639i \(0.998206\pi\)
\(374\) 2.55103 + 4.41851i 0.131910 + 0.228476i
\(375\) 0 0
\(376\) 2.31079 4.00240i 0.119170 0.206408i
\(377\) −6.69213 −0.344662
\(378\) 0 0
\(379\) −27.5167 −1.41344 −0.706718 0.707495i \(-0.749825\pi\)
−0.706718 + 0.707495i \(0.749825\pi\)
\(380\) 0.133975 0.232051i 0.00687275 0.0119040i
\(381\) 0 0
\(382\) −3.59808 6.23205i −0.184094 0.318859i
\(383\) 17.1093 + 29.6341i 0.874243 + 1.51423i 0.857567 + 0.514372i \(0.171975\pi\)
0.0166751 + 0.999861i \(0.494692\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −23.7321 −1.20793
\(387\) 0 0
\(388\) 1.03528 0.0525582
\(389\) −2.43782 + 4.22243i −0.123602 + 0.214086i −0.921186 0.389123i \(-0.872778\pi\)
0.797583 + 0.603209i \(0.206111\pi\)
\(390\) 0 0
\(391\) −13.8140 23.9265i −0.698602 1.21001i
\(392\) 0 0
\(393\) 0 0
\(394\) 4.83013 8.36603i 0.243338 0.421474i
\(395\) 7.31130 0.367872
\(396\) 0 0
\(397\) −26.3896 −1.32446 −0.662228 0.749303i \(-0.730389\pi\)
−0.662228 + 0.749303i \(0.730389\pi\)
\(398\) 5.79555 10.0382i 0.290505 0.503169i
\(399\) 0 0
\(400\) 2.36603 + 4.09808i 0.118301 + 0.204904i
\(401\) −12.5263 21.6962i −0.625533 1.08345i −0.988438 0.151628i \(-0.951548\pi\)
0.362905 0.931826i \(-0.381785\pi\)
\(402\) 0 0
\(403\) 9.00000 15.5885i 0.448322 0.776516i
\(404\) 5.79555 0.288340
\(405\) 0 0
\(406\) 0 0
\(407\) 5.85641 10.1436i 0.290291 0.502799i
\(408\) 0 0
\(409\) 8.90138 + 15.4176i 0.440145 + 0.762354i 0.997700 0.0677865i \(-0.0215937\pi\)
−0.557555 + 0.830140i \(0.688260\pi\)
\(410\) −1.46410 2.53590i −0.0723068 0.125239i
\(411\) 0 0
\(412\) −5.60609 + 9.71003i −0.276192 + 0.478379i
\(413\) 0 0
\(414\) 0 0
\(415\) −5.12436 −0.251545
\(416\) −1.22474 + 2.12132i −0.0600481 + 0.104006i
\(417\) 0 0
\(418\) 0.378937 + 0.656339i 0.0185344 + 0.0321026i
\(419\) 11.3323 + 19.6281i 0.553619 + 0.958896i 0.998010 + 0.0630626i \(0.0200868\pi\)
−0.444391 + 0.895833i \(0.646580\pi\)
\(420\) 0 0
\(421\) −14.0263 + 24.2942i −0.683599 + 1.18403i 0.290276 + 0.956943i \(0.406253\pi\)
−0.973875 + 0.227085i \(0.927080\pi\)
\(422\) 1.26795 0.0617228
\(423\) 0 0
\(424\) −6.73205 −0.326937
\(425\) −8.24504 + 14.2808i −0.399943 + 0.692722i
\(426\) 0 0
\(427\) 0 0
\(428\) 1.53590 + 2.66025i 0.0742405 + 0.128588i
\(429\) 0 0
\(430\) 3.15660 5.46739i 0.152225 0.263661i
\(431\) 26.7846 1.29017 0.645085 0.764111i \(-0.276822\pi\)
0.645085 + 0.764111i \(0.276822\pi\)
\(432\) 0 0
\(433\) 20.2523 0.973261 0.486631 0.873608i \(-0.338226\pi\)
0.486631 + 0.873608i \(0.338226\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −5.29423 9.16987i −0.253548 0.439157i
\(437\) −2.05197 3.55412i −0.0981590 0.170016i
\(438\) 0 0
\(439\) 9.14162 15.8338i 0.436306 0.755704i −0.561095 0.827751i \(-0.689620\pi\)
0.997401 + 0.0720474i \(0.0229533\pi\)
\(440\) 0.757875 0.0361303
\(441\) 0 0
\(442\) −8.53590 −0.406011
\(443\) −18.4904 + 32.0263i −0.878505 + 1.52161i −0.0255224 + 0.999674i \(0.508125\pi\)
−0.852982 + 0.521940i \(0.825208\pi\)
\(444\) 0 0
\(445\) 4.16987 + 7.22243i 0.197671 + 0.342376i
\(446\) 1.88108 + 3.25813i 0.0890719 + 0.154277i
\(447\) 0 0
\(448\) 0 0
\(449\) 23.7846 1.12247 0.561233 0.827658i \(-0.310327\pi\)
0.561233 + 0.827658i \(0.310327\pi\)
\(450\) 0 0
\(451\) 8.28221 0.389994
\(452\) −7.33013 + 12.6962i −0.344780 + 0.597177i
\(453\) 0 0
\(454\) −1.67303 2.89778i −0.0785193 0.135999i
\(455\) 0 0
\(456\) 0 0
\(457\) 11.1340 19.2846i 0.520825 0.902096i −0.478881 0.877880i \(-0.658958\pi\)
0.999707 0.0242164i \(-0.00770906\pi\)
\(458\) −13.8004 −0.644849
\(459\) 0 0
\(460\) −4.10394 −0.191347
\(461\) −19.4894 + 33.7566i −0.907712 + 1.57220i −0.0904771 + 0.995899i \(0.528839\pi\)
−0.817235 + 0.576305i \(0.804494\pi\)
\(462\) 0 0
\(463\) −3.33013 5.76795i −0.154764 0.268059i 0.778209 0.628005i \(-0.216128\pi\)
−0.932973 + 0.359946i \(0.882795\pi\)
\(464\) 1.36603 + 2.36603i 0.0634161 + 0.109840i
\(465\) 0 0
\(466\) 0.696152 1.20577i 0.0322486 0.0558563i
\(467\) 24.5964 1.13819 0.569094 0.822273i \(-0.307294\pi\)
0.569094 + 0.822273i \(0.307294\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 1.19615 2.07180i 0.0551744 0.0955649i
\(471\) 0 0
\(472\) −7.39924 12.8159i −0.340577 0.589898i
\(473\) 8.92820 + 15.4641i 0.410519 + 0.711040i
\(474\) 0 0
\(475\) −1.22474 + 2.12132i −0.0561951 + 0.0973329i
\(476\) 0 0
\(477\) 0 0
\(478\) 12.4641 0.570095
\(479\) 6.64136 11.5032i 0.303452 0.525594i −0.673464 0.739220i \(-0.735194\pi\)
0.976915 + 0.213627i \(0.0685276\pi\)
\(480\) 0 0
\(481\) 9.79796 + 16.9706i 0.446748 + 0.773791i
\(482\) 6.36396 + 11.0227i 0.289870 + 0.502070i
\(483\) 0 0
\(484\) 4.42820 7.66987i 0.201282 0.348631i
\(485\) 0.535898 0.0243339
\(486\) 0 0
\(487\) −32.3205 −1.46458 −0.732291 0.680992i \(-0.761549\pi\)
−0.732291 + 0.680992i \(0.761549\pi\)
\(488\) 2.19067 3.79435i 0.0991670 0.171762i
\(489\) 0 0
\(490\) 0 0
\(491\) −2.53590 4.39230i −0.114443 0.198222i 0.803114 0.595826i \(-0.203175\pi\)
−0.917557 + 0.397604i \(0.869842\pi\)
\(492\) 0 0
\(493\) −4.76028 + 8.24504i −0.214392 + 0.371338i
\(494\) −1.26795 −0.0570477
\(495\) 0 0
\(496\) −7.34847 −0.329956
\(497\) 0 0
\(498\) 0 0
\(499\) −3.66025 6.33975i −0.163855 0.283806i 0.772393 0.635145i \(-0.219060\pi\)
−0.936248 + 0.351339i \(0.885726\pi\)
\(500\) 2.51884 + 4.36276i 0.112646 + 0.195109i
\(501\) 0 0
\(502\) 0.258819 0.448288i 0.0115517 0.0200081i
\(503\) 28.9406 1.29040 0.645199 0.764015i \(-0.276774\pi\)
0.645199 + 0.764015i \(0.276774\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) 5.80385 10.0526i 0.258012 0.446891i
\(507\) 0 0
\(508\) 2.96410 + 5.13397i 0.131511 + 0.227783i
\(509\) 3.81294 + 6.60420i 0.169005 + 0.292726i 0.938070 0.346445i \(-0.112611\pi\)
−0.769065 + 0.639171i \(0.779278\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 3.76217 0.165942
\(515\) −2.90192 + 5.02628i −0.127874 + 0.221484i
\(516\) 0 0
\(517\) 3.38323 + 5.85993i 0.148794 + 0.257719i
\(518\) 0 0
\(519\) 0 0
\(520\) −0.633975 + 1.09808i −0.0278016 + 0.0481538i
\(521\) −32.5269 −1.42503 −0.712515 0.701657i \(-0.752444\pi\)
−0.712515 + 0.701657i \(0.752444\pi\)
\(522\) 0 0
\(523\) −39.2562 −1.71655 −0.858277 0.513187i \(-0.828465\pi\)
−0.858277 + 0.513187i \(0.828465\pi\)
\(524\) −6.24384 + 10.8147i −0.272764 + 0.472440i
\(525\) 0 0
\(526\) 1.33013 + 2.30385i 0.0579963 + 0.100453i
\(527\) −12.8038 22.1769i −0.557744 0.966042i
\(528\) 0 0
\(529\) −19.9282 + 34.5167i −0.866444 + 1.50072i
\(530\) −3.48477 −0.151369
\(531\) 0 0
\(532\) 0 0
\(533\) −6.92820 + 12.0000i −0.300094 + 0.519778i
\(534\) 0 0
\(535\) 0.795040 + 1.37705i 0.0343726 + 0.0595350i
\(536\) 1.90192 + 3.29423i 0.0821506 + 0.142289i
\(537\) 0 0
\(538\) −13.4536 + 23.3023i −0.580026 + 1.00464i
\(539\) 0 0
\(540\) 0 0
\(541\) 20.7321 0.891340 0.445670 0.895197i \(-0.352965\pi\)
0.445670 + 0.895197i \(0.352965\pi\)
\(542\) 7.39924 12.8159i 0.317824 0.550488i
\(543\) 0 0
\(544\) 1.74238 + 3.01790i 0.0747041 + 0.129391i
\(545\) −2.74049 4.74668i −0.117390 0.203325i
\(546\) 0 0
\(547\) 5.73205 9.92820i 0.245085 0.424499i −0.717071 0.697000i \(-0.754518\pi\)
0.962155 + 0.272501i \(0.0878509\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) −6.92820 −0.295420
\(551\) −0.707107 + 1.22474i −0.0301238 + 0.0521759i
\(552\) 0 0
\(553\) 0 0
\(554\) 8.09808 + 14.0263i 0.344054 + 0.595920i
\(555\) 0 0
\(556\) −10.1075 + 17.5068i −0.428655 + 0.742453i
\(557\) −2.87564 −0.121845 −0.0609225 0.998143i \(-0.519404\pi\)
−0.0609225 + 0.998143i \(0.519404\pi\)
\(558\) 0 0
\(559\) −29.8744 −1.26355
\(560\) 0 0
\(561\) 0 0
\(562\) −8.69615 15.0622i −0.366825 0.635360i
\(563\) 0.637756 + 1.10463i 0.0268782 + 0.0465545i 0.879152 0.476542i \(-0.158110\pi\)
−0.852273 + 0.523097i \(0.824777\pi\)
\(564\) 0 0
\(565\) −3.79435 + 6.57201i −0.159630 + 0.276487i
\(566\) −9.76079 −0.410277
\(567\) 0 0
\(568\) 0.803848 0.0337287
\(569\) 13.4641 23.3205i 0.564445 0.977647i −0.432657 0.901559i \(-0.642424\pi\)
0.997101 0.0760878i \(-0.0242429\pi\)
\(570\) 0 0
\(571\) −2.00000 3.46410i −0.0836974 0.144968i 0.821138 0.570730i \(-0.193340\pi\)
−0.904835 + 0.425762i \(0.860006\pi\)
\(572\) −1.79315 3.10583i −0.0749754 0.129861i
\(573\) 0 0
\(574\) 0 0
\(575\) 37.5167 1.56455
\(576\) 0 0
\(577\) −26.2880 −1.09439 −0.547193 0.837007i \(-0.684304\pi\)
−0.547193 + 0.837007i \(0.684304\pi\)
\(578\) 2.42820 4.20577i 0.101000 0.174937i
\(579\) 0 0
\(580\) 0.707107 + 1.22474i 0.0293610 + 0.0508548i
\(581\) 0 0
\(582\) 0 0
\(583\) 4.92820 8.53590i 0.204105 0.353521i
\(584\) −4.62158 −0.191242
\(585\) 0 0
\(586\) −2.96713 −0.122571
\(587\) −1.76097 + 3.05008i −0.0726828 + 0.125890i −0.900076 0.435732i \(-0.856489\pi\)
0.827393 + 0.561623i \(0.189823\pi\)
\(588\) 0 0
\(589\) −1.90192 3.29423i −0.0783674 0.135736i
\(590\) −3.83013 6.63397i −0.157684 0.273116i
\(591\) 0 0
\(592\) 4.00000 6.92820i 0.164399 0.284747i
\(593\) −6.79367 −0.278982 −0.139491 0.990223i \(-0.544547\pi\)
−0.139491 + 0.990223i \(0.544547\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.19615 + 2.07180i −0.0489963 + 0.0848641i
\(597\) 0 0
\(598\) 9.71003 + 16.8183i 0.397073 + 0.687750i
\(599\) −6.19615 10.7321i −0.253168 0.438500i 0.711228 0.702961i \(-0.248139\pi\)
−0.964396 + 0.264461i \(0.914806\pi\)
\(600\) 0 0
\(601\) −20.9730 + 36.3262i −0.855505 + 1.48178i 0.0206704 + 0.999786i \(0.493420\pi\)
−0.876176 + 0.481992i \(0.839913\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −17.3923 −0.707683
\(605\) 2.29221 3.97022i 0.0931915 0.161412i
\(606\) 0 0
\(607\) −10.6945 18.5235i −0.434078 0.751845i 0.563142 0.826360i \(-0.309592\pi\)
−0.997220 + 0.0745153i \(0.976259\pi\)
\(608\) 0.258819 + 0.448288i 0.0104965 + 0.0181805i
\(609\) 0 0
\(610\) 1.13397 1.96410i 0.0459133 0.0795241i
\(611\) −11.3205 −0.457979
\(612\) 0 0
\(613\) 20.4449 0.825760 0.412880 0.910785i \(-0.364523\pi\)
0.412880 + 0.910785i \(0.364523\pi\)
\(614\) −5.96644 + 10.3342i −0.240786 + 0.417054i
\(615\) 0 0
\(616\) 0 0
\(617\) 21.1962 + 36.7128i 0.853325 + 1.47800i 0.878190 + 0.478311i \(0.158751\pi\)
−0.0248653 + 0.999691i \(0.507916\pi\)
\(618\) 0 0
\(619\) −3.74358 + 6.48408i −0.150467 + 0.260617i −0.931399 0.363999i \(-0.881411\pi\)
0.780932 + 0.624616i \(0.214745\pi\)
\(620\) −3.80385 −0.152766
\(621\) 0 0
\(622\) 18.1817 0.729020
\(623\) 0 0
\(624\) 0 0
\(625\) −10.5263 18.2321i −0.421051 0.729282i
\(626\) −3.34607 5.79555i −0.133736 0.231637i
\(627\) 0 0
\(628\) −8.64256 + 14.9694i −0.344876 + 0.597343i
\(629\) 27.8781 1.11157
\(630\) 0 0
\(631\) −3.87564 −0.154287 −0.0771435 0.997020i \(-0.524580\pi\)
−0.0771435 + 0.997020i \(0.524580\pi\)
\(632\) −7.06218 + 12.2321i −0.280918 + 0.486565i
\(633\) 0 0
\(634\) 16.2942 + 28.2224i 0.647126 + 1.12086i
\(635\) 1.53433 + 2.65754i 0.0608881 + 0.105461i
\(636\) 0 0
\(637\) 0 0
\(638\) −4.00000 −0.158362
\(639\) 0 0
\(640\) 0.517638 0.0204614
\(641\) −1.52628 + 2.64359i −0.0602844 + 0.104416i −0.894593 0.446883i \(-0.852534\pi\)
0.834308 + 0.551298i \(0.185867\pi\)
\(642\) 0 0
\(643\) −0.845807 1.46498i −0.0333554 0.0577732i 0.848866 0.528608i \(-0.177286\pi\)
−0.882221 + 0.470835i \(0.843953\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −0.901924 + 1.56218i −0.0354857 + 0.0614631i
\(647\) −15.8338 −0.622489 −0.311244 0.950330i \(-0.600746\pi\)
−0.311244 + 0.950330i \(0.600746\pi\)
\(648\) 0 0
\(649\) 21.6665 0.850483
\(650\) 5.79555 10.0382i 0.227320 0.393730i
\(651\) 0 0
\(652\) 3.53590 + 6.12436i 0.138476 + 0.239848i
\(653\) −20.6603 35.7846i −0.808498 1.40036i −0.913904 0.405931i \(-0.866947\pi\)
0.105406 0.994429i \(-0.466386\pi\)
\(654\) 0 0
\(655\) −3.23205 + 5.59808i −0.126287 + 0.218735i
\(656\) 5.65685 0.220863
\(657\) 0 0
\(658\) 0 0
\(659\) −19.5622 + 33.8827i −0.762034 + 1.31988i 0.179766 + 0.983709i \(0.442466\pi\)
−0.941800 + 0.336173i \(0.890867\pi\)
\(660\) 0 0
\(661\) 10.7267 + 18.5792i 0.417221 + 0.722648i 0.995659 0.0930785i \(-0.0296708\pi\)
−0.578438 + 0.815727i \(0.696337\pi\)
\(662\) 6.02628 + 10.4378i 0.234218 + 0.405677i
\(663\) 0 0
\(664\) 4.94975 8.57321i 0.192087 0.332705i
\(665\) 0 0
\(666\) 0 0
\(667\) 21.6603 0.838688
\(668\) −6.64136 + 11.5032i −0.256962 + 0.445071i
\(669\) 0 0
\(670\) 0.984508 + 1.70522i 0.0380349 + 0.0658783i
\(671\) 3.20736 + 5.55532i 0.123819 + 0.214461i
\(672\) 0 0
\(673\) 20.0885 34.7942i 0.774353 1.34122i −0.160804 0.986986i \(-0.551409\pi\)
0.935157 0.354233i \(-0.115258\pi\)
\(674\) −21.3205 −0.821235
\(675\) 0 0
\(676\) −7.00000 −0.269231
\(677\) −0.568406 + 0.984508i −0.0218456 + 0.0378377i −0.876742 0.480962i \(-0.840288\pi\)
0.854896 + 0.518800i \(0.173621\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0.901924 + 1.56218i 0.0345872 + 0.0599068i
\(681\) 0 0
\(682\) 5.37945 9.31749i 0.205990 0.356785i
\(683\) 13.6077 0.520684 0.260342 0.965516i \(-0.416165\pi\)
0.260342 + 0.965516i \(0.416165\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 6.09808 + 10.5622i 0.232487 + 0.402679i
\(689\) 8.24504 + 14.2808i 0.314111 + 0.544057i
\(690\) 0 0
\(691\) −18.4913 + 32.0279i −0.703442 + 1.21840i 0.263809 + 0.964575i \(0.415021\pi\)
−0.967251 + 0.253822i \(0.918312\pi\)
\(692\) −19.4201 −0.738240
\(693\) 0 0
\(694\) −21.7128 −0.824207
\(695\) −5.23205 + 9.06218i −0.198463 + 0.343748i
\(696\) 0 0
\(697\) 9.85641 + 17.0718i 0.373338 + 0.646640i
\(698\) −17.2987 29.9623i −0.654767 1.13409i
\(699\) 0 0
\(700\) 0 0
\(701\) −20.5359 −0.775630 −0.387815 0.921737i \(-0.626770\pi\)
−0.387815 + 0.921737i \(0.626770\pi\)
\(702\) 0 0
\(703\) 4.14110 0.156185
\(704\) −0.732051 + 1.26795i −0.0275902 + 0.0477876i
\(705\) 0 0
\(706\) −0.0507680 0.0879327i −0.00191068 0.00330939i
\(707\) 0 0
\(708\) 0 0
\(709\) 11.2679 19.5167i 0.423177 0.732964i −0.573072 0.819505i \(-0.694248\pi\)
0.996248 + 0.0865418i \(0.0275816\pi\)
\(710\) 0.416102 0.0156160
\(711\) 0 0
\(712\) −16.1112 −0.603791
\(713\) −29.1301 + 50.4548i −1.09093 + 1.88955i
\(714\) 0 0
\(715\) −0.928203 1.60770i −0.0347128 0.0601244i
\(716\) −4.09808 7.09808i −0.153152 0.265268i
\(717\) 0 0
\(718\) −6.96410 + 12.0622i −0.259898 + 0.450156i
\(719\) −34.0155 −1.26856 −0.634281 0.773102i \(-0.718704\pi\)
−0.634281 + 0.773102i \(0.718704\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 9.36603 16.2224i 0.348567 0.603736i
\(723\) 0 0
\(724\) −10.4865 18.1631i −0.389727 0.675027i
\(725\) −6.46410 11.1962i −0.240071 0.415815i
\(726\) 0 0
\(727\) −14.8864 + 25.7840i −0.552106 + 0.956276i 0.446016 + 0.895025i \(0.352842\pi\)
−0.998122 + 0.0612512i \(0.980491\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −2.39230 −0.0885432
\(731\) −21.2504 + 36.8067i −0.785973 + 1.36135i
\(732\) 0 0
\(733\) 15.0573 + 26.0800i 0.556154 + 0.963287i 0.997813 + 0.0661037i \(0.0210568\pi\)
−0.441659 + 0.897183i \(0.645610\pi\)
\(734\) −0.138701 0.240237i −0.00511954 0.00886730i
\(735\) 0 0
\(736\) 3.96410 6.86603i 0.146119 0.253085i
\(737\) −5.56922 −0.205145
\(738\) 0 0
\(739\) −16.1436 −0.593852 −0.296926 0.954901i \(-0.595961\pi\)
−0.296926 + 0.954901i \(0.595961\pi\)
\(740\) 2.07055 3.58630i 0.0761150 0.131835i
\(741\) 0 0
\(742\) 0 0
\(743\) −14.1244 24.4641i −0.518172 0.897501i −0.999777 0.0211123i \(-0.993279\pi\)
0.481605 0.876389i \(-0.340054\pi\)
\(744\) 0 0
\(745\) −0.619174 + 1.07244i −0.0226848 + 0.0392912i
\(746\) 19.1244 0.700192
\(747\) 0 0
\(748\) −5.10205 −0.186549
\(749\) 0 0
\(750\) 0 0
\(751\) 25.0885 + 43.4545i 0.915491 + 1.58568i 0.806181 + 0.591669i \(0.201531\pi\)
0.109310 + 0.994008i \(0.465136\pi\)
\(752\) 2.31079 + 4.00240i 0.0842658 + 0.145953i
\(753\) 0 0
\(754\) 3.34607 5.79555i 0.121857 0.211062i
\(755\) −9.00292 −0.327650
\(756\) 0 0
\(757\) 20.2487 0.735952 0.367976 0.929835i \(-0.380051\pi\)
0.367976 + 0.929835i \(0.380051\pi\)
\(758\) 13.7583 23.8301i 0.499725 0.865549i
\(759\) 0 0
\(760\) 0.133975 + 0.232051i 0.00485977 + 0.00841737i
\(761\) 19.8869 + 34.4452i 0.720900 + 1.24864i 0.960639 + 0.277799i \(0.0896048\pi\)
−0.239739 + 0.970837i \(0.577062\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 7.19615 0.260348
\(765\) 0 0
\(766\) −34.2185 −1.23637
\(767\) −18.1244 + 31.3923i −0.654433 + 1.13351i
\(768\) 0 0
\(769\) 14.9372 + 25.8719i 0.538648 + 0.932966i 0.998977 + 0.0452178i \(0.0143982\pi\)
−0.460329 + 0.887748i \(0.652268\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 11.8660 20.5526i 0.427068 0.739703i
\(773\) 13.5230 0.486387 0.243194 0.969978i \(-0.421805\pi\)
0.243194 + 0.969978i \(0.421805\pi\)
\(774\) 0 0
\(775\) 34.7733 1.24909
\(776\) −0.517638 + 0.896575i −0.0185821 + 0.0321852i
\(777\) 0 0
\(778\) −2.43782 4.22243i −0.0874002 0.151382i
\(779\) 1.46410 + 2.53590i 0.0524569 + 0.0908580i
\(780\) 0 0
\(781\) −0.588457 + 1.01924i −0.0210567 + 0.0364712i
\(782\) 27.6279 0.987973
\(783\) 0 0
\(784\) 0 0
\(785\) −4.47372 + 7.74871i −0.159674 + 0.276563i
\(786\) 0 0
\(787\) −18.0938 31.3393i −0.644973 1.11713i −0.984308 0.176461i \(-0.943535\pi\)
0.339334 0.940666i \(-0.389798\pi\)
\(788\) 4.83013 + 8.36603i 0.172066 + 0.298027i
\(789\) 0 0
\(790\) −3.65565 + 6.33178i −0.130062 + 0.225274i
\(791\) 0 0
\(792\) 0 0
\(793\) −10.7321 −0.381106
\(794\) 13.1948 22.8541i 0.468266 0.811060i
\(795\) 0 0
\(796\) 5.79555 + 10.0382i 0.205418 + 0.355794i
\(797\) −12.2796 21.2690i −0.434967 0.753385i 0.562326 0.826916i \(-0.309907\pi\)
−0.997293 + 0.0735308i \(0.976573\pi\)
\(798\) 0 0
\(799\) −8.05256 + 13.9474i −0.284879 + 0.493425i
\(800\) −4.73205 −0.167303
\(801\) 0 0
\(802\) 25.0526 0.884637
\(803\) 3.38323 5.85993i 0.119392 0.206792i
\(804\) 0 0
\(805\) 0 0
\(806\) 9.00000 + 15.5885i 0.317011 + 0.549080i
\(807\) 0 0
\(808\) −2.89778 + 5.01910i −0.101943 + 0.176571i
\(809\) −33.3205 −1.17149 −0.585743 0.810497i \(-0.699197\pi\)
−0.585743 + 0.810497i \(0.699197\pi\)
\(810\) 0 0
\(811\) −7.82894 −0.274911 −0.137456 0.990508i \(-0.543892\pi\)
−0.137456 + 0.990508i \(0.543892\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 5.85641 + 10.1436i 0.205267 + 0.355533i
\(815\) 1.83032 + 3.17020i 0.0641132 + 0.111047i
\(816\) 0 0
\(817\) −3.15660 + 5.46739i −0.110435 + 0.191280i
\(818\) −17.8028 −0.622459
\(819\) 0 0
\(820\) 2.92820 0.102257
\(821\) −3.33975 + 5.78461i −0.116558 + 0.201884i −0.918401 0.395650i \(-0.870519\pi\)
0.801844 + 0.597534i \(0.203853\pi\)
\(822\) 0 0
\(823\) 3.66025 + 6.33975i 0.127588 + 0.220990i 0.922742 0.385419i \(-0.125943\pi\)
−0.795153 + 0.606408i \(0.792610\pi\)
\(824\) −5.60609 9.71003i −0.195297 0.338265i
\(825\) 0 0
\(826\) 0 0
\(827\) 52.7321 1.83367 0.916837 0.399263i \(-0.130734\pi\)
0.916837 + 0.399263i \(0.130734\pi\)
\(828\) 0 0
\(829\) 1.89469 0.0658052 0.0329026 0.999459i \(-0.489525\pi\)
0.0329026 + 0.999459i \(0.489525\pi\)
\(830\) 2.56218 4.43782i 0.0889345 0.154039i
\(831\) 0 0
\(832\) −1.22474 2.12132i −0.0424604 0.0735436i
\(833\) 0 0
\(834\) 0 0
\(835\) −3.43782 + 5.95448i −0.118971 + 0.206063i
\(836\) −0.757875 −0.0262116
\(837\) 0 0
\(838\) −22.6646 −0.782935
\(839\) 22.4751 38.9280i 0.775927 1.34395i −0.158345 0.987384i \(-0.550616\pi\)
0.934272 0.356561i \(-0.116051\pi\)
\(840\) 0 0
\(841\) 10.7679 + 18.6506i 0.371309 + 0.643125i
\(842\) −14.0263 24.2942i −0.483378 0.837234i
\(843\) 0 0
\(844\) −0.633975 + 1.09808i −0.0218223 + 0.0377973i
\(845\) −3.62347 −0.124651
\(846\) 0 0
\(847\) 0 0
\(848\) 3.36603 5.83013i 0.115590 0.200207i
\(849\) 0 0
\(850\) −8.24504 14.2808i −0.282803 0.489829i
\(851\) −31.7128 54.9282i −1.08710 1.88291i
\(852\) 0 0
\(853\) 11.7992 20.4367i 0.403996 0.699741i −0.590208 0.807251i \(-0.700954\pi\)
0.994204 + 0.107510i \(0.0342878\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −3.07180 −0.104992
\(857\) −2.72689 + 4.72311i −0.0931488 + 0.161339i −0.908835 0.417157i \(-0.863027\pi\)
0.815686 + 0.578495i \(0.196360\pi\)
\(858\) 0 0
\(859\) 4.84821 + 8.39735i 0.165419 + 0.286514i 0.936804 0.349855i \(-0.113769\pi\)
−0.771385 + 0.636369i \(0.780436\pi\)
\(860\) 3.15660 + 5.46739i 0.107639 + 0.186436i
\(861\) 0 0
\(862\) −13.3923 + 23.1962i −0.456144 + 0.790064i
\(863\) −21.1962 −0.721525 −0.360763 0.932658i \(-0.617484\pi\)
−0.360763 + 0.932658i \(0.617484\pi\)
\(864\) 0 0
\(865\) −10.0526 −0.341797
\(866\) −10.1261 + 17.5390i −0.344100 + 0.595998i
\(867\) 0 0
\(868\) 0 0
\(869\) −10.3397 17.9090i −0.350752 0.607520i
\(870\) 0 0
\(871\) 4.65874 8.06918i 0.157855 0.273414i
\(872\) 10.5885 0.358570
\(873\) 0 0
\(874\) 4.10394 0.138818
\(875\) 0 0
\(876\) 0 0
\(877\) −12.0263 20.8301i −0.406099 0.703383i 0.588350 0.808606i \(-0.299778\pi\)
−0.994449 + 0.105223i \(0.966444\pi\)
\(878\) 9.14162 + 15.8338i 0.308515 + 0.534363i
\(879\) 0 0
\(880\) −0.378937 + 0.656339i −0.0127740 + 0.0221252i
\(881\) 0.480473 0.0161876 0.00809378 0.999967i \(-0.497424\pi\)
0.00809378 + 0.999967i \(0.497424\pi\)
\(882\) 0 0
\(883\) 38.2487 1.28717 0.643586 0.765374i \(-0.277446\pi\)
0.643586 + 0.765374i \(0.277446\pi\)
\(884\) 4.26795 7.39230i 0.143547 0.248630i
\(885\) 0 0
\(886\) −18.4904 32.0263i −0.621197 1.07594i
\(887\) −13.4858 23.3581i −0.452809 0.784288i 0.545751 0.837948i \(-0.316245\pi\)
−0.998559 + 0.0536600i \(0.982911\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) −8.33975 −0.279549
\(891\) 0 0
\(892\) −3.76217 −0.125967
\(893\) −1.19615 + 2.07180i −0.0400277 + 0.0693300i
\(894\) 0 0
\(895\) −2.12132 3.67423i −0.0709079 0.122816i
\(896\) 0 0
\(897\) 0 0
\(898\) −11.8923 + 20.5981i −0.396851 + 0.687367i
\(899\) 20.0764 0.669585
\(900\) 0 0
\(901\) 23.4596 0.781553
\(902\) −4.14110 + 7.17260i −0.137884 + 0.238822i
\(903\) 0 0
\(904\) −7.33013 12.6962i −0.243796 0.422268i
\(905\) −5.42820 9.40192i −0.180440 0.312531i
\(906\) 0 0
\(907\) 2.56218 4.43782i 0.0850757 0.147355i −0.820348 0.571865i \(-0.806220\pi\)
0.905423 + 0.424510i \(0.139553\pi\)
\(908\) 3.34607 0.111043
\(909\) 0 0
\(910\) 0 0
\(911\) 13.8923 24.0622i 0.460273 0.797216i −0.538702 0.842497i \(-0.681085\pi\)
0.998974 + 0.0452811i \(0.0144183\pi\)
\(912\) 0 0
\(913\) 7.24693 + 12.5521i 0.239838 + 0.415412i
\(914\) 11.1340 + 19.2846i 0.368279 + 0.637878i
\(915\) 0 0
\(916\) 6.90018 11.9515i 0.227988 0.394888i
\(917\) 0 0
\(918\) 0 0
\(919\) 16.3731 0.540098 0.270049 0.962847i \(-0.412960\pi\)
0.270049 + 0.962847i \(0.412960\pi\)
\(920\) 2.05197 3.55412i 0.0676514 0.117176i
\(921\) 0 0
\(922\) −19.4894 33.7566i −0.641849 1.11172i
\(923\) −0.984508 1.70522i −0.0324055 0.0561279i
\(924\) 0 0
\(925\) −18.9282 + 32.7846i −0.622355 + 1.07795i
\(926\) 6.66025 0.218870
\(927\) 0 0
\(928\) −2.73205 −0.0896840
\(929\) −2.01978 + 3.49837i −0.0662670 + 0.114778i −0.897255 0.441512i \(-0.854442\pi\)
0.830988 + 0.556290i \(0.187776\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0.696152 + 1.20577i 0.0228032 + 0.0394964i
\(933\) 0 0
\(934\) −12.2982 + 21.3011i −0.402410 + 0.696994i
\(935\) −2.64102 −0.0863705
\(936\) 0 0
\(937\) −31.7690 −1.03785 −0.518925 0.854820i \(-0.673667\pi\)
−0.518925 + 0.854820i \(0.673667\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 1.19615 + 2.07180i 0.0390142 + 0.0675746i
\(941\) 29.1994 + 50.5749i 0.951874 + 1.64869i 0.741364 + 0.671103i \(0.234179\pi\)
0.210510 + 0.977592i \(0.432488\pi\)
\(942\) 0 0
\(943\) 22.4243 38.8401i 0.730237 1.26481i
\(944\) 14.7985 0.481649
\(945\) 0 0
\(946\) −17.8564 −0.580562
\(947\) −17.8301 + 30.8827i −0.579401 + 1.00355i 0.416147 + 0.909297i \(0.363380\pi\)
−0.995548 + 0.0942550i \(0.969953\pi\)
\(948\) 0 0
\(949\) 5.66025 + 9.80385i 0.183740 + 0.318246i
\(950\) −1.22474 2.12132i −0.0397360 0.0688247i
\(951\) 0 0
\(952\) 0 0
\(953\) −23.7128 −0.768133 −0.384067 0.923305i \(-0.625477\pi\)
−0.384067 + 0.923305i \(0.625477\pi\)
\(954\) 0 0
\(955\) 3.72500 0.120538
\(956\) −6.23205 + 10.7942i −0.201559 + 0.349110i
\(957\) 0 0
\(958\) 6.64136 + 11.5032i 0.214573 + 0.371651i
\(959\) 0 0
\(960\) 0 0
\(961\) −11.5000 + 19.9186i −0.370968 + 0.642535i
\(962\) −19.5959 −0.631798
\(963\) 0 0
\(964\) −12.7279 −0.409939
\(965\) 6.14231 10.6388i 0.197728 0.342475i
\(966\) 0 0
\(967\) 0.232051 + 0.401924i 0.00746225 + 0.0129250i 0.869732 0.493524i \(-0.164291\pi\)
−0.862270 + 0.506449i \(0.830958\pi\)
\(968\) 4.42820 + 7.66987i 0.142328 + 0.246519i
\(969\) 0 0
\(970\) −0.267949 + 0.464102i −0.00860333 + 0.0149014i
\(971\) 28.5988 0.917780 0.458890 0.888493i \(-0.348247\pi\)
0.458890 + 0.888493i \(0.348247\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 16.1603 27.9904i 0.517808 0.896870i
\(975\) 0 0
\(976\) 2.19067 + 3.79435i 0.0701217 + 0.121454i
\(977\) −8.07180 13.9808i −0.258240 0.447284i 0.707531 0.706683i \(-0.249809\pi\)
−0.965770 + 0.259398i \(0.916476\pi\)
\(978\) 0 0
\(979\) 11.7942 20.4281i 0.376944 0.652886i
\(980\) 0 0
\(981\) 0 0
\(982\) 5.07180 0.161848
\(983\) 11.8177 20.4689i 0.376927 0.652858i −0.613686 0.789550i \(-0.710314\pi\)
0.990614 + 0.136693i \(0.0436473\pi\)
\(984\) 0 0
\(985\) 2.50026 + 4.33057i 0.0796648 + 0.137984i
\(986\) −4.76028 8.24504i −0.151598 0.262576i
\(987\) 0 0
\(988\) 0.633975 1.09808i 0.0201694 0.0349345i
\(989\) 96.6936 3.07468
\(990\) 0 0
\(991\) 14.6795 0.466309 0.233155 0.972440i \(-0.425095\pi\)
0.233155 + 0.972440i \(0.425095\pi\)
\(992\) 3.67423 6.36396i 0.116657 0.202056i
\(993\) 0 0
\(994\) 0 0
\(995\) 3.00000 + 5.19615i 0.0951064 + 0.164729i
\(996\) 0 0
\(997\) 21.9389 37.9993i 0.694812 1.20345i −0.275432 0.961320i \(-0.588821\pi\)
0.970244 0.242129i \(-0.0778456\pi\)
\(998\) 7.32051 0.231727
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.f.q.883.2 8
3.2 odd 2 882.2.f.s.295.3 yes 8
7.2 even 3 2646.2.e.t.2125.2 8
7.3 odd 6 2646.2.h.q.667.2 8
7.4 even 3 2646.2.h.q.667.3 8
7.5 odd 6 2646.2.e.t.2125.3 8
7.6 odd 2 inner 2646.2.f.q.883.3 8
9.2 odd 6 7938.2.a.cj.1.2 4
9.4 even 3 inner 2646.2.f.q.1765.2 8
9.5 odd 6 882.2.f.s.589.4 yes 8
9.7 even 3 7938.2.a.co.1.3 4
21.2 odd 6 882.2.e.q.655.3 8
21.5 even 6 882.2.e.q.655.2 8
21.11 odd 6 882.2.h.t.79.1 8
21.17 even 6 882.2.h.t.79.4 8
21.20 even 2 882.2.f.s.295.2 8
63.4 even 3 2646.2.e.t.1549.2 8
63.5 even 6 882.2.h.t.67.4 8
63.13 odd 6 inner 2646.2.f.q.1765.3 8
63.20 even 6 7938.2.a.cj.1.3 4
63.23 odd 6 882.2.h.t.67.1 8
63.31 odd 6 2646.2.e.t.1549.3 8
63.32 odd 6 882.2.e.q.373.3 8
63.34 odd 6 7938.2.a.co.1.2 4
63.40 odd 6 2646.2.h.q.361.2 8
63.41 even 6 882.2.f.s.589.1 yes 8
63.58 even 3 2646.2.h.q.361.3 8
63.59 even 6 882.2.e.q.373.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.q.373.2 8 63.59 even 6
882.2.e.q.373.3 8 63.32 odd 6
882.2.e.q.655.2 8 21.5 even 6
882.2.e.q.655.3 8 21.2 odd 6
882.2.f.s.295.2 8 21.20 even 2
882.2.f.s.295.3 yes 8 3.2 odd 2
882.2.f.s.589.1 yes 8 63.41 even 6
882.2.f.s.589.4 yes 8 9.5 odd 6
882.2.h.t.67.1 8 63.23 odd 6
882.2.h.t.67.4 8 63.5 even 6
882.2.h.t.79.1 8 21.11 odd 6
882.2.h.t.79.4 8 21.17 even 6
2646.2.e.t.1549.2 8 63.4 even 3
2646.2.e.t.1549.3 8 63.31 odd 6
2646.2.e.t.2125.2 8 7.2 even 3
2646.2.e.t.2125.3 8 7.5 odd 6
2646.2.f.q.883.2 8 1.1 even 1 trivial
2646.2.f.q.883.3 8 7.6 odd 2 inner
2646.2.f.q.1765.2 8 9.4 even 3 inner
2646.2.f.q.1765.3 8 63.13 odd 6 inner
2646.2.h.q.361.2 8 63.40 odd 6
2646.2.h.q.361.3 8 63.58 even 3
2646.2.h.q.667.2 8 7.3 odd 6
2646.2.h.q.667.3 8 7.4 even 3
7938.2.a.cj.1.2 4 9.2 odd 6
7938.2.a.cj.1.3 4 63.20 even 6
7938.2.a.co.1.2 4 63.34 odd 6
7938.2.a.co.1.3 4 9.7 even 3