Properties

Label 882.2.f.s.589.4
Level $882$
Weight $2$
Character 882.589
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(295,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.295");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.f (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 589.4
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 882.589
Dual form 882.2.f.s.295.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(1.22474 + 1.22474i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(0.258819 - 0.448288i) q^{5} +(-0.448288 + 1.67303i) q^{6} -1.00000 q^{8} +3.00000i q^{9} +0.517638 q^{10} +(0.732051 + 1.26795i) q^{11} +(-1.67303 + 0.448288i) q^{12} +(-1.22474 + 2.12132i) q^{13} +(0.866025 - 0.232051i) q^{15} +(-0.500000 - 0.866025i) q^{16} +3.48477 q^{17} +(-2.59808 + 1.50000i) q^{18} -0.517638 q^{19} +(0.258819 + 0.448288i) q^{20} +(-0.732051 + 1.26795i) q^{22} +(-3.96410 + 6.86603i) q^{23} +(-1.22474 - 1.22474i) q^{24} +(2.36603 + 4.09808i) q^{25} -2.44949 q^{26} +(-3.67423 + 3.67423i) q^{27} +(-1.36603 - 2.36603i) q^{29} +(0.633975 + 0.633975i) q^{30} +(3.67423 - 6.36396i) q^{31} +(0.500000 - 0.866025i) q^{32} +(-0.656339 + 2.44949i) q^{33} +(1.74238 + 3.01790i) q^{34} +(-2.59808 - 1.50000i) q^{36} -8.00000 q^{37} +(-0.258819 - 0.448288i) q^{38} +(-4.09808 + 1.09808i) q^{39} +(-0.258819 + 0.448288i) q^{40} +(2.82843 - 4.89898i) q^{41} +(6.09808 + 10.5622i) q^{43} -1.46410 q^{44} +(1.34486 + 0.776457i) q^{45} -7.92820 q^{46} +(-2.31079 - 4.00240i) q^{47} +(0.448288 - 1.67303i) q^{48} +(-2.36603 + 4.09808i) q^{50} +(4.26795 + 4.26795i) q^{51} +(-1.22474 - 2.12132i) q^{52} +6.73205 q^{53} +(-5.01910 - 1.34486i) q^{54} +0.757875 q^{55} +(-0.633975 - 0.633975i) q^{57} +(1.36603 - 2.36603i) q^{58} +(7.39924 - 12.8159i) q^{59} +(-0.232051 + 0.866025i) q^{60} +(2.19067 + 3.79435i) q^{61} +7.34847 q^{62} +1.00000 q^{64} +(0.633975 + 1.09808i) q^{65} +(-2.44949 + 0.656339i) q^{66} +(1.90192 - 3.29423i) q^{67} +(-1.74238 + 3.01790i) q^{68} +(-13.2641 + 3.55412i) q^{69} -0.803848 q^{71} -3.00000i q^{72} -4.62158 q^{73} +(-4.00000 - 6.92820i) q^{74} +(-2.12132 + 7.91688i) q^{75} +(0.258819 - 0.448288i) q^{76} +(-3.00000 - 3.00000i) q^{78} +(-7.06218 - 12.2321i) q^{79} -0.517638 q^{80} -9.00000 q^{81} +5.65685 q^{82} +(-4.94975 - 8.57321i) q^{83} +(0.901924 - 1.56218i) q^{85} +(-6.09808 + 10.5622i) q^{86} +(1.22474 - 4.57081i) q^{87} +(-0.732051 - 1.26795i) q^{88} +16.1112 q^{89} +1.55291i q^{90} +(-3.96410 - 6.86603i) q^{92} +(12.2942 - 3.29423i) q^{93} +(2.31079 - 4.00240i) q^{94} +(-0.133975 + 0.232051i) q^{95} +(1.67303 - 0.448288i) q^{96} +(-0.517638 - 0.896575i) q^{97} +(-3.80385 + 2.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{4} - 8 q^{8} - 8 q^{11} - 4 q^{16} + 8 q^{22} - 4 q^{23} + 12 q^{25} - 4 q^{29} + 12 q^{30} + 4 q^{32} - 64 q^{37} - 12 q^{39} + 28 q^{43} + 16 q^{44} - 8 q^{46} - 12 q^{50} + 48 q^{51}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 1.22474 + 1.22474i 0.707107 + 0.707107i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 0.258819 0.448288i 0.115747 0.200480i −0.802331 0.596880i \(-0.796407\pi\)
0.918078 + 0.396399i \(0.129740\pi\)
\(6\) −0.448288 + 1.67303i −0.183013 + 0.683013i
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 3.00000i 1.00000i
\(10\) 0.517638 0.163692
\(11\) 0.732051 + 1.26795i 0.220722 + 0.382301i 0.955027 0.296518i \(-0.0958254\pi\)
−0.734306 + 0.678819i \(0.762492\pi\)
\(12\) −1.67303 + 0.448288i −0.482963 + 0.129410i
\(13\) −1.22474 + 2.12132i −0.339683 + 0.588348i −0.984373 0.176096i \(-0.943653\pi\)
0.644690 + 0.764444i \(0.276986\pi\)
\(14\) 0 0
\(15\) 0.866025 0.232051i 0.223607 0.0599153i
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 3.48477 0.845180 0.422590 0.906321i \(-0.361121\pi\)
0.422590 + 0.906321i \(0.361121\pi\)
\(18\) −2.59808 + 1.50000i −0.612372 + 0.353553i
\(19\) −0.517638 −0.118754 −0.0593772 0.998236i \(-0.518911\pi\)
−0.0593772 + 0.998236i \(0.518911\pi\)
\(20\) 0.258819 + 0.448288i 0.0578737 + 0.100240i
\(21\) 0 0
\(22\) −0.732051 + 1.26795i −0.156074 + 0.270328i
\(23\) −3.96410 + 6.86603i −0.826572 + 1.43167i 0.0741394 + 0.997248i \(0.476379\pi\)
−0.900712 + 0.434417i \(0.856954\pi\)
\(24\) −1.22474 1.22474i −0.250000 0.250000i
\(25\) 2.36603 + 4.09808i 0.473205 + 0.819615i
\(26\) −2.44949 −0.480384
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) −1.36603 2.36603i −0.253665 0.439360i 0.710867 0.703326i \(-0.248303\pi\)
−0.964532 + 0.263966i \(0.914969\pi\)
\(30\) 0.633975 + 0.633975i 0.115747 + 0.115747i
\(31\) 3.67423 6.36396i 0.659912 1.14300i −0.320726 0.947172i \(-0.603927\pi\)
0.980638 0.195829i \(-0.0627398\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) −0.656339 + 2.44949i −0.114254 + 0.426401i
\(34\) 1.74238 + 3.01790i 0.298816 + 0.517565i
\(35\) 0 0
\(36\) −2.59808 1.50000i −0.433013 0.250000i
\(37\) −8.00000 −1.31519 −0.657596 0.753371i \(-0.728427\pi\)
−0.657596 + 0.753371i \(0.728427\pi\)
\(38\) −0.258819 0.448288i −0.0419860 0.0727219i
\(39\) −4.09808 + 1.09808i −0.656217 + 0.175833i
\(40\) −0.258819 + 0.448288i −0.0409229 + 0.0708805i
\(41\) 2.82843 4.89898i 0.441726 0.765092i −0.556092 0.831121i \(-0.687700\pi\)
0.997818 + 0.0660290i \(0.0210330\pi\)
\(42\) 0 0
\(43\) 6.09808 + 10.5622i 0.929948 + 1.61072i 0.783404 + 0.621513i \(0.213482\pi\)
0.146544 + 0.989204i \(0.453185\pi\)
\(44\) −1.46410 −0.220722
\(45\) 1.34486 + 0.776457i 0.200480 + 0.115747i
\(46\) −7.92820 −1.16895
\(47\) −2.31079 4.00240i −0.337063 0.583811i 0.646816 0.762646i \(-0.276100\pi\)
−0.983879 + 0.178836i \(0.942767\pi\)
\(48\) 0.448288 1.67303i 0.0647048 0.241481i
\(49\) 0 0
\(50\) −2.36603 + 4.09808i −0.334607 + 0.579555i
\(51\) 4.26795 + 4.26795i 0.597632 + 0.597632i
\(52\) −1.22474 2.12132i −0.169842 0.294174i
\(53\) 6.73205 0.924718 0.462359 0.886693i \(-0.347003\pi\)
0.462359 + 0.886693i \(0.347003\pi\)
\(54\) −5.01910 1.34486i −0.683013 0.183013i
\(55\) 0.757875 0.102192
\(56\) 0 0
\(57\) −0.633975 0.633975i −0.0839720 0.0839720i
\(58\) 1.36603 2.36603i 0.179368 0.310674i
\(59\) 7.39924 12.8159i 0.963299 1.66848i 0.249180 0.968457i \(-0.419839\pi\)
0.714118 0.700025i \(-0.246828\pi\)
\(60\) −0.232051 + 0.866025i −0.0299576 + 0.111803i
\(61\) 2.19067 + 3.79435i 0.280487 + 0.485817i 0.971505 0.237020i \(-0.0761708\pi\)
−0.691018 + 0.722838i \(0.742837\pi\)
\(62\) 7.34847 0.933257
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.633975 + 1.09808i 0.0786349 + 0.136200i
\(66\) −2.44949 + 0.656339i −0.301511 + 0.0807897i
\(67\) 1.90192 3.29423i 0.232357 0.402454i −0.726144 0.687542i \(-0.758690\pi\)
0.958501 + 0.285088i \(0.0920229\pi\)
\(68\) −1.74238 + 3.01790i −0.211295 + 0.365974i
\(69\) −13.2641 + 3.55412i −1.59682 + 0.427865i
\(70\) 0 0
\(71\) −0.803848 −0.0953992 −0.0476996 0.998862i \(-0.515189\pi\)
−0.0476996 + 0.998862i \(0.515189\pi\)
\(72\) 3.00000i 0.353553i
\(73\) −4.62158 −0.540915 −0.270457 0.962732i \(-0.587175\pi\)
−0.270457 + 0.962732i \(0.587175\pi\)
\(74\) −4.00000 6.92820i −0.464991 0.805387i
\(75\) −2.12132 + 7.91688i −0.244949 + 0.914162i
\(76\) 0.258819 0.448288i 0.0296886 0.0514221i
\(77\) 0 0
\(78\) −3.00000 3.00000i −0.339683 0.339683i
\(79\) −7.06218 12.2321i −0.794557 1.37621i −0.923120 0.384512i \(-0.874370\pi\)
0.128563 0.991701i \(-0.458964\pi\)
\(80\) −0.517638 −0.0578737
\(81\) −9.00000 −1.00000
\(82\) 5.65685 0.624695
\(83\) −4.94975 8.57321i −0.543305 0.941033i −0.998711 0.0507487i \(-0.983839\pi\)
0.455406 0.890284i \(-0.349494\pi\)
\(84\) 0 0
\(85\) 0.901924 1.56218i 0.0978274 0.169442i
\(86\) −6.09808 + 10.5622i −0.657572 + 1.13895i
\(87\) 1.22474 4.57081i 0.131306 0.490042i
\(88\) −0.732051 1.26795i −0.0780369 0.135164i
\(89\) 16.1112 1.70778 0.853889 0.520455i \(-0.174237\pi\)
0.853889 + 0.520455i \(0.174237\pi\)
\(90\) 1.55291i 0.163692i
\(91\) 0 0
\(92\) −3.96410 6.86603i −0.413286 0.715833i
\(93\) 12.2942 3.29423i 1.27485 0.341596i
\(94\) 2.31079 4.00240i 0.238340 0.412816i
\(95\) −0.133975 + 0.232051i −0.0137455 + 0.0238079i
\(96\) 1.67303 0.448288i 0.170753 0.0457532i
\(97\) −0.517638 0.896575i −0.0525582 0.0910334i 0.838549 0.544826i \(-0.183404\pi\)
−0.891108 + 0.453792i \(0.850071\pi\)
\(98\) 0 0
\(99\) −3.80385 + 2.19615i −0.382301 + 0.220722i
\(100\) −4.73205 −0.473205
\(101\) 2.89778 + 5.01910i 0.288340 + 0.499419i 0.973414 0.229055i \(-0.0735635\pi\)
−0.685074 + 0.728474i \(0.740230\pi\)
\(102\) −1.56218 + 5.83013i −0.154679 + 0.577269i
\(103\) −5.60609 + 9.71003i −0.552384 + 0.956757i 0.445718 + 0.895174i \(0.352948\pi\)
−0.998102 + 0.0615838i \(0.980385\pi\)
\(104\) 1.22474 2.12132i 0.120096 0.208013i
\(105\) 0 0
\(106\) 3.36603 + 5.83013i 0.326937 + 0.566272i
\(107\) 3.07180 0.296962 0.148481 0.988915i \(-0.452562\pi\)
0.148481 + 0.988915i \(0.452562\pi\)
\(108\) −1.34486 5.01910i −0.129410 0.482963i
\(109\) 10.5885 1.01419 0.507095 0.861890i \(-0.330719\pi\)
0.507095 + 0.861890i \(0.330719\pi\)
\(110\) 0.378937 + 0.656339i 0.0361303 + 0.0625794i
\(111\) −9.79796 9.79796i −0.929981 0.929981i
\(112\) 0 0
\(113\) 7.33013 12.6962i 0.689560 1.19435i −0.282420 0.959291i \(-0.591137\pi\)
0.971980 0.235063i \(-0.0755295\pi\)
\(114\) 0.232051 0.866025i 0.0217335 0.0811107i
\(115\) 2.05197 + 3.55412i 0.191347 + 0.331423i
\(116\) 2.73205 0.253665
\(117\) −6.36396 3.67423i −0.588348 0.339683i
\(118\) 14.7985 1.36231
\(119\) 0 0
\(120\) −0.866025 + 0.232051i −0.0790569 + 0.0211832i
\(121\) 4.42820 7.66987i 0.402564 0.697261i
\(122\) −2.19067 + 3.79435i −0.198334 + 0.343525i
\(123\) 9.46410 2.53590i 0.853349 0.228654i
\(124\) 3.67423 + 6.36396i 0.329956 + 0.571501i
\(125\) 5.03768 0.450584
\(126\) 0 0
\(127\) −5.92820 −0.526043 −0.263021 0.964790i \(-0.584719\pi\)
−0.263021 + 0.964790i \(0.584719\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −5.46739 + 20.4046i −0.481376 + 1.79652i
\(130\) −0.633975 + 1.09808i −0.0556033 + 0.0963077i
\(131\) 6.24384 10.8147i 0.545527 0.944881i −0.453046 0.891487i \(-0.649663\pi\)
0.998574 0.0533937i \(-0.0170038\pi\)
\(132\) −1.79315 1.79315i −0.156074 0.156074i
\(133\) 0 0
\(134\) 3.80385 0.328602
\(135\) 0.696152 + 2.59808i 0.0599153 + 0.223607i
\(136\) −3.48477 −0.298816
\(137\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(138\) −9.71003 9.71003i −0.826572 0.826572i
\(139\) −10.1075 + 17.5068i −0.857311 + 1.48491i 0.0171736 + 0.999853i \(0.494533\pi\)
−0.874485 + 0.485053i \(0.838800\pi\)
\(140\) 0 0
\(141\) 2.07180 7.73205i 0.174477 0.651156i
\(142\) −0.401924 0.696152i −0.0337287 0.0584198i
\(143\) −3.58630 −0.299902
\(144\) 2.59808 1.50000i 0.216506 0.125000i
\(145\) −1.41421 −0.117444
\(146\) −2.31079 4.00240i −0.191242 0.331241i
\(147\) 0 0
\(148\) 4.00000 6.92820i 0.328798 0.569495i
\(149\) 1.19615 2.07180i 0.0979926 0.169728i −0.812861 0.582458i \(-0.802091\pi\)
0.910854 + 0.412729i \(0.135425\pi\)
\(150\) −7.91688 + 2.12132i −0.646410 + 0.173205i
\(151\) 8.69615 + 15.0622i 0.707683 + 1.22574i 0.965715 + 0.259606i \(0.0835928\pi\)
−0.258032 + 0.966136i \(0.583074\pi\)
\(152\) 0.517638 0.0419860
\(153\) 10.4543i 0.845180i
\(154\) 0 0
\(155\) −1.90192 3.29423i −0.152766 0.264599i
\(156\) 1.09808 4.09808i 0.0879165 0.328109i
\(157\) −8.64256 + 14.9694i −0.689752 + 1.19469i 0.282166 + 0.959366i \(0.408947\pi\)
−0.971918 + 0.235320i \(0.924386\pi\)
\(158\) 7.06218 12.2321i 0.561837 0.973130i
\(159\) 8.24504 + 8.24504i 0.653875 + 0.653875i
\(160\) −0.258819 0.448288i −0.0204614 0.0354403i
\(161\) 0 0
\(162\) −4.50000 7.79423i −0.353553 0.612372i
\(163\) −7.07180 −0.553906 −0.276953 0.960883i \(-0.589325\pi\)
−0.276953 + 0.960883i \(0.589325\pi\)
\(164\) 2.82843 + 4.89898i 0.220863 + 0.382546i
\(165\) 0.928203 + 0.928203i 0.0722605 + 0.0722605i
\(166\) 4.94975 8.57321i 0.384175 0.665410i
\(167\) 6.64136 11.5032i 0.513924 0.890143i −0.485945 0.873989i \(-0.661525\pi\)
0.999870 0.0161534i \(-0.00514202\pi\)
\(168\) 0 0
\(169\) 3.50000 + 6.06218i 0.269231 + 0.466321i
\(170\) 1.80385 0.138349
\(171\) 1.55291i 0.118754i
\(172\) −12.1962 −0.929948
\(173\) −9.71003 16.8183i −0.738240 1.27867i −0.953287 0.302065i \(-0.902324\pi\)
0.215048 0.976604i \(-0.431009\pi\)
\(174\) 4.57081 1.22474i 0.346512 0.0928477i
\(175\) 0 0
\(176\) 0.732051 1.26795i 0.0551804 0.0955753i
\(177\) 24.7583 6.63397i 1.86095 0.498640i
\(178\) 8.05558 + 13.9527i 0.603791 + 1.04580i
\(179\) −8.19615 −0.612609 −0.306305 0.951934i \(-0.599093\pi\)
−0.306305 + 0.951934i \(0.599093\pi\)
\(180\) −1.34486 + 0.776457i −0.100240 + 0.0578737i
\(181\) 20.9730 1.55891 0.779454 0.626459i \(-0.215497\pi\)
0.779454 + 0.626459i \(0.215497\pi\)
\(182\) 0 0
\(183\) −1.96410 + 7.33013i −0.145191 + 0.541859i
\(184\) 3.96410 6.86603i 0.292237 0.506170i
\(185\) −2.07055 + 3.58630i −0.152230 + 0.263670i
\(186\) 9.00000 + 9.00000i 0.659912 + 0.659912i
\(187\) 2.55103 + 4.41851i 0.186549 + 0.323113i
\(188\) 4.62158 0.337063
\(189\) 0 0
\(190\) −0.267949 −0.0194391
\(191\) 3.59808 + 6.23205i 0.260348 + 0.450935i 0.966334 0.257290i \(-0.0828295\pi\)
−0.705987 + 0.708225i \(0.749496\pi\)
\(192\) 1.22474 + 1.22474i 0.0883883 + 0.0883883i
\(193\) 11.8660 20.5526i 0.854135 1.47941i −0.0233098 0.999728i \(-0.507420\pi\)
0.877445 0.479677i \(-0.159246\pi\)
\(194\) 0.517638 0.896575i 0.0371642 0.0643704i
\(195\) −0.568406 + 2.12132i −0.0407044 + 0.151911i
\(196\) 0 0
\(197\) 9.66025 0.688265 0.344132 0.938921i \(-0.388173\pi\)
0.344132 + 0.938921i \(0.388173\pi\)
\(198\) −3.80385 2.19615i −0.270328 0.156074i
\(199\) −11.5911 −0.821672 −0.410836 0.911709i \(-0.634763\pi\)
−0.410836 + 0.911709i \(0.634763\pi\)
\(200\) −2.36603 4.09808i −0.167303 0.289778i
\(201\) 6.36396 1.70522i 0.448879 0.120277i
\(202\) −2.89778 + 5.01910i −0.203887 + 0.353142i
\(203\) 0 0
\(204\) −5.83013 + 1.56218i −0.408191 + 0.109374i
\(205\) −1.46410 2.53590i −0.102257 0.177115i
\(206\) −11.2122 −0.781189
\(207\) −20.5981 11.8923i −1.43167 0.826572i
\(208\) 2.44949 0.169842
\(209\) −0.378937 0.656339i −0.0262116 0.0453999i
\(210\) 0 0
\(211\) −0.633975 + 1.09808i −0.0436446 + 0.0755947i −0.887022 0.461726i \(-0.847230\pi\)
0.843378 + 0.537321i \(0.180564\pi\)
\(212\) −3.36603 + 5.83013i −0.231180 + 0.400415i
\(213\) −0.984508 0.984508i −0.0674574 0.0674574i
\(214\) 1.53590 + 2.66025i 0.104992 + 0.181851i
\(215\) 6.31319 0.430556
\(216\) 3.67423 3.67423i 0.250000 0.250000i
\(217\) 0 0
\(218\) 5.29423 + 9.16987i 0.358570 + 0.621062i
\(219\) −5.66025 5.66025i −0.382485 0.382485i
\(220\) −0.378937 + 0.656339i −0.0255480 + 0.0442504i
\(221\) −4.26795 + 7.39230i −0.287093 + 0.497260i
\(222\) 3.58630 13.3843i 0.240697 0.898293i
\(223\) 1.88108 + 3.25813i 0.125967 + 0.218181i 0.922110 0.386927i \(-0.126463\pi\)
−0.796144 + 0.605108i \(0.793130\pi\)
\(224\) 0 0
\(225\) −12.2942 + 7.09808i −0.819615 + 0.473205i
\(226\) 14.6603 0.975186
\(227\) 1.67303 + 2.89778i 0.111043 + 0.192332i 0.916191 0.400742i \(-0.131248\pi\)
−0.805148 + 0.593074i \(0.797914\pi\)
\(228\) 0.866025 0.232051i 0.0573539 0.0153679i
\(229\) 6.90018 11.9515i 0.455977 0.789775i −0.542767 0.839883i \(-0.682623\pi\)
0.998744 + 0.0501083i \(0.0159567\pi\)
\(230\) −2.05197 + 3.55412i −0.135303 + 0.234351i
\(231\) 0 0
\(232\) 1.36603 + 2.36603i 0.0896840 + 0.155337i
\(233\) 1.39230 0.0912129 0.0456065 0.998959i \(-0.485478\pi\)
0.0456065 + 0.998959i \(0.485478\pi\)
\(234\) 7.34847i 0.480384i
\(235\) −2.39230 −0.156057
\(236\) 7.39924 + 12.8159i 0.481649 + 0.834241i
\(237\) 6.33178 23.6305i 0.411293 1.53497i
\(238\) 0 0
\(239\) 6.23205 10.7942i 0.403118 0.698221i −0.590983 0.806684i \(-0.701260\pi\)
0.994100 + 0.108464i \(0.0345931\pi\)
\(240\) −0.633975 0.633975i −0.0409229 0.0409229i
\(241\) 6.36396 + 11.0227i 0.409939 + 0.710035i 0.994882 0.101039i \(-0.0322167\pi\)
−0.584944 + 0.811074i \(0.698883\pi\)
\(242\) 8.85641 0.569311
\(243\) −11.0227 11.0227i −0.707107 0.707107i
\(244\) −4.38134 −0.280487
\(245\) 0 0
\(246\) 6.92820 + 6.92820i 0.441726 + 0.441726i
\(247\) 0.633975 1.09808i 0.0403388 0.0698689i
\(248\) −3.67423 + 6.36396i −0.233314 + 0.404112i
\(249\) 4.43782 16.5622i 0.281236 1.04959i
\(250\) 2.51884 + 4.36276i 0.159305 + 0.275925i
\(251\) 0.517638 0.0326730 0.0163365 0.999867i \(-0.494800\pi\)
0.0163365 + 0.999867i \(0.494800\pi\)
\(252\) 0 0
\(253\) −11.6077 −0.729770
\(254\) −2.96410 5.13397i −0.185984 0.322134i
\(255\) 3.01790 0.808643i 0.188988 0.0506392i
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 1.88108 3.25813i 0.117339 0.203237i −0.801373 0.598164i \(-0.795897\pi\)
0.918712 + 0.394928i \(0.129230\pi\)
\(258\) −20.4046 + 5.46739i −1.27033 + 0.340385i
\(259\) 0 0
\(260\) −1.26795 −0.0786349
\(261\) 7.09808 4.09808i 0.439360 0.253665i
\(262\) 12.4877 0.771492
\(263\) −1.33013 2.30385i −0.0820191 0.142061i 0.822098 0.569346i \(-0.192804\pi\)
−0.904117 + 0.427285i \(0.859470\pi\)
\(264\) 0.656339 2.44949i 0.0403949 0.150756i
\(265\) 1.74238 3.01790i 0.107034 0.185388i
\(266\) 0 0
\(267\) 19.7321 + 19.7321i 1.20758 + 1.20758i
\(268\) 1.90192 + 3.29423i 0.116178 + 0.201227i
\(269\) −26.9072 −1.64056 −0.820281 0.571961i \(-0.806183\pi\)
−0.820281 + 0.571961i \(0.806183\pi\)
\(270\) −1.90192 + 1.90192i −0.115747 + 0.115747i
\(271\) −14.7985 −0.898943 −0.449472 0.893295i \(-0.648388\pi\)
−0.449472 + 0.893295i \(0.648388\pi\)
\(272\) −1.74238 3.01790i −0.105647 0.182987i
\(273\) 0 0
\(274\) 0 0
\(275\) −3.46410 + 6.00000i −0.208893 + 0.361814i
\(276\) 3.55412 13.2641i 0.213933 0.798408i
\(277\) 8.09808 + 14.0263i 0.486566 + 0.842757i 0.999881 0.0154431i \(-0.00491589\pi\)
−0.513315 + 0.858201i \(0.671583\pi\)
\(278\) −20.2151 −1.21242
\(279\) 19.0919 + 11.0227i 1.14300 + 0.659912i
\(280\) 0 0
\(281\) 8.69615 + 15.0622i 0.518769 + 0.898534i 0.999762 + 0.0218099i \(0.00694284\pi\)
−0.480993 + 0.876724i \(0.659724\pi\)
\(282\) 7.73205 2.07180i 0.460437 0.123374i
\(283\) 4.88040 8.45310i 0.290109 0.502484i −0.683726 0.729739i \(-0.739642\pi\)
0.973835 + 0.227255i \(0.0729749\pi\)
\(284\) 0.401924 0.696152i 0.0238498 0.0413090i
\(285\) −0.448288 + 0.120118i −0.0265543 + 0.00711520i
\(286\) −1.79315 3.10583i −0.106031 0.183651i
\(287\) 0 0
\(288\) 2.59808 + 1.50000i 0.153093 + 0.0883883i
\(289\) −4.85641 −0.285671
\(290\) −0.707107 1.22474i −0.0415227 0.0719195i
\(291\) 0.464102 1.73205i 0.0272061 0.101535i
\(292\) 2.31079 4.00240i 0.135229 0.234223i
\(293\) −1.48356 + 2.56961i −0.0866707 + 0.150118i −0.906102 0.423059i \(-0.860956\pi\)
0.819431 + 0.573178i \(0.194289\pi\)
\(294\) 0 0
\(295\) −3.83013 6.63397i −0.222999 0.386245i
\(296\) 8.00000 0.464991
\(297\) −7.34847 1.96902i −0.426401 0.114254i
\(298\) 2.39230 0.138582
\(299\) −9.71003 16.8183i −0.561545 0.972625i
\(300\) −5.79555 5.79555i −0.334607 0.334607i
\(301\) 0 0
\(302\) −8.69615 + 15.0622i −0.500407 + 0.866731i
\(303\) −2.59808 + 9.69615i −0.149256 + 0.557029i
\(304\) 0.258819 + 0.448288i 0.0148443 + 0.0257111i
\(305\) 2.26795 0.129862
\(306\) −9.05369 + 5.22715i −0.517565 + 0.298816i
\(307\) 11.9329 0.681046 0.340523 0.940236i \(-0.389396\pi\)
0.340523 + 0.940236i \(0.389396\pi\)
\(308\) 0 0
\(309\) −18.7583 + 5.02628i −1.06712 + 0.285935i
\(310\) 1.90192 3.29423i 0.108022 0.187100i
\(311\) 9.09085 15.7458i 0.515495 0.892863i −0.484343 0.874878i \(-0.660941\pi\)
0.999838 0.0179854i \(-0.00572524\pi\)
\(312\) 4.09808 1.09808i 0.232008 0.0621663i
\(313\) −3.34607 5.79555i −0.189131 0.327584i 0.755830 0.654768i \(-0.227234\pi\)
−0.944961 + 0.327184i \(0.893900\pi\)
\(314\) −17.2851 −0.975456
\(315\) 0 0
\(316\) 14.1244 0.794557
\(317\) −16.2942 28.2224i −0.915175 1.58513i −0.806645 0.591037i \(-0.798719\pi\)
−0.108530 0.994093i \(-0.534614\pi\)
\(318\) −3.01790 + 11.2629i −0.169235 + 0.631594i
\(319\) 2.00000 3.46410i 0.111979 0.193952i
\(320\) 0.258819 0.448288i 0.0144684 0.0250600i
\(321\) 3.76217 + 3.76217i 0.209984 + 0.209984i
\(322\) 0 0
\(323\) −1.80385 −0.100369
\(324\) 4.50000 7.79423i 0.250000 0.433013i
\(325\) −11.5911 −0.642959
\(326\) −3.53590 6.12436i −0.195835 0.339197i
\(327\) 12.9682 + 12.9682i 0.717141 + 0.717141i
\(328\) −2.82843 + 4.89898i −0.156174 + 0.270501i
\(329\) 0 0
\(330\) −0.339746 + 1.26795i −0.0187024 + 0.0697983i
\(331\) 6.02628 + 10.4378i 0.331234 + 0.573715i 0.982754 0.184917i \(-0.0592016\pi\)
−0.651520 + 0.758632i \(0.725868\pi\)
\(332\) 9.89949 0.543305
\(333\) 24.0000i 1.31519i
\(334\) 13.2827 0.726798
\(335\) −0.984508 1.70522i −0.0537894 0.0931660i
\(336\) 0 0
\(337\) 10.6603 18.4641i 0.580701 1.00580i −0.414695 0.909960i \(-0.636112\pi\)
0.995396 0.0958434i \(-0.0305548\pi\)
\(338\) −3.50000 + 6.06218i −0.190375 + 0.329739i
\(339\) 24.5271 6.57201i 1.33213 0.356943i
\(340\) 0.901924 + 1.56218i 0.0489137 + 0.0847210i
\(341\) 10.7589 0.582627
\(342\) 1.34486 0.776457i 0.0727219 0.0419860i
\(343\) 0 0
\(344\) −6.09808 10.5622i −0.328786 0.569474i
\(345\) −1.83975 + 6.86603i −0.0990486 + 0.369654i
\(346\) 9.71003 16.8183i 0.522014 0.904155i
\(347\) −10.8564 + 18.8038i −0.582802 + 1.00944i 0.412343 + 0.911029i \(0.364711\pi\)
−0.995145 + 0.0984148i \(0.968623\pi\)
\(348\) 3.34607 + 3.34607i 0.179368 + 0.179368i
\(349\) −17.2987 29.9623i −0.925980 1.60384i −0.789978 0.613136i \(-0.789908\pi\)
−0.136002 0.990709i \(-0.543425\pi\)
\(350\) 0 0
\(351\) −3.29423 12.2942i −0.175833 0.656217i
\(352\) 1.46410 0.0780369
\(353\) 0.0507680 + 0.0879327i 0.00270211 + 0.00468019i 0.867373 0.497658i \(-0.165807\pi\)
−0.864671 + 0.502338i \(0.832473\pi\)
\(354\) 18.1244 + 18.1244i 0.963299 + 0.963299i
\(355\) −0.208051 + 0.360355i −0.0110422 + 0.0191257i
\(356\) −8.05558 + 13.9527i −0.426945 + 0.739490i
\(357\) 0 0
\(358\) −4.09808 7.09808i −0.216590 0.375145i
\(359\) −13.9282 −0.735102 −0.367551 0.930003i \(-0.619804\pi\)
−0.367551 + 0.930003i \(0.619804\pi\)
\(360\) −1.34486 0.776457i −0.0708805 0.0409229i
\(361\) −18.7321 −0.985897
\(362\) 10.4865 + 18.1631i 0.551157 + 0.954632i
\(363\) 14.8171 3.97022i 0.777694 0.208382i
\(364\) 0 0
\(365\) −1.19615 + 2.07180i −0.0626095 + 0.108443i
\(366\) −7.33013 + 1.96410i −0.383152 + 0.102665i
\(367\) −0.138701 0.240237i −0.00724012 0.0125403i 0.862383 0.506257i \(-0.168971\pi\)
−0.869623 + 0.493717i \(0.835638\pi\)
\(368\) 7.92820 0.413286
\(369\) 14.6969 + 8.48528i 0.765092 + 0.441726i
\(370\) −4.14110 −0.215286
\(371\) 0 0
\(372\) −3.29423 + 12.2942i −0.170798 + 0.637426i
\(373\) −9.56218 + 16.5622i −0.495111 + 0.857557i −0.999984 0.00563639i \(-0.998206\pi\)
0.504873 + 0.863193i \(0.331539\pi\)
\(374\) −2.55103 + 4.41851i −0.131910 + 0.228476i
\(375\) 6.16987 + 6.16987i 0.318611 + 0.318611i
\(376\) 2.31079 + 4.00240i 0.119170 + 0.206408i
\(377\) 6.69213 0.344662
\(378\) 0 0
\(379\) −27.5167 −1.41344 −0.706718 0.707495i \(-0.749825\pi\)
−0.706718 + 0.707495i \(0.749825\pi\)
\(380\) −0.133975 0.232051i −0.00687275 0.0119040i
\(381\) −7.26054 7.26054i −0.371969 0.371969i
\(382\) −3.59808 + 6.23205i −0.184094 + 0.318859i
\(383\) −17.1093 + 29.6341i −0.874243 + 1.51423i −0.0166751 + 0.999861i \(0.505308\pi\)
−0.857567 + 0.514372i \(0.828025\pi\)
\(384\) −0.448288 + 1.67303i −0.0228766 + 0.0853766i
\(385\) 0 0
\(386\) 23.7321 1.20793
\(387\) −31.6865 + 18.2942i −1.61072 + 0.929948i
\(388\) 1.03528 0.0525582
\(389\) 2.43782 + 4.22243i 0.123602 + 0.214086i 0.921186 0.389123i \(-0.127222\pi\)
−0.797583 + 0.603209i \(0.793889\pi\)
\(390\) −2.12132 + 0.568406i −0.107417 + 0.0287824i
\(391\) −13.8140 + 23.9265i −0.698602 + 1.21001i
\(392\) 0 0
\(393\) 20.8923 5.59808i 1.05388 0.282386i
\(394\) 4.83013 + 8.36603i 0.243338 + 0.421474i
\(395\) −7.31130 −0.367872
\(396\) 4.39230i 0.220722i
\(397\) −26.3896 −1.32446 −0.662228 0.749303i \(-0.730389\pi\)
−0.662228 + 0.749303i \(0.730389\pi\)
\(398\) −5.79555 10.0382i −0.290505 0.503169i
\(399\) 0 0
\(400\) 2.36603 4.09808i 0.118301 0.204904i
\(401\) 12.5263 21.6962i 0.625533 1.08345i −0.362905 0.931826i \(-0.618215\pi\)
0.988438 0.151628i \(-0.0484516\pi\)
\(402\) 4.65874 + 4.65874i 0.232357 + 0.232357i
\(403\) 9.00000 + 15.5885i 0.448322 + 0.776516i
\(404\) −5.79555 −0.288340
\(405\) −2.32937 + 4.03459i −0.115747 + 0.200480i
\(406\) 0 0
\(407\) −5.85641 10.1436i −0.290291 0.502799i
\(408\) −4.26795 4.26795i −0.211295 0.211295i
\(409\) 8.90138 15.4176i 0.440145 0.762354i −0.557555 0.830140i \(-0.688260\pi\)
0.997700 + 0.0677865i \(0.0215937\pi\)
\(410\) 1.46410 2.53590i 0.0723068 0.125239i
\(411\) 0 0
\(412\) −5.60609 9.71003i −0.276192 0.478379i
\(413\) 0 0
\(414\) 23.7846i 1.16895i
\(415\) −5.12436 −0.251545
\(416\) 1.22474 + 2.12132i 0.0600481 + 0.104006i
\(417\) −33.8205 + 9.06218i −1.65620 + 0.443777i
\(418\) 0.378937 0.656339i 0.0185344 0.0321026i
\(419\) −11.3323 + 19.6281i −0.553619 + 0.958896i 0.444391 + 0.895833i \(0.353420\pi\)
−0.998010 + 0.0630626i \(0.979913\pi\)
\(420\) 0 0
\(421\) −14.0263 24.2942i −0.683599 1.18403i −0.973875 0.227085i \(-0.927080\pi\)
0.290276 0.956943i \(-0.406253\pi\)
\(422\) −1.26795 −0.0617228
\(423\) 12.0072 6.93237i 0.583811 0.337063i
\(424\) −6.73205 −0.326937
\(425\) 8.24504 + 14.2808i 0.399943 + 0.692722i
\(426\) 0.360355 1.34486i 0.0174593 0.0651588i
\(427\) 0 0
\(428\) −1.53590 + 2.66025i −0.0742405 + 0.128588i
\(429\) −4.39230 4.39230i −0.212062 0.212062i
\(430\) 3.15660 + 5.46739i 0.152225 + 0.263661i
\(431\) −26.7846 −1.29017 −0.645085 0.764111i \(-0.723178\pi\)
−0.645085 + 0.764111i \(0.723178\pi\)
\(432\) 5.01910 + 1.34486i 0.241481 + 0.0647048i
\(433\) 20.2523 0.973261 0.486631 0.873608i \(-0.338226\pi\)
0.486631 + 0.873608i \(0.338226\pi\)
\(434\) 0 0
\(435\) −1.73205 1.73205i −0.0830455 0.0830455i
\(436\) −5.29423 + 9.16987i −0.253548 + 0.439157i
\(437\) 2.05197 3.55412i 0.0981590 0.170016i
\(438\) 2.07180 7.73205i 0.0989943 0.369452i
\(439\) 9.14162 + 15.8338i 0.436306 + 0.755704i 0.997401 0.0720474i \(-0.0229533\pi\)
−0.561095 + 0.827751i \(0.689620\pi\)
\(440\) −0.757875 −0.0361303
\(441\) 0 0
\(442\) −8.53590 −0.406011
\(443\) 18.4904 + 32.0263i 0.878505 + 1.52161i 0.852982 + 0.521940i \(0.174792\pi\)
0.0255224 + 0.999674i \(0.491875\pi\)
\(444\) 13.3843 3.58630i 0.635189 0.170198i
\(445\) 4.16987 7.22243i 0.197671 0.342376i
\(446\) −1.88108 + 3.25813i −0.0890719 + 0.154277i
\(447\) 4.00240 1.07244i 0.189307 0.0507247i
\(448\) 0 0
\(449\) −23.7846 −1.12247 −0.561233 0.827658i \(-0.689673\pi\)
−0.561233 + 0.827658i \(0.689673\pi\)
\(450\) −12.2942 7.09808i −0.579555 0.334607i
\(451\) 8.28221 0.389994
\(452\) 7.33013 + 12.6962i 0.344780 + 0.597177i
\(453\) −7.79676 + 29.0979i −0.366324 + 1.36714i
\(454\) −1.67303 + 2.89778i −0.0785193 + 0.135999i
\(455\) 0 0
\(456\) 0.633975 + 0.633975i 0.0296886 + 0.0296886i
\(457\) 11.1340 + 19.2846i 0.520825 + 0.902096i 0.999707 + 0.0242164i \(0.00770906\pi\)
−0.478881 + 0.877880i \(0.658958\pi\)
\(458\) 13.8004 0.644849
\(459\) −12.8038 + 12.8038i −0.597632 + 0.597632i
\(460\) −4.10394 −0.191347
\(461\) 19.4894 + 33.7566i 0.907712 + 1.57220i 0.817235 + 0.576305i \(0.195506\pi\)
0.0904771 + 0.995899i \(0.471161\pi\)
\(462\) 0 0
\(463\) −3.33013 + 5.76795i −0.154764 + 0.268059i −0.932973 0.359946i \(-0.882795\pi\)
0.778209 + 0.628005i \(0.216128\pi\)
\(464\) −1.36603 + 2.36603i −0.0634161 + 0.109840i
\(465\) 1.70522 6.36396i 0.0790776 0.295122i
\(466\) 0.696152 + 1.20577i 0.0322486 + 0.0558563i
\(467\) −24.5964 −1.13819 −0.569094 0.822273i \(-0.692706\pi\)
−0.569094 + 0.822273i \(0.692706\pi\)
\(468\) 6.36396 3.67423i 0.294174 0.169842i
\(469\) 0 0
\(470\) −1.19615 2.07180i −0.0551744 0.0955649i
\(471\) −28.9186 + 7.74871i −1.33250 + 0.357042i
\(472\) −7.39924 + 12.8159i −0.340577 + 0.589898i
\(473\) −8.92820 + 15.4641i −0.410519 + 0.711040i
\(474\) 23.6305 6.33178i 1.08539 0.290828i
\(475\) −1.22474 2.12132i −0.0561951 0.0973329i
\(476\) 0 0
\(477\) 20.1962i 0.924718i
\(478\) 12.4641 0.570095
\(479\) −6.64136 11.5032i −0.303452 0.525594i 0.673464 0.739220i \(-0.264806\pi\)
−0.976915 + 0.213627i \(0.931472\pi\)
\(480\) 0.232051 0.866025i 0.0105916 0.0395285i
\(481\) 9.79796 16.9706i 0.446748 0.773791i
\(482\) −6.36396 + 11.0227i −0.289870 + 0.502070i
\(483\) 0 0
\(484\) 4.42820 + 7.66987i 0.201282 + 0.348631i
\(485\) −0.535898 −0.0243339
\(486\) 4.03459 15.0573i 0.183013 0.683013i
\(487\) −32.3205 −1.46458 −0.732291 0.680992i \(-0.761549\pi\)
−0.732291 + 0.680992i \(0.761549\pi\)
\(488\) −2.19067 3.79435i −0.0991670 0.171762i
\(489\) −8.66115 8.66115i −0.391671 0.391671i
\(490\) 0 0
\(491\) 2.53590 4.39230i 0.114443 0.198222i −0.803114 0.595826i \(-0.796825\pi\)
0.917557 + 0.397604i \(0.130158\pi\)
\(492\) −2.53590 + 9.46410i −0.114327 + 0.426675i
\(493\) −4.76028 8.24504i −0.214392 0.371338i
\(494\) 1.26795 0.0570477
\(495\) 2.27362i 0.102192i
\(496\) −7.34847 −0.329956
\(497\) 0 0
\(498\) 16.5622 4.43782i 0.742169 0.198864i
\(499\) −3.66025 + 6.33975i −0.163855 + 0.283806i −0.936248 0.351339i \(-0.885726\pi\)
0.772393 + 0.635145i \(0.219060\pi\)
\(500\) −2.51884 + 4.36276i −0.112646 + 0.195109i
\(501\) 22.2224 5.95448i 0.992825 0.266027i
\(502\) 0.258819 + 0.448288i 0.0115517 + 0.0200081i
\(503\) −28.9406 −1.29040 −0.645199 0.764015i \(-0.723226\pi\)
−0.645199 + 0.764015i \(0.723226\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) −5.80385 10.0526i −0.258012 0.446891i
\(507\) −3.13801 + 11.7112i −0.139364 + 0.520114i
\(508\) 2.96410 5.13397i 0.131511 0.227783i
\(509\) −3.81294 + 6.60420i −0.169005 + 0.292726i −0.938070 0.346445i \(-0.887389\pi\)
0.769065 + 0.639171i \(0.220722\pi\)
\(510\) 2.20925 + 2.20925i 0.0978274 + 0.0978274i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 1.90192 1.90192i 0.0839720 0.0839720i
\(514\) 3.76217 0.165942
\(515\) 2.90192 + 5.02628i 0.127874 + 0.221484i
\(516\) −14.9372 14.9372i −0.657572 0.657572i
\(517\) 3.38323 5.85993i 0.148794 0.257719i
\(518\) 0 0
\(519\) 8.70577 32.4904i 0.382141 1.42617i
\(520\) −0.633975 1.09808i −0.0278016 0.0481538i
\(521\) 32.5269 1.42503 0.712515 0.701657i \(-0.247556\pi\)
0.712515 + 0.701657i \(0.247556\pi\)
\(522\) 7.09808 + 4.09808i 0.310674 + 0.179368i
\(523\) −39.2562 −1.71655 −0.858277 0.513187i \(-0.828465\pi\)
−0.858277 + 0.513187i \(0.828465\pi\)
\(524\) 6.24384 + 10.8147i 0.272764 + 0.472440i
\(525\) 0 0
\(526\) 1.33013 2.30385i 0.0579963 0.100453i
\(527\) 12.8038 22.1769i 0.557744 0.966042i
\(528\) 2.44949 0.656339i 0.106600 0.0285635i
\(529\) −19.9282 34.5167i −0.866444 1.50072i
\(530\) 3.48477 0.151369
\(531\) 38.4476 + 22.1977i 1.66848 + 0.963299i
\(532\) 0 0
\(533\) 6.92820 + 12.0000i 0.300094 + 0.519778i
\(534\) −7.22243 + 26.9545i −0.312545 + 1.16643i
\(535\) 0.795040 1.37705i 0.0343726 0.0595350i
\(536\) −1.90192 + 3.29423i −0.0821506 + 0.142289i
\(537\) −10.0382 10.0382i −0.433180 0.433180i
\(538\) −13.4536 23.3023i −0.580026 1.00464i
\(539\) 0 0
\(540\) −2.59808 0.696152i −0.111803 0.0299576i
\(541\) 20.7321 0.891340 0.445670 0.895197i \(-0.352965\pi\)
0.445670 + 0.895197i \(0.352965\pi\)
\(542\) −7.39924 12.8159i −0.317824 0.550488i
\(543\) 25.6865 + 25.6865i 1.10231 + 1.10231i
\(544\) 1.74238 3.01790i 0.0747041 0.129391i
\(545\) 2.74049 4.74668i 0.117390 0.203325i
\(546\) 0 0
\(547\) 5.73205 + 9.92820i 0.245085 + 0.424499i 0.962155 0.272501i \(-0.0878509\pi\)
−0.717071 + 0.697000i \(0.754518\pi\)
\(548\) 0 0
\(549\) −11.3831 + 6.57201i −0.485817 + 0.280487i
\(550\) −6.92820 −0.295420
\(551\) 0.707107 + 1.22474i 0.0301238 + 0.0521759i
\(552\) 13.2641 3.55412i 0.564559 0.151273i
\(553\) 0 0
\(554\) −8.09808 + 14.0263i −0.344054 + 0.595920i
\(555\) −6.92820 + 1.85641i −0.294086 + 0.0788001i
\(556\) −10.1075 17.5068i −0.428655 0.742453i
\(557\) 2.87564 0.121845 0.0609225 0.998143i \(-0.480596\pi\)
0.0609225 + 0.998143i \(0.480596\pi\)
\(558\) 22.0454i 0.933257i
\(559\) −29.8744 −1.26355
\(560\) 0 0
\(561\) −2.28719 + 8.53590i −0.0965651 + 0.360386i
\(562\) −8.69615 + 15.0622i −0.366825 + 0.635360i
\(563\) −0.637756 + 1.10463i −0.0268782 + 0.0465545i −0.879152 0.476542i \(-0.841890\pi\)
0.852273 + 0.523097i \(0.175223\pi\)
\(564\) 5.66025 + 5.66025i 0.238340 + 0.238340i
\(565\) −3.79435 6.57201i −0.159630 0.276487i
\(566\) 9.76079 0.410277
\(567\) 0 0
\(568\) 0.803848 0.0337287
\(569\) −13.4641 23.3205i −0.564445 0.977647i −0.997101 0.0760878i \(-0.975757\pi\)
0.432657 0.901559i \(-0.357576\pi\)
\(570\) −0.328169 0.328169i −0.0137455 0.0137455i
\(571\) −2.00000 + 3.46410i −0.0836974 + 0.144968i −0.904835 0.425762i \(-0.860006\pi\)
0.821138 + 0.570730i \(0.193340\pi\)
\(572\) 1.79315 3.10583i 0.0749754 0.129861i
\(573\) −3.22595 + 12.0394i −0.134766 + 0.502953i
\(574\) 0 0
\(575\) −37.5167 −1.56455
\(576\) 3.00000i 0.125000i
\(577\) −26.2880 −1.09439 −0.547193 0.837007i \(-0.684304\pi\)
−0.547193 + 0.837007i \(0.684304\pi\)
\(578\) −2.42820 4.20577i −0.101000 0.174937i
\(579\) 39.7045 10.6388i 1.65006 0.442133i
\(580\) 0.707107 1.22474i 0.0293610 0.0508548i
\(581\) 0 0
\(582\) 1.73205 0.464102i 0.0717958 0.0192376i
\(583\) 4.92820 + 8.53590i 0.204105 + 0.353521i
\(584\) 4.62158 0.191242
\(585\) −3.29423 + 1.90192i −0.136200 + 0.0786349i
\(586\) −2.96713 −0.122571
\(587\) 1.76097 + 3.05008i 0.0726828 + 0.125890i 0.900076 0.435732i \(-0.143511\pi\)
−0.827393 + 0.561623i \(0.810177\pi\)
\(588\) 0 0
\(589\) −1.90192 + 3.29423i −0.0783674 + 0.135736i
\(590\) 3.83013 6.63397i 0.157684 0.273116i
\(591\) 11.8313 + 11.8313i 0.486677 + 0.486677i
\(592\) 4.00000 + 6.92820i 0.164399 + 0.284747i
\(593\) 6.79367 0.278982 0.139491 0.990223i \(-0.455453\pi\)
0.139491 + 0.990223i \(0.455453\pi\)
\(594\) −1.96902 7.34847i −0.0807897 0.301511i
\(595\) 0 0
\(596\) 1.19615 + 2.07180i 0.0489963 + 0.0848641i
\(597\) −14.1962 14.1962i −0.581010 0.581010i
\(598\) 9.71003 16.8183i 0.397073 0.687750i
\(599\) 6.19615 10.7321i 0.253168 0.438500i −0.711228 0.702961i \(-0.751861\pi\)
0.964396 + 0.264461i \(0.0851941\pi\)
\(600\) 2.12132 7.91688i 0.0866025 0.323205i
\(601\) −20.9730 36.3262i −0.855505 1.48178i −0.876176 0.481992i \(-0.839913\pi\)
0.0206704 0.999786i \(-0.493420\pi\)
\(602\) 0 0
\(603\) 9.88269 + 5.70577i 0.402454 + 0.232357i
\(604\) −17.3923 −0.707683
\(605\) −2.29221 3.97022i −0.0931915 0.161412i
\(606\) −9.69615 + 2.59808i −0.393879 + 0.105540i
\(607\) −10.6945 + 18.5235i −0.434078 + 0.751845i −0.997220 0.0745153i \(-0.976259\pi\)
0.563142 + 0.826360i \(0.309592\pi\)
\(608\) −0.258819 + 0.448288i −0.0104965 + 0.0181805i
\(609\) 0 0
\(610\) 1.13397 + 1.96410i 0.0459133 + 0.0795241i
\(611\) 11.3205 0.457979
\(612\) −9.05369 5.22715i −0.365974 0.211295i
\(613\) 20.4449 0.825760 0.412880 0.910785i \(-0.364523\pi\)
0.412880 + 0.910785i \(0.364523\pi\)
\(614\) 5.96644 + 10.3342i 0.240786 + 0.417054i
\(615\) 1.31268 4.89898i 0.0529323 0.197546i
\(616\) 0 0
\(617\) −21.1962 + 36.7128i −0.853325 + 1.47800i 0.0248653 + 0.999691i \(0.492084\pi\)
−0.878190 + 0.478311i \(0.841249\pi\)
\(618\) −13.7321 13.7321i −0.552384 0.552384i
\(619\) −3.74358 6.48408i −0.150467 0.260617i 0.780932 0.624616i \(-0.214745\pi\)
−0.931399 + 0.363999i \(0.881411\pi\)
\(620\) 3.80385 0.152766
\(621\) −10.6623 39.7924i −0.427865 1.59682i
\(622\) 18.1817 0.729020
\(623\) 0 0
\(624\) 3.00000 + 3.00000i 0.120096 + 0.120096i
\(625\) −10.5263 + 18.2321i −0.421051 + 0.729282i
\(626\) 3.34607 5.79555i 0.133736 0.231637i
\(627\) 0.339746 1.26795i 0.0135681 0.0506370i
\(628\) −8.64256 14.9694i −0.344876 0.597343i
\(629\) −27.8781 −1.11157
\(630\) 0 0
\(631\) −3.87564 −0.154287 −0.0771435 0.997020i \(-0.524580\pi\)
−0.0771435 + 0.997020i \(0.524580\pi\)
\(632\) 7.06218 + 12.2321i 0.280918 + 0.486565i
\(633\) −2.12132 + 0.568406i −0.0843149 + 0.0225921i
\(634\) 16.2942 28.2224i 0.647126 1.12086i
\(635\) −1.53433 + 2.65754i −0.0608881 + 0.105461i
\(636\) −11.2629 + 3.01790i −0.446605 + 0.119667i
\(637\) 0 0
\(638\) 4.00000 0.158362
\(639\) 2.41154i 0.0953992i
\(640\) 0.517638 0.0204614
\(641\) 1.52628 + 2.64359i 0.0602844 + 0.104416i 0.894593 0.446883i \(-0.147466\pi\)
−0.834308 + 0.551298i \(0.814133\pi\)
\(642\) −1.37705 + 5.13922i −0.0543478 + 0.202829i
\(643\) −0.845807 + 1.46498i −0.0333554 + 0.0577732i −0.882221 0.470835i \(-0.843953\pi\)
0.848866 + 0.528608i \(0.177286\pi\)
\(644\) 0 0
\(645\) 7.73205 + 7.73205i 0.304449 + 0.304449i
\(646\) −0.901924 1.56218i −0.0354857 0.0614631i
\(647\) 15.8338 0.622489 0.311244 0.950330i \(-0.399254\pi\)
0.311244 + 0.950330i \(0.399254\pi\)
\(648\) 9.00000 0.353553
\(649\) 21.6665 0.850483
\(650\) −5.79555 10.0382i −0.227320 0.393730i
\(651\) 0 0
\(652\) 3.53590 6.12436i 0.138476 0.239848i
\(653\) 20.6603 35.7846i 0.808498 1.40036i −0.105406 0.994429i \(-0.533614\pi\)
0.913904 0.405931i \(-0.133053\pi\)
\(654\) −4.74668 + 17.7148i −0.185610 + 0.692705i
\(655\) −3.23205 5.59808i −0.126287 0.218735i
\(656\) −5.65685 −0.220863
\(657\) 13.8647i 0.540915i
\(658\) 0 0
\(659\) 19.5622 + 33.8827i 0.762034 + 1.31988i 0.941800 + 0.336173i \(0.109133\pi\)
−0.179766 + 0.983709i \(0.557534\pi\)
\(660\) −1.26795 + 0.339746i −0.0493549 + 0.0132246i
\(661\) 10.7267 18.5792i 0.417221 0.722648i −0.578438 0.815727i \(-0.696337\pi\)
0.995659 + 0.0930785i \(0.0296708\pi\)
\(662\) −6.02628 + 10.4378i −0.234218 + 0.405677i
\(663\) −14.2808 + 3.82654i −0.554622 + 0.148610i
\(664\) 4.94975 + 8.57321i 0.192087 + 0.332705i
\(665\) 0 0
\(666\) 20.7846 12.0000i 0.805387 0.464991i
\(667\) 21.6603 0.838688
\(668\) 6.64136 + 11.5032i 0.256962 + 0.445071i
\(669\) −1.68653 + 6.29423i −0.0652052 + 0.243349i
\(670\) 0.984508 1.70522i 0.0380349 0.0658783i
\(671\) −3.20736 + 5.55532i −0.123819 + 0.214461i
\(672\) 0 0
\(673\) 20.0885 + 34.7942i 0.774353 + 1.34122i 0.935157 + 0.354233i \(0.115258\pi\)
−0.160804 + 0.986986i \(0.551409\pi\)
\(674\) 21.3205 0.821235
\(675\) −23.7506 6.36396i −0.914162 0.244949i
\(676\) −7.00000 −0.269231
\(677\) 0.568406 + 0.984508i 0.0218456 + 0.0378377i 0.876742 0.480962i \(-0.159712\pi\)
−0.854896 + 0.518800i \(0.826379\pi\)
\(678\) 17.9551 + 17.9551i 0.689560 + 0.689560i
\(679\) 0 0
\(680\) −0.901924 + 1.56218i −0.0345872 + 0.0599068i
\(681\) −1.50000 + 5.59808i −0.0574801 + 0.214519i
\(682\) 5.37945 + 9.31749i 0.205990 + 0.356785i
\(683\) −13.6077 −0.520684 −0.260342 0.965516i \(-0.583835\pi\)
−0.260342 + 0.965516i \(0.583835\pi\)
\(684\) 1.34486 + 0.776457i 0.0514221 + 0.0296886i
\(685\) 0 0
\(686\) 0 0
\(687\) 23.0885 6.18653i 0.880880 0.236031i
\(688\) 6.09808 10.5622i 0.232487 0.402679i
\(689\) −8.24504 + 14.2808i −0.314111 + 0.544057i
\(690\) −6.86603 + 1.83975i −0.261385 + 0.0700379i
\(691\) −18.4913 32.0279i −0.703442 1.21840i −0.967251 0.253822i \(-0.918312\pi\)
0.263809 0.964575i \(-0.415021\pi\)
\(692\) 19.4201 0.738240
\(693\) 0 0
\(694\) −21.7128 −0.824207
\(695\) 5.23205 + 9.06218i 0.198463 + 0.343748i
\(696\) −1.22474 + 4.57081i −0.0464238 + 0.173256i
\(697\) 9.85641 17.0718i 0.373338 0.646640i
\(698\) 17.2987 29.9623i 0.654767 1.13409i
\(699\) 1.70522 + 1.70522i 0.0644973 + 0.0644973i
\(700\) 0 0
\(701\) 20.5359 0.775630 0.387815 0.921737i \(-0.373230\pi\)
0.387815 + 0.921737i \(0.373230\pi\)
\(702\) 9.00000 9.00000i 0.339683 0.339683i
\(703\) 4.14110 0.156185
\(704\) 0.732051 + 1.26795i 0.0275902 + 0.0477876i
\(705\) −2.92996 2.92996i −0.110349 0.110349i
\(706\) −0.0507680 + 0.0879327i −0.00191068 + 0.00330939i
\(707\) 0 0
\(708\) −6.63397 + 24.7583i −0.249320 + 0.930475i
\(709\) 11.2679 + 19.5167i 0.423177 + 0.732964i 0.996248 0.0865418i \(-0.0275816\pi\)
−0.573072 + 0.819505i \(0.694248\pi\)
\(710\) −0.416102 −0.0156160
\(711\) 36.6962 21.1865i 1.37621 0.794557i
\(712\) −16.1112 −0.603791
\(713\) 29.1301 + 50.4548i 1.09093 + 1.88955i
\(714\) 0 0
\(715\) −0.928203 + 1.60770i −0.0347128 + 0.0601244i
\(716\) 4.09808 7.09808i 0.153152 0.265268i
\(717\) 20.8528 5.58750i 0.778764 0.208669i
\(718\) −6.96410 12.0622i −0.259898 0.450156i
\(719\) 34.0155 1.26856 0.634281 0.773102i \(-0.281296\pi\)
0.634281 + 0.773102i \(0.281296\pi\)
\(720\) 1.55291i 0.0578737i
\(721\) 0 0
\(722\) −9.36603 16.2224i −0.348567 0.603736i
\(723\) −5.70577 + 21.2942i −0.212200 + 0.791941i
\(724\) −10.4865 + 18.1631i −0.389727 + 0.675027i
\(725\) 6.46410 11.1962i 0.240071 0.415815i
\(726\) 10.8468 + 10.8468i 0.402564 + 0.402564i
\(727\) −14.8864 25.7840i −0.552106 0.956276i −0.998122 0.0612512i \(-0.980491\pi\)
0.446016 0.895025i \(-0.352842\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) −2.39230 −0.0885432
\(731\) 21.2504 + 36.8067i 0.785973 + 1.36135i
\(732\) −5.36603 5.36603i −0.198334 0.198334i
\(733\) 15.0573 26.0800i 0.556154 0.963287i −0.441659 0.897183i \(-0.645610\pi\)
0.997813 0.0661037i \(-0.0210568\pi\)
\(734\) 0.138701 0.240237i 0.00511954 0.00886730i
\(735\) 0 0
\(736\) 3.96410 + 6.86603i 0.146119 + 0.253085i
\(737\) 5.56922 0.205145
\(738\) 16.9706i 0.624695i
\(739\) −16.1436 −0.593852 −0.296926 0.954901i \(-0.595961\pi\)
−0.296926 + 0.954901i \(0.595961\pi\)
\(740\) −2.07055 3.58630i −0.0761150 0.131835i
\(741\) 2.12132 0.568406i 0.0779287 0.0208809i
\(742\) 0 0
\(743\) 14.1244 24.4641i 0.518172 0.897501i −0.481605 0.876389i \(-0.659946\pi\)
0.999777 0.0211123i \(-0.00672076\pi\)
\(744\) −12.2942 + 3.29423i −0.450728 + 0.120772i
\(745\) −0.619174 1.07244i −0.0226848 0.0392912i
\(746\) −19.1244 −0.700192
\(747\) 25.7196 14.8492i 0.941033 0.543305i
\(748\) −5.10205 −0.186549
\(749\) 0 0
\(750\) −2.25833 + 8.42820i −0.0824626 + 0.307754i
\(751\) 25.0885 43.4545i 0.915491 1.58568i 0.109310 0.994008i \(-0.465136\pi\)
0.806181 0.591669i \(-0.201531\pi\)
\(752\) −2.31079 + 4.00240i −0.0842658 + 0.145953i
\(753\) 0.633975 + 0.633975i 0.0231033 + 0.0231033i
\(754\) 3.34607 + 5.79555i 0.121857 + 0.211062i
\(755\) 9.00292 0.327650
\(756\) 0 0
\(757\) 20.2487 0.735952 0.367976 0.929835i \(-0.380051\pi\)
0.367976 + 0.929835i \(0.380051\pi\)
\(758\) −13.7583 23.8301i −0.499725 0.865549i
\(759\) −14.2165 14.2165i −0.516025 0.516025i
\(760\) 0.133975 0.232051i 0.00485977 0.00841737i
\(761\) −19.8869 + 34.4452i −0.720900 + 1.24864i 0.239739 + 0.970837i \(0.422938\pi\)
−0.960639 + 0.277799i \(0.910395\pi\)
\(762\) 2.65754 9.91808i 0.0962725 0.359294i
\(763\) 0 0
\(764\) −7.19615 −0.260348
\(765\) 4.68653 + 2.70577i 0.169442 + 0.0978274i
\(766\) −34.2185 −1.23637
\(767\) 18.1244 + 31.3923i 0.654433 + 1.13351i
\(768\) −1.67303 + 0.448288i −0.0603704 + 0.0161762i
\(769\) 14.9372 25.8719i 0.538648 0.932966i −0.460329 0.887748i \(-0.652268\pi\)
0.998977 0.0452178i \(-0.0143982\pi\)
\(770\) 0 0
\(771\) 6.29423 1.68653i 0.226681 0.0607390i
\(772\) 11.8660 + 20.5526i 0.427068 + 0.739703i
\(773\) −13.5230 −0.486387 −0.243194 0.969978i \(-0.578195\pi\)
−0.243194 + 0.969978i \(0.578195\pi\)
\(774\) −31.6865 18.2942i −1.13895 0.657572i
\(775\) 34.7733 1.24909
\(776\) 0.517638 + 0.896575i 0.0185821 + 0.0321852i
\(777\) 0 0
\(778\) −2.43782 + 4.22243i −0.0874002 + 0.151382i
\(779\) −1.46410 + 2.53590i −0.0524569 + 0.0908580i
\(780\) −1.55291 1.55291i −0.0556033 0.0556033i
\(781\) −0.588457 1.01924i −0.0210567 0.0364712i
\(782\) −27.6279 −0.987973
\(783\) 13.7124 + 3.67423i 0.490042 + 0.131306i
\(784\) 0 0
\(785\) 4.47372 + 7.74871i 0.159674 + 0.276563i
\(786\) 15.2942 + 15.2942i 0.545527 + 0.545527i
\(787\) −18.0938 + 31.3393i −0.644973 + 1.11713i 0.339334 + 0.940666i \(0.389798\pi\)
−0.984308 + 0.176461i \(0.943535\pi\)
\(788\) −4.83013 + 8.36603i −0.172066 + 0.298027i
\(789\) 1.19256 4.45069i 0.0424562 0.158449i
\(790\) −3.65565 6.33178i −0.130062 0.225274i
\(791\) 0 0
\(792\) 3.80385 2.19615i 0.135164 0.0780369i
\(793\) −10.7321 −0.381106
\(794\) −13.1948 22.8541i −0.468266 0.811060i
\(795\) 5.83013 1.56218i 0.206773 0.0554047i
\(796\) 5.79555 10.0382i 0.205418 0.355794i
\(797\) 12.2796 21.2690i 0.434967 0.753385i −0.562326 0.826916i \(-0.690093\pi\)
0.997293 + 0.0735308i \(0.0234267\pi\)
\(798\) 0 0
\(799\) −8.05256 13.9474i −0.284879 0.493425i
\(800\) 4.73205 0.167303
\(801\) 48.3335i 1.70778i
\(802\) 25.0526 0.884637
\(803\) −3.38323 5.85993i −0.119392 0.206792i
\(804\) −1.70522 + 6.36396i −0.0601384 + 0.224440i
\(805\) 0 0
\(806\) −9.00000 + 15.5885i −0.317011 + 0.549080i
\(807\) −32.9545 32.9545i −1.16005 1.16005i
\(808\) −2.89778 5.01910i −0.101943 0.176571i
\(809\) 33.3205 1.17149 0.585743 0.810497i \(-0.300803\pi\)
0.585743 + 0.810497i \(0.300803\pi\)
\(810\) −4.65874 −0.163692
\(811\) −7.82894 −0.274911 −0.137456 0.990508i \(-0.543892\pi\)
−0.137456 + 0.990508i \(0.543892\pi\)
\(812\) 0 0
\(813\) −18.1244 18.1244i −0.635649 0.635649i
\(814\) 5.85641 10.1436i 0.205267 0.355533i
\(815\) −1.83032 + 3.17020i −0.0641132 + 0.111047i
\(816\) 1.56218 5.83013i 0.0546872 0.204095i
\(817\) −3.15660 5.46739i −0.110435 0.191280i
\(818\) 17.8028 0.622459
\(819\) 0 0
\(820\) 2.92820 0.102257
\(821\) 3.33975 + 5.78461i 0.116558 + 0.201884i 0.918401 0.395650i \(-0.129481\pi\)
−0.801844 + 0.597534i \(0.796147\pi\)
\(822\) 0 0
\(823\) 3.66025 6.33975i 0.127588 0.220990i −0.795153 0.606408i \(-0.792610\pi\)
0.922742 + 0.385419i \(0.125943\pi\)
\(824\) 5.60609 9.71003i 0.195297 0.338265i
\(825\) −11.5911 + 3.10583i −0.403551 + 0.108131i
\(826\) 0 0
\(827\) −52.7321 −1.83367 −0.916837 0.399263i \(-0.869266\pi\)
−0.916837 + 0.399263i \(0.869266\pi\)
\(828\) 20.5981 11.8923i 0.715833 0.413286i
\(829\) 1.89469 0.0658052 0.0329026 0.999459i \(-0.489525\pi\)
0.0329026 + 0.999459i \(0.489525\pi\)
\(830\) −2.56218 4.43782i −0.0889345 0.154039i
\(831\) −7.26054 + 27.0967i −0.251865 + 0.939974i
\(832\) −1.22474 + 2.12132i −0.0424604 + 0.0735436i
\(833\) 0 0
\(834\) −24.7583 24.7583i −0.857311 0.857311i
\(835\) −3.43782 5.95448i −0.118971 0.206063i
\(836\) 0.757875 0.0262116
\(837\) 9.88269 + 36.8827i 0.341596 + 1.27485i
\(838\) −22.6646 −0.782935
\(839\) −22.4751 38.9280i −0.775927 1.34395i −0.934272 0.356561i \(-0.883949\pi\)
0.158345 0.987384i \(-0.449384\pi\)
\(840\) 0 0
\(841\) 10.7679 18.6506i 0.371309 0.643125i
\(842\) 14.0263 24.2942i 0.483378 0.837234i
\(843\) −7.79676 + 29.0979i −0.268535 + 1.00218i
\(844\) −0.633975 1.09808i −0.0218223 0.0377973i
\(845\) 3.62347 0.124651
\(846\) 12.0072 + 6.93237i 0.412816 + 0.238340i
\(847\) 0 0
\(848\) −3.36603 5.83013i −0.115590 0.200207i
\(849\) 16.3301 4.37564i 0.560449 0.150172i
\(850\) −8.24504 + 14.2808i −0.282803 + 0.489829i
\(851\) 31.7128 54.9282i 1.08710 1.88291i
\(852\) 1.34486 0.360355i 0.0460743 0.0123456i
\(853\) 11.7992 + 20.4367i 0.403996 + 0.699741i 0.994204 0.107510i \(-0.0342878\pi\)
−0.590208 + 0.807251i \(0.700954\pi\)
\(854\) 0 0
\(855\) −0.696152 0.401924i −0.0238079 0.0137455i
\(856\) −3.07180 −0.104992
\(857\) 2.72689 + 4.72311i 0.0931488 + 0.161339i 0.908835 0.417157i \(-0.136973\pi\)
−0.815686 + 0.578495i \(0.803640\pi\)
\(858\) 1.60770 6.00000i 0.0548858 0.204837i
\(859\) 4.84821 8.39735i 0.165419 0.286514i −0.771385 0.636369i \(-0.780436\pi\)
0.936804 + 0.349855i \(0.113769\pi\)
\(860\) −3.15660 + 5.46739i −0.107639 + 0.186436i
\(861\) 0 0
\(862\) −13.3923 23.1962i −0.456144 0.790064i
\(863\) 21.1962 0.721525 0.360763 0.932658i \(-0.382516\pi\)
0.360763 + 0.932658i \(0.382516\pi\)
\(864\) 1.34486 + 5.01910i 0.0457532 + 0.170753i
\(865\) −10.0526 −0.341797
\(866\) 10.1261 + 17.5390i 0.344100 + 0.595998i
\(867\) −5.94786 5.94786i −0.202000 0.202000i
\(868\) 0 0
\(869\) 10.3397 17.9090i 0.350752 0.607520i
\(870\) 0.633975 2.36603i 0.0214938 0.0802158i
\(871\) 4.65874 + 8.06918i 0.157855 + 0.273414i
\(872\) −10.5885 −0.358570
\(873\) 2.68973 1.55291i 0.0910334 0.0525582i
\(874\) 4.10394 0.138818
\(875\) 0 0
\(876\) 7.73205 2.07180i 0.261242 0.0699995i
\(877\) −12.0263 + 20.8301i −0.406099 + 0.703383i −0.994449 0.105223i \(-0.966444\pi\)
0.588350 + 0.808606i \(0.299778\pi\)
\(878\) −9.14162 + 15.8338i −0.308515 + 0.534363i
\(879\) −4.96410 + 1.33013i −0.167435 + 0.0448641i
\(880\) −0.378937 0.656339i −0.0127740 0.0221252i
\(881\) −0.480473 −0.0161876 −0.00809378 0.999967i \(-0.502576\pi\)
−0.00809378 + 0.999967i \(0.502576\pi\)
\(882\) 0 0
\(883\) 38.2487 1.28717 0.643586 0.765374i \(-0.277446\pi\)
0.643586 + 0.765374i \(0.277446\pi\)
\(884\) −4.26795 7.39230i −0.143547 0.248630i
\(885\) 3.43400 12.8159i 0.115433 0.430800i
\(886\) −18.4904 + 32.0263i −0.621197 + 1.07594i
\(887\) 13.4858 23.3581i 0.452809 0.784288i −0.545751 0.837948i \(-0.683755\pi\)
0.998559 + 0.0536600i \(0.0170887\pi\)
\(888\) 9.79796 + 9.79796i 0.328798 + 0.328798i
\(889\) 0 0
\(890\) 8.33975 0.279549
\(891\) −6.58846 11.4115i −0.220722 0.382301i
\(892\) −3.76217 −0.125967
\(893\) 1.19615 + 2.07180i 0.0400277 + 0.0693300i
\(894\) 2.92996 + 2.92996i 0.0979926 + 0.0979926i
\(895\) −2.12132 + 3.67423i −0.0709079 + 0.122816i
\(896\) 0 0
\(897\) 8.70577 32.4904i 0.290677 1.08482i
\(898\) −11.8923 20.5981i −0.396851 0.687367i
\(899\) −20.0764 −0.669585
\(900\) 14.1962i 0.473205i
\(901\) 23.4596 0.781553
\(902\) 4.14110 + 7.17260i 0.137884 + 0.238822i
\(903\) 0 0
\(904\) −7.33013 + 12.6962i −0.243796 + 0.422268i
\(905\) 5.42820 9.40192i 0.180440 0.312531i
\(906\) −29.0979 + 7.79676i −0.966713 + 0.259030i
\(907\) 2.56218 + 4.43782i 0.0850757 + 0.147355i 0.905423 0.424510i \(-0.139553\pi\)
−0.820348 + 0.571865i \(0.806220\pi\)
\(908\) −3.34607 −0.111043
\(909\) −15.0573 + 8.69333i −0.499419 + 0.288340i
\(910\) 0 0
\(911\) −13.8923 24.0622i −0.460273 0.797216i 0.538702 0.842497i \(-0.318915\pi\)
−0.998974 + 0.0452811i \(0.985582\pi\)
\(912\) −0.232051 + 0.866025i −0.00768397 + 0.0286770i
\(913\) 7.24693 12.5521i 0.239838 0.415412i
\(914\) −11.1340 + 19.2846i −0.368279 + 0.637878i
\(915\) 2.77766 + 2.77766i 0.0918266 + 0.0918266i
\(916\) 6.90018 + 11.9515i 0.227988 + 0.394888i
\(917\) 0 0
\(918\) −17.4904 4.68653i −0.577269 0.154679i
\(919\) 16.3731 0.540098 0.270049 0.962847i \(-0.412960\pi\)
0.270049 + 0.962847i \(0.412960\pi\)
\(920\) −2.05197 3.55412i −0.0676514 0.117176i
\(921\) 14.6147 + 14.6147i 0.481572 + 0.481572i
\(922\) −19.4894 + 33.7566i −0.641849 + 1.11172i
\(923\) 0.984508 1.70522i 0.0324055 0.0561279i
\(924\) 0 0
\(925\) −18.9282 32.7846i −0.622355 1.07795i
\(926\) −6.66025 −0.218870
\(927\) −29.1301 16.8183i −0.956757 0.552384i
\(928\) −2.73205 −0.0896840
\(929\) 2.01978 + 3.49837i 0.0662670 + 0.114778i 0.897255 0.441512i \(-0.145558\pi\)
−0.830988 + 0.556290i \(0.812224\pi\)
\(930\) 6.36396 1.70522i 0.208683 0.0559163i
\(931\) 0 0
\(932\) −0.696152 + 1.20577i −0.0228032 + 0.0394964i
\(933\) 30.4186 8.15064i 0.995860 0.266840i
\(934\) −12.2982 21.3011i −0.402410 0.696994i
\(935\) 2.64102 0.0863705
\(936\) 6.36396 + 3.67423i 0.208013 + 0.120096i
\(937\) −31.7690 −1.03785 −0.518925 0.854820i \(-0.673667\pi\)
−0.518925 + 0.854820i \(0.673667\pi\)
\(938\) 0 0
\(939\) 3.00000 11.1962i 0.0979013 0.365373i
\(940\) 1.19615 2.07180i 0.0390142 0.0675746i
\(941\) −29.1994 + 50.5749i −0.951874 + 1.64869i −0.210510 + 0.977592i \(0.567512\pi\)
−0.741364 + 0.671103i \(0.765821\pi\)
\(942\) −21.1699 21.1699i −0.689752 0.689752i
\(943\) 22.4243 + 38.8401i 0.730237 + 1.26481i
\(944\) −14.7985 −0.481649
\(945\) 0 0
\(946\) −17.8564 −0.580562
\(947\) 17.8301 + 30.8827i 0.579401 + 1.00355i 0.995548 + 0.0942550i \(0.0300469\pi\)
−0.416147 + 0.909297i \(0.636620\pi\)
\(948\) 17.2987 + 17.2987i 0.561837 + 0.561837i
\(949\) 5.66025 9.80385i 0.183740 0.318246i
\(950\) 1.22474 2.12132i 0.0397360 0.0688247i
\(951\) 14.6090 54.5216i 0.473729 1.76798i
\(952\) 0 0
\(953\) 23.7128 0.768133 0.384067 0.923305i \(-0.374523\pi\)
0.384067 + 0.923305i \(0.374523\pi\)
\(954\) −17.4904 + 10.0981i −0.566272 + 0.326937i
\(955\) 3.72500 0.120538
\(956\) 6.23205 + 10.7942i 0.201559 + 0.349110i
\(957\) 6.69213 1.79315i 0.216326 0.0579643i
\(958\) 6.64136 11.5032i 0.214573 0.371651i
\(959\) 0 0
\(960\) 0.866025 0.232051i 0.0279508 0.00748941i
\(961\) −11.5000 19.9186i −0.370968 0.642535i
\(962\) 19.5959 0.631798
\(963\) 9.21539i 0.296962i
\(964\) −12.7279 −0.409939
\(965\) −6.14231 10.6388i −0.197728 0.342475i
\(966\) 0 0
\(967\) 0.232051 0.401924i 0.00746225 0.0129250i −0.862270 0.506449i \(-0.830958\pi\)
0.869732 + 0.493524i \(0.164291\pi\)
\(968\) −4.42820 + 7.66987i −0.142328 + 0.246519i
\(969\) −2.20925 2.20925i −0.0709714 0.0709714i
\(970\) −0.267949 0.464102i −0.00860333 0.0149014i
\(971\) −28.5988 −0.917780 −0.458890 0.888493i \(-0.651753\pi\)
−0.458890 + 0.888493i \(0.651753\pi\)
\(972\) 15.0573 4.03459i 0.482963 0.129410i
\(973\) 0 0
\(974\) −16.1603 27.9904i −0.517808 0.896870i
\(975\) −14.1962 14.1962i −0.454641 0.454641i
\(976\) 2.19067 3.79435i 0.0701217 0.121454i
\(977\) 8.07180 13.9808i 0.258240 0.447284i −0.707531 0.706683i \(-0.750191\pi\)
0.965770 + 0.259398i \(0.0835242\pi\)
\(978\) 3.17020 11.8313i 0.101372 0.378325i
\(979\) 11.7942 + 20.4281i 0.376944 + 0.652886i
\(980\) 0 0
\(981\) 31.7654i 1.01419i
\(982\) 5.07180 0.161848
\(983\) −11.8177 20.4689i −0.376927 0.652858i 0.613686 0.789550i \(-0.289686\pi\)
−0.990614 + 0.136693i \(0.956353\pi\)
\(984\) −9.46410 + 2.53590i −0.301705 + 0.0808415i
\(985\) 2.50026 4.33057i 0.0796648 0.137984i
\(986\) 4.76028 8.24504i 0.151598 0.262576i
\(987\) 0 0
\(988\) 0.633975 + 1.09808i 0.0201694 + 0.0349345i
\(989\) −96.6936 −3.07468
\(990\) −1.96902 + 1.13681i −0.0625794 + 0.0361303i
\(991\) 14.6795 0.466309 0.233155 0.972440i \(-0.425095\pi\)
0.233155 + 0.972440i \(0.425095\pi\)
\(992\) −3.67423 6.36396i −0.116657 0.202056i
\(993\) −5.40301 + 20.1643i −0.171459 + 0.639895i
\(994\) 0 0
\(995\) −3.00000 + 5.19615i −0.0951064 + 0.164729i
\(996\) 12.1244 + 12.1244i 0.384175 + 0.384175i
\(997\) 21.9389 + 37.9993i 0.694812 + 1.20345i 0.970244 + 0.242129i \(0.0778456\pi\)
−0.275432 + 0.961320i \(0.588821\pi\)
\(998\) −7.32051 −0.231727
\(999\) 29.3939 29.3939i 0.929981 0.929981i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.f.s.589.4 yes 8
3.2 odd 2 2646.2.f.q.1765.2 8
7.2 even 3 882.2.h.t.67.1 8
7.3 odd 6 882.2.e.q.373.2 8
7.4 even 3 882.2.e.q.373.3 8
7.5 odd 6 882.2.h.t.67.4 8
7.6 odd 2 inner 882.2.f.s.589.1 yes 8
9.2 odd 6 2646.2.f.q.883.2 8
9.4 even 3 7938.2.a.cj.1.2 4
9.5 odd 6 7938.2.a.co.1.3 4
9.7 even 3 inner 882.2.f.s.295.3 yes 8
21.2 odd 6 2646.2.h.q.361.3 8
21.5 even 6 2646.2.h.q.361.2 8
21.11 odd 6 2646.2.e.t.1549.2 8
21.17 even 6 2646.2.e.t.1549.3 8
21.20 even 2 2646.2.f.q.1765.3 8
63.2 odd 6 2646.2.e.t.2125.2 8
63.11 odd 6 2646.2.h.q.667.3 8
63.13 odd 6 7938.2.a.cj.1.3 4
63.16 even 3 882.2.e.q.655.3 8
63.20 even 6 2646.2.f.q.883.3 8
63.25 even 3 882.2.h.t.79.1 8
63.34 odd 6 inner 882.2.f.s.295.2 8
63.38 even 6 2646.2.h.q.667.2 8
63.41 even 6 7938.2.a.co.1.2 4
63.47 even 6 2646.2.e.t.2125.3 8
63.52 odd 6 882.2.h.t.79.4 8
63.61 odd 6 882.2.e.q.655.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.q.373.2 8 7.3 odd 6
882.2.e.q.373.3 8 7.4 even 3
882.2.e.q.655.2 8 63.61 odd 6
882.2.e.q.655.3 8 63.16 even 3
882.2.f.s.295.2 8 63.34 odd 6 inner
882.2.f.s.295.3 yes 8 9.7 even 3 inner
882.2.f.s.589.1 yes 8 7.6 odd 2 inner
882.2.f.s.589.4 yes 8 1.1 even 1 trivial
882.2.h.t.67.1 8 7.2 even 3
882.2.h.t.67.4 8 7.5 odd 6
882.2.h.t.79.1 8 63.25 even 3
882.2.h.t.79.4 8 63.52 odd 6
2646.2.e.t.1549.2 8 21.11 odd 6
2646.2.e.t.1549.3 8 21.17 even 6
2646.2.e.t.2125.2 8 63.2 odd 6
2646.2.e.t.2125.3 8 63.47 even 6
2646.2.f.q.883.2 8 9.2 odd 6
2646.2.f.q.883.3 8 63.20 even 6
2646.2.f.q.1765.2 8 3.2 odd 2
2646.2.f.q.1765.3 8 21.20 even 2
2646.2.h.q.361.2 8 21.5 even 6
2646.2.h.q.361.3 8 21.2 odd 6
2646.2.h.q.667.2 8 63.38 even 6
2646.2.h.q.667.3 8 63.11 odd 6
7938.2.a.cj.1.2 4 9.4 even 3
7938.2.a.cj.1.3 4 63.13 odd 6
7938.2.a.co.1.2 4 63.41 even 6
7938.2.a.co.1.3 4 9.5 odd 6