Properties

Label 882.2.h.t.67.1
Level $882$
Weight $2$
Character 882.67
Analytic conductor $7.043$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [882,2,Mod(67,882)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(882, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("882.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 882.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.04280545828\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(-0.258819 + 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 882.67
Dual form 882.2.h.t.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-1.67303 + 0.448288i) q^{3} +(-0.500000 - 0.866025i) q^{4} -0.517638 q^{5} +(-0.448288 + 1.67303i) q^{6} -1.00000 q^{8} +(2.59808 - 1.50000i) q^{9} +(-0.258819 + 0.448288i) q^{10} -1.46410 q^{11} +(1.22474 + 1.22474i) q^{12} +(-1.22474 + 2.12132i) q^{13} +(0.866025 - 0.232051i) q^{15} +(-0.500000 + 0.866025i) q^{16} +(-1.74238 + 3.01790i) q^{17} -3.00000i q^{18} +(0.258819 + 0.448288i) q^{19} +(0.258819 + 0.448288i) q^{20} +(-0.732051 + 1.26795i) q^{22} +7.92820 q^{23} +(1.67303 - 0.448288i) q^{24} -4.73205 q^{25} +(1.22474 + 2.12132i) q^{26} +(-3.67423 + 3.67423i) q^{27} +(-1.36603 - 2.36603i) q^{29} +(0.232051 - 0.866025i) q^{30} +(3.67423 + 6.36396i) q^{31} +(0.500000 + 0.866025i) q^{32} +(2.44949 - 0.656339i) q^{33} +(1.74238 + 3.01790i) q^{34} +(-2.59808 - 1.50000i) q^{36} +(4.00000 + 6.92820i) q^{37} +0.517638 q^{38} +(1.09808 - 4.09808i) q^{39} +0.517638 q^{40} +(2.82843 - 4.89898i) q^{41} +(6.09808 + 10.5622i) q^{43} +(0.732051 + 1.26795i) q^{44} +(-1.34486 + 0.776457i) q^{45} +(3.96410 - 6.86603i) q^{46} +(-2.31079 + 4.00240i) q^{47} +(0.448288 - 1.67303i) q^{48} +(-2.36603 + 4.09808i) q^{50} +(1.56218 - 5.83013i) q^{51} +2.44949 q^{52} +(-3.36603 + 5.83013i) q^{53} +(1.34486 + 5.01910i) q^{54} +0.757875 q^{55} +(-0.633975 - 0.633975i) q^{57} -2.73205 q^{58} +(7.39924 + 12.8159i) q^{59} +(-0.633975 - 0.633975i) q^{60} +(2.19067 - 3.79435i) q^{61} +7.34847 q^{62} +1.00000 q^{64} +(0.633975 - 1.09808i) q^{65} +(0.656339 - 2.44949i) q^{66} +(1.90192 + 3.29423i) q^{67} +3.48477 q^{68} +(-13.2641 + 3.55412i) q^{69} -0.803848 q^{71} +(-2.59808 + 1.50000i) q^{72} +(2.31079 - 4.00240i) q^{73} +8.00000 q^{74} +(7.91688 - 2.12132i) q^{75} +(0.258819 - 0.448288i) q^{76} +(-3.00000 - 3.00000i) q^{78} +(-7.06218 + 12.2321i) q^{79} +(0.258819 - 0.448288i) q^{80} +(4.50000 - 7.79423i) q^{81} +(-2.82843 - 4.89898i) q^{82} +(-4.94975 - 8.57321i) q^{83} +(0.901924 - 1.56218i) q^{85} +12.1962 q^{86} +(3.34607 + 3.34607i) q^{87} +1.46410 q^{88} +(-8.05558 - 13.9527i) q^{89} +1.55291i q^{90} +(-3.96410 - 6.86603i) q^{92} +(-9.00000 - 9.00000i) q^{93} +(2.31079 + 4.00240i) q^{94} +(-0.133975 - 0.232051i) q^{95} +(-1.22474 - 1.22474i) q^{96} +(-0.517638 - 0.896575i) q^{97} +(-3.80385 + 2.19615i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{2} - 4 q^{4} - 8 q^{8} + 16 q^{11} - 4 q^{16} + 8 q^{22} + 8 q^{23} - 24 q^{25} - 4 q^{29} - 12 q^{30} + 4 q^{32} + 32 q^{37} - 12 q^{39} + 28 q^{43} - 8 q^{44} + 4 q^{46} - 12 q^{50} - 36 q^{51}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/882\mathbb{Z}\right)^\times\).

\(n\) \(199\) \(785\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) −1.67303 + 0.448288i −0.965926 + 0.258819i
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −0.517638 −0.231495 −0.115747 0.993279i \(-0.536926\pi\)
−0.115747 + 0.993279i \(0.536926\pi\)
\(6\) −0.448288 + 1.67303i −0.183013 + 0.683013i
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 2.59808 1.50000i 0.866025 0.500000i
\(10\) −0.258819 + 0.448288i −0.0818458 + 0.141761i
\(11\) −1.46410 −0.441443 −0.220722 0.975337i \(-0.570841\pi\)
−0.220722 + 0.975337i \(0.570841\pi\)
\(12\) 1.22474 + 1.22474i 0.353553 + 0.353553i
\(13\) −1.22474 + 2.12132i −0.339683 + 0.588348i −0.984373 0.176096i \(-0.943653\pi\)
0.644690 + 0.764444i \(0.276986\pi\)
\(14\) 0 0
\(15\) 0.866025 0.232051i 0.223607 0.0599153i
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.74238 + 3.01790i −0.422590 + 0.731947i −0.996192 0.0871869i \(-0.972212\pi\)
0.573602 + 0.819134i \(0.305546\pi\)
\(18\) 3.00000i 0.707107i
\(19\) 0.258819 + 0.448288i 0.0593772 + 0.102844i 0.894186 0.447696i \(-0.147755\pi\)
−0.834809 + 0.550540i \(0.814422\pi\)
\(20\) 0.258819 + 0.448288i 0.0578737 + 0.100240i
\(21\) 0 0
\(22\) −0.732051 + 1.26795i −0.156074 + 0.270328i
\(23\) 7.92820 1.65314 0.826572 0.562831i \(-0.190288\pi\)
0.826572 + 0.562831i \(0.190288\pi\)
\(24\) 1.67303 0.448288i 0.341506 0.0915064i
\(25\) −4.73205 −0.946410
\(26\) 1.22474 + 2.12132i 0.240192 + 0.416025i
\(27\) −3.67423 + 3.67423i −0.707107 + 0.707107i
\(28\) 0 0
\(29\) −1.36603 2.36603i −0.253665 0.439360i 0.710867 0.703326i \(-0.248303\pi\)
−0.964532 + 0.263966i \(0.914969\pi\)
\(30\) 0.232051 0.866025i 0.0423665 0.158114i
\(31\) 3.67423 + 6.36396i 0.659912 + 1.14300i 0.980638 + 0.195829i \(0.0627398\pi\)
−0.320726 + 0.947172i \(0.603927\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 2.44949 0.656339i 0.426401 0.114254i
\(34\) 1.74238 + 3.01790i 0.298816 + 0.517565i
\(35\) 0 0
\(36\) −2.59808 1.50000i −0.433013 0.250000i
\(37\) 4.00000 + 6.92820i 0.657596 + 1.13899i 0.981236 + 0.192809i \(0.0617599\pi\)
−0.323640 + 0.946180i \(0.604907\pi\)
\(38\) 0.517638 0.0839720
\(39\) 1.09808 4.09808i 0.175833 0.656217i
\(40\) 0.517638 0.0818458
\(41\) 2.82843 4.89898i 0.441726 0.765092i −0.556092 0.831121i \(-0.687700\pi\)
0.997818 + 0.0660290i \(0.0210330\pi\)
\(42\) 0 0
\(43\) 6.09808 + 10.5622i 0.929948 + 1.61072i 0.783404 + 0.621513i \(0.213482\pi\)
0.146544 + 0.989204i \(0.453185\pi\)
\(44\) 0.732051 + 1.26795i 0.110361 + 0.191151i
\(45\) −1.34486 + 0.776457i −0.200480 + 0.115747i
\(46\) 3.96410 6.86603i 0.584475 1.01234i
\(47\) −2.31079 + 4.00240i −0.337063 + 0.583811i −0.983879 0.178836i \(-0.942767\pi\)
0.646816 + 0.762646i \(0.276100\pi\)
\(48\) 0.448288 1.67303i 0.0647048 0.241481i
\(49\) 0 0
\(50\) −2.36603 + 4.09808i −0.334607 + 0.579555i
\(51\) 1.56218 5.83013i 0.218749 0.816381i
\(52\) 2.44949 0.339683
\(53\) −3.36603 + 5.83013i −0.462359 + 0.800830i −0.999078 0.0429316i \(-0.986330\pi\)
0.536719 + 0.843761i \(0.319664\pi\)
\(54\) 1.34486 + 5.01910i 0.183013 + 0.683013i
\(55\) 0.757875 0.102192
\(56\) 0 0
\(57\) −0.633975 0.633975i −0.0839720 0.0839720i
\(58\) −2.73205 −0.358736
\(59\) 7.39924 + 12.8159i 0.963299 + 1.66848i 0.714118 + 0.700025i \(0.246828\pi\)
0.249180 + 0.968457i \(0.419839\pi\)
\(60\) −0.633975 0.633975i −0.0818458 0.0818458i
\(61\) 2.19067 3.79435i 0.280487 0.485817i −0.691018 0.722838i \(-0.742837\pi\)
0.971505 + 0.237020i \(0.0761708\pi\)
\(62\) 7.34847 0.933257
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.633975 1.09808i 0.0786349 0.136200i
\(66\) 0.656339 2.44949i 0.0807897 0.301511i
\(67\) 1.90192 + 3.29423i 0.232357 + 0.402454i 0.958501 0.285088i \(-0.0920229\pi\)
−0.726144 + 0.687542i \(0.758690\pi\)
\(68\) 3.48477 0.422590
\(69\) −13.2641 + 3.55412i −1.59682 + 0.427865i
\(70\) 0 0
\(71\) −0.803848 −0.0953992 −0.0476996 0.998862i \(-0.515189\pi\)
−0.0476996 + 0.998862i \(0.515189\pi\)
\(72\) −2.59808 + 1.50000i −0.306186 + 0.176777i
\(73\) 2.31079 4.00240i 0.270457 0.468446i −0.698522 0.715589i \(-0.746158\pi\)
0.968979 + 0.247143i \(0.0794917\pi\)
\(74\) 8.00000 0.929981
\(75\) 7.91688 2.12132i 0.914162 0.244949i
\(76\) 0.258819 0.448288i 0.0296886 0.0514221i
\(77\) 0 0
\(78\) −3.00000 3.00000i −0.339683 0.339683i
\(79\) −7.06218 + 12.2321i −0.794557 + 1.37621i 0.128563 + 0.991701i \(0.458964\pi\)
−0.923120 + 0.384512i \(0.874370\pi\)
\(80\) 0.258819 0.448288i 0.0289368 0.0501201i
\(81\) 4.50000 7.79423i 0.500000 0.866025i
\(82\) −2.82843 4.89898i −0.312348 0.541002i
\(83\) −4.94975 8.57321i −0.543305 0.941033i −0.998711 0.0507487i \(-0.983839\pi\)
0.455406 0.890284i \(-0.349494\pi\)
\(84\) 0 0
\(85\) 0.901924 1.56218i 0.0978274 0.169442i
\(86\) 12.1962 1.31514
\(87\) 3.34607 + 3.34607i 0.358736 + 0.358736i
\(88\) 1.46410 0.156074
\(89\) −8.05558 13.9527i −0.853889 1.47898i −0.877672 0.479263i \(-0.840904\pi\)
0.0237822 0.999717i \(-0.492429\pi\)
\(90\) 1.55291i 0.163692i
\(91\) 0 0
\(92\) −3.96410 6.86603i −0.413286 0.715833i
\(93\) −9.00000 9.00000i −0.933257 0.933257i
\(94\) 2.31079 + 4.00240i 0.238340 + 0.412816i
\(95\) −0.133975 0.232051i −0.0137455 0.0238079i
\(96\) −1.22474 1.22474i −0.125000 0.125000i
\(97\) −0.517638 0.896575i −0.0525582 0.0910334i 0.838549 0.544826i \(-0.183404\pi\)
−0.891108 + 0.453792i \(0.850071\pi\)
\(98\) 0 0
\(99\) −3.80385 + 2.19615i −0.382301 + 0.220722i
\(100\) 2.36603 + 4.09808i 0.236603 + 0.409808i
\(101\) −5.79555 −0.576679 −0.288340 0.957528i \(-0.593103\pi\)
−0.288340 + 0.957528i \(0.593103\pi\)
\(102\) −4.26795 4.26795i −0.422590 0.422590i
\(103\) 11.2122 1.10477 0.552384 0.833590i \(-0.313718\pi\)
0.552384 + 0.833590i \(0.313718\pi\)
\(104\) 1.22474 2.12132i 0.120096 0.208013i
\(105\) 0 0
\(106\) 3.36603 + 5.83013i 0.326937 + 0.566272i
\(107\) −1.53590 2.66025i −0.148481 0.257176i 0.782185 0.623046i \(-0.214105\pi\)
−0.930666 + 0.365869i \(0.880772\pi\)
\(108\) 5.01910 + 1.34486i 0.482963 + 0.129410i
\(109\) −5.29423 + 9.16987i −0.507095 + 0.878315i 0.492871 + 0.870102i \(0.335947\pi\)
−0.999966 + 0.00821222i \(0.997386\pi\)
\(110\) 0.378937 0.656339i 0.0361303 0.0625794i
\(111\) −9.79796 9.79796i −0.929981 0.929981i
\(112\) 0 0
\(113\) 7.33013 12.6962i 0.689560 1.19435i −0.282420 0.959291i \(-0.591137\pi\)
0.971980 0.235063i \(-0.0755295\pi\)
\(114\) −0.866025 + 0.232051i −0.0811107 + 0.0217335i
\(115\) −4.10394 −0.382694
\(116\) −1.36603 + 2.36603i −0.126832 + 0.219680i
\(117\) 7.34847i 0.679366i
\(118\) 14.7985 1.36231
\(119\) 0 0
\(120\) −0.866025 + 0.232051i −0.0790569 + 0.0211832i
\(121\) −8.85641 −0.805128
\(122\) −2.19067 3.79435i −0.198334 0.343525i
\(123\) −2.53590 + 9.46410i −0.228654 + 0.853349i
\(124\) 3.67423 6.36396i 0.329956 0.571501i
\(125\) 5.03768 0.450584
\(126\) 0 0
\(127\) −5.92820 −0.526043 −0.263021 0.964790i \(-0.584719\pi\)
−0.263021 + 0.964790i \(0.584719\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) −14.9372 14.9372i −1.31514 1.31514i
\(130\) −0.633975 1.09808i −0.0556033 0.0963077i
\(131\) −12.4877 −1.09105 −0.545527 0.838093i \(-0.683670\pi\)
−0.545527 + 0.838093i \(0.683670\pi\)
\(132\) −1.79315 1.79315i −0.156074 0.156074i
\(133\) 0 0
\(134\) 3.80385 0.328602
\(135\) 1.90192 1.90192i 0.163692 0.163692i
\(136\) 1.74238 3.01790i 0.149408 0.258782i
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) −3.55412 + 13.2641i −0.302546 + 1.12912i
\(139\) −10.1075 + 17.5068i −0.857311 + 1.48491i 0.0171736 + 0.999853i \(0.494533\pi\)
−0.874485 + 0.485053i \(0.838800\pi\)
\(140\) 0 0
\(141\) 2.07180 7.73205i 0.174477 0.651156i
\(142\) −0.401924 + 0.696152i −0.0337287 + 0.0584198i
\(143\) 1.79315 3.10583i 0.149951 0.259722i
\(144\) 3.00000i 0.250000i
\(145\) 0.707107 + 1.22474i 0.0587220 + 0.101710i
\(146\) −2.31079 4.00240i −0.191242 0.331241i
\(147\) 0 0
\(148\) 4.00000 6.92820i 0.328798 0.569495i
\(149\) −2.39230 −0.195985 −0.0979926 0.995187i \(-0.531242\pi\)
−0.0979926 + 0.995187i \(0.531242\pi\)
\(150\) 2.12132 7.91688i 0.173205 0.646410i
\(151\) −17.3923 −1.41537 −0.707683 0.706530i \(-0.750259\pi\)
−0.707683 + 0.706530i \(0.750259\pi\)
\(152\) −0.258819 0.448288i −0.0209930 0.0363609i
\(153\) 10.4543i 0.845180i
\(154\) 0 0
\(155\) −1.90192 3.29423i −0.152766 0.264599i
\(156\) −4.09808 + 1.09808i −0.328109 + 0.0879165i
\(157\) −8.64256 14.9694i −0.689752 1.19469i −0.971918 0.235320i \(-0.924386\pi\)
0.282166 0.959366i \(-0.408947\pi\)
\(158\) 7.06218 + 12.2321i 0.561837 + 0.973130i
\(159\) 3.01790 11.2629i 0.239335 0.893209i
\(160\) −0.258819 0.448288i −0.0204614 0.0354403i
\(161\) 0 0
\(162\) −4.50000 7.79423i −0.353553 0.612372i
\(163\) 3.53590 + 6.12436i 0.276953 + 0.479697i 0.970626 0.240593i \(-0.0773421\pi\)
−0.693673 + 0.720290i \(0.744009\pi\)
\(164\) −5.65685 −0.441726
\(165\) −1.26795 + 0.339746i −0.0987097 + 0.0264492i
\(166\) −9.89949 −0.768350
\(167\) 6.64136 11.5032i 0.513924 0.890143i −0.485945 0.873989i \(-0.661525\pi\)
0.999870 0.0161534i \(-0.00514202\pi\)
\(168\) 0 0
\(169\) 3.50000 + 6.06218i 0.269231 + 0.466321i
\(170\) −0.901924 1.56218i −0.0691744 0.119814i
\(171\) 1.34486 + 0.776457i 0.102844 + 0.0593772i
\(172\) 6.09808 10.5622i 0.464974 0.805359i
\(173\) −9.71003 + 16.8183i −0.738240 + 1.27867i 0.215048 + 0.976604i \(0.431009\pi\)
−0.953287 + 0.302065i \(0.902324\pi\)
\(174\) 4.57081 1.22474i 0.346512 0.0928477i
\(175\) 0 0
\(176\) 0.732051 1.26795i 0.0551804 0.0955753i
\(177\) −18.1244 18.1244i −1.36231 1.36231i
\(178\) −16.1112 −1.20758
\(179\) 4.09808 7.09808i 0.306305 0.530535i −0.671246 0.741234i \(-0.734241\pi\)
0.977551 + 0.210699i \(0.0675741\pi\)
\(180\) 1.34486 + 0.776457i 0.100240 + 0.0578737i
\(181\) 20.9730 1.55891 0.779454 0.626459i \(-0.215497\pi\)
0.779454 + 0.626459i \(0.215497\pi\)
\(182\) 0 0
\(183\) −1.96410 + 7.33013i −0.145191 + 0.541859i
\(184\) −7.92820 −0.584475
\(185\) −2.07055 3.58630i −0.152230 0.263670i
\(186\) −12.2942 + 3.29423i −0.901457 + 0.241545i
\(187\) 2.55103 4.41851i 0.186549 0.323113i
\(188\) 4.62158 0.337063
\(189\) 0 0
\(190\) −0.267949 −0.0194391
\(191\) 3.59808 6.23205i 0.260348 0.450935i −0.705987 0.708225i \(-0.749496\pi\)
0.966334 + 0.257290i \(0.0828295\pi\)
\(192\) −1.67303 + 0.448288i −0.120741 + 0.0323524i
\(193\) 11.8660 + 20.5526i 0.854135 + 1.47941i 0.877445 + 0.479677i \(0.159246\pi\)
−0.0233098 + 0.999728i \(0.507420\pi\)
\(194\) −1.03528 −0.0743285
\(195\) −0.568406 + 2.12132i −0.0407044 + 0.151911i
\(196\) 0 0
\(197\) 9.66025 0.688265 0.344132 0.938921i \(-0.388173\pi\)
0.344132 + 0.938921i \(0.388173\pi\)
\(198\) 4.39230i 0.312148i
\(199\) 5.79555 10.0382i 0.410836 0.711589i −0.584145 0.811649i \(-0.698570\pi\)
0.994981 + 0.100060i \(0.0319035\pi\)
\(200\) 4.73205 0.334607
\(201\) −4.65874 4.65874i −0.328602 0.328602i
\(202\) −2.89778 + 5.01910i −0.203887 + 0.353142i
\(203\) 0 0
\(204\) −5.83013 + 1.56218i −0.408191 + 0.109374i
\(205\) −1.46410 + 2.53590i −0.102257 + 0.177115i
\(206\) 5.60609 9.71003i 0.390595 0.676530i
\(207\) 20.5981 11.8923i 1.43167 0.826572i
\(208\) −1.22474 2.12132i −0.0849208 0.147087i
\(209\) −0.378937 0.656339i −0.0262116 0.0453999i
\(210\) 0 0
\(211\) −0.633975 + 1.09808i −0.0436446 + 0.0755947i −0.887022 0.461726i \(-0.847230\pi\)
0.843378 + 0.537321i \(0.180564\pi\)
\(212\) 6.73205 0.462359
\(213\) 1.34486 0.360355i 0.0921485 0.0246911i
\(214\) −3.07180 −0.209984
\(215\) −3.15660 5.46739i −0.215278 0.372873i
\(216\) 3.67423 3.67423i 0.250000 0.250000i
\(217\) 0 0
\(218\) 5.29423 + 9.16987i 0.358570 + 0.621062i
\(219\) −2.07180 + 7.73205i −0.139999 + 0.522484i
\(220\) −0.378937 0.656339i −0.0255480 0.0442504i
\(221\) −4.26795 7.39230i −0.287093 0.497260i
\(222\) −13.3843 + 3.58630i −0.898293 + 0.240697i
\(223\) 1.88108 + 3.25813i 0.125967 + 0.218181i 0.922110 0.386927i \(-0.126463\pi\)
−0.796144 + 0.605108i \(0.793130\pi\)
\(224\) 0 0
\(225\) −12.2942 + 7.09808i −0.819615 + 0.473205i
\(226\) −7.33013 12.6962i −0.487593 0.844535i
\(227\) −3.34607 −0.222086 −0.111043 0.993816i \(-0.535419\pi\)
−0.111043 + 0.993816i \(0.535419\pi\)
\(228\) −0.232051 + 0.866025i −0.0153679 + 0.0573539i
\(229\) −13.8004 −0.911954 −0.455977 0.889992i \(-0.650710\pi\)
−0.455977 + 0.889992i \(0.650710\pi\)
\(230\) −2.05197 + 3.55412i −0.135303 + 0.234351i
\(231\) 0 0
\(232\) 1.36603 + 2.36603i 0.0896840 + 0.155337i
\(233\) −0.696152 1.20577i −0.0456065 0.0789927i 0.842321 0.538976i \(-0.181189\pi\)
−0.887928 + 0.459983i \(0.847855\pi\)
\(234\) 6.36396 + 3.67423i 0.416025 + 0.240192i
\(235\) 1.19615 2.07180i 0.0780284 0.135149i
\(236\) 7.39924 12.8159i 0.481649 0.834241i
\(237\) 6.33178 23.6305i 0.411293 1.53497i
\(238\) 0 0
\(239\) 6.23205 10.7942i 0.403118 0.698221i −0.590983 0.806684i \(-0.701260\pi\)
0.994100 + 0.108464i \(0.0345931\pi\)
\(240\) −0.232051 + 0.866025i −0.0149788 + 0.0559017i
\(241\) −12.7279 −0.819878 −0.409939 0.912113i \(-0.634450\pi\)
−0.409939 + 0.912113i \(0.634450\pi\)
\(242\) −4.42820 + 7.66987i −0.284656 + 0.493038i
\(243\) −4.03459 + 15.0573i −0.258819 + 0.965926i
\(244\) −4.38134 −0.280487
\(245\) 0 0
\(246\) 6.92820 + 6.92820i 0.441726 + 0.441726i
\(247\) −1.26795 −0.0806777
\(248\) −3.67423 6.36396i −0.233314 0.404112i
\(249\) 12.1244 + 12.1244i 0.768350 + 0.768350i
\(250\) 2.51884 4.36276i 0.159305 0.275925i
\(251\) 0.517638 0.0326730 0.0163365 0.999867i \(-0.494800\pi\)
0.0163365 + 0.999867i \(0.494800\pi\)
\(252\) 0 0
\(253\) −11.6077 −0.729770
\(254\) −2.96410 + 5.13397i −0.185984 + 0.322134i
\(255\) −0.808643 + 3.01790i −0.0506392 + 0.188988i
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −3.76217 −0.234678 −0.117339 0.993092i \(-0.537436\pi\)
−0.117339 + 0.993092i \(0.537436\pi\)
\(258\) −20.4046 + 5.46739i −1.27033 + 0.340385i
\(259\) 0 0
\(260\) −1.26795 −0.0786349
\(261\) −7.09808 4.09808i −0.439360 0.253665i
\(262\) −6.24384 + 10.8147i −0.385746 + 0.668131i
\(263\) 2.66025 0.164038 0.0820191 0.996631i \(-0.473863\pi\)
0.0820191 + 0.996631i \(0.473863\pi\)
\(264\) −2.44949 + 0.656339i −0.150756 + 0.0403949i
\(265\) 1.74238 3.01790i 0.107034 0.185388i
\(266\) 0 0
\(267\) 19.7321 + 19.7321i 1.20758 + 1.20758i
\(268\) 1.90192 3.29423i 0.116178 0.201227i
\(269\) 13.4536 23.3023i 0.820281 1.42077i −0.0851918 0.996365i \(-0.527150\pi\)
0.905473 0.424404i \(-0.139516\pi\)
\(270\) −0.696152 2.59808i −0.0423665 0.158114i
\(271\) 7.39924 + 12.8159i 0.449472 + 0.778508i 0.998352 0.0573934i \(-0.0182789\pi\)
−0.548880 + 0.835901i \(0.684946\pi\)
\(272\) −1.74238 3.01790i −0.105647 0.182987i
\(273\) 0 0
\(274\) 0 0
\(275\) 6.92820 0.417786
\(276\) 9.71003 + 9.71003i 0.584475 + 0.584475i
\(277\) −16.1962 −0.973132 −0.486566 0.873644i \(-0.661751\pi\)
−0.486566 + 0.873644i \(0.661751\pi\)
\(278\) 10.1075 + 17.5068i 0.606210 + 1.04999i
\(279\) 19.0919 + 11.0227i 1.14300 + 0.659912i
\(280\) 0 0
\(281\) 8.69615 + 15.0622i 0.518769 + 0.898534i 0.999762 + 0.0218099i \(0.00694284\pi\)
−0.480993 + 0.876724i \(0.659724\pi\)
\(282\) −5.66025 5.66025i −0.337063 0.337063i
\(283\) 4.88040 + 8.45310i 0.290109 + 0.502484i 0.973835 0.227255i \(-0.0729749\pi\)
−0.683726 + 0.729739i \(0.739642\pi\)
\(284\) 0.401924 + 0.696152i 0.0238498 + 0.0413090i
\(285\) 0.328169 + 0.328169i 0.0194391 + 0.0194391i
\(286\) −1.79315 3.10583i −0.106031 0.183651i
\(287\) 0 0
\(288\) 2.59808 + 1.50000i 0.153093 + 0.0883883i
\(289\) 2.42820 + 4.20577i 0.142835 + 0.247398i
\(290\) 1.41421 0.0830455
\(291\) 1.26795 + 1.26795i 0.0743285 + 0.0743285i
\(292\) −4.62158 −0.270457
\(293\) −1.48356 + 2.56961i −0.0866707 + 0.150118i −0.906102 0.423059i \(-0.860956\pi\)
0.819431 + 0.573178i \(0.194289\pi\)
\(294\) 0 0
\(295\) −3.83013 6.63397i −0.222999 0.386245i
\(296\) −4.00000 6.92820i −0.232495 0.402694i
\(297\) 5.37945 5.37945i 0.312148 0.312148i
\(298\) −1.19615 + 2.07180i −0.0692912 + 0.120016i
\(299\) −9.71003 + 16.8183i −0.561545 + 0.972625i
\(300\) −5.79555 5.79555i −0.334607 0.334607i
\(301\) 0 0
\(302\) −8.69615 + 15.0622i −0.500407 + 0.866731i
\(303\) 9.69615 2.59808i 0.557029 0.149256i
\(304\) −0.517638 −0.0296886
\(305\) −1.13397 + 1.96410i −0.0649312 + 0.112464i
\(306\) 9.05369 + 5.22715i 0.517565 + 0.298816i
\(307\) 11.9329 0.681046 0.340523 0.940236i \(-0.389396\pi\)
0.340523 + 0.940236i \(0.389396\pi\)
\(308\) 0 0
\(309\) −18.7583 + 5.02628i −1.06712 + 0.285935i
\(310\) −3.80385 −0.216044
\(311\) 9.09085 + 15.7458i 0.515495 + 0.892863i 0.999838 + 0.0179854i \(0.00572524\pi\)
−0.484343 + 0.874878i \(0.660941\pi\)
\(312\) −1.09808 + 4.09808i −0.0621663 + 0.232008i
\(313\) −3.34607 + 5.79555i −0.189131 + 0.327584i −0.944961 0.327184i \(-0.893900\pi\)
0.755830 + 0.654768i \(0.227234\pi\)
\(314\) −17.2851 −0.975456
\(315\) 0 0
\(316\) 14.1244 0.794557
\(317\) −16.2942 + 28.2224i −0.915175 + 1.58513i −0.108530 + 0.994093i \(0.534614\pi\)
−0.806645 + 0.591037i \(0.798719\pi\)
\(318\) −8.24504 8.24504i −0.462359 0.462359i
\(319\) 2.00000 + 3.46410i 0.111979 + 0.193952i
\(320\) −0.517638 −0.0289368
\(321\) 3.76217 + 3.76217i 0.209984 + 0.209984i
\(322\) 0 0
\(323\) −1.80385 −0.100369
\(324\) −9.00000 −0.500000
\(325\) 5.79555 10.0382i 0.321480 0.556819i
\(326\) 7.07180 0.391671
\(327\) 4.74668 17.7148i 0.262492 0.979633i
\(328\) −2.82843 + 4.89898i −0.156174 + 0.270501i
\(329\) 0 0
\(330\) −0.339746 + 1.26795i −0.0187024 + 0.0697983i
\(331\) 6.02628 10.4378i 0.331234 0.573715i −0.651520 0.758632i \(-0.725868\pi\)
0.982754 + 0.184917i \(0.0592016\pi\)
\(332\) −4.94975 + 8.57321i −0.271653 + 0.470516i
\(333\) 20.7846 + 12.0000i 1.13899 + 0.657596i
\(334\) −6.64136 11.5032i −0.363399 0.629426i
\(335\) −0.984508 1.70522i −0.0537894 0.0931660i
\(336\) 0 0
\(337\) 10.6603 18.4641i 0.580701 1.00580i −0.414695 0.909960i \(-0.636112\pi\)
0.995396 0.0958434i \(-0.0305548\pi\)
\(338\) 7.00000 0.380750
\(339\) −6.57201 + 24.5271i −0.356943 + 1.33213i
\(340\) −1.80385 −0.0978274
\(341\) −5.37945 9.31749i −0.291314 0.504570i
\(342\) 1.34486 0.776457i 0.0727219 0.0419860i
\(343\) 0 0
\(344\) −6.09808 10.5622i −0.328786 0.569474i
\(345\) 6.86603 1.83975i 0.369654 0.0990486i
\(346\) 9.71003 + 16.8183i 0.522014 + 0.904155i
\(347\) −10.8564 18.8038i −0.582802 1.00944i −0.995145 0.0984148i \(-0.968623\pi\)
0.412343 0.911029i \(-0.364711\pi\)
\(348\) 1.22474 4.57081i 0.0656532 0.245021i
\(349\) −17.2987 29.9623i −0.925980 1.60384i −0.789978 0.613136i \(-0.789908\pi\)
−0.136002 0.990709i \(-0.543425\pi\)
\(350\) 0 0
\(351\) −3.29423 12.2942i −0.175833 0.656217i
\(352\) −0.732051 1.26795i −0.0390184 0.0675819i
\(353\) −0.101536 −0.00540421 −0.00270211 0.999996i \(-0.500860\pi\)
−0.00270211 + 0.999996i \(0.500860\pi\)
\(354\) −24.7583 + 6.63397i −1.31589 + 0.352592i
\(355\) 0.416102 0.0220844
\(356\) −8.05558 + 13.9527i −0.426945 + 0.739490i
\(357\) 0 0
\(358\) −4.09808 7.09808i −0.216590 0.375145i
\(359\) 6.96410 + 12.0622i 0.367551 + 0.636617i 0.989182 0.146693i \(-0.0468629\pi\)
−0.621631 + 0.783310i \(0.713530\pi\)
\(360\) 1.34486 0.776457i 0.0708805 0.0409229i
\(361\) 9.36603 16.2224i 0.492949 0.853812i
\(362\) 10.4865 18.1631i 0.551157 0.954632i
\(363\) 14.8171 3.97022i 0.777694 0.208382i
\(364\) 0 0
\(365\) −1.19615 + 2.07180i −0.0626095 + 0.108443i
\(366\) 5.36603 + 5.36603i 0.280487 + 0.280487i
\(367\) 0.277401 0.0144802 0.00724012 0.999974i \(-0.497695\pi\)
0.00724012 + 0.999974i \(0.497695\pi\)
\(368\) −3.96410 + 6.86603i −0.206643 + 0.357916i
\(369\) 16.9706i 0.883452i
\(370\) −4.14110 −0.215286
\(371\) 0 0
\(372\) −3.29423 + 12.2942i −0.170798 + 0.637426i
\(373\) 19.1244 0.990222 0.495111 0.868830i \(-0.335127\pi\)
0.495111 + 0.868830i \(0.335127\pi\)
\(374\) −2.55103 4.41851i −0.131910 0.228476i
\(375\) −8.42820 + 2.25833i −0.435231 + 0.116620i
\(376\) 2.31079 4.00240i 0.119170 0.206408i
\(377\) 6.69213 0.344662
\(378\) 0 0
\(379\) −27.5167 −1.41344 −0.706718 0.707495i \(-0.749825\pi\)
−0.706718 + 0.707495i \(0.749825\pi\)
\(380\) −0.133975 + 0.232051i −0.00687275 + 0.0119040i
\(381\) 9.91808 2.65754i 0.508118 0.136150i
\(382\) −3.59808 6.23205i −0.184094 0.318859i
\(383\) 34.2185 1.74849 0.874243 0.485489i \(-0.161359\pi\)
0.874243 + 0.485489i \(0.161359\pi\)
\(384\) −0.448288 + 1.67303i −0.0228766 + 0.0853766i
\(385\) 0 0
\(386\) 23.7321 1.20793
\(387\) 31.6865 + 18.2942i 1.61072 + 0.929948i
\(388\) −0.517638 + 0.896575i −0.0262791 + 0.0455167i
\(389\) −4.87564 −0.247205 −0.123602 0.992332i \(-0.539445\pi\)
−0.123602 + 0.992332i \(0.539445\pi\)
\(390\) 1.55291 + 1.55291i 0.0786349 + 0.0786349i
\(391\) −13.8140 + 23.9265i −0.698602 + 1.21001i
\(392\) 0 0
\(393\) 20.8923 5.59808i 1.05388 0.282386i
\(394\) 4.83013 8.36603i 0.243338 0.421474i
\(395\) 3.65565 6.33178i 0.183936 0.318586i
\(396\) 3.80385 + 2.19615i 0.191151 + 0.110361i
\(397\) 13.1948 + 22.8541i 0.662228 + 1.14701i 0.980029 + 0.198855i \(0.0637222\pi\)
−0.317801 + 0.948157i \(0.602945\pi\)
\(398\) −5.79555 10.0382i −0.290505 0.503169i
\(399\) 0 0
\(400\) 2.36603 4.09808i 0.118301 0.204904i
\(401\) −25.0526 −1.25107 −0.625533 0.780198i \(-0.715118\pi\)
−0.625533 + 0.780198i \(0.715118\pi\)
\(402\) −6.36396 + 1.70522i −0.317406 + 0.0850486i
\(403\) −18.0000 −0.896644
\(404\) 2.89778 + 5.01910i 0.144170 + 0.249709i
\(405\) −2.32937 + 4.03459i −0.115747 + 0.200480i
\(406\) 0 0
\(407\) −5.85641 10.1436i −0.290291 0.502799i
\(408\) −1.56218 + 5.83013i −0.0773393 + 0.288634i
\(409\) 8.90138 + 15.4176i 0.440145 + 0.762354i 0.997700 0.0677865i \(-0.0215937\pi\)
−0.557555 + 0.830140i \(0.688260\pi\)
\(410\) 1.46410 + 2.53590i 0.0723068 + 0.125239i
\(411\) 0 0
\(412\) −5.60609 9.71003i −0.276192 0.478379i
\(413\) 0 0
\(414\) 23.7846i 1.16895i
\(415\) 2.56218 + 4.43782i 0.125772 + 0.217844i
\(416\) −2.44949 −0.120096
\(417\) 9.06218 33.8205i 0.443777 1.65620i
\(418\) −0.757875 −0.0370689
\(419\) −11.3323 + 19.6281i −0.553619 + 0.958896i 0.444391 + 0.895833i \(0.353420\pi\)
−0.998010 + 0.0630626i \(0.979913\pi\)
\(420\) 0 0
\(421\) −14.0263 24.2942i −0.683599 1.18403i −0.973875 0.227085i \(-0.927080\pi\)
0.290276 0.956943i \(-0.406253\pi\)
\(422\) 0.633975 + 1.09808i 0.0308614 + 0.0534535i
\(423\) 13.8647i 0.674126i
\(424\) 3.36603 5.83013i 0.163469 0.283136i
\(425\) 8.24504 14.2808i 0.399943 0.692722i
\(426\) 0.360355 1.34486i 0.0174593 0.0651588i
\(427\) 0 0
\(428\) −1.53590 + 2.66025i −0.0742405 + 0.128588i
\(429\) −1.60770 + 6.00000i −0.0776203 + 0.289683i
\(430\) −6.31319 −0.304449
\(431\) 13.3923 23.1962i 0.645085 1.11732i −0.339197 0.940715i \(-0.610155\pi\)
0.984282 0.176604i \(-0.0565112\pi\)
\(432\) −1.34486 5.01910i −0.0647048 0.241481i
\(433\) 20.2523 0.973261 0.486631 0.873608i \(-0.338226\pi\)
0.486631 + 0.873608i \(0.338226\pi\)
\(434\) 0 0
\(435\) −1.73205 1.73205i −0.0830455 0.0830455i
\(436\) 10.5885 0.507095
\(437\) 2.05197 + 3.55412i 0.0981590 + 0.170016i
\(438\) 5.66025 + 5.66025i 0.270457 + 0.270457i
\(439\) 9.14162 15.8338i 0.436306 0.755704i −0.561095 0.827751i \(-0.689620\pi\)
0.997401 + 0.0720474i \(0.0229533\pi\)
\(440\) −0.757875 −0.0361303
\(441\) 0 0
\(442\) −8.53590 −0.406011
\(443\) 18.4904 32.0263i 0.878505 1.52161i 0.0255224 0.999674i \(-0.491875\pi\)
0.852982 0.521940i \(-0.174792\pi\)
\(444\) −3.58630 + 13.3843i −0.170198 + 0.635189i
\(445\) 4.16987 + 7.22243i 0.197671 + 0.342376i
\(446\) 3.76217 0.178144
\(447\) 4.00240 1.07244i 0.189307 0.0507247i
\(448\) 0 0
\(449\) −23.7846 −1.12247 −0.561233 0.827658i \(-0.689673\pi\)
−0.561233 + 0.827658i \(0.689673\pi\)
\(450\) 14.1962i 0.669213i
\(451\) −4.14110 + 7.17260i −0.194997 + 0.337745i
\(452\) −14.6603 −0.689560
\(453\) 29.0979 7.79676i 1.36714 0.366324i
\(454\) −1.67303 + 2.89778i −0.0785193 + 0.135999i
\(455\) 0 0
\(456\) 0.633975 + 0.633975i 0.0296886 + 0.0296886i
\(457\) 11.1340 19.2846i 0.520825 0.902096i −0.478881 0.877880i \(-0.658958\pi\)
0.999707 0.0242164i \(-0.00770906\pi\)
\(458\) −6.90018 + 11.9515i −0.322424 + 0.558455i
\(459\) −4.68653 17.4904i −0.218749 0.816381i
\(460\) 2.05197 + 3.55412i 0.0956736 + 0.165712i
\(461\) 19.4894 + 33.7566i 0.907712 + 1.57220i 0.817235 + 0.576305i \(0.195506\pi\)
0.0904771 + 0.995899i \(0.471161\pi\)
\(462\) 0 0
\(463\) −3.33013 + 5.76795i −0.154764 + 0.268059i −0.932973 0.359946i \(-0.882795\pi\)
0.778209 + 0.628005i \(0.216128\pi\)
\(464\) 2.73205 0.126832
\(465\) 4.65874 + 4.65874i 0.216044 + 0.216044i
\(466\) −1.39230 −0.0644973
\(467\) 12.2982 + 21.3011i 0.569094 + 0.985699i 0.996656 + 0.0817131i \(0.0260391\pi\)
−0.427562 + 0.903986i \(0.640628\pi\)
\(468\) 6.36396 3.67423i 0.294174 0.169842i
\(469\) 0 0
\(470\) −1.19615 2.07180i −0.0551744 0.0955649i
\(471\) 21.1699 + 21.1699i 0.975456 + 0.975456i
\(472\) −7.39924 12.8159i −0.340577 0.589898i
\(473\) −8.92820 15.4641i −0.410519 0.711040i
\(474\) −17.2987 17.2987i −0.794557 0.794557i
\(475\) −1.22474 2.12132i −0.0561951 0.0973329i
\(476\) 0 0
\(477\) 20.1962i 0.924718i
\(478\) −6.23205 10.7942i −0.285047 0.493717i
\(479\) 13.2827 0.606903 0.303452 0.952847i \(-0.401861\pi\)
0.303452 + 0.952847i \(0.401861\pi\)
\(480\) 0.633975 + 0.633975i 0.0289368 + 0.0289368i
\(481\) −19.5959 −0.893497
\(482\) −6.36396 + 11.0227i −0.289870 + 0.502070i
\(483\) 0 0
\(484\) 4.42820 + 7.66987i 0.201282 + 0.348631i
\(485\) 0.267949 + 0.464102i 0.0121669 + 0.0210738i
\(486\) 11.0227 + 11.0227i 0.500000 + 0.500000i
\(487\) 16.1603 27.9904i 0.732291 1.26837i −0.223611 0.974679i \(-0.571784\pi\)
0.955902 0.293687i \(-0.0948822\pi\)
\(488\) −2.19067 + 3.79435i −0.0991670 + 0.171762i
\(489\) −8.66115 8.66115i −0.391671 0.391671i
\(490\) 0 0
\(491\) 2.53590 4.39230i 0.114443 0.198222i −0.803114 0.595826i \(-0.796825\pi\)
0.917557 + 0.397604i \(0.130158\pi\)
\(492\) 9.46410 2.53590i 0.426675 0.114327i
\(493\) 9.52056 0.428784
\(494\) −0.633975 + 1.09808i −0.0285239 + 0.0494048i
\(495\) 1.96902 1.13681i 0.0885007 0.0510959i
\(496\) −7.34847 −0.329956
\(497\) 0 0
\(498\) 16.5622 4.43782i 0.742169 0.198864i
\(499\) 7.32051 0.327711 0.163855 0.986484i \(-0.447607\pi\)
0.163855 + 0.986484i \(0.447607\pi\)
\(500\) −2.51884 4.36276i −0.112646 0.195109i
\(501\) −5.95448 + 22.2224i −0.266027 + 0.992825i
\(502\) 0.258819 0.448288i 0.0115517 0.0200081i
\(503\) −28.9406 −1.29040 −0.645199 0.764015i \(-0.723226\pi\)
−0.645199 + 0.764015i \(0.723226\pi\)
\(504\) 0 0
\(505\) 3.00000 0.133498
\(506\) −5.80385 + 10.0526i −0.258012 + 0.446891i
\(507\) −8.57321 8.57321i −0.380750 0.380750i
\(508\) 2.96410 + 5.13397i 0.131511 + 0.227783i
\(509\) 7.62587 0.338011 0.169005 0.985615i \(-0.445944\pi\)
0.169005 + 0.985615i \(0.445944\pi\)
\(510\) 2.20925 + 2.20925i 0.0978274 + 0.0978274i
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) −2.59808 0.696152i −0.114708 0.0307359i
\(514\) −1.88108 + 3.25813i −0.0829710 + 0.143710i
\(515\) −5.80385 −0.255748
\(516\) −5.46739 + 20.4046i −0.240688 + 0.898261i
\(517\) 3.38323 5.85993i 0.148794 0.257719i
\(518\) 0 0
\(519\) 8.70577 32.4904i 0.382141 1.42617i
\(520\) −0.633975 + 1.09808i −0.0278016 + 0.0481538i
\(521\) −16.2635 + 28.1691i −0.712515 + 1.23411i 0.251395 + 0.967885i \(0.419111\pi\)
−0.963910 + 0.266228i \(0.914223\pi\)
\(522\) −7.09808 + 4.09808i −0.310674 + 0.179368i
\(523\) 19.6281 + 33.9969i 0.858277 + 1.48658i 0.873571 + 0.486696i \(0.161798\pi\)
−0.0152941 + 0.999883i \(0.504868\pi\)
\(524\) 6.24384 + 10.8147i 0.272764 + 0.472440i
\(525\) 0 0
\(526\) 1.33013 2.30385i 0.0579963 0.100453i
\(527\) −25.6077 −1.11549
\(528\) −0.656339 + 2.44949i −0.0285635 + 0.106600i
\(529\) 39.8564 1.73289
\(530\) −1.74238 3.01790i −0.0756843 0.131089i
\(531\) 38.4476 + 22.1977i 1.66848 + 0.963299i
\(532\) 0 0
\(533\) 6.92820 + 12.0000i 0.300094 + 0.519778i
\(534\) 26.9545 7.22243i 1.16643 0.312545i
\(535\) 0.795040 + 1.37705i 0.0343726 + 0.0595350i
\(536\) −1.90192 3.29423i −0.0821506 0.142289i
\(537\) −3.67423 + 13.7124i −0.158555 + 0.591735i
\(538\) −13.4536 23.3023i −0.580026 1.00464i
\(539\) 0 0
\(540\) −2.59808 0.696152i −0.111803 0.0299576i
\(541\) −10.3660 17.9545i −0.445670 0.771924i 0.552428 0.833560i \(-0.313701\pi\)
−0.998099 + 0.0616369i \(0.980368\pi\)
\(542\) 14.7985 0.635649
\(543\) −35.0885 + 9.40192i −1.50579 + 0.403475i
\(544\) −3.48477 −0.149408
\(545\) 2.74049 4.74668i 0.117390 0.203325i
\(546\) 0 0
\(547\) 5.73205 + 9.92820i 0.245085 + 0.424499i 0.962155 0.272501i \(-0.0878509\pi\)
−0.717071 + 0.697000i \(0.754518\pi\)
\(548\) 0 0
\(549\) 13.1440i 0.560973i
\(550\) 3.46410 6.00000i 0.147710 0.255841i
\(551\) 0.707107 1.22474i 0.0301238 0.0521759i
\(552\) 13.2641 3.55412i 0.564559 0.151273i
\(553\) 0 0
\(554\) −8.09808 + 14.0263i −0.344054 + 0.595920i
\(555\) 5.07180 + 5.07180i 0.215286 + 0.215286i
\(556\) 20.2151 0.857311
\(557\) −1.43782 + 2.49038i −0.0609225 + 0.105521i −0.894878 0.446311i \(-0.852738\pi\)
0.833956 + 0.551832i \(0.186071\pi\)
\(558\) 19.0919 11.0227i 0.808224 0.466628i
\(559\) −29.8744 −1.26355
\(560\) 0 0
\(561\) −2.28719 + 8.53590i −0.0965651 + 0.360386i
\(562\) 17.3923 0.733650
\(563\) −0.637756 1.10463i −0.0268782 0.0465545i 0.852273 0.523097i \(-0.175223\pi\)
−0.879152 + 0.476542i \(0.841890\pi\)
\(564\) −7.73205 + 2.07180i −0.325578 + 0.0872384i
\(565\) −3.79435 + 6.57201i −0.159630 + 0.276487i
\(566\) 9.76079 0.410277
\(567\) 0 0
\(568\) 0.803848 0.0337287
\(569\) −13.4641 + 23.3205i −0.564445 + 0.977647i 0.432657 + 0.901559i \(0.357576\pi\)
−0.997101 + 0.0760878i \(0.975757\pi\)
\(570\) 0.448288 0.120118i 0.0187767 0.00503120i
\(571\) −2.00000 3.46410i −0.0836974 0.144968i 0.821138 0.570730i \(-0.193340\pi\)
−0.904835 + 0.425762i \(0.860006\pi\)
\(572\) −3.58630 −0.149951
\(573\) −3.22595 + 12.0394i −0.134766 + 0.502953i
\(574\) 0 0
\(575\) −37.5167 −1.56455
\(576\) 2.59808 1.50000i 0.108253 0.0625000i
\(577\) 13.1440 22.7661i 0.547193 0.947766i −0.451272 0.892386i \(-0.649030\pi\)
0.998465 0.0553797i \(-0.0176369\pi\)
\(578\) 4.85641 0.202000
\(579\) −29.0657 29.0657i −1.20793 1.20793i
\(580\) 0.707107 1.22474i 0.0293610 0.0508548i
\(581\) 0 0
\(582\) 1.73205 0.464102i 0.0717958 0.0192376i
\(583\) 4.92820 8.53590i 0.204105 0.353521i
\(584\) −2.31079 + 4.00240i −0.0956211 + 0.165621i
\(585\) 3.80385i 0.157270i
\(586\) 1.48356 + 2.56961i 0.0612855 + 0.106150i
\(587\) 1.76097 + 3.05008i 0.0726828 + 0.125890i 0.900076 0.435732i \(-0.143511\pi\)
−0.827393 + 0.561623i \(0.810177\pi\)
\(588\) 0 0
\(589\) −1.90192 + 3.29423i −0.0783674 + 0.135736i
\(590\) −7.66025 −0.315368
\(591\) −16.1619 + 4.33057i −0.664813 + 0.178136i
\(592\) −8.00000 −0.328798
\(593\) −3.39683 5.88349i −0.139491 0.241606i 0.787813 0.615915i \(-0.211213\pi\)
−0.927304 + 0.374309i \(0.877880\pi\)
\(594\) −1.96902 7.34847i −0.0807897 0.301511i
\(595\) 0 0
\(596\) 1.19615 + 2.07180i 0.0489963 + 0.0848641i
\(597\) −5.19615 + 19.3923i −0.212664 + 0.793674i
\(598\) 9.71003 + 16.8183i 0.397073 + 0.687750i
\(599\) 6.19615 + 10.7321i 0.253168 + 0.438500i 0.964396 0.264461i \(-0.0851941\pi\)
−0.711228 + 0.702961i \(0.751861\pi\)
\(600\) −7.91688 + 2.12132i −0.323205 + 0.0866025i
\(601\) −20.9730 36.3262i −0.855505 1.48178i −0.876176 0.481992i \(-0.839913\pi\)
0.0206704 0.999786i \(-0.493420\pi\)
\(602\) 0 0
\(603\) 9.88269 + 5.70577i 0.402454 + 0.232357i
\(604\) 8.69615 + 15.0622i 0.353841 + 0.612871i
\(605\) 4.58441 0.186383
\(606\) 2.59808 9.69615i 0.105540 0.393879i
\(607\) 21.3891 0.868156 0.434078 0.900875i \(-0.357074\pi\)
0.434078 + 0.900875i \(0.357074\pi\)
\(608\) −0.258819 + 0.448288i −0.0104965 + 0.0181805i
\(609\) 0 0
\(610\) 1.13397 + 1.96410i 0.0459133 + 0.0795241i
\(611\) −5.66025 9.80385i −0.228989 0.396621i
\(612\) 9.05369 5.22715i 0.365974 0.211295i
\(613\) −10.2224 + 17.7058i −0.412880 + 0.715129i −0.995203 0.0978280i \(-0.968810\pi\)
0.582323 + 0.812957i \(0.302144\pi\)
\(614\) 5.96644 10.3342i 0.240786 0.417054i
\(615\) 1.31268 4.89898i 0.0529323 0.197546i
\(616\) 0 0
\(617\) −21.1962 + 36.7128i −0.853325 + 1.47800i 0.0248653 + 0.999691i \(0.492084\pi\)
−0.878190 + 0.478311i \(0.841249\pi\)
\(618\) −5.02628 + 18.7583i −0.202187 + 0.754571i
\(619\) 7.48717 0.300935 0.150467 0.988615i \(-0.451922\pi\)
0.150467 + 0.988615i \(0.451922\pi\)
\(620\) −1.90192 + 3.29423i −0.0763831 + 0.132299i
\(621\) −29.1301 + 29.1301i −1.16895 + 1.16895i
\(622\) 18.1817 0.729020
\(623\) 0 0
\(624\) 3.00000 + 3.00000i 0.120096 + 0.120096i
\(625\) 21.0526 0.842102
\(626\) 3.34607 + 5.79555i 0.133736 + 0.231637i
\(627\) 0.928203 + 0.928203i 0.0370689 + 0.0370689i
\(628\) −8.64256 + 14.9694i −0.344876 + 0.597343i
\(629\) −27.8781 −1.11157
\(630\) 0 0
\(631\) −3.87564 −0.154287 −0.0771435 0.997020i \(-0.524580\pi\)
−0.0771435 + 0.997020i \(0.524580\pi\)
\(632\) 7.06218 12.2321i 0.280918 0.486565i
\(633\) 0.568406 2.12132i 0.0225921 0.0843149i
\(634\) 16.2942 + 28.2224i 0.647126 + 1.12086i
\(635\) 3.06866 0.121776
\(636\) −11.2629 + 3.01790i −0.446605 + 0.119667i
\(637\) 0 0
\(638\) 4.00000 0.158362
\(639\) −2.08846 + 1.20577i −0.0826181 + 0.0476996i
\(640\) −0.258819 + 0.448288i −0.0102307 + 0.0177201i
\(641\) −3.05256 −0.120569 −0.0602844 0.998181i \(-0.519201\pi\)
−0.0602844 + 0.998181i \(0.519201\pi\)
\(642\) 5.13922 1.37705i 0.202829 0.0543478i
\(643\) −0.845807 + 1.46498i −0.0333554 + 0.0577732i −0.882221 0.470835i \(-0.843953\pi\)
0.848866 + 0.528608i \(0.177286\pi\)
\(644\) 0 0
\(645\) 7.73205 + 7.73205i 0.304449 + 0.304449i
\(646\) −0.901924 + 1.56218i −0.0354857 + 0.0614631i
\(647\) −7.91688 + 13.7124i −0.311244 + 0.539091i −0.978632 0.205619i \(-0.934079\pi\)
0.667388 + 0.744711i \(0.267412\pi\)
\(648\) −4.50000 + 7.79423i −0.176777 + 0.306186i
\(649\) −10.8332 18.7637i −0.425242 0.736540i
\(650\) −5.79555 10.0382i −0.227320 0.393730i
\(651\) 0 0
\(652\) 3.53590 6.12436i 0.138476 0.239848i
\(653\) −41.3205 −1.61700 −0.808498 0.588499i \(-0.799719\pi\)
−0.808498 + 0.588499i \(0.799719\pi\)
\(654\) −12.9682 12.9682i −0.507095 0.507095i
\(655\) 6.46410 0.252573
\(656\) 2.82843 + 4.89898i 0.110432 + 0.191273i
\(657\) 13.8647i 0.540915i
\(658\) 0 0
\(659\) 19.5622 + 33.8827i 0.762034 + 1.31988i 0.941800 + 0.336173i \(0.109133\pi\)
−0.179766 + 0.983709i \(0.557534\pi\)
\(660\) 0.928203 + 0.928203i 0.0361303 + 0.0361303i
\(661\) 10.7267 + 18.5792i 0.417221 + 0.722648i 0.995659 0.0930785i \(-0.0296708\pi\)
−0.578438 + 0.815727i \(0.696337\pi\)
\(662\) −6.02628 10.4378i −0.234218 0.405677i
\(663\) 10.4543 + 10.4543i 0.406011 + 0.406011i
\(664\) 4.94975 + 8.57321i 0.192087 + 0.332705i
\(665\) 0 0
\(666\) 20.7846 12.0000i 0.805387 0.464991i
\(667\) −10.8301 18.7583i −0.419344 0.726325i
\(668\) −13.2827 −0.513924
\(669\) −4.60770 4.60770i −0.178144 0.178144i
\(670\) −1.96902 −0.0760697
\(671\) −3.20736 + 5.55532i −0.123819 + 0.214461i
\(672\) 0 0
\(673\) 20.0885 + 34.7942i 0.774353 + 1.34122i 0.935157 + 0.354233i \(0.115258\pi\)
−0.160804 + 0.986986i \(0.551409\pi\)
\(674\) −10.6603 18.4641i −0.410618 0.711211i
\(675\) 17.3867 17.3867i 0.669213 0.669213i
\(676\) 3.50000 6.06218i 0.134615 0.233161i
\(677\) 0.568406 0.984508i 0.0218456 0.0378377i −0.854896 0.518800i \(-0.826379\pi\)
0.876742 + 0.480962i \(0.159712\pi\)
\(678\) 17.9551 + 17.9551i 0.689560 + 0.689560i
\(679\) 0 0
\(680\) −0.901924 + 1.56218i −0.0345872 + 0.0599068i
\(681\) 5.59808 1.50000i 0.214519 0.0574801i
\(682\) −10.7589 −0.411980
\(683\) 6.80385 11.7846i 0.260342 0.450926i −0.705991 0.708221i \(-0.749498\pi\)
0.966333 + 0.257295i \(0.0828314\pi\)
\(684\) 1.55291i 0.0593772i
\(685\) 0 0
\(686\) 0 0
\(687\) 23.0885 6.18653i 0.880880 0.236031i
\(688\) −12.1962 −0.464974
\(689\) −8.24504 14.2808i −0.314111 0.544057i
\(690\) 1.83975 6.86603i 0.0700379 0.261385i
\(691\) −18.4913 + 32.0279i −0.703442 + 1.21840i 0.263809 + 0.964575i \(0.415021\pi\)
−0.967251 + 0.253822i \(0.918312\pi\)
\(692\) 19.4201 0.738240
\(693\) 0 0
\(694\) −21.7128 −0.824207
\(695\) 5.23205 9.06218i 0.198463 0.343748i
\(696\) −3.34607 3.34607i −0.126832 0.126832i
\(697\) 9.85641 + 17.0718i 0.373338 + 0.646640i
\(698\) −34.5975 −1.30953
\(699\) 1.70522 + 1.70522i 0.0644973 + 0.0644973i
\(700\) 0 0
\(701\) 20.5359 0.775630 0.387815 0.921737i \(-0.373230\pi\)
0.387815 + 0.921737i \(0.373230\pi\)
\(702\) −12.2942 3.29423i −0.464016 0.124333i
\(703\) −2.07055 + 3.58630i −0.0780924 + 0.135260i
\(704\) −1.46410 −0.0551804
\(705\) −1.07244 + 4.00240i −0.0403905 + 0.150739i
\(706\) −0.0507680 + 0.0879327i −0.00191068 + 0.00330939i
\(707\) 0 0
\(708\) −6.63397 + 24.7583i −0.249320 + 0.930475i
\(709\) 11.2679 19.5167i 0.423177 0.732964i −0.573072 0.819505i \(-0.694248\pi\)
0.996248 + 0.0865418i \(0.0275816\pi\)
\(710\) 0.208051 0.360355i 0.00780802 0.0135239i
\(711\) 42.3731i 1.58911i
\(712\) 8.05558 + 13.9527i 0.301895 + 0.522898i
\(713\) 29.1301 + 50.4548i 1.09093 + 1.88955i
\(714\) 0 0
\(715\) −0.928203 + 1.60770i −0.0347128 + 0.0601244i
\(716\) −8.19615 −0.306305
\(717\) −5.58750 + 20.8528i −0.208669 + 0.778764i
\(718\) 13.9282 0.519796
\(719\) −17.0077 29.4582i −0.634281 1.09861i −0.986667 0.162752i \(-0.947963\pi\)
0.352386 0.935855i \(-0.385371\pi\)
\(720\) 1.55291i 0.0578737i
\(721\) 0 0
\(722\) −9.36603 16.2224i −0.348567 0.603736i
\(723\) 21.2942 5.70577i 0.791941 0.212200i
\(724\) −10.4865 18.1631i −0.389727 0.675027i
\(725\) 6.46410 + 11.1962i 0.240071 + 0.415815i
\(726\) 3.97022 14.8171i 0.147349 0.549913i
\(727\) −14.8864 25.7840i −0.552106 0.956276i −0.998122 0.0612512i \(-0.980491\pi\)
0.446016 0.895025i \(-0.352842\pi\)
\(728\) 0 0
\(729\) 27.0000i 1.00000i
\(730\) 1.19615 + 2.07180i 0.0442716 + 0.0766806i
\(731\) −42.5007 −1.57195
\(732\) 7.33013 1.96410i 0.270929 0.0725953i
\(733\) −30.1146 −1.11231 −0.556154 0.831079i \(-0.687723\pi\)
−0.556154 + 0.831079i \(0.687723\pi\)
\(734\) 0.138701 0.240237i 0.00511954 0.00886730i
\(735\) 0 0
\(736\) 3.96410 + 6.86603i 0.146119 + 0.253085i
\(737\) −2.78461 4.82309i −0.102572 0.177661i
\(738\) −14.6969 8.48528i −0.541002 0.312348i
\(739\) 8.07180 13.9808i 0.296926 0.514291i −0.678505 0.734596i \(-0.737372\pi\)
0.975431 + 0.220305i \(0.0707052\pi\)
\(740\) −2.07055 + 3.58630i −0.0761150 + 0.131835i
\(741\) 2.12132 0.568406i 0.0779287 0.0208809i
\(742\) 0 0
\(743\) 14.1244 24.4641i 0.518172 0.897501i −0.481605 0.876389i \(-0.659946\pi\)
0.999777 0.0211123i \(-0.00672076\pi\)
\(744\) 9.00000 + 9.00000i 0.329956 + 0.329956i
\(745\) 1.23835 0.0453696
\(746\) 9.56218 16.5622i 0.350096 0.606384i
\(747\) −25.7196 14.8492i −0.941033 0.543305i
\(748\) −5.10205 −0.186549
\(749\) 0 0
\(750\) −2.25833 + 8.42820i −0.0824626 + 0.307754i
\(751\) −50.1769 −1.83098 −0.915491 0.402339i \(-0.868197\pi\)
−0.915491 + 0.402339i \(0.868197\pi\)
\(752\) −2.31079 4.00240i −0.0842658 0.145953i
\(753\) −0.866025 + 0.232051i −0.0315597 + 0.00845640i
\(754\) 3.34607 5.79555i 0.121857 0.211062i
\(755\) 9.00292 0.327650
\(756\) 0 0
\(757\) 20.2487 0.735952 0.367976 0.929835i \(-0.380051\pi\)
0.367976 + 0.929835i \(0.380051\pi\)
\(758\) −13.7583 + 23.8301i −0.499725 + 0.865549i
\(759\) 19.4201 5.20359i 0.704903 0.188878i
\(760\) 0.133975 + 0.232051i 0.00485977 + 0.00841737i
\(761\) 39.7738 1.44180 0.720900 0.693039i \(-0.243729\pi\)
0.720900 + 0.693039i \(0.243729\pi\)
\(762\) 2.65754 9.91808i 0.0962725 0.359294i
\(763\) 0 0
\(764\) −7.19615 −0.260348
\(765\) 5.41154i 0.195655i
\(766\) 17.1093 29.6341i 0.618183 1.07072i
\(767\) −36.2487 −1.30887
\(768\) 1.22474 + 1.22474i 0.0441942 + 0.0441942i
\(769\) 14.9372 25.8719i 0.538648 0.932966i −0.460329 0.887748i \(-0.652268\pi\)
0.998977 0.0452178i \(-0.0143982\pi\)
\(770\) 0 0
\(771\) 6.29423 1.68653i 0.226681 0.0607390i
\(772\) 11.8660 20.5526i 0.427068 0.739703i
\(773\) 6.76148 11.7112i 0.243194 0.421224i −0.718429 0.695601i \(-0.755138\pi\)
0.961622 + 0.274377i \(0.0884716\pi\)
\(774\) 31.6865 18.2942i 1.13895 0.657572i
\(775\) −17.3867 30.1146i −0.624547 1.08175i
\(776\) 0.517638 + 0.896575i 0.0185821 + 0.0321852i
\(777\) 0 0
\(778\) −2.43782 + 4.22243i −0.0874002 + 0.151382i
\(779\) 2.92820 0.104914
\(780\) 2.12132 0.568406i 0.0759555 0.0203522i
\(781\) 1.17691 0.0421133
\(782\) 13.8140 + 23.9265i 0.493986 + 0.855610i
\(783\) 13.7124 + 3.67423i 0.490042 + 0.131306i
\(784\) 0 0
\(785\) 4.47372 + 7.74871i 0.159674 + 0.276563i
\(786\) 5.59808 20.8923i 0.199677 0.745204i
\(787\) −18.0938 31.3393i −0.644973 1.11713i −0.984308 0.176461i \(-0.943535\pi\)
0.339334 0.940666i \(-0.389798\pi\)
\(788\) −4.83013 8.36603i −0.172066 0.298027i
\(789\) −4.45069 + 1.19256i −0.158449 + 0.0424562i
\(790\) −3.65565 6.33178i −0.130062 0.225274i
\(791\) 0 0
\(792\) 3.80385 2.19615i 0.135164 0.0780369i
\(793\) 5.36603 + 9.29423i 0.190553 + 0.330048i
\(794\) 26.3896 0.936531
\(795\) −1.56218 + 5.83013i −0.0554047 + 0.206773i
\(796\) −11.5911 −0.410836
\(797\) 12.2796 21.2690i 0.434967 0.753385i −0.562326 0.826916i \(-0.690093\pi\)
0.997293 + 0.0735308i \(0.0234267\pi\)
\(798\) 0 0
\(799\) −8.05256 13.9474i −0.284879 0.493425i
\(800\) −2.36603 4.09808i −0.0836516 0.144889i
\(801\) −41.8580 24.1667i −1.47898 0.853889i
\(802\) −12.5263 + 21.6962i −0.442318 + 0.766118i
\(803\) −3.38323 + 5.85993i −0.119392 + 0.206792i
\(804\) −1.70522 + 6.36396i −0.0601384 + 0.224440i
\(805\) 0 0
\(806\) −9.00000 + 15.5885i −0.317011 + 0.549080i
\(807\) −12.0622 + 45.0167i −0.424609 + 1.58466i
\(808\) 5.79555 0.203887
\(809\) −16.6603 + 28.8564i −0.585743 + 1.01454i 0.409039 + 0.912517i \(0.365864\pi\)
−0.994782 + 0.102020i \(0.967469\pi\)
\(810\) 2.32937 + 4.03459i 0.0818458 + 0.141761i
\(811\) −7.82894 −0.274911 −0.137456 0.990508i \(-0.543892\pi\)
−0.137456 + 0.990508i \(0.543892\pi\)
\(812\) 0 0
\(813\) −18.1244 18.1244i −0.635649 0.635649i
\(814\) −11.7128 −0.410534
\(815\) −1.83032 3.17020i −0.0641132 0.111047i
\(816\) 4.26795 + 4.26795i 0.149408 + 0.149408i
\(817\) −3.15660 + 5.46739i −0.110435 + 0.191280i
\(818\) 17.8028 0.622459
\(819\) 0 0
\(820\) 2.92820 0.102257
\(821\) 3.33975 5.78461i 0.116558 0.201884i −0.801844 0.597534i \(-0.796147\pi\)
0.918401 + 0.395650i \(0.129481\pi\)
\(822\) 0 0
\(823\) 3.66025 + 6.33975i 0.127588 + 0.220990i 0.922742 0.385419i \(-0.125943\pi\)
−0.795153 + 0.606408i \(0.792610\pi\)
\(824\) −11.2122 −0.390595
\(825\) −11.5911 + 3.10583i −0.403551 + 0.108131i
\(826\) 0 0
\(827\) −52.7321 −1.83367 −0.916837 0.399263i \(-0.869266\pi\)
−0.916837 + 0.399263i \(0.869266\pi\)
\(828\) −20.5981 11.8923i −0.715833 0.413286i
\(829\) −0.947343 + 1.64085i −0.0329026 + 0.0569890i −0.882008 0.471235i \(-0.843808\pi\)
0.849105 + 0.528224i \(0.177142\pi\)
\(830\) 5.12436 0.177869
\(831\) 27.0967 7.26054i 0.939974 0.251865i
\(832\) −1.22474 + 2.12132i −0.0424604 + 0.0735436i
\(833\) 0 0
\(834\) −24.7583 24.7583i −0.857311 0.857311i
\(835\) −3.43782 + 5.95448i −0.118971 + 0.206063i
\(836\) −0.378937 + 0.656339i −0.0131058 + 0.0227000i
\(837\) −36.8827 9.88269i −1.27485 0.341596i
\(838\) 11.3323 + 19.6281i 0.391467 + 0.678042i
\(839\) −22.4751 38.9280i −0.775927 1.34395i −0.934272 0.356561i \(-0.883949\pi\)
0.158345 0.987384i \(-0.449384\pi\)
\(840\) 0 0
\(841\) 10.7679 18.6506i 0.371309 0.643125i
\(842\) −28.0526 −0.966755
\(843\) −21.3011 21.3011i −0.733650 0.733650i
\(844\) 1.26795 0.0436446
\(845\) −1.81173 3.13801i −0.0623255 0.107951i
\(846\) 12.0072 + 6.93237i 0.412816 + 0.238340i
\(847\) 0 0
\(848\) −3.36603 5.83013i −0.115590 0.200207i
\(849\) −11.9545 11.9545i −0.410277 0.410277i
\(850\) −8.24504 14.2808i −0.282803 0.489829i
\(851\) 31.7128 + 54.9282i 1.08710 + 1.88291i
\(852\) −0.984508 0.984508i −0.0337287 0.0337287i
\(853\) 11.7992 + 20.4367i 0.403996 + 0.699741i 0.994204 0.107510i \(-0.0342878\pi\)
−0.590208 + 0.807251i \(0.700954\pi\)
\(854\) 0 0
\(855\) −0.696152 0.401924i −0.0238079 0.0137455i
\(856\) 1.53590 + 2.66025i 0.0524959 + 0.0909256i
\(857\) −5.45378 −0.186298 −0.0931488 0.995652i \(-0.529693\pi\)
−0.0931488 + 0.995652i \(0.529693\pi\)
\(858\) 4.39230 + 4.39230i 0.149951 + 0.149951i
\(859\) −9.69642 −0.330838 −0.165419 0.986223i \(-0.552898\pi\)
−0.165419 + 0.986223i \(0.552898\pi\)
\(860\) −3.15660 + 5.46739i −0.107639 + 0.186436i
\(861\) 0 0
\(862\) −13.3923 23.1962i −0.456144 0.790064i
\(863\) −10.5981 18.3564i −0.360763 0.624859i 0.627324 0.778758i \(-0.284150\pi\)
−0.988087 + 0.153899i \(0.950817\pi\)
\(864\) −5.01910 1.34486i −0.170753 0.0457532i
\(865\) 5.02628 8.70577i 0.170899 0.296005i
\(866\) 10.1261 17.5390i 0.344100 0.595998i
\(867\) −5.94786 5.94786i −0.202000 0.202000i
\(868\) 0 0
\(869\) 10.3397 17.9090i 0.350752 0.607520i
\(870\) −2.36603 + 0.633975i −0.0802158 + 0.0214938i
\(871\) −9.31749 −0.315711
\(872\) 5.29423 9.16987i 0.179285 0.310531i
\(873\) −2.68973 1.55291i −0.0910334 0.0525582i
\(874\) 4.10394 0.138818
\(875\) 0 0
\(876\) 7.73205 2.07180i 0.261242 0.0699995i
\(877\) 24.0526 0.812197 0.406099 0.913829i \(-0.366889\pi\)
0.406099 + 0.913829i \(0.366889\pi\)
\(878\) −9.14162 15.8338i −0.308515 0.534363i
\(879\) 1.33013 4.96410i 0.0448641 0.167435i
\(880\) −0.378937 + 0.656339i −0.0127740 + 0.0221252i
\(881\) −0.480473 −0.0161876 −0.00809378 0.999967i \(-0.502576\pi\)
−0.00809378 + 0.999967i \(0.502576\pi\)
\(882\) 0 0
\(883\) 38.2487 1.28717 0.643586 0.765374i \(-0.277446\pi\)
0.643586 + 0.765374i \(0.277446\pi\)
\(884\) −4.26795 + 7.39230i −0.143547 + 0.248630i
\(885\) 9.38186 + 9.38186i 0.315368 + 0.315368i
\(886\) −18.4904 32.0263i −0.621197 1.07594i
\(887\) −26.9716 −0.905617 −0.452809 0.891608i \(-0.649578\pi\)
−0.452809 + 0.891608i \(0.649578\pi\)
\(888\) 9.79796 + 9.79796i 0.328798 + 0.328798i
\(889\) 0 0
\(890\) 8.33975 0.279549
\(891\) −6.58846 + 11.4115i −0.220722 + 0.382301i
\(892\) 1.88108 3.25813i 0.0629833 0.109090i
\(893\) −2.39230 −0.0800554
\(894\) 1.07244 4.00240i 0.0358678 0.133860i
\(895\) −2.12132 + 3.67423i −0.0709079 + 0.122816i
\(896\) 0 0
\(897\) 8.70577 32.4904i 0.290677 1.08482i
\(898\) −11.8923 + 20.5981i −0.396851 + 0.687367i
\(899\) 10.0382 17.3867i 0.334793 0.579878i
\(900\) 12.2942 + 7.09808i 0.409808 + 0.236603i
\(901\) −11.7298 20.3166i −0.390777 0.676845i
\(902\) 4.14110 + 7.17260i 0.137884 + 0.238822i
\(903\) 0 0
\(904\) −7.33013 + 12.6962i −0.243796 + 0.422268i
\(905\) −10.8564 −0.360879
\(906\) 7.79676 29.0979i 0.259030 0.966713i
\(907\) −5.12436 −0.170151 −0.0850757 0.996374i \(-0.527113\pi\)
−0.0850757 + 0.996374i \(0.527113\pi\)
\(908\) 1.67303 + 2.89778i 0.0555215 + 0.0961661i
\(909\) −15.0573 + 8.69333i −0.499419 + 0.288340i
\(910\) 0 0
\(911\) −13.8923 24.0622i −0.460273 0.797216i 0.538702 0.842497i \(-0.318915\pi\)
−0.998974 + 0.0452811i \(0.985582\pi\)
\(912\) 0.866025 0.232051i 0.0286770 0.00768397i
\(913\) 7.24693 + 12.5521i 0.239838 + 0.415412i
\(914\) −11.1340 19.2846i −0.368279 0.637878i
\(915\) 1.01669 3.79435i 0.0336109 0.125437i
\(916\) 6.90018 + 11.9515i 0.227988 + 0.394888i
\(917\) 0 0
\(918\) −17.4904 4.68653i −0.577269 0.154679i
\(919\) −8.18653 14.1795i −0.270049 0.467738i 0.698825 0.715292i \(-0.253707\pi\)
−0.968874 + 0.247554i \(0.920373\pi\)
\(920\) 4.10394 0.135303
\(921\) −19.9641 + 5.34936i −0.657840 + 0.176268i
\(922\) 38.9788 1.28370
\(923\) 0.984508 1.70522i 0.0324055 0.0561279i
\(924\) 0 0
\(925\) −18.9282 32.7846i −0.622355 1.07795i
\(926\) 3.33013 + 5.76795i 0.109435 + 0.189547i
\(927\) 29.1301 16.8183i 0.956757 0.552384i
\(928\) 1.36603 2.36603i 0.0448420 0.0776686i
\(929\) 2.01978 3.49837i 0.0662670 0.114778i −0.830988 0.556290i \(-0.812224\pi\)
0.897255 + 0.441512i \(0.145558\pi\)
\(930\) 6.36396 1.70522i 0.208683 0.0559163i
\(931\) 0 0
\(932\) −0.696152 + 1.20577i −0.0228032 + 0.0394964i
\(933\) −22.2679 22.2679i −0.729020 0.729020i
\(934\) 24.5964 0.804820
\(935\) −1.32051 + 2.28719i −0.0431852 + 0.0747990i
\(936\) 7.34847i 0.240192i
\(937\) −31.7690 −1.03785 −0.518925 0.854820i \(-0.673667\pi\)
−0.518925 + 0.854820i \(0.673667\pi\)
\(938\) 0 0
\(939\) 3.00000 11.1962i 0.0979013 0.365373i
\(940\) −2.39230 −0.0780284
\(941\) −29.1994 50.5749i −0.951874 1.64869i −0.741364 0.671103i \(-0.765821\pi\)
−0.210510 0.977592i \(-0.567512\pi\)
\(942\) 28.9186 7.74871i 0.942218 0.252467i
\(943\) 22.4243 38.8401i 0.730237 1.26481i
\(944\) −14.7985 −0.481649
\(945\) 0 0
\(946\) −17.8564 −0.580562
\(947\) 17.8301 30.8827i 0.579401 1.00355i −0.416147 0.909297i \(-0.636620\pi\)
0.995548 0.0942550i \(-0.0300469\pi\)
\(948\) −23.6305 + 6.33178i −0.767483 + 0.205647i
\(949\) 5.66025 + 9.80385i 0.183740 + 0.318246i
\(950\) −2.44949 −0.0794719
\(951\) 14.6090 54.5216i 0.473729 1.76798i
\(952\) 0 0
\(953\) 23.7128 0.768133 0.384067 0.923305i \(-0.374523\pi\)
0.384067 + 0.923305i \(0.374523\pi\)
\(954\) 17.4904 + 10.0981i 0.566272 + 0.326937i
\(955\) −1.86250 + 3.22595i −0.0602691 + 0.104389i
\(956\) −12.4641 −0.403118
\(957\) −4.89898 4.89898i −0.158362 0.158362i
\(958\) 6.64136 11.5032i 0.214573 0.371651i
\(959\) 0 0
\(960\) 0.866025 0.232051i 0.0279508 0.00748941i
\(961\) −11.5000 + 19.9186i −0.370968 + 0.642535i
\(962\) −9.79796 + 16.9706i −0.315899 + 0.547153i
\(963\) −7.98076 4.60770i −0.257176 0.148481i
\(964\) 6.36396 + 11.0227i 0.204969 + 0.355017i
\(965\) −6.14231 10.6388i −0.197728 0.342475i
\(966\) 0 0
\(967\) 0.232051 0.401924i 0.00746225 0.0129250i −0.862270 0.506449i \(-0.830958\pi\)
0.869732 + 0.493524i \(0.164291\pi\)
\(968\) 8.85641 0.284656
\(969\) 3.01790 0.808643i 0.0969488 0.0259773i
\(970\) 0.535898 0.0172067
\(971\) 14.2994 + 24.7673i 0.458890 + 0.794821i 0.998903 0.0468359i \(-0.0149138\pi\)
−0.540012 + 0.841657i \(0.681580\pi\)
\(972\) 15.0573 4.03459i 0.482963 0.129410i
\(973\) 0 0
\(974\) −16.1603 27.9904i −0.517808 0.896870i
\(975\) −5.19615 + 19.3923i −0.166410 + 0.621051i
\(976\) 2.19067 + 3.79435i 0.0701217 + 0.121454i
\(977\) 8.07180 + 13.9808i 0.258240 + 0.447284i 0.965770 0.259398i \(-0.0835242\pi\)
−0.707531 + 0.706683i \(0.750191\pi\)
\(978\) −11.8313 + 3.17020i −0.378325 + 0.101372i
\(979\) 11.7942 + 20.4281i 0.376944 + 0.652886i
\(980\) 0 0
\(981\) 31.7654i 1.01419i
\(982\) −2.53590 4.39230i −0.0809238 0.140164i
\(983\) 23.6355 0.753855 0.376927 0.926243i \(-0.376981\pi\)
0.376927 + 0.926243i \(0.376981\pi\)
\(984\) 2.53590 9.46410i 0.0808415 0.301705i
\(985\) −5.00052 −0.159330
\(986\) 4.76028 8.24504i 0.151598 0.262576i
\(987\) 0 0
\(988\) 0.633975 + 1.09808i 0.0201694 + 0.0349345i
\(989\) 48.3468 + 83.7391i 1.53734 + 2.66275i
\(990\) 2.27362i 0.0722605i
\(991\) −7.33975 + 12.7128i −0.233155 + 0.403836i −0.958735 0.284302i \(-0.908238\pi\)
0.725580 + 0.688138i \(0.241572\pi\)
\(992\) −3.67423 + 6.36396i −0.116657 + 0.202056i
\(993\) −5.40301 + 20.1643i −0.171459 + 0.639895i
\(994\) 0 0
\(995\) −3.00000 + 5.19615i −0.0951064 + 0.164729i
\(996\) 4.43782 16.5622i 0.140618 0.524793i
\(997\) −43.8778 −1.38962 −0.694812 0.719192i \(-0.744512\pi\)
−0.694812 + 0.719192i \(0.744512\pi\)
\(998\) 3.66025 6.33975i 0.115863 0.200681i
\(999\) −40.1528 10.7589i −1.27038 0.340397i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 882.2.h.t.67.1 8
3.2 odd 2 2646.2.h.q.361.3 8
7.2 even 3 882.2.e.q.373.3 8
7.3 odd 6 882.2.f.s.589.1 yes 8
7.4 even 3 882.2.f.s.589.4 yes 8
7.5 odd 6 882.2.e.q.373.2 8
7.6 odd 2 inner 882.2.h.t.67.4 8
9.2 odd 6 2646.2.e.t.2125.2 8
9.7 even 3 882.2.e.q.655.3 8
21.2 odd 6 2646.2.e.t.1549.2 8
21.5 even 6 2646.2.e.t.1549.3 8
21.11 odd 6 2646.2.f.q.1765.2 8
21.17 even 6 2646.2.f.q.1765.3 8
21.20 even 2 2646.2.h.q.361.2 8
63.2 odd 6 2646.2.h.q.667.3 8
63.4 even 3 7938.2.a.cj.1.2 4
63.11 odd 6 2646.2.f.q.883.2 8
63.16 even 3 inner 882.2.h.t.79.1 8
63.20 even 6 2646.2.e.t.2125.3 8
63.25 even 3 882.2.f.s.295.3 yes 8
63.31 odd 6 7938.2.a.cj.1.3 4
63.32 odd 6 7938.2.a.co.1.3 4
63.34 odd 6 882.2.e.q.655.2 8
63.38 even 6 2646.2.f.q.883.3 8
63.47 even 6 2646.2.h.q.667.2 8
63.52 odd 6 882.2.f.s.295.2 8
63.59 even 6 7938.2.a.co.1.2 4
63.61 odd 6 inner 882.2.h.t.79.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
882.2.e.q.373.2 8 7.5 odd 6
882.2.e.q.373.3 8 7.2 even 3
882.2.e.q.655.2 8 63.34 odd 6
882.2.e.q.655.3 8 9.7 even 3
882.2.f.s.295.2 8 63.52 odd 6
882.2.f.s.295.3 yes 8 63.25 even 3
882.2.f.s.589.1 yes 8 7.3 odd 6
882.2.f.s.589.4 yes 8 7.4 even 3
882.2.h.t.67.1 8 1.1 even 1 trivial
882.2.h.t.67.4 8 7.6 odd 2 inner
882.2.h.t.79.1 8 63.16 even 3 inner
882.2.h.t.79.4 8 63.61 odd 6 inner
2646.2.e.t.1549.2 8 21.2 odd 6
2646.2.e.t.1549.3 8 21.5 even 6
2646.2.e.t.2125.2 8 9.2 odd 6
2646.2.e.t.2125.3 8 63.20 even 6
2646.2.f.q.883.2 8 63.11 odd 6
2646.2.f.q.883.3 8 63.38 even 6
2646.2.f.q.1765.2 8 21.11 odd 6
2646.2.f.q.1765.3 8 21.17 even 6
2646.2.h.q.361.2 8 21.20 even 2
2646.2.h.q.361.3 8 3.2 odd 2
2646.2.h.q.667.2 8 63.47 even 6
2646.2.h.q.667.3 8 63.2 odd 6
7938.2.a.cj.1.2 4 63.4 even 3
7938.2.a.cj.1.3 4 63.31 odd 6
7938.2.a.co.1.2 4 63.59 even 6
7938.2.a.co.1.3 4 63.32 odd 6