Properties

Label 2646.2.h.f.361.1
Level $2646$
Weight $2$
Character 2646.361
Analytic conductor $21.128$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2646,2,Mod(361,2646)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2646, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2646.361");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2646 = 2 \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2646.h (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(21.1284163748\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 361.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 2646.361
Dual form 2646.2.h.f.667.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} -3.00000 q^{5} -1.00000 q^{8} +(-1.50000 + 2.59808i) q^{10} +3.00000 q^{11} +(2.50000 - 4.33013i) q^{13} +(-0.500000 + 0.866025i) q^{16} +(-1.50000 + 2.59808i) q^{17} +(2.50000 + 4.33013i) q^{19} +(1.50000 + 2.59808i) q^{20} +(1.50000 - 2.59808i) q^{22} +3.00000 q^{23} +4.00000 q^{25} +(-2.50000 - 4.33013i) q^{26} +(-1.50000 - 2.59808i) q^{29} +(-2.00000 - 3.46410i) q^{31} +(0.500000 + 0.866025i) q^{32} +(1.50000 + 2.59808i) q^{34} +(3.50000 + 6.06218i) q^{37} +5.00000 q^{38} +3.00000 q^{40} +(4.50000 - 7.79423i) q^{41} +(-5.50000 - 9.52628i) q^{43} +(-1.50000 - 2.59808i) q^{44} +(1.50000 - 2.59808i) q^{46} +(2.00000 - 3.46410i) q^{50} -5.00000 q^{52} +(-1.50000 + 2.59808i) q^{53} -9.00000 q^{55} -3.00000 q^{58} +(-6.00000 - 10.3923i) q^{59} +(1.00000 - 1.73205i) q^{61} -4.00000 q^{62} +1.00000 q^{64} +(-7.50000 + 12.9904i) q^{65} +(2.00000 + 3.46410i) q^{67} +3.00000 q^{68} +(5.50000 - 9.52628i) q^{73} +7.00000 q^{74} +(2.50000 - 4.33013i) q^{76} +(-4.00000 + 6.92820i) q^{79} +(1.50000 - 2.59808i) q^{80} +(-4.50000 - 7.79423i) q^{82} +(-1.50000 - 2.59808i) q^{83} +(4.50000 - 7.79423i) q^{85} -11.0000 q^{86} -3.00000 q^{88} +(-7.50000 - 12.9904i) q^{89} +(-1.50000 - 2.59808i) q^{92} +(-7.50000 - 12.9904i) q^{95} +(-0.500000 - 0.866025i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 6 q^{5} - 2 q^{8} - 3 q^{10} + 6 q^{11} + 5 q^{13} - q^{16} - 3 q^{17} + 5 q^{19} + 3 q^{20} + 3 q^{22} + 6 q^{23} + 8 q^{25} - 5 q^{26} - 3 q^{29} - 4 q^{31} + q^{32} + 3 q^{34}+ \cdots - q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2646\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 2.50000 4.33013i 0.693375 1.20096i −0.277350 0.960769i \(-0.589456\pi\)
0.970725 0.240192i \(-0.0772105\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) −1.50000 + 2.59808i −0.363803 + 0.630126i −0.988583 0.150675i \(-0.951855\pi\)
0.624780 + 0.780801i \(0.285189\pi\)
\(18\) 0 0
\(19\) 2.50000 + 4.33013i 0.573539 + 0.993399i 0.996199 + 0.0871106i \(0.0277634\pi\)
−0.422659 + 0.906289i \(0.638903\pi\)
\(20\) 1.50000 + 2.59808i 0.335410 + 0.580948i
\(21\) 0 0
\(22\) 1.50000 2.59808i 0.319801 0.553912i
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) −2.50000 4.33013i −0.490290 0.849208i
\(27\) 0 0
\(28\) 0 0
\(29\) −1.50000 2.59808i −0.278543 0.482451i 0.692480 0.721437i \(-0.256518\pi\)
−0.971023 + 0.238987i \(0.923185\pi\)
\(30\) 0 0
\(31\) −2.00000 3.46410i −0.359211 0.622171i 0.628619 0.777714i \(-0.283621\pi\)
−0.987829 + 0.155543i \(0.950287\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 1.50000 + 2.59808i 0.257248 + 0.445566i
\(35\) 0 0
\(36\) 0 0
\(37\) 3.50000 + 6.06218i 0.575396 + 0.996616i 0.995998 + 0.0893706i \(0.0284856\pi\)
−0.420602 + 0.907245i \(0.638181\pi\)
\(38\) 5.00000 0.811107
\(39\) 0 0
\(40\) 3.00000 0.474342
\(41\) 4.50000 7.79423i 0.702782 1.21725i −0.264704 0.964330i \(-0.585274\pi\)
0.967486 0.252924i \(-0.0813924\pi\)
\(42\) 0 0
\(43\) −5.50000 9.52628i −0.838742 1.45274i −0.890947 0.454108i \(-0.849958\pi\)
0.0522047 0.998636i \(-0.483375\pi\)
\(44\) −1.50000 2.59808i −0.226134 0.391675i
\(45\) 0 0
\(46\) 1.50000 2.59808i 0.221163 0.383065i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 2.00000 3.46410i 0.282843 0.489898i
\(51\) 0 0
\(52\) −5.00000 −0.693375
\(53\) −1.50000 + 2.59808i −0.206041 + 0.356873i −0.950464 0.310835i \(-0.899391\pi\)
0.744423 + 0.667708i \(0.232725\pi\)
\(54\) 0 0
\(55\) −9.00000 −1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) −3.00000 −0.393919
\(59\) −6.00000 10.3923i −0.781133 1.35296i −0.931282 0.364299i \(-0.881308\pi\)
0.150148 0.988663i \(-0.452025\pi\)
\(60\) 0 0
\(61\) 1.00000 1.73205i 0.128037 0.221766i −0.794879 0.606768i \(-0.792466\pi\)
0.922916 + 0.385002i \(0.125799\pi\)
\(62\) −4.00000 −0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −7.50000 + 12.9904i −0.930261 + 1.61126i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 3.00000 0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 5.50000 9.52628i 0.643726 1.11497i −0.340868 0.940111i \(-0.610721\pi\)
0.984594 0.174855i \(-0.0559458\pi\)
\(74\) 7.00000 0.813733
\(75\) 0 0
\(76\) 2.50000 4.33013i 0.286770 0.496700i
\(77\) 0 0
\(78\) 0 0
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) 1.50000 2.59808i 0.167705 0.290474i
\(81\) 0 0
\(82\) −4.50000 7.79423i −0.496942 0.860729i
\(83\) −1.50000 2.59808i −0.164646 0.285176i 0.771883 0.635764i \(-0.219315\pi\)
−0.936530 + 0.350588i \(0.885982\pi\)
\(84\) 0 0
\(85\) 4.50000 7.79423i 0.488094 0.845403i
\(86\) −11.0000 −1.18616
\(87\) 0 0
\(88\) −3.00000 −0.319801
\(89\) −7.50000 12.9904i −0.794998 1.37698i −0.922840 0.385183i \(-0.874138\pi\)
0.127842 0.991795i \(-0.459195\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.50000 2.59808i −0.156386 0.270868i
\(93\) 0 0
\(94\) 0 0
\(95\) −7.50000 12.9904i −0.769484 1.33278i
\(96\) 0 0
\(97\) −0.500000 0.866025i −0.0507673 0.0879316i 0.839525 0.543321i \(-0.182833\pi\)
−0.890292 + 0.455389i \(0.849500\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) −3.00000 −0.298511 −0.149256 0.988799i \(-0.547688\pi\)
−0.149256 + 0.988799i \(0.547688\pi\)
\(102\) 0 0
\(103\) −5.00000 −0.492665 −0.246332 0.969185i \(-0.579225\pi\)
−0.246332 + 0.969185i \(0.579225\pi\)
\(104\) −2.50000 + 4.33013i −0.245145 + 0.424604i
\(105\) 0 0
\(106\) 1.50000 + 2.59808i 0.145693 + 0.252347i
\(107\) −7.50000 12.9904i −0.725052 1.25583i −0.958952 0.283567i \(-0.908482\pi\)
0.233900 0.972261i \(-0.424851\pi\)
\(108\) 0 0
\(109\) 3.50000 6.06218i 0.335239 0.580651i −0.648292 0.761392i \(-0.724516\pi\)
0.983531 + 0.180741i \(0.0578495\pi\)
\(110\) −4.50000 + 7.79423i −0.429058 + 0.743151i
\(111\) 0 0
\(112\) 0 0
\(113\) 7.50000 12.9904i 0.705541 1.22203i −0.260955 0.965351i \(-0.584038\pi\)
0.966496 0.256681i \(-0.0826291\pi\)
\(114\) 0 0
\(115\) −9.00000 −0.839254
\(116\) −1.50000 + 2.59808i −0.139272 + 0.241225i
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −1.00000 1.73205i −0.0905357 0.156813i
\(123\) 0 0
\(124\) −2.00000 + 3.46410i −0.179605 + 0.311086i
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 7.50000 + 12.9904i 0.657794 + 1.13933i
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 1.50000 2.59808i 0.128624 0.222783i
\(137\) −3.00000 −0.256307 −0.128154 0.991754i \(-0.540905\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(138\) 0 0
\(139\) 2.50000 4.33013i 0.212047 0.367277i −0.740308 0.672268i \(-0.765320\pi\)
0.952355 + 0.304991i \(0.0986536\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 7.50000 12.9904i 0.627182 1.08631i
\(144\) 0 0
\(145\) 4.50000 + 7.79423i 0.373705 + 0.647275i
\(146\) −5.50000 9.52628i −0.455183 0.788400i
\(147\) 0 0
\(148\) 3.50000 6.06218i 0.287698 0.498308i
\(149\) 3.00000 0.245770 0.122885 0.992421i \(-0.460785\pi\)
0.122885 + 0.992421i \(0.460785\pi\)
\(150\) 0 0
\(151\) 11.0000 0.895167 0.447584 0.894242i \(-0.352285\pi\)
0.447584 + 0.894242i \(0.352285\pi\)
\(152\) −2.50000 4.33013i −0.202777 0.351220i
\(153\) 0 0
\(154\) 0 0
\(155\) 6.00000 + 10.3923i 0.481932 + 0.834730i
\(156\) 0 0
\(157\) 7.00000 + 12.1244i 0.558661 + 0.967629i 0.997609 + 0.0691164i \(0.0220180\pi\)
−0.438948 + 0.898513i \(0.644649\pi\)
\(158\) 4.00000 + 6.92820i 0.318223 + 0.551178i
\(159\) 0 0
\(160\) −1.50000 2.59808i −0.118585 0.205396i
\(161\) 0 0
\(162\) 0 0
\(163\) −8.50000 14.7224i −0.665771 1.15315i −0.979076 0.203497i \(-0.934769\pi\)
0.313304 0.949653i \(-0.398564\pi\)
\(164\) −9.00000 −0.702782
\(165\) 0 0
\(166\) −3.00000 −0.232845
\(167\) −1.50000 + 2.59808i −0.116073 + 0.201045i −0.918208 0.396098i \(-0.870364\pi\)
0.802135 + 0.597143i \(0.203697\pi\)
\(168\) 0 0
\(169\) −6.00000 10.3923i −0.461538 0.799408i
\(170\) −4.50000 7.79423i −0.345134 0.597790i
\(171\) 0 0
\(172\) −5.50000 + 9.52628i −0.419371 + 0.726372i
\(173\) −3.00000 + 5.19615i −0.228086 + 0.395056i −0.957241 0.289292i \(-0.906580\pi\)
0.729155 + 0.684349i \(0.239913\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 0 0
\(178\) −15.0000 −1.12430
\(179\) 1.50000 2.59808i 0.112115 0.194189i −0.804508 0.593942i \(-0.797571\pi\)
0.916623 + 0.399753i \(0.130904\pi\)
\(180\) 0 0
\(181\) 10.0000 0.743294 0.371647 0.928374i \(-0.378793\pi\)
0.371647 + 0.928374i \(0.378793\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.00000 −0.221163
\(185\) −10.5000 18.1865i −0.771975 1.33710i
\(186\) 0 0
\(187\) −4.50000 + 7.79423i −0.329073 + 0.569970i
\(188\) 0 0
\(189\) 0 0
\(190\) −15.0000 −1.08821
\(191\) 6.00000 10.3923i 0.434145 0.751961i −0.563081 0.826402i \(-0.690384\pi\)
0.997225 + 0.0744412i \(0.0237173\pi\)
\(192\) 0 0
\(193\) −7.00000 12.1244i −0.503871 0.872730i −0.999990 0.00447566i \(-0.998575\pi\)
0.496119 0.868255i \(-0.334758\pi\)
\(194\) −1.00000 −0.0717958
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −3.50000 + 6.06218i −0.248108 + 0.429736i −0.963001 0.269498i \(-0.913142\pi\)
0.714893 + 0.699234i \(0.246476\pi\)
\(200\) −4.00000 −0.282843
\(201\) 0 0
\(202\) −1.50000 + 2.59808i −0.105540 + 0.182800i
\(203\) 0 0
\(204\) 0 0
\(205\) −13.5000 + 23.3827i −0.942881 + 1.63312i
\(206\) −2.50000 + 4.33013i −0.174183 + 0.301694i
\(207\) 0 0
\(208\) 2.50000 + 4.33013i 0.173344 + 0.300240i
\(209\) 7.50000 + 12.9904i 0.518786 + 0.898563i
\(210\) 0 0
\(211\) −2.50000 + 4.33013i −0.172107 + 0.298098i −0.939156 0.343490i \(-0.888391\pi\)
0.767049 + 0.641588i \(0.221724\pi\)
\(212\) 3.00000 0.206041
\(213\) 0 0
\(214\) −15.0000 −1.02538
\(215\) 16.5000 + 28.5788i 1.12529 + 1.94906i
\(216\) 0 0
\(217\) 0 0
\(218\) −3.50000 6.06218i −0.237050 0.410582i
\(219\) 0 0
\(220\) 4.50000 + 7.79423i 0.303390 + 0.525487i
\(221\) 7.50000 + 12.9904i 0.504505 + 0.873828i
\(222\) 0 0
\(223\) 8.50000 + 14.7224i 0.569202 + 0.985887i 0.996645 + 0.0818447i \(0.0260811\pi\)
−0.427443 + 0.904042i \(0.640586\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) −7.50000 12.9904i −0.498893 0.864107i
\(227\) 9.00000 0.597351 0.298675 0.954355i \(-0.403455\pi\)
0.298675 + 0.954355i \(0.403455\pi\)
\(228\) 0 0
\(229\) −17.0000 −1.12339 −0.561696 0.827344i \(-0.689851\pi\)
−0.561696 + 0.827344i \(0.689851\pi\)
\(230\) −4.50000 + 7.79423i −0.296721 + 0.513936i
\(231\) 0 0
\(232\) 1.50000 + 2.59808i 0.0984798 + 0.170572i
\(233\) 13.5000 + 23.3827i 0.884414 + 1.53185i 0.846383 + 0.532574i \(0.178775\pi\)
0.0380310 + 0.999277i \(0.487891\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −6.00000 + 10.3923i −0.390567 + 0.676481i
\(237\) 0 0
\(238\) 0 0
\(239\) 13.5000 23.3827i 0.873242 1.51250i 0.0146191 0.999893i \(-0.495346\pi\)
0.858623 0.512607i \(-0.171320\pi\)
\(240\) 0 0
\(241\) −23.0000 −1.48156 −0.740780 0.671748i \(-0.765544\pi\)
−0.740780 + 0.671748i \(0.765544\pi\)
\(242\) −1.00000 + 1.73205i −0.0642824 + 0.111340i
\(243\) 0 0
\(244\) −2.00000 −0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) 25.0000 1.59071
\(248\) 2.00000 + 3.46410i 0.127000 + 0.219971i
\(249\) 0 0
\(250\) 1.50000 2.59808i 0.0948683 0.164317i
\(251\) 12.0000 0.757433 0.378717 0.925513i \(-0.376365\pi\)
0.378717 + 0.925513i \(0.376365\pi\)
\(252\) 0 0
\(253\) 9.00000 0.565825
\(254\) −8.00000 + 13.8564i −0.501965 + 0.869428i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 15.0000 0.935674 0.467837 0.883815i \(-0.345033\pi\)
0.467837 + 0.883815i \(0.345033\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 15.0000 0.930261
\(261\) 0 0
\(262\) 1.50000 2.59808i 0.0926703 0.160510i
\(263\) 9.00000 0.554964 0.277482 0.960731i \(-0.410500\pi\)
0.277482 + 0.960731i \(0.410500\pi\)
\(264\) 0 0
\(265\) 4.50000 7.79423i 0.276433 0.478796i
\(266\) 0 0
\(267\) 0 0
\(268\) 2.00000 3.46410i 0.122169 0.211604i
\(269\) −10.5000 + 18.1865i −0.640196 + 1.10885i 0.345192 + 0.938532i \(0.387814\pi\)
−0.985389 + 0.170321i \(0.945520\pi\)
\(270\) 0 0
\(271\) −6.50000 11.2583i −0.394847 0.683895i 0.598235 0.801321i \(-0.295869\pi\)
−0.993082 + 0.117426i \(0.962536\pi\)
\(272\) −1.50000 2.59808i −0.0909509 0.157532i
\(273\) 0 0
\(274\) −1.50000 + 2.59808i −0.0906183 + 0.156956i
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) −2.50000 4.33013i −0.149940 0.259704i
\(279\) 0 0
\(280\) 0 0
\(281\) 1.50000 + 2.59808i 0.0894825 + 0.154988i 0.907293 0.420500i \(-0.138145\pi\)
−0.817810 + 0.575488i \(0.804812\pi\)
\(282\) 0 0
\(283\) 4.00000 + 6.92820i 0.237775 + 0.411839i 0.960076 0.279741i \(-0.0902485\pi\)
−0.722300 + 0.691580i \(0.756915\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −7.50000 12.9904i −0.443484 0.768137i
\(287\) 0 0
\(288\) 0 0
\(289\) 4.00000 + 6.92820i 0.235294 + 0.407541i
\(290\) 9.00000 0.528498
\(291\) 0 0
\(292\) −11.0000 −0.643726
\(293\) 13.5000 23.3827i 0.788678 1.36603i −0.138098 0.990419i \(-0.544099\pi\)
0.926777 0.375613i \(-0.122568\pi\)
\(294\) 0 0
\(295\) 18.0000 + 31.1769i 1.04800 + 1.81519i
\(296\) −3.50000 6.06218i −0.203433 0.352357i
\(297\) 0 0
\(298\) 1.50000 2.59808i 0.0868927 0.150503i
\(299\) 7.50000 12.9904i 0.433736 0.751253i
\(300\) 0 0
\(301\) 0 0
\(302\) 5.50000 9.52628i 0.316489 0.548176i
\(303\) 0 0
\(304\) −5.00000 −0.286770
\(305\) −3.00000 + 5.19615i −0.171780 + 0.297531i
\(306\) 0 0
\(307\) 28.0000 1.59804 0.799022 0.601302i \(-0.205351\pi\)
0.799022 + 0.601302i \(0.205351\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 12.0000 0.681554
\(311\) 12.0000 + 20.7846i 0.680458 + 1.17859i 0.974841 + 0.222900i \(0.0715523\pi\)
−0.294384 + 0.955687i \(0.595114\pi\)
\(312\) 0 0
\(313\) 7.00000 12.1244i 0.395663 0.685309i −0.597522 0.801852i \(-0.703848\pi\)
0.993186 + 0.116543i \(0.0371814\pi\)
\(314\) 14.0000 0.790066
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 15.0000 25.9808i 0.842484 1.45922i −0.0453045 0.998973i \(-0.514426\pi\)
0.887788 0.460252i \(-0.152241\pi\)
\(318\) 0 0
\(319\) −4.50000 7.79423i −0.251952 0.436393i
\(320\) −3.00000 −0.167705
\(321\) 0 0
\(322\) 0 0
\(323\) −15.0000 −0.834622
\(324\) 0 0
\(325\) 10.0000 17.3205i 0.554700 0.960769i
\(326\) −17.0000 −0.941543
\(327\) 0 0
\(328\) −4.50000 + 7.79423i −0.248471 + 0.430364i
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) −1.50000 + 2.59808i −0.0823232 + 0.142588i
\(333\) 0 0
\(334\) 1.50000 + 2.59808i 0.0820763 + 0.142160i
\(335\) −6.00000 10.3923i −0.327815 0.567792i
\(336\) 0 0
\(337\) 12.5000 21.6506i 0.680918 1.17939i −0.293783 0.955872i \(-0.594914\pi\)
0.974701 0.223513i \(-0.0717525\pi\)
\(338\) −12.0000 −0.652714
\(339\) 0 0
\(340\) −9.00000 −0.488094
\(341\) −6.00000 10.3923i −0.324918 0.562775i
\(342\) 0 0
\(343\) 0 0
\(344\) 5.50000 + 9.52628i 0.296540 + 0.513623i
\(345\) 0 0
\(346\) 3.00000 + 5.19615i 0.161281 + 0.279347i
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) 2.50000 + 4.33013i 0.133822 + 0.231786i 0.925147 0.379610i \(-0.123942\pi\)
−0.791325 + 0.611396i \(0.790608\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 1.50000 + 2.59808i 0.0799503 + 0.138478i
\(353\) −9.00000 −0.479022 −0.239511 0.970894i \(-0.576987\pi\)
−0.239511 + 0.970894i \(0.576987\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −7.50000 + 12.9904i −0.397499 + 0.688489i
\(357\) 0 0
\(358\) −1.50000 2.59808i −0.0792775 0.137313i
\(359\) 7.50000 + 12.9904i 0.395835 + 0.685606i 0.993207 0.116358i \(-0.0371219\pi\)
−0.597372 + 0.801964i \(0.703789\pi\)
\(360\) 0 0
\(361\) −3.00000 + 5.19615i −0.157895 + 0.273482i
\(362\) 5.00000 8.66025i 0.262794 0.455173i
\(363\) 0 0
\(364\) 0 0
\(365\) −16.5000 + 28.5788i −0.863649 + 1.49588i
\(366\) 0 0
\(367\) 1.00000 0.0521996 0.0260998 0.999659i \(-0.491691\pi\)
0.0260998 + 0.999659i \(0.491691\pi\)
\(368\) −1.50000 + 2.59808i −0.0781929 + 0.135434i
\(369\) 0 0
\(370\) −21.0000 −1.09174
\(371\) 0 0
\(372\) 0 0
\(373\) 17.0000 0.880227 0.440113 0.897942i \(-0.354938\pi\)
0.440113 + 0.897942i \(0.354938\pi\)
\(374\) 4.50000 + 7.79423i 0.232689 + 0.403030i
\(375\) 0 0
\(376\) 0 0
\(377\) −15.0000 −0.772539
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) −7.50000 + 12.9904i −0.384742 + 0.666392i
\(381\) 0 0
\(382\) −6.00000 10.3923i −0.306987 0.531717i
\(383\) −15.0000 −0.766464 −0.383232 0.923652i \(-0.625189\pi\)
−0.383232 + 0.923652i \(0.625189\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) −0.500000 + 0.866025i −0.0253837 + 0.0439658i
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) 0 0
\(391\) −4.50000 + 7.79423i −0.227575 + 0.394171i
\(392\) 0 0
\(393\) 0 0
\(394\) 3.00000 5.19615i 0.151138 0.261778i
\(395\) 12.0000 20.7846i 0.603786 1.04579i
\(396\) 0 0
\(397\) 14.5000 + 25.1147i 0.727734 + 1.26047i 0.957839 + 0.287307i \(0.0927599\pi\)
−0.230105 + 0.973166i \(0.573907\pi\)
\(398\) 3.50000 + 6.06218i 0.175439 + 0.303870i
\(399\) 0 0
\(400\) −2.00000 + 3.46410i −0.100000 + 0.173205i
\(401\) −27.0000 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(402\) 0 0
\(403\) −20.0000 −0.996271
\(404\) 1.50000 + 2.59808i 0.0746278 + 0.129259i
\(405\) 0 0
\(406\) 0 0
\(407\) 10.5000 + 18.1865i 0.520466 + 0.901473i
\(408\) 0 0
\(409\) −11.0000 19.0526i −0.543915 0.942088i −0.998674 0.0514740i \(-0.983608\pi\)
0.454759 0.890614i \(-0.349725\pi\)
\(410\) 13.5000 + 23.3827i 0.666717 + 1.15479i
\(411\) 0 0
\(412\) 2.50000 + 4.33013i 0.123166 + 0.213330i
\(413\) 0 0
\(414\) 0 0
\(415\) 4.50000 + 7.79423i 0.220896 + 0.382604i
\(416\) 5.00000 0.245145
\(417\) 0 0
\(418\) 15.0000 0.733674
\(419\) 1.50000 2.59808i 0.0732798 0.126924i −0.827057 0.562118i \(-0.809987\pi\)
0.900337 + 0.435194i \(0.143320\pi\)
\(420\) 0 0
\(421\) 15.5000 + 26.8468i 0.755424 + 1.30843i 0.945163 + 0.326598i \(0.105902\pi\)
−0.189740 + 0.981834i \(0.560764\pi\)
\(422\) 2.50000 + 4.33013i 0.121698 + 0.210787i
\(423\) 0 0
\(424\) 1.50000 2.59808i 0.0728464 0.126174i
\(425\) −6.00000 + 10.3923i −0.291043 + 0.504101i
\(426\) 0 0
\(427\) 0 0
\(428\) −7.50000 + 12.9904i −0.362526 + 0.627914i
\(429\) 0 0
\(430\) 33.0000 1.59140
\(431\) −1.50000 + 2.59808i −0.0722525 + 0.125145i −0.899888 0.436121i \(-0.856352\pi\)
0.827636 + 0.561266i \(0.189685\pi\)
\(432\) 0 0
\(433\) −14.0000 −0.672797 −0.336399 0.941720i \(-0.609209\pi\)
−0.336399 + 0.941720i \(0.609209\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −7.00000 −0.335239
\(437\) 7.50000 + 12.9904i 0.358774 + 0.621414i
\(438\) 0 0
\(439\) 4.00000 6.92820i 0.190910 0.330665i −0.754642 0.656136i \(-0.772190\pi\)
0.945552 + 0.325471i \(0.105523\pi\)
\(440\) 9.00000 0.429058
\(441\) 0 0
\(442\) 15.0000 0.713477
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 22.5000 + 38.9711i 1.06660 + 1.84741i
\(446\) 17.0000 0.804973
\(447\) 0 0
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 13.5000 23.3827i 0.635690 1.10105i
\(452\) −15.0000 −0.705541
\(453\) 0 0
\(454\) 4.50000 7.79423i 0.211195 0.365801i
\(455\) 0 0
\(456\) 0 0
\(457\) 17.0000 29.4449i 0.795226 1.37737i −0.127469 0.991843i \(-0.540685\pi\)
0.922695 0.385530i \(-0.125981\pi\)
\(458\) −8.50000 + 14.7224i −0.397179 + 0.687934i
\(459\) 0 0
\(460\) 4.50000 + 7.79423i 0.209814 + 0.363408i
\(461\) −4.50000 7.79423i −0.209586 0.363013i 0.741998 0.670402i \(-0.233878\pi\)
−0.951584 + 0.307388i \(0.900545\pi\)
\(462\) 0 0
\(463\) −17.5000 + 30.3109i −0.813294 + 1.40867i 0.0972525 + 0.995260i \(0.468995\pi\)
−0.910546 + 0.413407i \(0.864339\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) 27.0000 1.25075
\(467\) 1.50000 + 2.59808i 0.0694117 + 0.120225i 0.898642 0.438682i \(-0.144554\pi\)
−0.829231 + 0.558906i \(0.811221\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 6.00000 + 10.3923i 0.276172 + 0.478345i
\(473\) −16.5000 28.5788i −0.758671 1.31406i
\(474\) 0 0
\(475\) 10.0000 + 17.3205i 0.458831 + 0.794719i
\(476\) 0 0
\(477\) 0 0
\(478\) −13.5000 23.3827i −0.617476 1.06950i
\(479\) −9.00000 −0.411220 −0.205610 0.978634i \(-0.565918\pi\)
−0.205610 + 0.978634i \(0.565918\pi\)
\(480\) 0 0
\(481\) 35.0000 1.59586
\(482\) −11.5000 + 19.9186i −0.523811 + 0.907267i
\(483\) 0 0
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) 1.50000 + 2.59808i 0.0681115 + 0.117973i
\(486\) 0 0
\(487\) 15.5000 26.8468i 0.702372 1.21654i −0.265260 0.964177i \(-0.585458\pi\)
0.967632 0.252367i \(-0.0812090\pi\)
\(488\) −1.00000 + 1.73205i −0.0452679 + 0.0784063i
\(489\) 0 0
\(490\) 0 0
\(491\) −19.5000 + 33.7750i −0.880023 + 1.52424i −0.0287085 + 0.999588i \(0.509139\pi\)
−0.851314 + 0.524656i \(0.824194\pi\)
\(492\) 0 0
\(493\) 9.00000 0.405340
\(494\) 12.5000 21.6506i 0.562402 0.974108i
\(495\) 0 0
\(496\) 4.00000 0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 11.0000 0.492428 0.246214 0.969216i \(-0.420813\pi\)
0.246214 + 0.969216i \(0.420813\pi\)
\(500\) −1.50000 2.59808i −0.0670820 0.116190i
\(501\) 0 0
\(502\) 6.00000 10.3923i 0.267793 0.463831i
\(503\) −12.0000 −0.535054 −0.267527 0.963550i \(-0.586206\pi\)
−0.267527 + 0.963550i \(0.586206\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 4.50000 7.79423i 0.200049 0.346496i
\(507\) 0 0
\(508\) 8.00000 + 13.8564i 0.354943 + 0.614779i
\(509\) −27.0000 −1.19675 −0.598377 0.801215i \(-0.704187\pi\)
−0.598377 + 0.801215i \(0.704187\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 7.50000 12.9904i 0.330811 0.572981i
\(515\) 15.0000 0.660979
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 7.50000 12.9904i 0.328897 0.569666i
\(521\) −1.50000 + 2.59808i −0.0657162 + 0.113824i −0.897011 0.442007i \(-0.854267\pi\)
0.831295 + 0.555831i \(0.187600\pi\)
\(522\) 0 0
\(523\) −3.50000 6.06218i −0.153044 0.265081i 0.779301 0.626650i \(-0.215574\pi\)
−0.932345 + 0.361569i \(0.882241\pi\)
\(524\) −1.50000 2.59808i −0.0655278 0.113497i
\(525\) 0 0
\(526\) 4.50000 7.79423i 0.196209 0.339845i
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) −4.50000 7.79423i −0.195468 0.338560i
\(531\) 0 0
\(532\) 0 0
\(533\) −22.5000 38.9711i −0.974583 1.68803i
\(534\) 0 0
\(535\) 22.5000 + 38.9711i 0.972760 + 1.68487i
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) 0 0
\(538\) 10.5000 + 18.1865i 0.452687 + 0.784077i
\(539\) 0 0
\(540\) 0 0
\(541\) −8.50000 14.7224i −0.365444 0.632967i 0.623404 0.781900i \(-0.285749\pi\)
−0.988847 + 0.148933i \(0.952416\pi\)
\(542\) −13.0000 −0.558398
\(543\) 0 0
\(544\) −3.00000 −0.128624
\(545\) −10.5000 + 18.1865i −0.449771 + 0.779026i
\(546\) 0 0
\(547\) −5.50000 9.52628i −0.235163 0.407314i 0.724157 0.689635i \(-0.242229\pi\)
−0.959320 + 0.282321i \(0.908896\pi\)
\(548\) 1.50000 + 2.59808i 0.0640768 + 0.110984i
\(549\) 0 0
\(550\) 6.00000 10.3923i 0.255841 0.443129i
\(551\) 7.50000 12.9904i 0.319511 0.553409i
\(552\) 0 0
\(553\) 0 0
\(554\) −3.50000 + 6.06218i −0.148701 + 0.257557i
\(555\) 0 0
\(556\) −5.00000 −0.212047
\(557\) −1.50000 + 2.59808i −0.0635570 + 0.110084i −0.896053 0.443947i \(-0.853578\pi\)
0.832496 + 0.554031i \(0.186911\pi\)
\(558\) 0 0
\(559\) −55.0000 −2.32625
\(560\) 0 0
\(561\) 0 0
\(562\) 3.00000 0.126547
\(563\) 6.00000 + 10.3923i 0.252870 + 0.437983i 0.964315 0.264758i \(-0.0852922\pi\)
−0.711445 + 0.702742i \(0.751959\pi\)
\(564\) 0 0
\(565\) −22.5000 + 38.9711i −0.946582 + 1.63953i
\(566\) 8.00000 0.336265
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 25.9808i 0.628833 1.08917i −0.358954 0.933355i \(-0.616866\pi\)
0.987786 0.155815i \(-0.0498003\pi\)
\(570\) 0 0
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) −15.0000 −0.627182
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 5.50000 9.52628i 0.228968 0.396584i −0.728535 0.685009i \(-0.759798\pi\)
0.957503 + 0.288425i \(0.0931316\pi\)
\(578\) 8.00000 0.332756
\(579\) 0 0
\(580\) 4.50000 7.79423i 0.186852 0.323638i
\(581\) 0 0
\(582\) 0 0
\(583\) −4.50000 + 7.79423i −0.186371 + 0.322804i
\(584\) −5.50000 + 9.52628i −0.227592 + 0.394200i
\(585\) 0 0
\(586\) −13.5000 23.3827i −0.557680 0.965930i
\(587\) 16.5000 + 28.5788i 0.681028 + 1.17957i 0.974668 + 0.223659i \(0.0718001\pi\)
−0.293640 + 0.955916i \(0.594867\pi\)
\(588\) 0 0
\(589\) 10.0000 17.3205i 0.412043 0.713679i
\(590\) 36.0000 1.48210
\(591\) 0 0
\(592\) −7.00000 −0.287698
\(593\) 10.5000 + 18.1865i 0.431183 + 0.746831i 0.996976 0.0777165i \(-0.0247629\pi\)
−0.565792 + 0.824548i \(0.691430\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.50000 2.59808i −0.0614424 0.106421i
\(597\) 0 0
\(598\) −7.50000 12.9904i −0.306698 0.531216i
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −0.500000 0.866025i −0.0203954 0.0353259i 0.855648 0.517559i \(-0.173159\pi\)
−0.876043 + 0.482233i \(0.839826\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −5.50000 9.52628i −0.223792 0.387619i
\(605\) 6.00000 0.243935
\(606\) 0 0
\(607\) 43.0000 1.74532 0.872658 0.488332i \(-0.162394\pi\)
0.872658 + 0.488332i \(0.162394\pi\)
\(608\) −2.50000 + 4.33013i −0.101388 + 0.175610i
\(609\) 0 0
\(610\) 3.00000 + 5.19615i 0.121466 + 0.210386i
\(611\) 0 0
\(612\) 0 0
\(613\) 15.5000 26.8468i 0.626039 1.08433i −0.362300 0.932062i \(-0.618008\pi\)
0.988339 0.152270i \(-0.0486583\pi\)
\(614\) 14.0000 24.2487i 0.564994 0.978598i
\(615\) 0 0
\(616\) 0 0
\(617\) 1.50000 2.59808i 0.0603877 0.104595i −0.834251 0.551385i \(-0.814100\pi\)
0.894639 + 0.446790i \(0.147433\pi\)
\(618\) 0 0
\(619\) 19.0000 0.763674 0.381837 0.924230i \(-0.375291\pi\)
0.381837 + 0.924230i \(0.375291\pi\)
\(620\) 6.00000 10.3923i 0.240966 0.417365i
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) −7.00000 12.1244i −0.279776 0.484587i
\(627\) 0 0
\(628\) 7.00000 12.1244i 0.279330 0.483814i
\(629\) −21.0000 −0.837325
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 4.00000 6.92820i 0.159111 0.275589i
\(633\) 0 0
\(634\) −15.0000 25.9808i −0.595726 1.03183i
\(635\) 48.0000 1.90482
\(636\) 0 0
\(637\) 0 0
\(638\) −9.00000 −0.356313
\(639\) 0 0
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) 45.0000 1.77739 0.888697 0.458496i \(-0.151612\pi\)
0.888697 + 0.458496i \(0.151612\pi\)
\(642\) 0 0
\(643\) 14.5000 25.1147i 0.571824 0.990429i −0.424555 0.905402i \(-0.639569\pi\)
0.996379 0.0850262i \(-0.0270974\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) −7.50000 + 12.9904i −0.295084 + 0.511100i
\(647\) 1.50000 2.59808i 0.0589711 0.102141i −0.835033 0.550200i \(-0.814551\pi\)
0.894004 + 0.448059i \(0.147885\pi\)
\(648\) 0 0
\(649\) −18.0000 31.1769i −0.706562 1.22380i
\(650\) −10.0000 17.3205i −0.392232 0.679366i
\(651\) 0 0
\(652\) −8.50000 + 14.7224i −0.332886 + 0.576575i
\(653\) −9.00000 −0.352197 −0.176099 0.984373i \(-0.556348\pi\)
−0.176099 + 0.984373i \(0.556348\pi\)
\(654\) 0 0
\(655\) −9.00000 −0.351659
\(656\) 4.50000 + 7.79423i 0.175695 + 0.304314i
\(657\) 0 0
\(658\) 0 0
\(659\) 19.5000 + 33.7750i 0.759612 + 1.31569i 0.943049 + 0.332655i \(0.107945\pi\)
−0.183436 + 0.983032i \(0.558722\pi\)
\(660\) 0 0
\(661\) 7.00000 + 12.1244i 0.272268 + 0.471583i 0.969442 0.245319i \(-0.0788928\pi\)
−0.697174 + 0.716902i \(0.745559\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 0 0
\(664\) 1.50000 + 2.59808i 0.0582113 + 0.100825i
\(665\) 0 0
\(666\) 0 0
\(667\) −4.50000 7.79423i −0.174241 0.301794i
\(668\) 3.00000 0.116073
\(669\) 0 0
\(670\) −12.0000 −0.463600
\(671\) 3.00000 5.19615i 0.115814 0.200595i
\(672\) 0 0
\(673\) −5.50000 9.52628i −0.212009 0.367211i 0.740334 0.672239i \(-0.234667\pi\)
−0.952343 + 0.305028i \(0.901334\pi\)
\(674\) −12.5000 21.6506i −0.481482 0.833951i
\(675\) 0 0
\(676\) −6.00000 + 10.3923i −0.230769 + 0.399704i
\(677\) −3.00000 + 5.19615i −0.115299 + 0.199704i −0.917899 0.396813i \(-0.870116\pi\)
0.802600 + 0.596518i \(0.203449\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) −4.50000 + 7.79423i −0.172567 + 0.298895i
\(681\) 0 0
\(682\) −12.0000 −0.459504
\(683\) −16.5000 + 28.5788i −0.631355 + 1.09354i 0.355920 + 0.934516i \(0.384168\pi\)
−0.987275 + 0.159022i \(0.949166\pi\)
\(684\) 0 0
\(685\) 9.00000 0.343872
\(686\) 0 0
\(687\) 0 0
\(688\) 11.0000 0.419371
\(689\) 7.50000 + 12.9904i 0.285727 + 0.494894i
\(690\) 0 0
\(691\) 10.0000 17.3205i 0.380418 0.658903i −0.610704 0.791859i \(-0.709113\pi\)
0.991122 + 0.132956i \(0.0424468\pi\)
\(692\) 6.00000 0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −7.50000 + 12.9904i −0.284491 + 0.492753i
\(696\) 0 0
\(697\) 13.5000 + 23.3827i 0.511349 + 0.885682i
\(698\) 5.00000 0.189253
\(699\) 0 0
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) −17.5000 + 30.3109i −0.660025 + 1.14320i
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) −4.50000 + 7.79423i −0.169360 + 0.293340i
\(707\) 0 0
\(708\) 0 0
\(709\) 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i \(-0.773204\pi\)
0.944509 + 0.328484i \(0.106538\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 7.50000 + 12.9904i 0.281074 + 0.486835i
\(713\) −6.00000 10.3923i −0.224702 0.389195i
\(714\) 0 0
\(715\) −22.5000 + 38.9711i −0.841452 + 1.45744i
\(716\) −3.00000 −0.112115
\(717\) 0 0
\(718\) 15.0000 0.559795
\(719\) −19.5000 33.7750i −0.727227 1.25959i −0.958051 0.286599i \(-0.907475\pi\)
0.230823 0.972996i \(-0.425858\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 3.00000 + 5.19615i 0.111648 + 0.193381i
\(723\) 0 0
\(724\) −5.00000 8.66025i −0.185824 0.321856i
\(725\) −6.00000 10.3923i −0.222834 0.385961i
\(726\) 0 0
\(727\) 2.50000 + 4.33013i 0.0927199 + 0.160596i 0.908655 0.417548i \(-0.137111\pi\)
−0.815935 + 0.578144i \(0.803777\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 16.5000 + 28.5788i 0.610692 + 1.05775i
\(731\) 33.0000 1.22055
\(732\) 0 0
\(733\) −41.0000 −1.51437 −0.757185 0.653201i \(-0.773426\pi\)
−0.757185 + 0.653201i \(0.773426\pi\)
\(734\) 0.500000 0.866025i 0.0184553 0.0319656i
\(735\) 0 0
\(736\) 1.50000 + 2.59808i 0.0552907 + 0.0957664i
\(737\) 6.00000 + 10.3923i 0.221013 + 0.382805i
\(738\) 0 0
\(739\) −23.5000 + 40.7032i −0.864461 + 1.49729i 0.00311943 + 0.999995i \(0.499007\pi\)
−0.867581 + 0.497296i \(0.834326\pi\)
\(740\) −10.5000 + 18.1865i −0.385988 + 0.668550i
\(741\) 0 0
\(742\) 0 0
\(743\) 1.50000 2.59808i 0.0550297 0.0953142i −0.837198 0.546899i \(-0.815808\pi\)
0.892228 + 0.451585i \(0.149141\pi\)
\(744\) 0 0
\(745\) −9.00000 −0.329734
\(746\) 8.50000 14.7224i 0.311207 0.539027i
\(747\) 0 0
\(748\) 9.00000 0.329073
\(749\) 0 0
\(750\) 0 0
\(751\) 29.0000 1.05823 0.529113 0.848552i \(-0.322525\pi\)
0.529113 + 0.848552i \(0.322525\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −7.50000 + 12.9904i −0.273134 + 0.473082i
\(755\) −33.0000 −1.20099
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) −8.00000 + 13.8564i −0.290573 + 0.503287i
\(759\) 0 0
\(760\) 7.50000 + 12.9904i 0.272054 + 0.471211i
\(761\) 3.00000 0.108750 0.0543750 0.998521i \(-0.482683\pi\)
0.0543750 + 0.998521i \(0.482683\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −7.50000 + 12.9904i −0.270986 + 0.469362i
\(767\) −60.0000 −2.16647
\(768\) 0 0
\(769\) −0.500000 + 0.866025i −0.0180305 + 0.0312297i −0.874900 0.484304i \(-0.839073\pi\)
0.856869 + 0.515534i \(0.172406\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −7.00000 + 12.1244i −0.251936 + 0.436365i
\(773\) −10.5000 + 18.1865i −0.377659 + 0.654124i −0.990721 0.135910i \(-0.956604\pi\)
0.613062 + 0.790034i \(0.289937\pi\)
\(774\) 0 0
\(775\) −8.00000 13.8564i −0.287368 0.497737i
\(776\) 0.500000 + 0.866025i 0.0179490 + 0.0310885i
\(777\) 0 0
\(778\) −4.50000 + 7.79423i −0.161333 + 0.279437i
\(779\) 45.0000 1.61229
\(780\) 0 0
\(781\) 0 0
\(782\) 4.50000 + 7.79423i 0.160920 + 0.278721i
\(783\) 0 0
\(784\) 0 0
\(785\) −21.0000 36.3731i −0.749522 1.29821i
\(786\) 0 0
\(787\) 22.0000 + 38.1051i 0.784215 + 1.35830i 0.929467 + 0.368906i \(0.120268\pi\)
−0.145251 + 0.989395i \(0.546399\pi\)
\(788\) −3.00000 5.19615i −0.106871 0.185105i
\(789\) 0 0
\(790\) −12.0000 20.7846i −0.426941 0.739483i
\(791\) 0 0
\(792\) 0 0
\(793\) −5.00000 8.66025i −0.177555 0.307535i
\(794\) 29.0000 1.02917
\(795\) 0 0
\(796\) 7.00000 0.248108
\(797\) 13.5000 23.3827i 0.478195 0.828257i −0.521493 0.853256i \(-0.674625\pi\)
0.999687 + 0.0249984i \(0.00795805\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.00000 + 3.46410i 0.0707107 + 0.122474i
\(801\) 0 0
\(802\) −13.5000 + 23.3827i −0.476702 + 0.825671i
\(803\) 16.5000 28.5788i 0.582272 1.00853i
\(804\) 0 0
\(805\) 0 0
\(806\) −10.0000 + 17.3205i −0.352235 + 0.610089i
\(807\) 0 0
\(808\) 3.00000 0.105540
\(809\) 19.5000 33.7750i 0.685583 1.18747i −0.287670 0.957730i \(-0.592880\pi\)
0.973253 0.229736i \(-0.0737862\pi\)
\(810\) 0 0
\(811\) −20.0000 −0.702295 −0.351147 0.936320i \(-0.614208\pi\)
−0.351147 + 0.936320i \(0.614208\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 21.0000 0.736050
\(815\) 25.5000 + 44.1673i 0.893226 + 1.54711i
\(816\) 0 0
\(817\) 27.5000 47.6314i 0.962103 1.66641i
\(818\) −22.0000 −0.769212
\(819\) 0 0
\(820\) 27.0000 0.942881
\(821\) −27.0000 + 46.7654i −0.942306 + 1.63212i −0.181250 + 0.983437i \(0.558014\pi\)
−0.761056 + 0.648686i \(0.775319\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) 5.00000 0.174183
\(825\) 0 0
\(826\) 0 0
\(827\) 24.0000 0.834562 0.417281 0.908778i \(-0.362983\pi\)
0.417281 + 0.908778i \(0.362983\pi\)
\(828\) 0 0
\(829\) 20.5000 35.5070i 0.711994 1.23321i −0.252113 0.967698i \(-0.581125\pi\)
0.964107 0.265513i \(-0.0855412\pi\)
\(830\) 9.00000 0.312395
\(831\) 0 0
\(832\) 2.50000 4.33013i 0.0866719 0.150120i
\(833\) 0 0
\(834\) 0 0
\(835\) 4.50000 7.79423i 0.155729 0.269730i
\(836\) 7.50000 12.9904i 0.259393 0.449282i
\(837\) 0 0
\(838\) −1.50000 2.59808i −0.0518166 0.0897491i
\(839\) 19.5000 + 33.7750i 0.673215 + 1.16604i 0.976987 + 0.213298i \(0.0684204\pi\)
−0.303773 + 0.952745i \(0.598246\pi\)
\(840\) 0 0
\(841\) 10.0000 17.3205i 0.344828 0.597259i
\(842\) 31.0000 1.06833
\(843\) 0 0
\(844\) 5.00000 0.172107
\(845\) 18.0000 + 31.1769i 0.619219 + 1.07252i
\(846\) 0 0
\(847\) 0 0
\(848\) −1.50000 2.59808i −0.0515102 0.0892183i
\(849\) 0 0
\(850\) 6.00000 + 10.3923i 0.205798 + 0.356453i
\(851\) 10.5000 + 18.1865i 0.359935 + 0.623426i
\(852\) 0 0
\(853\) 8.50000 + 14.7224i 0.291034 + 0.504086i 0.974055 0.226313i \(-0.0726672\pi\)
−0.683020 + 0.730400i \(0.739334\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 7.50000 + 12.9904i 0.256345 + 0.444002i
\(857\) −33.0000 −1.12726 −0.563629 0.826028i \(-0.690595\pi\)
−0.563629 + 0.826028i \(0.690595\pi\)
\(858\) 0 0
\(859\) −11.0000 −0.375315 −0.187658 0.982235i \(-0.560090\pi\)
−0.187658 + 0.982235i \(0.560090\pi\)
\(860\) 16.5000 28.5788i 0.562645 0.974530i
\(861\) 0 0
\(862\) 1.50000 + 2.59808i 0.0510902 + 0.0884908i
\(863\) 7.50000 + 12.9904i 0.255303 + 0.442198i 0.964978 0.262332i \(-0.0844915\pi\)
−0.709675 + 0.704529i \(0.751158\pi\)
\(864\) 0 0
\(865\) 9.00000 15.5885i 0.306009 0.530023i
\(866\) −7.00000 + 12.1244i −0.237870 + 0.412002i
\(867\) 0 0
\(868\) 0 0
\(869\) −12.0000 + 20.7846i −0.407072 + 0.705070i
\(870\) 0 0
\(871\) 20.0000 0.677674
\(872\) −3.50000 + 6.06218i −0.118525 + 0.205291i
\(873\) 0 0
\(874\) 15.0000 0.507383
\(875\) 0 0
\(876\) 0 0
\(877\) −43.0000 −1.45201 −0.726003 0.687691i \(-0.758624\pi\)
−0.726003 + 0.687691i \(0.758624\pi\)
\(878\) −4.00000 6.92820i −0.134993 0.233816i
\(879\) 0 0
\(880\) 4.50000 7.79423i 0.151695 0.262743i
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 7.50000 12.9904i 0.252252 0.436914i
\(885\) 0 0
\(886\) 0 0
\(887\) −39.0000 −1.30949 −0.654746 0.755849i \(-0.727224\pi\)
−0.654746 + 0.755849i \(0.727224\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 45.0000 1.50840
\(891\) 0 0
\(892\) 8.50000 14.7224i 0.284601 0.492943i
\(893\) 0 0
\(894\) 0 0
\(895\) −4.50000 + 7.79423i −0.150418 + 0.260532i
\(896\) 0 0
\(897\) 0 0
\(898\) −15.0000 + 25.9808i −0.500556 + 0.866989i
\(899\) −6.00000 + 10.3923i −0.200111 + 0.346603i
\(900\) 0 0
\(901\) −4.50000 7.79423i −0.149917 0.259663i
\(902\) −13.5000 23.3827i −0.449501 0.778558i
\(903\) 0 0
\(904\) −7.50000 + 12.9904i −0.249446 + 0.432054i
\(905\) −30.0000 −0.997234
\(906\) 0 0
\(907\) 17.0000 0.564476 0.282238 0.959344i \(-0.408923\pi\)
0.282238 + 0.959344i \(0.408923\pi\)
\(908\) −4.50000 7.79423i −0.149338 0.258661i
\(909\) 0 0
\(910\) 0 0
\(911\) 4.50000 + 7.79423i 0.149092 + 0.258234i 0.930892 0.365295i \(-0.119032\pi\)
−0.781800 + 0.623529i \(0.785698\pi\)
\(912\) 0 0
\(913\) −4.50000 7.79423i −0.148928 0.257951i
\(914\) −17.0000 29.4449i −0.562310 0.973950i
\(915\) 0 0
\(916\) 8.50000 + 14.7224i 0.280848 + 0.486443i
\(917\) 0 0
\(918\) 0 0
\(919\) 0.500000 + 0.866025i 0.0164935 + 0.0285675i 0.874154 0.485648i \(-0.161416\pi\)
−0.857661 + 0.514216i \(0.828083\pi\)
\(920\) 9.00000 0.296721
\(921\) 0 0
\(922\) −9.00000 −0.296399
\(923\) 0 0
\(924\) 0 0
\(925\) 14.0000 + 24.2487i 0.460317 + 0.797293i
\(926\) 17.5000 + 30.3109i 0.575086 + 0.996078i
\(927\) 0 0
\(928\) 1.50000 2.59808i 0.0492399 0.0852860i
\(929\) 9.00000 15.5885i 0.295280 0.511441i −0.679770 0.733426i \(-0.737920\pi\)
0.975050 + 0.221985i \(0.0712536\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 13.5000 23.3827i 0.442207 0.765925i
\(933\) 0 0
\(934\) 3.00000 0.0981630
\(935\) 13.5000 23.3827i 0.441497 0.764696i
\(936\) 0 0
\(937\) 34.0000 1.11073 0.555366 0.831606i \(-0.312578\pi\)
0.555366 + 0.831606i \(0.312578\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −27.0000 46.7654i −0.880175 1.52451i −0.851146 0.524929i \(-0.824092\pi\)
−0.0290288 0.999579i \(-0.509241\pi\)
\(942\) 0 0
\(943\) 13.5000 23.3827i 0.439620 0.761445i
\(944\) 12.0000 0.390567
\(945\) 0 0
\(946\) −33.0000 −1.07292
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 0 0
\(949\) −27.5000 47.6314i −0.892688 1.54618i
\(950\) 20.0000 0.648886
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) −18.0000 + 31.1769i −0.582466 + 1.00886i
\(956\) −27.0000 −0.873242
\(957\) 0 0
\(958\) −4.50000 + 7.79423i −0.145388 + 0.251820i
\(959\) 0 0
\(960\) 0 0
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) 17.5000 30.3109i 0.564223 0.977262i
\(963\) 0 0
\(964\) 11.5000 + 19.9186i 0.370390 + 0.641534i
\(965\) 21.0000 + 36.3731i 0.676014 + 1.17089i
\(966\) 0 0
\(967\) 24.5000 42.4352i 0.787867 1.36463i −0.139404 0.990236i \(-0.544519\pi\)
0.927271 0.374390i \(-0.122148\pi\)
\(968\) 2.00000 0.0642824
\(969\) 0 0
\(970\) 3.00000 0.0963242
\(971\) 13.5000 + 23.3827i 0.433236 + 0.750386i 0.997150 0.0754473i \(-0.0240385\pi\)
−0.563914 + 0.825833i \(0.690705\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −15.5000 26.8468i −0.496652 0.860227i
\(975\) 0 0
\(976\) 1.00000 + 1.73205i 0.0320092 + 0.0554416i
\(977\) 3.00000 + 5.19615i 0.0959785 + 0.166240i 0.910017 0.414572i \(-0.136069\pi\)
−0.814038 + 0.580812i \(0.802735\pi\)
\(978\) 0 0
\(979\) −22.5000 38.9711i −0.719103 1.24552i
\(980\) 0 0
\(981\) 0 0
\(982\) 19.5000 + 33.7750i 0.622270 + 1.07780i
\(983\) −21.0000 −0.669796 −0.334898 0.942254i \(-0.608702\pi\)
−0.334898 + 0.942254i \(0.608702\pi\)
\(984\) 0 0
\(985\) −18.0000 −0.573528
\(986\) 4.50000 7.79423i 0.143309 0.248219i
\(987\) 0 0
\(988\) −12.5000 21.6506i −0.397678 0.688798i
\(989\) −16.5000 28.5788i −0.524669 0.908754i
\(990\) 0 0
\(991\) −14.5000 + 25.1147i −0.460608 + 0.797796i −0.998991 0.0449040i \(-0.985702\pi\)
0.538384 + 0.842700i \(0.319035\pi\)
\(992\) 2.00000 3.46410i 0.0635001 0.109985i
\(993\) 0 0
\(994\) 0 0
\(995\) 10.5000 18.1865i 0.332872 0.576552i
\(996\) 0 0
\(997\) −41.0000 −1.29848 −0.649242 0.760582i \(-0.724914\pi\)
−0.649242 + 0.760582i \(0.724914\pi\)
\(998\) 5.50000 9.52628i 0.174099 0.301549i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2646.2.h.f.361.1 2
3.2 odd 2 882.2.h.e.67.1 2
7.2 even 3 2646.2.e.e.1549.1 2
7.3 odd 6 2646.2.f.e.1765.1 2
7.4 even 3 2646.2.f.i.1765.1 2
7.5 odd 6 378.2.e.a.37.1 2
7.6 odd 2 378.2.h.b.361.1 2
9.2 odd 6 882.2.e.h.655.1 2
9.7 even 3 2646.2.e.e.2125.1 2
21.2 odd 6 882.2.e.h.373.1 2
21.5 even 6 126.2.e.b.121.1 yes 2
21.11 odd 6 882.2.f.a.589.1 2
21.17 even 6 882.2.f.e.589.1 2
21.20 even 2 126.2.h.a.67.1 yes 2
28.19 even 6 3024.2.q.a.2305.1 2
28.27 even 2 3024.2.t.f.1873.1 2
63.2 odd 6 882.2.h.e.79.1 2
63.4 even 3 7938.2.a.c.1.1 1
63.5 even 6 1134.2.g.d.163.1 2
63.11 odd 6 882.2.f.a.295.1 2
63.13 odd 6 1134.2.g.f.487.1 2
63.16 even 3 inner 2646.2.h.f.667.1 2
63.20 even 6 126.2.e.b.25.1 2
63.25 even 3 2646.2.f.i.883.1 2
63.31 odd 6 7938.2.a.o.1.1 1
63.32 odd 6 7938.2.a.bd.1.1 1
63.34 odd 6 378.2.e.a.235.1 2
63.38 even 6 882.2.f.e.295.1 2
63.40 odd 6 1134.2.g.f.163.1 2
63.41 even 6 1134.2.g.d.487.1 2
63.47 even 6 126.2.h.a.79.1 yes 2
63.52 odd 6 2646.2.f.e.883.1 2
63.59 even 6 7938.2.a.r.1.1 1
63.61 odd 6 378.2.h.b.289.1 2
84.47 odd 6 1008.2.q.e.625.1 2
84.83 odd 2 1008.2.t.c.193.1 2
252.47 odd 6 1008.2.t.c.961.1 2
252.83 odd 6 1008.2.q.e.529.1 2
252.187 even 6 3024.2.t.f.289.1 2
252.223 even 6 3024.2.q.a.2881.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.b.25.1 2 63.20 even 6
126.2.e.b.121.1 yes 2 21.5 even 6
126.2.h.a.67.1 yes 2 21.20 even 2
126.2.h.a.79.1 yes 2 63.47 even 6
378.2.e.a.37.1 2 7.5 odd 6
378.2.e.a.235.1 2 63.34 odd 6
378.2.h.b.289.1 2 63.61 odd 6
378.2.h.b.361.1 2 7.6 odd 2
882.2.e.h.373.1 2 21.2 odd 6
882.2.e.h.655.1 2 9.2 odd 6
882.2.f.a.295.1 2 63.11 odd 6
882.2.f.a.589.1 2 21.11 odd 6
882.2.f.e.295.1 2 63.38 even 6
882.2.f.e.589.1 2 21.17 even 6
882.2.h.e.67.1 2 3.2 odd 2
882.2.h.e.79.1 2 63.2 odd 6
1008.2.q.e.529.1 2 252.83 odd 6
1008.2.q.e.625.1 2 84.47 odd 6
1008.2.t.c.193.1 2 84.83 odd 2
1008.2.t.c.961.1 2 252.47 odd 6
1134.2.g.d.163.1 2 63.5 even 6
1134.2.g.d.487.1 2 63.41 even 6
1134.2.g.f.163.1 2 63.40 odd 6
1134.2.g.f.487.1 2 63.13 odd 6
2646.2.e.e.1549.1 2 7.2 even 3
2646.2.e.e.2125.1 2 9.7 even 3
2646.2.f.e.883.1 2 63.52 odd 6
2646.2.f.e.1765.1 2 7.3 odd 6
2646.2.f.i.883.1 2 63.25 even 3
2646.2.f.i.1765.1 2 7.4 even 3
2646.2.h.f.361.1 2 1.1 even 1 trivial
2646.2.h.f.667.1 2 63.16 even 3 inner
3024.2.q.a.2305.1 2 28.19 even 6
3024.2.q.a.2881.1 2 252.223 even 6
3024.2.t.f.289.1 2 252.187 even 6
3024.2.t.f.1873.1 2 28.27 even 2
7938.2.a.c.1.1 1 63.4 even 3
7938.2.a.o.1.1 1 63.31 odd 6
7938.2.a.r.1.1 1 63.59 even 6
7938.2.a.bd.1.1 1 63.32 odd 6