Properties

Label 7938.2.a.o.1.1
Level $7938$
Weight $2$
Character 7938.1
Self dual yes
Analytic conductor $63.385$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7938,2,Mod(1,7938)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7938, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7938.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7938 = 2 \cdot 3^{4} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7938.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(63.3852491245\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7938.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000 q^{2} +1.00000 q^{4} +3.00000 q^{5} -1.00000 q^{8} -3.00000 q^{10} +3.00000 q^{11} +5.00000 q^{13} +1.00000 q^{16} -3.00000 q^{17} +5.00000 q^{19} +3.00000 q^{20} -3.00000 q^{22} +3.00000 q^{23} +4.00000 q^{25} -5.00000 q^{26} +3.00000 q^{29} -4.00000 q^{31} -1.00000 q^{32} +3.00000 q^{34} -7.00000 q^{37} -5.00000 q^{38} -3.00000 q^{40} +9.00000 q^{41} +11.0000 q^{43} +3.00000 q^{44} -3.00000 q^{46} -4.00000 q^{50} +5.00000 q^{52} +3.00000 q^{53} +9.00000 q^{55} -3.00000 q^{58} -12.0000 q^{59} +2.00000 q^{61} +4.00000 q^{62} +1.00000 q^{64} +15.0000 q^{65} -4.00000 q^{67} -3.00000 q^{68} +11.0000 q^{73} +7.00000 q^{74} +5.00000 q^{76} +8.00000 q^{79} +3.00000 q^{80} -9.00000 q^{82} -3.00000 q^{83} -9.00000 q^{85} -11.0000 q^{86} -3.00000 q^{88} -15.0000 q^{89} +3.00000 q^{92} +15.0000 q^{95} -1.00000 q^{97} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 −0.707107
\(3\) 0 0
\(4\) 1.00000 0.500000
\(5\) 3.00000 1.34164 0.670820 0.741620i \(-0.265942\pi\)
0.670820 + 0.741620i \(0.265942\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −3.00000 −0.948683
\(11\) 3.00000 0.904534 0.452267 0.891883i \(-0.350615\pi\)
0.452267 + 0.891883i \(0.350615\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 5.00000 1.14708 0.573539 0.819178i \(-0.305570\pi\)
0.573539 + 0.819178i \(0.305570\pi\)
\(20\) 3.00000 0.670820
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) 3.00000 0.625543 0.312772 0.949828i \(-0.398743\pi\)
0.312772 + 0.949828i \(0.398743\pi\)
\(24\) 0 0
\(25\) 4.00000 0.800000
\(26\) −5.00000 −0.980581
\(27\) 0 0
\(28\) 0 0
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) −1.00000 −0.176777
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) 0 0
\(36\) 0 0
\(37\) −7.00000 −1.15079 −0.575396 0.817875i \(-0.695152\pi\)
−0.575396 + 0.817875i \(0.695152\pi\)
\(38\) −5.00000 −0.811107
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −3.00000 −0.442326
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) 5.00000 0.693375
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) 0 0
\(57\) 0 0
\(58\) −3.00000 −0.393919
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) 2.00000 0.256074 0.128037 0.991769i \(-0.459132\pi\)
0.128037 + 0.991769i \(0.459132\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 15.0000 1.86052
\(66\) 0 0
\(67\) −4.00000 −0.488678 −0.244339 0.969690i \(-0.578571\pi\)
−0.244339 + 0.969690i \(0.578571\pi\)
\(68\) −3.00000 −0.363803
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) 11.0000 1.28745 0.643726 0.765256i \(-0.277388\pi\)
0.643726 + 0.765256i \(0.277388\pi\)
\(74\) 7.00000 0.813733
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) 0 0
\(78\) 0 0
\(79\) 8.00000 0.900070 0.450035 0.893011i \(-0.351411\pi\)
0.450035 + 0.893011i \(0.351411\pi\)
\(80\) 3.00000 0.335410
\(81\) 0 0
\(82\) −9.00000 −0.993884
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) −9.00000 −0.976187
\(86\) −11.0000 −1.18616
\(87\) 0 0
\(88\) −3.00000 −0.319801
\(89\) −15.0000 −1.59000 −0.794998 0.606612i \(-0.792528\pi\)
−0.794998 + 0.606612i \(0.792528\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 3.00000 0.312772
\(93\) 0 0
\(94\) 0 0
\(95\) 15.0000 1.53897
\(96\) 0 0
\(97\) −1.00000 −0.101535 −0.0507673 0.998711i \(-0.516167\pi\)
−0.0507673 + 0.998711i \(0.516167\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 4.00000 0.400000
\(101\) 3.00000 0.298511 0.149256 0.988799i \(-0.452312\pi\)
0.149256 + 0.988799i \(0.452312\pi\)
\(102\) 0 0
\(103\) 5.00000 0.492665 0.246332 0.969185i \(-0.420775\pi\)
0.246332 + 0.969185i \(0.420775\pi\)
\(104\) −5.00000 −0.490290
\(105\) 0 0
\(106\) −3.00000 −0.291386
\(107\) 15.0000 1.45010 0.725052 0.688694i \(-0.241816\pi\)
0.725052 + 0.688694i \(0.241816\pi\)
\(108\) 0 0
\(109\) −7.00000 −0.670478 −0.335239 0.942133i \(-0.608817\pi\)
−0.335239 + 0.942133i \(0.608817\pi\)
\(110\) −9.00000 −0.858116
\(111\) 0 0
\(112\) 0 0
\(113\) −15.0000 −1.41108 −0.705541 0.708669i \(-0.749296\pi\)
−0.705541 + 0.708669i \(0.749296\pi\)
\(114\) 0 0
\(115\) 9.00000 0.839254
\(116\) 3.00000 0.278543
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) −2.00000 −0.181818
\(122\) −2.00000 −0.181071
\(123\) 0 0
\(124\) −4.00000 −0.359211
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) −1.00000 −0.0883883
\(129\) 0 0
\(130\) −15.0000 −1.31559
\(131\) −3.00000 −0.262111 −0.131056 0.991375i \(-0.541837\pi\)
−0.131056 + 0.991375i \(0.541837\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) 3.00000 0.257248
\(137\) −3.00000 −0.256307 −0.128154 0.991754i \(-0.540905\pi\)
−0.128154 + 0.991754i \(0.540905\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 15.0000 1.25436
\(144\) 0 0
\(145\) 9.00000 0.747409
\(146\) −11.0000 −0.910366
\(147\) 0 0
\(148\) −7.00000 −0.575396
\(149\) 3.00000 0.245770 0.122885 0.992421i \(-0.460785\pi\)
0.122885 + 0.992421i \(0.460785\pi\)
\(150\) 0 0
\(151\) 11.0000 0.895167 0.447584 0.894242i \(-0.352285\pi\)
0.447584 + 0.894242i \(0.352285\pi\)
\(152\) −5.00000 −0.405554
\(153\) 0 0
\(154\) 0 0
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) 14.0000 1.11732 0.558661 0.829396i \(-0.311315\pi\)
0.558661 + 0.829396i \(0.311315\pi\)
\(158\) −8.00000 −0.636446
\(159\) 0 0
\(160\) −3.00000 −0.237171
\(161\) 0 0
\(162\) 0 0
\(163\) 17.0000 1.33154 0.665771 0.746156i \(-0.268103\pi\)
0.665771 + 0.746156i \(0.268103\pi\)
\(164\) 9.00000 0.702782
\(165\) 0 0
\(166\) 3.00000 0.232845
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 9.00000 0.690268
\(171\) 0 0
\(172\) 11.0000 0.838742
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) 15.0000 1.12430
\(179\) −3.00000 −0.224231 −0.112115 0.993695i \(-0.535763\pi\)
−0.112115 + 0.993695i \(0.535763\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) −3.00000 −0.221163
\(185\) −21.0000 −1.54395
\(186\) 0 0
\(187\) −9.00000 −0.658145
\(188\) 0 0
\(189\) 0 0
\(190\) −15.0000 −1.08821
\(191\) −12.0000 −0.868290 −0.434145 0.900843i \(-0.642949\pi\)
−0.434145 + 0.900843i \(0.642949\pi\)
\(192\) 0 0
\(193\) 14.0000 1.00774 0.503871 0.863779i \(-0.331909\pi\)
0.503871 + 0.863779i \(0.331909\pi\)
\(194\) 1.00000 0.0717958
\(195\) 0 0
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) −4.00000 −0.282843
\(201\) 0 0
\(202\) −3.00000 −0.211079
\(203\) 0 0
\(204\) 0 0
\(205\) 27.0000 1.88576
\(206\) −5.00000 −0.348367
\(207\) 0 0
\(208\) 5.00000 0.346688
\(209\) 15.0000 1.03757
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) 3.00000 0.206041
\(213\) 0 0
\(214\) −15.0000 −1.02538
\(215\) 33.0000 2.25058
\(216\) 0 0
\(217\) 0 0
\(218\) 7.00000 0.474100
\(219\) 0 0
\(220\) 9.00000 0.606780
\(221\) −15.0000 −1.00901
\(222\) 0 0
\(223\) 17.0000 1.13840 0.569202 0.822198i \(-0.307252\pi\)
0.569202 + 0.822198i \(0.307252\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 15.0000 0.997785
\(227\) −9.00000 −0.597351 −0.298675 0.954355i \(-0.596545\pi\)
−0.298675 + 0.954355i \(0.596545\pi\)
\(228\) 0 0
\(229\) 17.0000 1.12339 0.561696 0.827344i \(-0.310149\pi\)
0.561696 + 0.827344i \(0.310149\pi\)
\(230\) −9.00000 −0.593442
\(231\) 0 0
\(232\) −3.00000 −0.196960
\(233\) −27.0000 −1.76883 −0.884414 0.466702i \(-0.845442\pi\)
−0.884414 + 0.466702i \(0.845442\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) 0 0
\(238\) 0 0
\(239\) −27.0000 −1.74648 −0.873242 0.487286i \(-0.837987\pi\)
−0.873242 + 0.487286i \(0.837987\pi\)
\(240\) 0 0
\(241\) 23.0000 1.48156 0.740780 0.671748i \(-0.234456\pi\)
0.740780 + 0.671748i \(0.234456\pi\)
\(242\) 2.00000 0.128565
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 0 0
\(246\) 0 0
\(247\) 25.0000 1.59071
\(248\) 4.00000 0.254000
\(249\) 0 0
\(250\) 3.00000 0.189737
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 9.00000 0.565825
\(254\) 16.0000 1.00393
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) −15.0000 −0.935674 −0.467837 0.883815i \(-0.654967\pi\)
−0.467837 + 0.883815i \(0.654967\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 15.0000 0.930261
\(261\) 0 0
\(262\) 3.00000 0.185341
\(263\) 9.00000 0.554964 0.277482 0.960731i \(-0.410500\pi\)
0.277482 + 0.960731i \(0.410500\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 0 0
\(268\) −4.00000 −0.244339
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) 0 0
\(271\) −13.0000 −0.789694 −0.394847 0.918747i \(-0.629202\pi\)
−0.394847 + 0.918747i \(0.629202\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) 3.00000 0.181237
\(275\) 12.0000 0.723627
\(276\) 0 0
\(277\) −7.00000 −0.420589 −0.210295 0.977638i \(-0.567442\pi\)
−0.210295 + 0.977638i \(0.567442\pi\)
\(278\) −5.00000 −0.299880
\(279\) 0 0
\(280\) 0 0
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) 8.00000 0.475551 0.237775 0.971320i \(-0.423582\pi\)
0.237775 + 0.971320i \(0.423582\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −15.0000 −0.886969
\(287\) 0 0
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) −9.00000 −0.528498
\(291\) 0 0
\(292\) 11.0000 0.643726
\(293\) 27.0000 1.57736 0.788678 0.614806i \(-0.210766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(294\) 0 0
\(295\) −36.0000 −2.09600
\(296\) 7.00000 0.406867
\(297\) 0 0
\(298\) −3.00000 −0.173785
\(299\) 15.0000 0.867472
\(300\) 0 0
\(301\) 0 0
\(302\) −11.0000 −0.632979
\(303\) 0 0
\(304\) 5.00000 0.286770
\(305\) 6.00000 0.343559
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 12.0000 0.681554
\(311\) 24.0000 1.36092 0.680458 0.732787i \(-0.261781\pi\)
0.680458 + 0.732787i \(0.261781\pi\)
\(312\) 0 0
\(313\) 14.0000 0.791327 0.395663 0.918396i \(-0.370515\pi\)
0.395663 + 0.918396i \(0.370515\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) −30.0000 −1.68497 −0.842484 0.538721i \(-0.818908\pi\)
−0.842484 + 0.538721i \(0.818908\pi\)
\(318\) 0 0
\(319\) 9.00000 0.503903
\(320\) 3.00000 0.167705
\(321\) 0 0
\(322\) 0 0
\(323\) −15.0000 −0.834622
\(324\) 0 0
\(325\) 20.0000 1.10940
\(326\) −17.0000 −0.941543
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) −3.00000 −0.164646
\(333\) 0 0
\(334\) 3.00000 0.164153
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) −25.0000 −1.36184 −0.680918 0.732359i \(-0.738419\pi\)
−0.680918 + 0.732359i \(0.738419\pi\)
\(338\) −12.0000 −0.652714
\(339\) 0 0
\(340\) −9.00000 −0.488094
\(341\) −12.0000 −0.649836
\(342\) 0 0
\(343\) 0 0
\(344\) −11.0000 −0.593080
\(345\) 0 0
\(346\) 6.00000 0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) 0 0
\(349\) 5.00000 0.267644 0.133822 0.991005i \(-0.457275\pi\)
0.133822 + 0.991005i \(0.457275\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) 9.00000 0.479022 0.239511 0.970894i \(-0.423013\pi\)
0.239511 + 0.970894i \(0.423013\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −15.0000 −0.794998
\(357\) 0 0
\(358\) 3.00000 0.158555
\(359\) −15.0000 −0.791670 −0.395835 0.918322i \(-0.629545\pi\)
−0.395835 + 0.918322i \(0.629545\pi\)
\(360\) 0 0
\(361\) 6.00000 0.315789
\(362\) 10.0000 0.525588
\(363\) 0 0
\(364\) 0 0
\(365\) 33.0000 1.72730
\(366\) 0 0
\(367\) −1.00000 −0.0521996 −0.0260998 0.999659i \(-0.508309\pi\)
−0.0260998 + 0.999659i \(0.508309\pi\)
\(368\) 3.00000 0.156386
\(369\) 0 0
\(370\) 21.0000 1.09174
\(371\) 0 0
\(372\) 0 0
\(373\) 17.0000 0.880227 0.440113 0.897942i \(-0.354938\pi\)
0.440113 + 0.897942i \(0.354938\pi\)
\(374\) 9.00000 0.465379
\(375\) 0 0
\(376\) 0 0
\(377\) 15.0000 0.772539
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) 15.0000 0.769484
\(381\) 0 0
\(382\) 12.0000 0.613973
\(383\) 15.0000 0.766464 0.383232 0.923652i \(-0.374811\pi\)
0.383232 + 0.923652i \(0.374811\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) −1.00000 −0.0507673
\(389\) −9.00000 −0.456318 −0.228159 0.973624i \(-0.573271\pi\)
−0.228159 + 0.973624i \(0.573271\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) 0 0
\(393\) 0 0
\(394\) −6.00000 −0.302276
\(395\) 24.0000 1.20757
\(396\) 0 0
\(397\) 29.0000 1.45547 0.727734 0.685859i \(-0.240573\pi\)
0.727734 + 0.685859i \(0.240573\pi\)
\(398\) 7.00000 0.350878
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −27.0000 −1.34832 −0.674158 0.738587i \(-0.735493\pi\)
−0.674158 + 0.738587i \(0.735493\pi\)
\(402\) 0 0
\(403\) −20.0000 −0.996271
\(404\) 3.00000 0.149256
\(405\) 0 0
\(406\) 0 0
\(407\) −21.0000 −1.04093
\(408\) 0 0
\(409\) −22.0000 −1.08783 −0.543915 0.839140i \(-0.683059\pi\)
−0.543915 + 0.839140i \(0.683059\pi\)
\(410\) −27.0000 −1.33343
\(411\) 0 0
\(412\) 5.00000 0.246332
\(413\) 0 0
\(414\) 0 0
\(415\) −9.00000 −0.441793
\(416\) −5.00000 −0.245145
\(417\) 0 0
\(418\) −15.0000 −0.733674
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) −31.0000 −1.51085 −0.755424 0.655237i \(-0.772569\pi\)
−0.755424 + 0.655237i \(0.772569\pi\)
\(422\) −5.00000 −0.243396
\(423\) 0 0
\(424\) −3.00000 −0.145693
\(425\) −12.0000 −0.582086
\(426\) 0 0
\(427\) 0 0
\(428\) 15.0000 0.725052
\(429\) 0 0
\(430\) −33.0000 −1.59140
\(431\) 3.00000 0.144505 0.0722525 0.997386i \(-0.476981\pi\)
0.0722525 + 0.997386i \(0.476981\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) −7.00000 −0.335239
\(437\) 15.0000 0.717547
\(438\) 0 0
\(439\) 8.00000 0.381819 0.190910 0.981608i \(-0.438856\pi\)
0.190910 + 0.981608i \(0.438856\pi\)
\(440\) −9.00000 −0.429058
\(441\) 0 0
\(442\) 15.0000 0.713477
\(443\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(444\) 0 0
\(445\) −45.0000 −2.13320
\(446\) −17.0000 −0.804973
\(447\) 0 0
\(448\) 0 0
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) 27.0000 1.27138
\(452\) −15.0000 −0.705541
\(453\) 0 0
\(454\) 9.00000 0.422391
\(455\) 0 0
\(456\) 0 0
\(457\) −34.0000 −1.59045 −0.795226 0.606313i \(-0.792648\pi\)
−0.795226 + 0.606313i \(0.792648\pi\)
\(458\) −17.0000 −0.794358
\(459\) 0 0
\(460\) 9.00000 0.419627
\(461\) −9.00000 −0.419172 −0.209586 0.977790i \(-0.567212\pi\)
−0.209586 + 0.977790i \(0.567212\pi\)
\(462\) 0 0
\(463\) 35.0000 1.62659 0.813294 0.581853i \(-0.197672\pi\)
0.813294 + 0.581853i \(0.197672\pi\)
\(464\) 3.00000 0.139272
\(465\) 0 0
\(466\) 27.0000 1.25075
\(467\) 3.00000 0.138823 0.0694117 0.997588i \(-0.477888\pi\)
0.0694117 + 0.997588i \(0.477888\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 12.0000 0.552345
\(473\) 33.0000 1.51734
\(474\) 0 0
\(475\) 20.0000 0.917663
\(476\) 0 0
\(477\) 0 0
\(478\) 27.0000 1.23495
\(479\) 9.00000 0.411220 0.205610 0.978634i \(-0.434082\pi\)
0.205610 + 0.978634i \(0.434082\pi\)
\(480\) 0 0
\(481\) −35.0000 −1.59586
\(482\) −23.0000 −1.04762
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) −3.00000 −0.136223
\(486\) 0 0
\(487\) −31.0000 −1.40474 −0.702372 0.711810i \(-0.747876\pi\)
−0.702372 + 0.711810i \(0.747876\pi\)
\(488\) −2.00000 −0.0905357
\(489\) 0 0
\(490\) 0 0
\(491\) 39.0000 1.76005 0.880023 0.474932i \(-0.157527\pi\)
0.880023 + 0.474932i \(0.157527\pi\)
\(492\) 0 0
\(493\) −9.00000 −0.405340
\(494\) −25.0000 −1.12480
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) 11.0000 0.492428 0.246214 0.969216i \(-0.420813\pi\)
0.246214 + 0.969216i \(0.420813\pi\)
\(500\) −3.00000 −0.134164
\(501\) 0 0
\(502\) 12.0000 0.535586
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) −9.00000 −0.400099
\(507\) 0 0
\(508\) −16.0000 −0.709885
\(509\) 27.0000 1.19675 0.598377 0.801215i \(-0.295813\pi\)
0.598377 + 0.801215i \(0.295813\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) 15.0000 0.661622
\(515\) 15.0000 0.660979
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) −15.0000 −0.657794
\(521\) −3.00000 −0.131432 −0.0657162 0.997838i \(-0.520933\pi\)
−0.0657162 + 0.997838i \(0.520933\pi\)
\(522\) 0 0
\(523\) −7.00000 −0.306089 −0.153044 0.988219i \(-0.548908\pi\)
−0.153044 + 0.988219i \(0.548908\pi\)
\(524\) −3.00000 −0.131056
\(525\) 0 0
\(526\) −9.00000 −0.392419
\(527\) 12.0000 0.522728
\(528\) 0 0
\(529\) −14.0000 −0.608696
\(530\) −9.00000 −0.390935
\(531\) 0 0
\(532\) 0 0
\(533\) 45.0000 1.94917
\(534\) 0 0
\(535\) 45.0000 1.94552
\(536\) 4.00000 0.172774
\(537\) 0 0
\(538\) 21.0000 0.905374
\(539\) 0 0
\(540\) 0 0
\(541\) 17.0000 0.730887 0.365444 0.930834i \(-0.380917\pi\)
0.365444 + 0.930834i \(0.380917\pi\)
\(542\) 13.0000 0.558398
\(543\) 0 0
\(544\) 3.00000 0.128624
\(545\) −21.0000 −0.899541
\(546\) 0 0
\(547\) 11.0000 0.470326 0.235163 0.971956i \(-0.424438\pi\)
0.235163 + 0.971956i \(0.424438\pi\)
\(548\) −3.00000 −0.128154
\(549\) 0 0
\(550\) −12.0000 −0.511682
\(551\) 15.0000 0.639021
\(552\) 0 0
\(553\) 0 0
\(554\) 7.00000 0.297402
\(555\) 0 0
\(556\) 5.00000 0.212047
\(557\) 3.00000 0.127114 0.0635570 0.997978i \(-0.479756\pi\)
0.0635570 + 0.997978i \(0.479756\pi\)
\(558\) 0 0
\(559\) 55.0000 2.32625
\(560\) 0 0
\(561\) 0 0
\(562\) 3.00000 0.126547
\(563\) 12.0000 0.505740 0.252870 0.967500i \(-0.418626\pi\)
0.252870 + 0.967500i \(0.418626\pi\)
\(564\) 0 0
\(565\) −45.0000 −1.89316
\(566\) −8.00000 −0.336265
\(567\) 0 0
\(568\) 0 0
\(569\) −30.0000 −1.25767 −0.628833 0.777541i \(-0.716467\pi\)
−0.628833 + 0.777541i \(0.716467\pi\)
\(570\) 0 0
\(571\) 20.0000 0.836974 0.418487 0.908223i \(-0.362561\pi\)
0.418487 + 0.908223i \(0.362561\pi\)
\(572\) 15.0000 0.627182
\(573\) 0 0
\(574\) 0 0
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) 11.0000 0.457936 0.228968 0.973434i \(-0.426465\pi\)
0.228968 + 0.973434i \(0.426465\pi\)
\(578\) 8.00000 0.332756
\(579\) 0 0
\(580\) 9.00000 0.373705
\(581\) 0 0
\(582\) 0 0
\(583\) 9.00000 0.372742
\(584\) −11.0000 −0.455183
\(585\) 0 0
\(586\) −27.0000 −1.11536
\(587\) 33.0000 1.36206 0.681028 0.732257i \(-0.261533\pi\)
0.681028 + 0.732257i \(0.261533\pi\)
\(588\) 0 0
\(589\) −20.0000 −0.824086
\(590\) 36.0000 1.48210
\(591\) 0 0
\(592\) −7.00000 −0.287698
\(593\) 21.0000 0.862367 0.431183 0.902264i \(-0.358096\pi\)
0.431183 + 0.902264i \(0.358096\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 3.00000 0.122885
\(597\) 0 0
\(598\) −15.0000 −0.613396
\(599\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(600\) 0 0
\(601\) −1.00000 −0.0407909 −0.0203954 0.999792i \(-0.506493\pi\)
−0.0203954 + 0.999792i \(0.506493\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 11.0000 0.447584
\(605\) −6.00000 −0.243935
\(606\) 0 0
\(607\) −43.0000 −1.74532 −0.872658 0.488332i \(-0.837606\pi\)
−0.872658 + 0.488332i \(0.837606\pi\)
\(608\) −5.00000 −0.202777
\(609\) 0 0
\(610\) −6.00000 −0.242933
\(611\) 0 0
\(612\) 0 0
\(613\) −31.0000 −1.25208 −0.626039 0.779792i \(-0.715325\pi\)
−0.626039 + 0.779792i \(0.715325\pi\)
\(614\) 28.0000 1.12999
\(615\) 0 0
\(616\) 0 0
\(617\) −3.00000 −0.120775 −0.0603877 0.998175i \(-0.519234\pi\)
−0.0603877 + 0.998175i \(0.519234\pi\)
\(618\) 0 0
\(619\) −19.0000 −0.763674 −0.381837 0.924230i \(-0.624709\pi\)
−0.381837 + 0.924230i \(0.624709\pi\)
\(620\) −12.0000 −0.481932
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 0 0
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) −14.0000 −0.559553
\(627\) 0 0
\(628\) 14.0000 0.558661
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) −8.00000 −0.318223
\(633\) 0 0
\(634\) 30.0000 1.19145
\(635\) −48.0000 −1.90482
\(636\) 0 0
\(637\) 0 0
\(638\) −9.00000 −0.356313
\(639\) 0 0
\(640\) −3.00000 −0.118585
\(641\) 45.0000 1.77739 0.888697 0.458496i \(-0.151612\pi\)
0.888697 + 0.458496i \(0.151612\pi\)
\(642\) 0 0
\(643\) 29.0000 1.14365 0.571824 0.820376i \(-0.306236\pi\)
0.571824 + 0.820376i \(0.306236\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 15.0000 0.590167
\(647\) 3.00000 0.117942 0.0589711 0.998260i \(-0.481218\pi\)
0.0589711 + 0.998260i \(0.481218\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) −20.0000 −0.784465
\(651\) 0 0
\(652\) 17.0000 0.665771
\(653\) −9.00000 −0.352197 −0.176099 0.984373i \(-0.556348\pi\)
−0.176099 + 0.984373i \(0.556348\pi\)
\(654\) 0 0
\(655\) −9.00000 −0.351659
\(656\) 9.00000 0.351391
\(657\) 0 0
\(658\) 0 0
\(659\) −39.0000 −1.51922 −0.759612 0.650376i \(-0.774611\pi\)
−0.759612 + 0.650376i \(0.774611\pi\)
\(660\) 0 0
\(661\) 14.0000 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(662\) −20.0000 −0.777322
\(663\) 0 0
\(664\) 3.00000 0.116423
\(665\) 0 0
\(666\) 0 0
\(667\) 9.00000 0.348481
\(668\) −3.00000 −0.116073
\(669\) 0 0
\(670\) 12.0000 0.463600
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 11.0000 0.424019 0.212009 0.977268i \(-0.431999\pi\)
0.212009 + 0.977268i \(0.431999\pi\)
\(674\) 25.0000 0.962964
\(675\) 0 0
\(676\) 12.0000 0.461538
\(677\) −6.00000 −0.230599 −0.115299 0.993331i \(-0.536783\pi\)
−0.115299 + 0.993331i \(0.536783\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) 12.0000 0.459504
\(683\) 33.0000 1.26271 0.631355 0.775494i \(-0.282499\pi\)
0.631355 + 0.775494i \(0.282499\pi\)
\(684\) 0 0
\(685\) −9.00000 −0.343872
\(686\) 0 0
\(687\) 0 0
\(688\) 11.0000 0.419371
\(689\) 15.0000 0.571454
\(690\) 0 0
\(691\) 20.0000 0.760836 0.380418 0.924815i \(-0.375780\pi\)
0.380418 + 0.924815i \(0.375780\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) 15.0000 0.568982
\(696\) 0 0
\(697\) −27.0000 −1.02270
\(698\) −5.00000 −0.189253
\(699\) 0 0
\(700\) 0 0
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) −35.0000 −1.32005
\(704\) 3.00000 0.113067
\(705\) 0 0
\(706\) −9.00000 −0.338719
\(707\) 0 0
\(708\) 0 0
\(709\) −10.0000 −0.375558 −0.187779 0.982211i \(-0.560129\pi\)
−0.187779 + 0.982211i \(0.560129\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 15.0000 0.562149
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 45.0000 1.68290
\(716\) −3.00000 −0.112115
\(717\) 0 0
\(718\) 15.0000 0.559795
\(719\) −39.0000 −1.45445 −0.727227 0.686397i \(-0.759191\pi\)
−0.727227 + 0.686397i \(0.759191\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −6.00000 −0.223297
\(723\) 0 0
\(724\) −10.0000 −0.371647
\(725\) 12.0000 0.445669
\(726\) 0 0
\(727\) 5.00000 0.185440 0.0927199 0.995692i \(-0.470444\pi\)
0.0927199 + 0.995692i \(0.470444\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −33.0000 −1.22138
\(731\) −33.0000 −1.22055
\(732\) 0 0
\(733\) 41.0000 1.51437 0.757185 0.653201i \(-0.226574\pi\)
0.757185 + 0.653201i \(0.226574\pi\)
\(734\) 1.00000 0.0369107
\(735\) 0 0
\(736\) −3.00000 −0.110581
\(737\) −12.0000 −0.442026
\(738\) 0 0
\(739\) 47.0000 1.72892 0.864461 0.502699i \(-0.167660\pi\)
0.864461 + 0.502699i \(0.167660\pi\)
\(740\) −21.0000 −0.771975
\(741\) 0 0
\(742\) 0 0
\(743\) −3.00000 −0.110059 −0.0550297 0.998485i \(-0.517525\pi\)
−0.0550297 + 0.998485i \(0.517525\pi\)
\(744\) 0 0
\(745\) 9.00000 0.329734
\(746\) −17.0000 −0.622414
\(747\) 0 0
\(748\) −9.00000 −0.329073
\(749\) 0 0
\(750\) 0 0
\(751\) 29.0000 1.05823 0.529113 0.848552i \(-0.322525\pi\)
0.529113 + 0.848552i \(0.322525\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) −15.0000 −0.546268
\(755\) 33.0000 1.20099
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) 16.0000 0.581146
\(759\) 0 0
\(760\) −15.0000 −0.544107
\(761\) −3.00000 −0.108750 −0.0543750 0.998521i \(-0.517317\pi\)
−0.0543750 + 0.998521i \(0.517317\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) −15.0000 −0.541972
\(767\) −60.0000 −2.16647
\(768\) 0 0
\(769\) −1.00000 −0.0360609 −0.0180305 0.999837i \(-0.505740\pi\)
−0.0180305 + 0.999837i \(0.505740\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 14.0000 0.503871
\(773\) −21.0000 −0.755318 −0.377659 0.925945i \(-0.623271\pi\)
−0.377659 + 0.925945i \(0.623271\pi\)
\(774\) 0 0
\(775\) −16.0000 −0.574737
\(776\) 1.00000 0.0358979
\(777\) 0 0
\(778\) 9.00000 0.322666
\(779\) 45.0000 1.61229
\(780\) 0 0
\(781\) 0 0
\(782\) 9.00000 0.321839
\(783\) 0 0
\(784\) 0 0
\(785\) 42.0000 1.49904
\(786\) 0 0
\(787\) 44.0000 1.56843 0.784215 0.620489i \(-0.213066\pi\)
0.784215 + 0.620489i \(0.213066\pi\)
\(788\) 6.00000 0.213741
\(789\) 0 0
\(790\) −24.0000 −0.853882
\(791\) 0 0
\(792\) 0 0
\(793\) 10.0000 0.355110
\(794\) −29.0000 −1.02917
\(795\) 0 0
\(796\) −7.00000 −0.248108
\(797\) 27.0000 0.956389 0.478195 0.878254i \(-0.341291\pi\)
0.478195 + 0.878254i \(0.341291\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −4.00000 −0.141421
\(801\) 0 0
\(802\) 27.0000 0.953403
\(803\) 33.0000 1.16454
\(804\) 0 0
\(805\) 0 0
\(806\) 20.0000 0.704470
\(807\) 0 0
\(808\) −3.00000 −0.105540
\(809\) −39.0000 −1.37117 −0.685583 0.727994i \(-0.740453\pi\)
−0.685583 + 0.727994i \(0.740453\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 21.0000 0.736050
\(815\) 51.0000 1.78645
\(816\) 0 0
\(817\) 55.0000 1.92421
\(818\) 22.0000 0.769212
\(819\) 0 0
\(820\) 27.0000 0.942881
\(821\) 54.0000 1.88461 0.942306 0.334751i \(-0.108652\pi\)
0.942306 + 0.334751i \(0.108652\pi\)
\(822\) 0 0
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) −5.00000 −0.174183
\(825\) 0 0
\(826\) 0 0
\(827\) 24.0000 0.834562 0.417281 0.908778i \(-0.362983\pi\)
0.417281 + 0.908778i \(0.362983\pi\)
\(828\) 0 0
\(829\) 41.0000 1.42399 0.711994 0.702185i \(-0.247792\pi\)
0.711994 + 0.702185i \(0.247792\pi\)
\(830\) 9.00000 0.312395
\(831\) 0 0
\(832\) 5.00000 0.173344
\(833\) 0 0
\(834\) 0 0
\(835\) −9.00000 −0.311458
\(836\) 15.0000 0.518786
\(837\) 0 0
\(838\) −3.00000 −0.103633
\(839\) 39.0000 1.34643 0.673215 0.739447i \(-0.264913\pi\)
0.673215 + 0.739447i \(0.264913\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) 31.0000 1.06833
\(843\) 0 0
\(844\) 5.00000 0.172107
\(845\) 36.0000 1.23844
\(846\) 0 0
\(847\) 0 0
\(848\) 3.00000 0.103020
\(849\) 0 0
\(850\) 12.0000 0.411597
\(851\) −21.0000 −0.719871
\(852\) 0 0
\(853\) 17.0000 0.582069 0.291034 0.956713i \(-0.406001\pi\)
0.291034 + 0.956713i \(0.406001\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −15.0000 −0.512689
\(857\) 33.0000 1.12726 0.563629 0.826028i \(-0.309405\pi\)
0.563629 + 0.826028i \(0.309405\pi\)
\(858\) 0 0
\(859\) 11.0000 0.375315 0.187658 0.982235i \(-0.439910\pi\)
0.187658 + 0.982235i \(0.439910\pi\)
\(860\) 33.0000 1.12529
\(861\) 0 0
\(862\) −3.00000 −0.102180
\(863\) −15.0000 −0.510606 −0.255303 0.966861i \(-0.582175\pi\)
−0.255303 + 0.966861i \(0.582175\pi\)
\(864\) 0 0
\(865\) −18.0000 −0.612018
\(866\) −14.0000 −0.475739
\(867\) 0 0
\(868\) 0 0
\(869\) 24.0000 0.814144
\(870\) 0 0
\(871\) −20.0000 −0.677674
\(872\) 7.00000 0.237050
\(873\) 0 0
\(874\) −15.0000 −0.507383
\(875\) 0 0
\(876\) 0 0
\(877\) −43.0000 −1.45201 −0.726003 0.687691i \(-0.758624\pi\)
−0.726003 + 0.687691i \(0.758624\pi\)
\(878\) −8.00000 −0.269987
\(879\) 0 0
\(880\) 9.00000 0.303390
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) −15.0000 −0.504505
\(885\) 0 0
\(886\) 0 0
\(887\) 39.0000 1.30949 0.654746 0.755849i \(-0.272776\pi\)
0.654746 + 0.755849i \(0.272776\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 45.0000 1.50840
\(891\) 0 0
\(892\) 17.0000 0.569202
\(893\) 0 0
\(894\) 0 0
\(895\) −9.00000 −0.300837
\(896\) 0 0
\(897\) 0 0
\(898\) 30.0000 1.00111
\(899\) −12.0000 −0.400222
\(900\) 0 0
\(901\) −9.00000 −0.299833
\(902\) −27.0000 −0.899002
\(903\) 0 0
\(904\) 15.0000 0.498893
\(905\) −30.0000 −0.997234
\(906\) 0 0
\(907\) 17.0000 0.564476 0.282238 0.959344i \(-0.408923\pi\)
0.282238 + 0.959344i \(0.408923\pi\)
\(908\) −9.00000 −0.298675
\(909\) 0 0
\(910\) 0 0
\(911\) −9.00000 −0.298183 −0.149092 0.988823i \(-0.547635\pi\)
−0.149092 + 0.988823i \(0.547635\pi\)
\(912\) 0 0
\(913\) −9.00000 −0.297857
\(914\) 34.0000 1.12462
\(915\) 0 0
\(916\) 17.0000 0.561696
\(917\) 0 0
\(918\) 0 0
\(919\) −1.00000 −0.0329870 −0.0164935 0.999864i \(-0.505250\pi\)
−0.0164935 + 0.999864i \(0.505250\pi\)
\(920\) −9.00000 −0.296721
\(921\) 0 0
\(922\) 9.00000 0.296399
\(923\) 0 0
\(924\) 0 0
\(925\) −28.0000 −0.920634
\(926\) −35.0000 −1.15017
\(927\) 0 0
\(928\) −3.00000 −0.0984798
\(929\) 18.0000 0.590561 0.295280 0.955411i \(-0.404587\pi\)
0.295280 + 0.955411i \(0.404587\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −27.0000 −0.884414
\(933\) 0 0
\(934\) −3.00000 −0.0981630
\(935\) −27.0000 −0.882994
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −54.0000 −1.76035 −0.880175 0.474650i \(-0.842575\pi\)
−0.880175 + 0.474650i \(0.842575\pi\)
\(942\) 0 0
\(943\) 27.0000 0.879241
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) −33.0000 −1.07292
\(947\) 12.0000 0.389948 0.194974 0.980808i \(-0.437538\pi\)
0.194974 + 0.980808i \(0.437538\pi\)
\(948\) 0 0
\(949\) 55.0000 1.78538
\(950\) −20.0000 −0.648886
\(951\) 0 0
\(952\) 0 0
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) −36.0000 −1.16493
\(956\) −27.0000 −0.873242
\(957\) 0 0
\(958\) −9.00000 −0.290777
\(959\) 0 0
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) 35.0000 1.12845
\(963\) 0 0
\(964\) 23.0000 0.740780
\(965\) 42.0000 1.35203
\(966\) 0 0
\(967\) −49.0000 −1.57573 −0.787867 0.615846i \(-0.788815\pi\)
−0.787867 + 0.615846i \(0.788815\pi\)
\(968\) 2.00000 0.0642824
\(969\) 0 0
\(970\) 3.00000 0.0963242
\(971\) 27.0000 0.866471 0.433236 0.901281i \(-0.357372\pi\)
0.433236 + 0.901281i \(0.357372\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 31.0000 0.993304
\(975\) 0 0
\(976\) 2.00000 0.0640184
\(977\) −6.00000 −0.191957 −0.0959785 0.995383i \(-0.530598\pi\)
−0.0959785 + 0.995383i \(0.530598\pi\)
\(978\) 0 0
\(979\) −45.0000 −1.43821
\(980\) 0 0
\(981\) 0 0
\(982\) −39.0000 −1.24454
\(983\) 21.0000 0.669796 0.334898 0.942254i \(-0.391298\pi\)
0.334898 + 0.942254i \(0.391298\pi\)
\(984\) 0 0
\(985\) 18.0000 0.573528
\(986\) 9.00000 0.286618
\(987\) 0 0
\(988\) 25.0000 0.795356
\(989\) 33.0000 1.04934
\(990\) 0 0
\(991\) 29.0000 0.921215 0.460608 0.887604i \(-0.347632\pi\)
0.460608 + 0.887604i \(0.347632\pi\)
\(992\) 4.00000 0.127000
\(993\) 0 0
\(994\) 0 0
\(995\) −21.0000 −0.665745
\(996\) 0 0
\(997\) 41.0000 1.29848 0.649242 0.760582i \(-0.275086\pi\)
0.649242 + 0.760582i \(0.275086\pi\)
\(998\) −11.0000 −0.348199
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7938.2.a.o.1.1 1
3.2 odd 2 7938.2.a.r.1.1 1
7.2 even 3 1134.2.g.f.487.1 2
7.4 even 3 1134.2.g.f.163.1 2
7.6 odd 2 7938.2.a.c.1.1 1
9.2 odd 6 882.2.f.e.589.1 2
9.4 even 3 2646.2.f.e.883.1 2
9.5 odd 6 882.2.f.e.295.1 2
9.7 even 3 2646.2.f.e.1765.1 2
21.2 odd 6 1134.2.g.d.487.1 2
21.11 odd 6 1134.2.g.d.163.1 2
21.20 even 2 7938.2.a.bd.1.1 1
63.2 odd 6 126.2.h.a.67.1 yes 2
63.4 even 3 378.2.h.b.289.1 2
63.5 even 6 882.2.e.h.655.1 2
63.11 odd 6 126.2.e.b.121.1 yes 2
63.13 odd 6 2646.2.f.i.883.1 2
63.16 even 3 378.2.h.b.361.1 2
63.20 even 6 882.2.f.a.589.1 2
63.23 odd 6 126.2.e.b.25.1 2
63.25 even 3 378.2.e.a.37.1 2
63.31 odd 6 2646.2.h.f.667.1 2
63.32 odd 6 126.2.h.a.79.1 yes 2
63.34 odd 6 2646.2.f.i.1765.1 2
63.38 even 6 882.2.e.h.373.1 2
63.40 odd 6 2646.2.e.e.2125.1 2
63.41 even 6 882.2.f.a.295.1 2
63.47 even 6 882.2.h.e.67.1 2
63.52 odd 6 2646.2.e.e.1549.1 2
63.58 even 3 378.2.e.a.235.1 2
63.59 even 6 882.2.h.e.79.1 2
63.61 odd 6 2646.2.h.f.361.1 2
252.11 even 6 1008.2.q.e.625.1 2
252.23 even 6 1008.2.q.e.529.1 2
252.67 odd 6 3024.2.t.f.289.1 2
252.79 odd 6 3024.2.t.f.1873.1 2
252.95 even 6 1008.2.t.c.961.1 2
252.151 odd 6 3024.2.q.a.2305.1 2
252.191 even 6 1008.2.t.c.193.1 2
252.247 odd 6 3024.2.q.a.2881.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.b.25.1 2 63.23 odd 6
126.2.e.b.121.1 yes 2 63.11 odd 6
126.2.h.a.67.1 yes 2 63.2 odd 6
126.2.h.a.79.1 yes 2 63.32 odd 6
378.2.e.a.37.1 2 63.25 even 3
378.2.e.a.235.1 2 63.58 even 3
378.2.h.b.289.1 2 63.4 even 3
378.2.h.b.361.1 2 63.16 even 3
882.2.e.h.373.1 2 63.38 even 6
882.2.e.h.655.1 2 63.5 even 6
882.2.f.a.295.1 2 63.41 even 6
882.2.f.a.589.1 2 63.20 even 6
882.2.f.e.295.1 2 9.5 odd 6
882.2.f.e.589.1 2 9.2 odd 6
882.2.h.e.67.1 2 63.47 even 6
882.2.h.e.79.1 2 63.59 even 6
1008.2.q.e.529.1 2 252.23 even 6
1008.2.q.e.625.1 2 252.11 even 6
1008.2.t.c.193.1 2 252.191 even 6
1008.2.t.c.961.1 2 252.95 even 6
1134.2.g.d.163.1 2 21.11 odd 6
1134.2.g.d.487.1 2 21.2 odd 6
1134.2.g.f.163.1 2 7.4 even 3
1134.2.g.f.487.1 2 7.2 even 3
2646.2.e.e.1549.1 2 63.52 odd 6
2646.2.e.e.2125.1 2 63.40 odd 6
2646.2.f.e.883.1 2 9.4 even 3
2646.2.f.e.1765.1 2 9.7 even 3
2646.2.f.i.883.1 2 63.13 odd 6
2646.2.f.i.1765.1 2 63.34 odd 6
2646.2.h.f.361.1 2 63.61 odd 6
2646.2.h.f.667.1 2 63.31 odd 6
3024.2.q.a.2305.1 2 252.151 odd 6
3024.2.q.a.2881.1 2 252.247 odd 6
3024.2.t.f.289.1 2 252.67 odd 6
3024.2.t.f.1873.1 2 252.79 odd 6
7938.2.a.c.1.1 1 7.6 odd 2
7938.2.a.o.1.1 1 1.1 even 1 trivial
7938.2.a.r.1.1 1 3.2 odd 2
7938.2.a.bd.1.1 1 21.20 even 2