Properties

Label 1134.2.g.f.163.1
Level $1134$
Weight $2$
Character 1134.163
Analytic conductor $9.055$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1134,2,Mod(163,1134)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1134, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1134.163");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1134 = 2 \cdot 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1134.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.05503558921\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 126)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 163.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1134.163
Dual form 1134.2.g.f.487.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-1.50000 + 2.59808i) q^{5} +(2.50000 - 0.866025i) q^{7} -1.00000 q^{8} +(1.50000 + 2.59808i) q^{10} +(-1.50000 - 2.59808i) q^{11} +5.00000 q^{13} +(0.500000 - 2.59808i) q^{14} +(-0.500000 + 0.866025i) q^{16} +(1.50000 + 2.59808i) q^{17} +(-2.50000 + 4.33013i) q^{19} +3.00000 q^{20} -3.00000 q^{22} +(-1.50000 + 2.59808i) q^{23} +(-2.00000 - 3.46410i) q^{25} +(2.50000 - 4.33013i) q^{26} +(-2.00000 - 1.73205i) q^{28} +3.00000 q^{29} +(2.00000 + 3.46410i) q^{31} +(0.500000 + 0.866025i) q^{32} +3.00000 q^{34} +(-1.50000 + 7.79423i) q^{35} +(3.50000 - 6.06218i) q^{37} +(2.50000 + 4.33013i) q^{38} +(1.50000 - 2.59808i) q^{40} +9.00000 q^{41} +11.0000 q^{43} +(-1.50000 + 2.59808i) q^{44} +(1.50000 + 2.59808i) q^{46} +(5.50000 - 4.33013i) q^{49} -4.00000 q^{50} +(-2.50000 - 4.33013i) q^{52} +(-1.50000 - 2.59808i) q^{53} +9.00000 q^{55} +(-2.50000 + 0.866025i) q^{56} +(1.50000 - 2.59808i) q^{58} +(6.00000 + 10.3923i) q^{59} +(-1.00000 + 1.73205i) q^{61} +4.00000 q^{62} +1.00000 q^{64} +(-7.50000 + 12.9904i) q^{65} +(2.00000 + 3.46410i) q^{67} +(1.50000 - 2.59808i) q^{68} +(6.00000 + 5.19615i) q^{70} +(-5.50000 - 9.52628i) q^{73} +(-3.50000 - 6.06218i) q^{74} +5.00000 q^{76} +(-6.00000 - 5.19615i) q^{77} +(-4.00000 + 6.92820i) q^{79} +(-1.50000 - 2.59808i) q^{80} +(4.50000 - 7.79423i) q^{82} -3.00000 q^{83} -9.00000 q^{85} +(5.50000 - 9.52628i) q^{86} +(1.50000 + 2.59808i) q^{88} +(7.50000 - 12.9904i) q^{89} +(12.5000 - 4.33013i) q^{91} +3.00000 q^{92} +(-7.50000 - 12.9904i) q^{95} -1.00000 q^{97} +(-1.00000 - 6.92820i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} - q^{4} - 3 q^{5} + 5 q^{7} - 2 q^{8} + 3 q^{10} - 3 q^{11} + 10 q^{13} + q^{14} - q^{16} + 3 q^{17} - 5 q^{19} + 6 q^{20} - 6 q^{22} - 3 q^{23} - 4 q^{25} + 5 q^{26} - 4 q^{28} + 6 q^{29}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1134\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 0.866025i 0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 0.866025i −0.250000 0.433013i
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) 0 0
\(7\) 2.50000 0.866025i 0.944911 0.327327i
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) 1.50000 + 2.59808i 0.474342 + 0.821584i
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) 5.00000 1.38675 0.693375 0.720577i \(-0.256123\pi\)
0.693375 + 0.720577i \(0.256123\pi\)
\(14\) 0.500000 2.59808i 0.133631 0.694365i
\(15\) 0 0
\(16\) −0.500000 + 0.866025i −0.125000 + 0.216506i
\(17\) 1.50000 + 2.59808i 0.363803 + 0.630126i 0.988583 0.150675i \(-0.0481447\pi\)
−0.624780 + 0.780801i \(0.714811\pi\)
\(18\) 0 0
\(19\) −2.50000 + 4.33013i −0.573539 + 0.993399i 0.422659 + 0.906289i \(0.361097\pi\)
−0.996199 + 0.0871106i \(0.972237\pi\)
\(20\) 3.00000 0.670820
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) −1.50000 + 2.59808i −0.312772 + 0.541736i −0.978961 0.204046i \(-0.934591\pi\)
0.666190 + 0.745782i \(0.267924\pi\)
\(24\) 0 0
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 2.50000 4.33013i 0.490290 0.849208i
\(27\) 0 0
\(28\) −2.00000 1.73205i −0.377964 0.327327i
\(29\) 3.00000 0.557086 0.278543 0.960424i \(-0.410149\pi\)
0.278543 + 0.960424i \(0.410149\pi\)
\(30\) 0 0
\(31\) 2.00000 + 3.46410i 0.359211 + 0.622171i 0.987829 0.155543i \(-0.0497126\pi\)
−0.628619 + 0.777714i \(0.716379\pi\)
\(32\) 0.500000 + 0.866025i 0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 3.00000 0.514496
\(35\) −1.50000 + 7.79423i −0.253546 + 1.31747i
\(36\) 0 0
\(37\) 3.50000 6.06218i 0.575396 0.996616i −0.420602 0.907245i \(-0.638181\pi\)
0.995998 0.0893706i \(-0.0284856\pi\)
\(38\) 2.50000 + 4.33013i 0.405554 + 0.702439i
\(39\) 0 0
\(40\) 1.50000 2.59808i 0.237171 0.410792i
\(41\) 9.00000 1.40556 0.702782 0.711405i \(-0.251941\pi\)
0.702782 + 0.711405i \(0.251941\pi\)
\(42\) 0 0
\(43\) 11.0000 1.67748 0.838742 0.544529i \(-0.183292\pi\)
0.838742 + 0.544529i \(0.183292\pi\)
\(44\) −1.50000 + 2.59808i −0.226134 + 0.391675i
\(45\) 0 0
\(46\) 1.50000 + 2.59808i 0.221163 + 0.383065i
\(47\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(48\) 0 0
\(49\) 5.50000 4.33013i 0.785714 0.618590i
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) −2.50000 4.33013i −0.346688 0.600481i
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 0 0
\(55\) 9.00000 1.21356
\(56\) −2.50000 + 0.866025i −0.334077 + 0.115728i
\(57\) 0 0
\(58\) 1.50000 2.59808i 0.196960 0.341144i
\(59\) 6.00000 + 10.3923i 0.781133 + 1.35296i 0.931282 + 0.364299i \(0.118692\pi\)
−0.150148 + 0.988663i \(0.547975\pi\)
\(60\) 0 0
\(61\) −1.00000 + 1.73205i −0.128037 + 0.221766i −0.922916 0.385002i \(-0.874201\pi\)
0.794879 + 0.606768i \(0.207534\pi\)
\(62\) 4.00000 0.508001
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −7.50000 + 12.9904i −0.930261 + 1.61126i
\(66\) 0 0
\(67\) 2.00000 + 3.46410i 0.244339 + 0.423207i 0.961946 0.273241i \(-0.0880957\pi\)
−0.717607 + 0.696449i \(0.754762\pi\)
\(68\) 1.50000 2.59808i 0.181902 0.315063i
\(69\) 0 0
\(70\) 6.00000 + 5.19615i 0.717137 + 0.621059i
\(71\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(72\) 0 0
\(73\) −5.50000 9.52628i −0.643726 1.11497i −0.984594 0.174855i \(-0.944054\pi\)
0.340868 0.940111i \(-0.389279\pi\)
\(74\) −3.50000 6.06218i −0.406867 0.704714i
\(75\) 0 0
\(76\) 5.00000 0.573539
\(77\) −6.00000 5.19615i −0.683763 0.592157i
\(78\) 0 0
\(79\) −4.00000 + 6.92820i −0.450035 + 0.779484i −0.998388 0.0567635i \(-0.981922\pi\)
0.548352 + 0.836247i \(0.315255\pi\)
\(80\) −1.50000 2.59808i −0.167705 0.290474i
\(81\) 0 0
\(82\) 4.50000 7.79423i 0.496942 0.860729i
\(83\) −3.00000 −0.329293 −0.164646 0.986353i \(-0.552648\pi\)
−0.164646 + 0.986353i \(0.552648\pi\)
\(84\) 0 0
\(85\) −9.00000 −0.976187
\(86\) 5.50000 9.52628i 0.593080 1.02725i
\(87\) 0 0
\(88\) 1.50000 + 2.59808i 0.159901 + 0.276956i
\(89\) 7.50000 12.9904i 0.794998 1.37698i −0.127842 0.991795i \(-0.540805\pi\)
0.922840 0.385183i \(-0.125862\pi\)
\(90\) 0 0
\(91\) 12.5000 4.33013i 1.31036 0.453921i
\(92\) 3.00000 0.312772
\(93\) 0 0
\(94\) 0 0
\(95\) −7.50000 12.9904i −0.769484 1.33278i
\(96\) 0 0
\(97\) −1.00000 −0.101535 −0.0507673 0.998711i \(-0.516167\pi\)
−0.0507673 + 0.998711i \(0.516167\pi\)
\(98\) −1.00000 6.92820i −0.101015 0.699854i
\(99\) 0 0
\(100\) −2.00000 + 3.46410i −0.200000 + 0.346410i
\(101\) −1.50000 2.59808i −0.149256 0.258518i 0.781697 0.623658i \(-0.214354\pi\)
−0.930953 + 0.365140i \(0.881021\pi\)
\(102\) 0 0
\(103\) −2.50000 + 4.33013i −0.246332 + 0.426660i −0.962505 0.271263i \(-0.912559\pi\)
0.716173 + 0.697923i \(0.245892\pi\)
\(104\) −5.00000 −0.490290
\(105\) 0 0
\(106\) −3.00000 −0.291386
\(107\) −7.50000 + 12.9904i −0.725052 + 1.25583i 0.233900 + 0.972261i \(0.424851\pi\)
−0.958952 + 0.283567i \(0.908482\pi\)
\(108\) 0 0
\(109\) 3.50000 + 6.06218i 0.335239 + 0.580651i 0.983531 0.180741i \(-0.0578495\pi\)
−0.648292 + 0.761392i \(0.724516\pi\)
\(110\) 4.50000 7.79423i 0.429058 0.743151i
\(111\) 0 0
\(112\) −0.500000 + 2.59808i −0.0472456 + 0.245495i
\(113\) −15.0000 −1.41108 −0.705541 0.708669i \(-0.749296\pi\)
−0.705541 + 0.708669i \(0.749296\pi\)
\(114\) 0 0
\(115\) −4.50000 7.79423i −0.419627 0.726816i
\(116\) −1.50000 2.59808i −0.139272 0.241225i
\(117\) 0 0
\(118\) 12.0000 1.10469
\(119\) 6.00000 + 5.19615i 0.550019 + 0.476331i
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 1.00000 + 1.73205i 0.0905357 + 0.156813i
\(123\) 0 0
\(124\) 2.00000 3.46410i 0.179605 0.311086i
\(125\) −3.00000 −0.268328
\(126\) 0 0
\(127\) −16.0000 −1.41977 −0.709885 0.704317i \(-0.751253\pi\)
−0.709885 + 0.704317i \(0.751253\pi\)
\(128\) 0.500000 0.866025i 0.0441942 0.0765466i
\(129\) 0 0
\(130\) 7.50000 + 12.9904i 0.657794 + 1.13933i
\(131\) 1.50000 2.59808i 0.131056 0.226995i −0.793028 0.609185i \(-0.791497\pi\)
0.924084 + 0.382190i \(0.124830\pi\)
\(132\) 0 0
\(133\) −2.50000 + 12.9904i −0.216777 + 1.12641i
\(134\) 4.00000 0.345547
\(135\) 0 0
\(136\) −1.50000 2.59808i −0.128624 0.222783i
\(137\) 1.50000 + 2.59808i 0.128154 + 0.221969i 0.922961 0.384893i \(-0.125762\pi\)
−0.794808 + 0.606861i \(0.792428\pi\)
\(138\) 0 0
\(139\) 5.00000 0.424094 0.212047 0.977259i \(-0.431987\pi\)
0.212047 + 0.977259i \(0.431987\pi\)
\(140\) 7.50000 2.59808i 0.633866 0.219578i
\(141\) 0 0
\(142\) 0 0
\(143\) −7.50000 12.9904i −0.627182 1.08631i
\(144\) 0 0
\(145\) −4.50000 + 7.79423i −0.373705 + 0.647275i
\(146\) −11.0000 −0.910366
\(147\) 0 0
\(148\) −7.00000 −0.575396
\(149\) −1.50000 + 2.59808i −0.122885 + 0.212843i −0.920904 0.389789i \(-0.872548\pi\)
0.798019 + 0.602632i \(0.205881\pi\)
\(150\) 0 0
\(151\) −5.50000 9.52628i −0.447584 0.775238i 0.550645 0.834740i \(-0.314382\pi\)
−0.998228 + 0.0595022i \(0.981049\pi\)
\(152\) 2.50000 4.33013i 0.202777 0.351220i
\(153\) 0 0
\(154\) −7.50000 + 2.59808i −0.604367 + 0.209359i
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) −7.00000 12.1244i −0.558661 0.967629i −0.997609 0.0691164i \(-0.977982\pi\)
0.438948 0.898513i \(-0.355351\pi\)
\(158\) 4.00000 + 6.92820i 0.318223 + 0.551178i
\(159\) 0 0
\(160\) −3.00000 −0.237171
\(161\) −1.50000 + 7.79423i −0.118217 + 0.614271i
\(162\) 0 0
\(163\) −8.50000 + 14.7224i −0.665771 + 1.15315i 0.313304 + 0.949653i \(0.398564\pi\)
−0.979076 + 0.203497i \(0.934769\pi\)
\(164\) −4.50000 7.79423i −0.351391 0.608627i
\(165\) 0 0
\(166\) −1.50000 + 2.59808i −0.116423 + 0.201650i
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) −4.50000 + 7.79423i −0.345134 + 0.597790i
\(171\) 0 0
\(172\) −5.50000 9.52628i −0.419371 0.726372i
\(173\) 3.00000 5.19615i 0.228086 0.395056i −0.729155 0.684349i \(-0.760087\pi\)
0.957241 + 0.289292i \(0.0934200\pi\)
\(174\) 0 0
\(175\) −8.00000 6.92820i −0.604743 0.523723i
\(176\) 3.00000 0.226134
\(177\) 0 0
\(178\) −7.50000 12.9904i −0.562149 0.973670i
\(179\) 1.50000 + 2.59808i 0.112115 + 0.194189i 0.916623 0.399753i \(-0.130904\pi\)
−0.804508 + 0.593942i \(0.797571\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) 2.50000 12.9904i 0.185312 0.962911i
\(183\) 0 0
\(184\) 1.50000 2.59808i 0.110581 0.191533i
\(185\) 10.5000 + 18.1865i 0.771975 + 1.33710i
\(186\) 0 0
\(187\) 4.50000 7.79423i 0.329073 0.569970i
\(188\) 0 0
\(189\) 0 0
\(190\) −15.0000 −1.08821
\(191\) 6.00000 10.3923i 0.434145 0.751961i −0.563081 0.826402i \(-0.690384\pi\)
0.997225 + 0.0744412i \(0.0237173\pi\)
\(192\) 0 0
\(193\) −7.00000 12.1244i −0.503871 0.872730i −0.999990 0.00447566i \(-0.998575\pi\)
0.496119 0.868255i \(-0.334758\pi\)
\(194\) −0.500000 + 0.866025i −0.0358979 + 0.0621770i
\(195\) 0 0
\(196\) −6.50000 2.59808i −0.464286 0.185577i
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 0 0
\(199\) 3.50000 + 6.06218i 0.248108 + 0.429736i 0.963001 0.269498i \(-0.0868577\pi\)
−0.714893 + 0.699234i \(0.753524\pi\)
\(200\) 2.00000 + 3.46410i 0.141421 + 0.244949i
\(201\) 0 0
\(202\) −3.00000 −0.211079
\(203\) 7.50000 2.59808i 0.526397 0.182349i
\(204\) 0 0
\(205\) −13.5000 + 23.3827i −0.942881 + 1.63312i
\(206\) 2.50000 + 4.33013i 0.174183 + 0.301694i
\(207\) 0 0
\(208\) −2.50000 + 4.33013i −0.173344 + 0.300240i
\(209\) 15.0000 1.03757
\(210\) 0 0
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) −1.50000 + 2.59808i −0.103020 + 0.178437i
\(213\) 0 0
\(214\) 7.50000 + 12.9904i 0.512689 + 0.888004i
\(215\) −16.5000 + 28.5788i −1.12529 + 1.94906i
\(216\) 0 0
\(217\) 8.00000 + 6.92820i 0.543075 + 0.470317i
\(218\) 7.00000 0.474100
\(219\) 0 0
\(220\) −4.50000 7.79423i −0.303390 0.525487i
\(221\) 7.50000 + 12.9904i 0.504505 + 0.873828i
\(222\) 0 0
\(223\) 17.0000 1.13840 0.569202 0.822198i \(-0.307252\pi\)
0.569202 + 0.822198i \(0.307252\pi\)
\(224\) 2.00000 + 1.73205i 0.133631 + 0.115728i
\(225\) 0 0
\(226\) −7.50000 + 12.9904i −0.498893 + 0.864107i
\(227\) 4.50000 + 7.79423i 0.298675 + 0.517321i 0.975833 0.218517i \(-0.0701218\pi\)
−0.677158 + 0.735838i \(0.736789\pi\)
\(228\) 0 0
\(229\) −8.50000 + 14.7224i −0.561696 + 0.972886i 0.435653 + 0.900115i \(0.356518\pi\)
−0.997349 + 0.0727709i \(0.976816\pi\)
\(230\) −9.00000 −0.593442
\(231\) 0 0
\(232\) −3.00000 −0.196960
\(233\) 13.5000 23.3827i 0.884414 1.53185i 0.0380310 0.999277i \(-0.487891\pi\)
0.846383 0.532574i \(-0.178775\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 6.00000 10.3923i 0.390567 0.676481i
\(237\) 0 0
\(238\) 7.50000 2.59808i 0.486153 0.168408i
\(239\) −27.0000 −1.74648 −0.873242 0.487286i \(-0.837987\pi\)
−0.873242 + 0.487286i \(0.837987\pi\)
\(240\) 0 0
\(241\) −11.5000 19.9186i −0.740780 1.28307i −0.952141 0.305661i \(-0.901123\pi\)
0.211360 0.977408i \(-0.432211\pi\)
\(242\) −1.00000 1.73205i −0.0642824 0.111340i
\(243\) 0 0
\(244\) 2.00000 0.128037
\(245\) 3.00000 + 20.7846i 0.191663 + 1.32788i
\(246\) 0 0
\(247\) −12.5000 + 21.6506i −0.795356 + 1.37760i
\(248\) −2.00000 3.46410i −0.127000 0.219971i
\(249\) 0 0
\(250\) −1.50000 + 2.59808i −0.0948683 + 0.164317i
\(251\) −12.0000 −0.757433 −0.378717 0.925513i \(-0.623635\pi\)
−0.378717 + 0.925513i \(0.623635\pi\)
\(252\) 0 0
\(253\) 9.00000 0.565825
\(254\) −8.00000 + 13.8564i −0.501965 + 0.869428i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) 7.50000 12.9904i 0.467837 0.810318i −0.531487 0.847066i \(-0.678367\pi\)
0.999325 + 0.0367485i \(0.0117000\pi\)
\(258\) 0 0
\(259\) 3.50000 18.1865i 0.217479 1.13006i
\(260\) 15.0000 0.930261
\(261\) 0 0
\(262\) −1.50000 2.59808i −0.0926703 0.160510i
\(263\) −4.50000 7.79423i −0.277482 0.480613i 0.693276 0.720672i \(-0.256167\pi\)
−0.970758 + 0.240059i \(0.922833\pi\)
\(264\) 0 0
\(265\) 9.00000 0.552866
\(266\) 10.0000 + 8.66025i 0.613139 + 0.530994i
\(267\) 0 0
\(268\) 2.00000 3.46410i 0.122169 0.211604i
\(269\) 10.5000 + 18.1865i 0.640196 + 1.10885i 0.985389 + 0.170321i \(0.0544803\pi\)
−0.345192 + 0.938532i \(0.612186\pi\)
\(270\) 0 0
\(271\) 6.50000 11.2583i 0.394847 0.683895i −0.598235 0.801321i \(-0.704131\pi\)
0.993082 + 0.117426i \(0.0374643\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) 3.00000 0.181237
\(275\) −6.00000 + 10.3923i −0.361814 + 0.626680i
\(276\) 0 0
\(277\) 3.50000 + 6.06218i 0.210295 + 0.364241i 0.951807 0.306699i \(-0.0992243\pi\)
−0.741512 + 0.670940i \(0.765891\pi\)
\(278\) 2.50000 4.33013i 0.149940 0.259704i
\(279\) 0 0
\(280\) 1.50000 7.79423i 0.0896421 0.465794i
\(281\) −3.00000 −0.178965 −0.0894825 0.995988i \(-0.528521\pi\)
−0.0894825 + 0.995988i \(0.528521\pi\)
\(282\) 0 0
\(283\) −4.00000 6.92820i −0.237775 0.411839i 0.722300 0.691580i \(-0.243085\pi\)
−0.960076 + 0.279741i \(0.909752\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) −15.0000 −0.886969
\(287\) 22.5000 7.79423i 1.32813 0.460079i
\(288\) 0 0
\(289\) 4.00000 6.92820i 0.235294 0.407541i
\(290\) 4.50000 + 7.79423i 0.264249 + 0.457693i
\(291\) 0 0
\(292\) −5.50000 + 9.52628i −0.321863 + 0.557483i
\(293\) 27.0000 1.57736 0.788678 0.614806i \(-0.210766\pi\)
0.788678 + 0.614806i \(0.210766\pi\)
\(294\) 0 0
\(295\) −36.0000 −2.09600
\(296\) −3.50000 + 6.06218i −0.203433 + 0.352357i
\(297\) 0 0
\(298\) 1.50000 + 2.59808i 0.0868927 + 0.150503i
\(299\) −7.50000 + 12.9904i −0.433736 + 0.751253i
\(300\) 0 0
\(301\) 27.5000 9.52628i 1.58507 0.549086i
\(302\) −11.0000 −0.632979
\(303\) 0 0
\(304\) −2.50000 4.33013i −0.143385 0.248350i
\(305\) −3.00000 5.19615i −0.171780 0.297531i
\(306\) 0 0
\(307\) −28.0000 −1.59804 −0.799022 0.601302i \(-0.794649\pi\)
−0.799022 + 0.601302i \(0.794649\pi\)
\(308\) −1.50000 + 7.79423i −0.0854704 + 0.444117i
\(309\) 0 0
\(310\) −6.00000 + 10.3923i −0.340777 + 0.590243i
\(311\) −12.0000 20.7846i −0.680458 1.17859i −0.974841 0.222900i \(-0.928448\pi\)
0.294384 0.955687i \(-0.404886\pi\)
\(312\) 0 0
\(313\) −7.00000 + 12.1244i −0.395663 + 0.685309i −0.993186 0.116543i \(-0.962819\pi\)
0.597522 + 0.801852i \(0.296152\pi\)
\(314\) −14.0000 −0.790066
\(315\) 0 0
\(316\) 8.00000 0.450035
\(317\) 15.0000 25.9808i 0.842484 1.45922i −0.0453045 0.998973i \(-0.514426\pi\)
0.887788 0.460252i \(-0.152241\pi\)
\(318\) 0 0
\(319\) −4.50000 7.79423i −0.251952 0.436393i
\(320\) −1.50000 + 2.59808i −0.0838525 + 0.145237i
\(321\) 0 0
\(322\) 6.00000 + 5.19615i 0.334367 + 0.289570i
\(323\) −15.0000 −0.834622
\(324\) 0 0
\(325\) −10.0000 17.3205i −0.554700 0.960769i
\(326\) 8.50000 + 14.7224i 0.470771 + 0.815400i
\(327\) 0 0
\(328\) −9.00000 −0.496942
\(329\) 0 0
\(330\) 0 0
\(331\) −10.0000 + 17.3205i −0.549650 + 0.952021i 0.448649 + 0.893708i \(0.351905\pi\)
−0.998298 + 0.0583130i \(0.981428\pi\)
\(332\) 1.50000 + 2.59808i 0.0823232 + 0.142588i
\(333\) 0 0
\(334\) −1.50000 + 2.59808i −0.0820763 + 0.142160i
\(335\) −12.0000 −0.655630
\(336\) 0 0
\(337\) −25.0000 −1.36184 −0.680918 0.732359i \(-0.738419\pi\)
−0.680918 + 0.732359i \(0.738419\pi\)
\(338\) 6.00000 10.3923i 0.326357 0.565267i
\(339\) 0 0
\(340\) 4.50000 + 7.79423i 0.244047 + 0.422701i
\(341\) 6.00000 10.3923i 0.324918 0.562775i
\(342\) 0 0
\(343\) 10.0000 15.5885i 0.539949 0.841698i
\(344\) −11.0000 −0.593080
\(345\) 0 0
\(346\) −3.00000 5.19615i −0.161281 0.279347i
\(347\) −6.00000 10.3923i −0.322097 0.557888i 0.658824 0.752297i \(-0.271054\pi\)
−0.980921 + 0.194409i \(0.937721\pi\)
\(348\) 0 0
\(349\) 5.00000 0.267644 0.133822 0.991005i \(-0.457275\pi\)
0.133822 + 0.991005i \(0.457275\pi\)
\(350\) −10.0000 + 3.46410i −0.534522 + 0.185164i
\(351\) 0 0
\(352\) 1.50000 2.59808i 0.0799503 0.138478i
\(353\) −4.50000 7.79423i −0.239511 0.414845i 0.721063 0.692869i \(-0.243654\pi\)
−0.960574 + 0.278024i \(0.910320\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) −15.0000 −0.794998
\(357\) 0 0
\(358\) 3.00000 0.158555
\(359\) 7.50000 12.9904i 0.395835 0.685606i −0.597372 0.801964i \(-0.703789\pi\)
0.993207 + 0.116358i \(0.0371219\pi\)
\(360\) 0 0
\(361\) −3.00000 5.19615i −0.157895 0.273482i
\(362\) −5.00000 + 8.66025i −0.262794 + 0.455173i
\(363\) 0 0
\(364\) −10.0000 8.66025i −0.524142 0.453921i
\(365\) 33.0000 1.72730
\(366\) 0 0
\(367\) 0.500000 + 0.866025i 0.0260998 + 0.0452062i 0.878780 0.477227i \(-0.158358\pi\)
−0.852680 + 0.522433i \(0.825025\pi\)
\(368\) −1.50000 2.59808i −0.0781929 0.135434i
\(369\) 0 0
\(370\) 21.0000 1.09174
\(371\) −6.00000 5.19615i −0.311504 0.269771i
\(372\) 0 0
\(373\) −8.50000 + 14.7224i −0.440113 + 0.762299i −0.997697 0.0678218i \(-0.978395\pi\)
0.557584 + 0.830120i \(0.311728\pi\)
\(374\) −4.50000 7.79423i −0.232689 0.403030i
\(375\) 0 0
\(376\) 0 0
\(377\) 15.0000 0.772539
\(378\) 0 0
\(379\) −16.0000 −0.821865 −0.410932 0.911666i \(-0.634797\pi\)
−0.410932 + 0.911666i \(0.634797\pi\)
\(380\) −7.50000 + 12.9904i −0.384742 + 0.666392i
\(381\) 0 0
\(382\) −6.00000 10.3923i −0.306987 0.531717i
\(383\) −7.50000 + 12.9904i −0.383232 + 0.663777i −0.991522 0.129937i \(-0.958522\pi\)
0.608290 + 0.793715i \(0.291856\pi\)
\(384\) 0 0
\(385\) 22.5000 7.79423i 1.14671 0.397231i
\(386\) −14.0000 −0.712581
\(387\) 0 0
\(388\) 0.500000 + 0.866025i 0.0253837 + 0.0439658i
\(389\) 4.50000 + 7.79423i 0.228159 + 0.395183i 0.957263 0.289220i \(-0.0933960\pi\)
−0.729103 + 0.684403i \(0.760063\pi\)
\(390\) 0 0
\(391\) −9.00000 −0.455150
\(392\) −5.50000 + 4.33013i −0.277792 + 0.218704i
\(393\) 0 0
\(394\) 3.00000 5.19615i 0.151138 0.261778i
\(395\) −12.0000 20.7846i −0.603786 1.04579i
\(396\) 0 0
\(397\) −14.5000 + 25.1147i −0.727734 + 1.26047i 0.230105 + 0.973166i \(0.426093\pi\)
−0.957839 + 0.287307i \(0.907240\pi\)
\(398\) 7.00000 0.350878
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) 13.5000 23.3827i 0.674158 1.16768i −0.302556 0.953131i \(-0.597840\pi\)
0.976714 0.214544i \(-0.0688266\pi\)
\(402\) 0 0
\(403\) 10.0000 + 17.3205i 0.498135 + 0.862796i
\(404\) −1.50000 + 2.59808i −0.0746278 + 0.129259i
\(405\) 0 0
\(406\) 1.50000 7.79423i 0.0744438 0.386821i
\(407\) −21.0000 −1.04093
\(408\) 0 0
\(409\) 11.0000 + 19.0526i 0.543915 + 0.942088i 0.998674 + 0.0514740i \(0.0163919\pi\)
−0.454759 + 0.890614i \(0.650275\pi\)
\(410\) 13.5000 + 23.3827i 0.666717 + 1.15479i
\(411\) 0 0
\(412\) 5.00000 0.246332
\(413\) 24.0000 + 20.7846i 1.18096 + 1.02274i
\(414\) 0 0
\(415\) 4.50000 7.79423i 0.220896 0.382604i
\(416\) 2.50000 + 4.33013i 0.122573 + 0.212302i
\(417\) 0 0
\(418\) 7.50000 12.9904i 0.366837 0.635380i
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 0 0
\(421\) −31.0000 −1.51085 −0.755424 0.655237i \(-0.772569\pi\)
−0.755424 + 0.655237i \(0.772569\pi\)
\(422\) 2.50000 4.33013i 0.121698 0.210787i
\(423\) 0 0
\(424\) 1.50000 + 2.59808i 0.0728464 + 0.126174i
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) −1.00000 + 5.19615i −0.0483934 + 0.251459i
\(428\) 15.0000 0.725052
\(429\) 0 0
\(430\) 16.5000 + 28.5788i 0.795701 + 1.37819i
\(431\) −1.50000 2.59808i −0.0722525 0.125145i 0.827636 0.561266i \(-0.189685\pi\)
−0.899888 + 0.436121i \(0.856352\pi\)
\(432\) 0 0
\(433\) 14.0000 0.672797 0.336399 0.941720i \(-0.390791\pi\)
0.336399 + 0.941720i \(0.390791\pi\)
\(434\) 10.0000 3.46410i 0.480015 0.166282i
\(435\) 0 0
\(436\) 3.50000 6.06218i 0.167620 0.290326i
\(437\) −7.50000 12.9904i −0.358774 0.621414i
\(438\) 0 0
\(439\) −4.00000 + 6.92820i −0.190910 + 0.330665i −0.945552 0.325471i \(-0.894477\pi\)
0.754642 + 0.656136i \(0.227810\pi\)
\(440\) −9.00000 −0.429058
\(441\) 0 0
\(442\) 15.0000 0.713477
\(443\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(444\) 0 0
\(445\) 22.5000 + 38.9711i 1.06660 + 1.84741i
\(446\) 8.50000 14.7224i 0.402487 0.697127i
\(447\) 0 0
\(448\) 2.50000 0.866025i 0.118114 0.0409159i
\(449\) −30.0000 −1.41579 −0.707894 0.706319i \(-0.750354\pi\)
−0.707894 + 0.706319i \(0.750354\pi\)
\(450\) 0 0
\(451\) −13.5000 23.3827i −0.635690 1.10105i
\(452\) 7.50000 + 12.9904i 0.352770 + 0.611016i
\(453\) 0 0
\(454\) 9.00000 0.422391
\(455\) −7.50000 + 38.9711i −0.351605 + 1.82700i
\(456\) 0 0
\(457\) 17.0000 29.4449i 0.795226 1.37737i −0.127469 0.991843i \(-0.540685\pi\)
0.922695 0.385530i \(-0.125981\pi\)
\(458\) 8.50000 + 14.7224i 0.397179 + 0.687934i
\(459\) 0 0
\(460\) −4.50000 + 7.79423i −0.209814 + 0.363408i
\(461\) −9.00000 −0.419172 −0.209586 0.977790i \(-0.567212\pi\)
−0.209586 + 0.977790i \(0.567212\pi\)
\(462\) 0 0
\(463\) 35.0000 1.62659 0.813294 0.581853i \(-0.197672\pi\)
0.813294 + 0.581853i \(0.197672\pi\)
\(464\) −1.50000 + 2.59808i −0.0696358 + 0.120613i
\(465\) 0 0
\(466\) −13.5000 23.3827i −0.625375 1.08318i
\(467\) −1.50000 + 2.59808i −0.0694117 + 0.120225i −0.898642 0.438682i \(-0.855446\pi\)
0.829231 + 0.558906i \(0.188779\pi\)
\(468\) 0 0
\(469\) 8.00000 + 6.92820i 0.369406 + 0.319915i
\(470\) 0 0
\(471\) 0 0
\(472\) −6.00000 10.3923i −0.276172 0.478345i
\(473\) −16.5000 28.5788i −0.758671 1.31406i
\(474\) 0 0
\(475\) 20.0000 0.917663
\(476\) 1.50000 7.79423i 0.0687524 0.357248i
\(477\) 0 0
\(478\) −13.5000 + 23.3827i −0.617476 + 1.06950i
\(479\) −4.50000 7.79423i −0.205610 0.356127i 0.744717 0.667381i \(-0.232585\pi\)
−0.950327 + 0.311253i \(0.899251\pi\)
\(480\) 0 0
\(481\) 17.5000 30.3109i 0.797931 1.38206i
\(482\) −23.0000 −1.04762
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 1.50000 2.59808i 0.0681115 0.117973i
\(486\) 0 0
\(487\) 15.5000 + 26.8468i 0.702372 + 1.21654i 0.967632 + 0.252367i \(0.0812090\pi\)
−0.265260 + 0.964177i \(0.585458\pi\)
\(488\) 1.00000 1.73205i 0.0452679 0.0784063i
\(489\) 0 0
\(490\) 19.5000 + 7.79423i 0.880920 + 0.352107i
\(491\) 39.0000 1.76005 0.880023 0.474932i \(-0.157527\pi\)
0.880023 + 0.474932i \(0.157527\pi\)
\(492\) 0 0
\(493\) 4.50000 + 7.79423i 0.202670 + 0.351034i
\(494\) 12.5000 + 21.6506i 0.562402 + 0.974108i
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 0 0
\(498\) 0 0
\(499\) −5.50000 + 9.52628i −0.246214 + 0.426455i −0.962472 0.271380i \(-0.912520\pi\)
0.716258 + 0.697835i \(0.245853\pi\)
\(500\) 1.50000 + 2.59808i 0.0670820 + 0.116190i
\(501\) 0 0
\(502\) −6.00000 + 10.3923i −0.267793 + 0.463831i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) 9.00000 0.400495
\(506\) 4.50000 7.79423i 0.200049 0.346496i
\(507\) 0 0
\(508\) 8.00000 + 13.8564i 0.354943 + 0.614779i
\(509\) −13.5000 + 23.3827i −0.598377 + 1.03642i 0.394684 + 0.918817i \(0.370854\pi\)
−0.993061 + 0.117602i \(0.962479\pi\)
\(510\) 0 0
\(511\) −22.0000 19.0526i −0.973223 0.842836i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −7.50000 12.9904i −0.330811 0.572981i
\(515\) −7.50000 12.9904i −0.330489 0.572425i
\(516\) 0 0
\(517\) 0 0
\(518\) −14.0000 12.1244i −0.615125 0.532714i
\(519\) 0 0
\(520\) 7.50000 12.9904i 0.328897 0.569666i
\(521\) 1.50000 + 2.59808i 0.0657162 + 0.113824i 0.897011 0.442007i \(-0.145733\pi\)
−0.831295 + 0.555831i \(0.812400\pi\)
\(522\) 0 0
\(523\) 3.50000 6.06218i 0.153044 0.265081i −0.779301 0.626650i \(-0.784426\pi\)
0.932345 + 0.361569i \(0.117759\pi\)
\(524\) −3.00000 −0.131056
\(525\) 0 0
\(526\) −9.00000 −0.392419
\(527\) −6.00000 + 10.3923i −0.261364 + 0.452696i
\(528\) 0 0
\(529\) 7.00000 + 12.1244i 0.304348 + 0.527146i
\(530\) 4.50000 7.79423i 0.195468 0.338560i
\(531\) 0 0
\(532\) 12.5000 4.33013i 0.541944 0.187735i
\(533\) 45.0000 1.94917
\(534\) 0 0
\(535\) −22.5000 38.9711i −0.972760 1.68487i
\(536\) −2.00000 3.46410i −0.0863868 0.149626i
\(537\) 0 0
\(538\) 21.0000 0.905374
\(539\) −19.5000 7.79423i −0.839924 0.335721i
\(540\) 0 0
\(541\) −8.50000 + 14.7224i −0.365444 + 0.632967i −0.988847 0.148933i \(-0.952416\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) −6.50000 11.2583i −0.279199 0.483587i
\(543\) 0 0
\(544\) −1.50000 + 2.59808i −0.0643120 + 0.111392i
\(545\) −21.0000 −0.899541
\(546\) 0 0
\(547\) 11.0000 0.470326 0.235163 0.971956i \(-0.424438\pi\)
0.235163 + 0.971956i \(0.424438\pi\)
\(548\) 1.50000 2.59808i 0.0640768 0.110984i
\(549\) 0 0
\(550\) 6.00000 + 10.3923i 0.255841 + 0.443129i
\(551\) −7.50000 + 12.9904i −0.319511 + 0.553409i
\(552\) 0 0
\(553\) −4.00000 + 20.7846i −0.170097 + 0.883852i
\(554\) 7.00000 0.297402
\(555\) 0 0
\(556\) −2.50000 4.33013i −0.106024 0.183638i
\(557\) −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i \(-0.186911\pi\)
−0.896053 + 0.443947i \(0.853578\pi\)
\(558\) 0 0
\(559\) 55.0000 2.32625
\(560\) −6.00000 5.19615i −0.253546 0.219578i
\(561\) 0 0
\(562\) −1.50000 + 2.59808i −0.0632737 + 0.109593i
\(563\) −6.00000 10.3923i −0.252870 0.437983i 0.711445 0.702742i \(-0.248041\pi\)
−0.964315 + 0.264758i \(0.914708\pi\)
\(564\) 0 0
\(565\) 22.5000 38.9711i 0.946582 1.63953i
\(566\) −8.00000 −0.336265
\(567\) 0 0
\(568\) 0 0
\(569\) 15.0000 25.9808i 0.628833 1.08917i −0.358954 0.933355i \(-0.616866\pi\)
0.987786 0.155815i \(-0.0498003\pi\)
\(570\) 0 0
\(571\) −10.0000 17.3205i −0.418487 0.724841i 0.577301 0.816532i \(-0.304106\pi\)
−0.995788 + 0.0916910i \(0.970773\pi\)
\(572\) −7.50000 + 12.9904i −0.313591 + 0.543155i
\(573\) 0 0
\(574\) 4.50000 23.3827i 0.187826 0.975974i
\(575\) 12.0000 0.500435
\(576\) 0 0
\(577\) −5.50000 9.52628i −0.228968 0.396584i 0.728535 0.685009i \(-0.240202\pi\)
−0.957503 + 0.288425i \(0.906868\pi\)
\(578\) −4.00000 6.92820i −0.166378 0.288175i
\(579\) 0 0
\(580\) 9.00000 0.373705
\(581\) −7.50000 + 2.59808i −0.311152 + 0.107786i
\(582\) 0 0
\(583\) −4.50000 + 7.79423i −0.186371 + 0.322804i
\(584\) 5.50000 + 9.52628i 0.227592 + 0.394200i
\(585\) 0 0
\(586\) 13.5000 23.3827i 0.557680 0.965930i
\(587\) 33.0000 1.36206 0.681028 0.732257i \(-0.261533\pi\)
0.681028 + 0.732257i \(0.261533\pi\)
\(588\) 0 0
\(589\) −20.0000 −0.824086
\(590\) −18.0000 + 31.1769i −0.741048 + 1.28353i
\(591\) 0 0
\(592\) 3.50000 + 6.06218i 0.143849 + 0.249154i
\(593\) −10.5000 + 18.1865i −0.431183 + 0.746831i −0.996976 0.0777165i \(-0.975237\pi\)
0.565792 + 0.824548i \(0.308570\pi\)
\(594\) 0 0
\(595\) −22.5000 + 7.79423i −0.922410 + 0.319532i
\(596\) 3.00000 0.122885
\(597\) 0 0
\(598\) 7.50000 + 12.9904i 0.306698 + 0.531216i
\(599\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) 0 0
\(601\) −1.00000 −0.0407909 −0.0203954 0.999792i \(-0.506493\pi\)
−0.0203954 + 0.999792i \(0.506493\pi\)
\(602\) 5.50000 28.5788i 0.224163 1.16479i
\(603\) 0 0
\(604\) −5.50000 + 9.52628i −0.223792 + 0.387619i
\(605\) 3.00000 + 5.19615i 0.121967 + 0.211254i
\(606\) 0 0
\(607\) 21.5000 37.2391i 0.872658 1.51149i 0.0134214 0.999910i \(-0.495728\pi\)
0.859237 0.511578i \(-0.170939\pi\)
\(608\) −5.00000 −0.202777
\(609\) 0 0
\(610\) −6.00000 −0.242933
\(611\) 0 0
\(612\) 0 0
\(613\) 15.5000 + 26.8468i 0.626039 + 1.08433i 0.988339 + 0.152270i \(0.0486583\pi\)
−0.362300 + 0.932062i \(0.618008\pi\)
\(614\) −14.0000 + 24.2487i −0.564994 + 0.978598i
\(615\) 0 0
\(616\) 6.00000 + 5.19615i 0.241747 + 0.209359i
\(617\) −3.00000 −0.120775 −0.0603877 0.998175i \(-0.519234\pi\)
−0.0603877 + 0.998175i \(0.519234\pi\)
\(618\) 0 0
\(619\) 9.50000 + 16.4545i 0.381837 + 0.661361i 0.991325 0.131434i \(-0.0419582\pi\)
−0.609488 + 0.792796i \(0.708625\pi\)
\(620\) 6.00000 + 10.3923i 0.240966 + 0.417365i
\(621\) 0 0
\(622\) −24.0000 −0.962312
\(623\) 7.50000 38.9711i 0.300481 1.56135i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) 7.00000 + 12.1244i 0.279776 + 0.484587i
\(627\) 0 0
\(628\) −7.00000 + 12.1244i −0.279330 + 0.483814i
\(629\) 21.0000 0.837325
\(630\) 0 0
\(631\) 8.00000 0.318475 0.159237 0.987240i \(-0.449096\pi\)
0.159237 + 0.987240i \(0.449096\pi\)
\(632\) 4.00000 6.92820i 0.159111 0.275589i
\(633\) 0 0
\(634\) −15.0000 25.9808i −0.595726 1.03183i
\(635\) 24.0000 41.5692i 0.952411 1.64962i
\(636\) 0 0
\(637\) 27.5000 21.6506i 1.08959 0.857829i
\(638\) −9.00000 −0.356313
\(639\) 0 0
\(640\) 1.50000 + 2.59808i 0.0592927 + 0.102698i
\(641\) −22.5000 38.9711i −0.888697 1.53927i −0.841417 0.540386i \(-0.818278\pi\)
−0.0472793 0.998882i \(-0.515055\pi\)
\(642\) 0 0
\(643\) 29.0000 1.14365 0.571824 0.820376i \(-0.306236\pi\)
0.571824 + 0.820376i \(0.306236\pi\)
\(644\) 7.50000 2.59808i 0.295541 0.102379i
\(645\) 0 0
\(646\) −7.50000 + 12.9904i −0.295084 + 0.511100i
\(647\) −1.50000 2.59808i −0.0589711 0.102141i 0.835033 0.550200i \(-0.185449\pi\)
−0.894004 + 0.448059i \(0.852115\pi\)
\(648\) 0 0
\(649\) 18.0000 31.1769i 0.706562 1.22380i
\(650\) −20.0000 −0.784465
\(651\) 0 0
\(652\) 17.0000 0.665771
\(653\) 4.50000 7.79423i 0.176099 0.305012i −0.764442 0.644692i \(-0.776986\pi\)
0.940541 + 0.339680i \(0.110319\pi\)
\(654\) 0 0
\(655\) 4.50000 + 7.79423i 0.175830 + 0.304546i
\(656\) −4.50000 + 7.79423i −0.175695 + 0.304314i
\(657\) 0 0
\(658\) 0 0
\(659\) −39.0000 −1.51922 −0.759612 0.650376i \(-0.774611\pi\)
−0.759612 + 0.650376i \(0.774611\pi\)
\(660\) 0 0
\(661\) −7.00000 12.1244i −0.272268 0.471583i 0.697174 0.716902i \(-0.254441\pi\)
−0.969442 + 0.245319i \(0.921107\pi\)
\(662\) 10.0000 + 17.3205i 0.388661 + 0.673181i
\(663\) 0 0
\(664\) 3.00000 0.116423
\(665\) −30.0000 25.9808i −1.16335 1.00749i
\(666\) 0 0
\(667\) −4.50000 + 7.79423i −0.174241 + 0.301794i
\(668\) 1.50000 + 2.59808i 0.0580367 + 0.100523i
\(669\) 0 0
\(670\) −6.00000 + 10.3923i −0.231800 + 0.401490i
\(671\) 6.00000 0.231627
\(672\) 0 0
\(673\) 11.0000 0.424019 0.212009 0.977268i \(-0.431999\pi\)
0.212009 + 0.977268i \(0.431999\pi\)
\(674\) −12.5000 + 21.6506i −0.481482 + 0.833951i
\(675\) 0 0
\(676\) −6.00000 10.3923i −0.230769 0.399704i
\(677\) 3.00000 5.19615i 0.115299 0.199704i −0.802600 0.596518i \(-0.796551\pi\)
0.917899 + 0.396813i \(0.129884\pi\)
\(678\) 0 0
\(679\) −2.50000 + 0.866025i −0.0959412 + 0.0332350i
\(680\) 9.00000 0.345134
\(681\) 0 0
\(682\) −6.00000 10.3923i −0.229752 0.397942i
\(683\) −16.5000 28.5788i −0.631355 1.09354i −0.987275 0.159022i \(-0.949166\pi\)
0.355920 0.934516i \(-0.384168\pi\)
\(684\) 0 0
\(685\) −9.00000 −0.343872
\(686\) −8.50000 16.4545i −0.324532 0.628235i
\(687\) 0 0
\(688\) −5.50000 + 9.52628i −0.209686 + 0.363186i
\(689\) −7.50000 12.9904i −0.285727 0.494894i
\(690\) 0 0
\(691\) −10.0000 + 17.3205i −0.380418 + 0.658903i −0.991122 0.132956i \(-0.957553\pi\)
0.610704 + 0.791859i \(0.290887\pi\)
\(692\) −6.00000 −0.228086
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −7.50000 + 12.9904i −0.284491 + 0.492753i
\(696\) 0 0
\(697\) 13.5000 + 23.3827i 0.511349 + 0.885682i
\(698\) 2.50000 4.33013i 0.0946264 0.163898i
\(699\) 0 0
\(700\) −2.00000 + 10.3923i −0.0755929 + 0.392792i
\(701\) −6.00000 −0.226617 −0.113308 0.993560i \(-0.536145\pi\)
−0.113308 + 0.993560i \(0.536145\pi\)
\(702\) 0 0
\(703\) 17.5000 + 30.3109i 0.660025 + 1.14320i
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 0 0
\(706\) −9.00000 −0.338719
\(707\) −6.00000 5.19615i −0.225653 0.195421i
\(708\) 0 0
\(709\) 5.00000 8.66025i 0.187779 0.325243i −0.756730 0.653727i \(-0.773204\pi\)
0.944509 + 0.328484i \(0.106538\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) −7.50000 + 12.9904i −0.281074 + 0.486835i
\(713\) −12.0000 −0.449404
\(714\) 0 0
\(715\) 45.0000 1.68290
\(716\) 1.50000 2.59808i 0.0560576 0.0970947i
\(717\) 0 0
\(718\) −7.50000 12.9904i −0.279898 0.484797i
\(719\) 19.5000 33.7750i 0.727227 1.25959i −0.230823 0.972996i \(-0.574142\pi\)
0.958051 0.286599i \(-0.0925247\pi\)
\(720\) 0 0
\(721\) −2.50000 + 12.9904i −0.0931049 + 0.483787i
\(722\) −6.00000 −0.223297
\(723\) 0 0
\(724\) 5.00000 + 8.66025i 0.185824 + 0.321856i
\(725\) −6.00000 10.3923i −0.222834 0.385961i
\(726\) 0 0
\(727\) 5.00000 0.185440 0.0927199 0.995692i \(-0.470444\pi\)
0.0927199 + 0.995692i \(0.470444\pi\)
\(728\) −12.5000 + 4.33013i −0.463281 + 0.160485i
\(729\) 0 0
\(730\) 16.5000 28.5788i 0.610692 1.05775i
\(731\) 16.5000 + 28.5788i 0.610275 + 1.05703i
\(732\) 0 0
\(733\) −20.5000 + 35.5070i −0.757185 + 1.31148i 0.187096 + 0.982342i \(0.440092\pi\)
−0.944281 + 0.329141i \(0.893241\pi\)
\(734\) 1.00000 0.0369107
\(735\) 0 0
\(736\) −3.00000 −0.110581
\(737\) 6.00000 10.3923i 0.221013 0.382805i
\(738\) 0 0
\(739\) −23.5000 40.7032i −0.864461 1.49729i −0.867581 0.497296i \(-0.834326\pi\)
0.00311943 0.999995i \(-0.499007\pi\)
\(740\) 10.5000 18.1865i 0.385988 0.668550i
\(741\) 0 0
\(742\) −7.50000 + 2.59808i −0.275334 + 0.0953784i
\(743\) −3.00000 −0.110059 −0.0550297 0.998485i \(-0.517525\pi\)
−0.0550297 + 0.998485i \(0.517525\pi\)
\(744\) 0 0
\(745\) −4.50000 7.79423i −0.164867 0.285558i
\(746\) 8.50000 + 14.7224i 0.311207 + 0.539027i
\(747\) 0 0
\(748\) −9.00000 −0.329073
\(749\) −7.50000 + 38.9711i −0.274044 + 1.42397i
\(750\) 0 0
\(751\) −14.5000 + 25.1147i −0.529113 + 0.916450i 0.470311 + 0.882501i \(0.344142\pi\)
−0.999424 + 0.0339490i \(0.989192\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 7.50000 12.9904i 0.273134 0.473082i
\(755\) 33.0000 1.20099
\(756\) 0 0
\(757\) 14.0000 0.508839 0.254419 0.967094i \(-0.418116\pi\)
0.254419 + 0.967094i \(0.418116\pi\)
\(758\) −8.00000 + 13.8564i −0.290573 + 0.503287i
\(759\) 0 0
\(760\) 7.50000 + 12.9904i 0.272054 + 0.471211i
\(761\) 1.50000 2.59808i 0.0543750 0.0941802i −0.837557 0.546350i \(-0.816017\pi\)
0.891932 + 0.452170i \(0.149350\pi\)
\(762\) 0 0
\(763\) 14.0000 + 12.1244i 0.506834 + 0.438931i
\(764\) −12.0000 −0.434145
\(765\) 0 0
\(766\) 7.50000 + 12.9904i 0.270986 + 0.469362i
\(767\) 30.0000 + 51.9615i 1.08324 + 1.87622i
\(768\) 0 0
\(769\) −1.00000 −0.0360609 −0.0180305 0.999837i \(-0.505740\pi\)
−0.0180305 + 0.999837i \(0.505740\pi\)
\(770\) 4.50000 23.3827i 0.162169 0.842654i
\(771\) 0 0
\(772\) −7.00000 + 12.1244i −0.251936 + 0.436365i
\(773\) 10.5000 + 18.1865i 0.377659 + 0.654124i 0.990721 0.135910i \(-0.0433959\pi\)
−0.613062 + 0.790034i \(0.710063\pi\)
\(774\) 0 0
\(775\) 8.00000 13.8564i 0.287368 0.497737i
\(776\) 1.00000 0.0358979
\(777\) 0 0
\(778\) 9.00000 0.322666
\(779\) −22.5000 + 38.9711i −0.806146 + 1.39629i
\(780\) 0 0
\(781\) 0 0
\(782\) −4.50000 + 7.79423i −0.160920 + 0.278721i
\(783\) 0 0
\(784\) 1.00000 + 6.92820i 0.0357143 + 0.247436i
\(785\) 42.0000 1.49904
\(786\) 0 0
\(787\) −22.0000 38.1051i −0.784215 1.35830i −0.929467 0.368906i \(-0.879732\pi\)
0.145251 0.989395i \(-0.453601\pi\)
\(788\) −3.00000 5.19615i −0.106871 0.185105i
\(789\) 0 0
\(790\) −24.0000 −0.853882
\(791\) −37.5000 + 12.9904i −1.33335 + 0.461885i
\(792\) 0 0
\(793\) −5.00000 + 8.66025i −0.177555 + 0.307535i
\(794\) 14.5000 + 25.1147i 0.514586 + 0.891289i
\(795\) 0 0
\(796\) 3.50000 6.06218i 0.124054 0.214868i
\(797\) 27.0000 0.956389 0.478195 0.878254i \(-0.341291\pi\)
0.478195 + 0.878254i \(0.341291\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.00000 3.46410i 0.0707107 0.122474i
\(801\) 0 0
\(802\) −13.5000 23.3827i −0.476702 0.825671i
\(803\) −16.5000 + 28.5788i −0.582272 + 1.00853i
\(804\) 0 0
\(805\) −18.0000 15.5885i −0.634417 0.549421i
\(806\) 20.0000 0.704470
\(807\) 0 0
\(808\) 1.50000 + 2.59808i 0.0527698 + 0.0914000i
\(809\) 19.5000 + 33.7750i 0.685583 + 1.18747i 0.973253 + 0.229736i \(0.0737862\pi\)
−0.287670 + 0.957730i \(0.592880\pi\)
\(810\) 0 0
\(811\) 20.0000 0.702295 0.351147 0.936320i \(-0.385792\pi\)
0.351147 + 0.936320i \(0.385792\pi\)
\(812\) −6.00000 5.19615i −0.210559 0.182349i
\(813\) 0 0
\(814\) −10.5000 + 18.1865i −0.368025 + 0.637438i
\(815\) −25.5000 44.1673i −0.893226 1.54711i
\(816\) 0 0
\(817\) −27.5000 + 47.6314i −0.962103 + 1.66641i
\(818\) 22.0000 0.769212
\(819\) 0 0
\(820\) 27.0000 0.942881
\(821\) −27.0000 + 46.7654i −0.942306 + 1.63212i −0.181250 + 0.983437i \(0.558014\pi\)
−0.761056 + 0.648686i \(0.775319\pi\)
\(822\) 0 0
\(823\) 20.0000 + 34.6410i 0.697156 + 1.20751i 0.969448 + 0.245295i \(0.0788849\pi\)
−0.272292 + 0.962215i \(0.587782\pi\)
\(824\) 2.50000 4.33013i 0.0870916 0.150847i
\(825\) 0 0
\(826\) 30.0000 10.3923i 1.04383 0.361595i
\(827\) 24.0000 0.834562 0.417281 0.908778i \(-0.362983\pi\)
0.417281 + 0.908778i \(0.362983\pi\)
\(828\) 0 0
\(829\) −20.5000 35.5070i −0.711994 1.23321i −0.964107 0.265513i \(-0.914459\pi\)
0.252113 0.967698i \(-0.418875\pi\)
\(830\) −4.50000 7.79423i −0.156197 0.270542i
\(831\) 0 0
\(832\) 5.00000 0.173344
\(833\) 19.5000 + 7.79423i 0.675635 + 0.270054i
\(834\) 0 0
\(835\) 4.50000 7.79423i 0.155729 0.269730i
\(836\) −7.50000 12.9904i −0.259393 0.449282i
\(837\) 0 0
\(838\) 1.50000 2.59808i 0.0518166 0.0897491i
\(839\) 39.0000 1.34643 0.673215 0.739447i \(-0.264913\pi\)
0.673215 + 0.739447i \(0.264913\pi\)
\(840\) 0 0
\(841\) −20.0000 −0.689655
\(842\) −15.5000 + 26.8468i −0.534165 + 0.925201i
\(843\) 0 0
\(844\) −2.50000 4.33013i −0.0860535 0.149049i
\(845\) −18.0000 + 31.1769i −0.619219 + 1.07252i
\(846\) 0 0
\(847\) 1.00000 5.19615i 0.0343604 0.178542i
\(848\) 3.00000 0.103020
\(849\) 0 0
\(850\) −6.00000 10.3923i −0.205798 0.356453i
\(851\) 10.5000 + 18.1865i 0.359935 + 0.623426i
\(852\) 0 0
\(853\) 17.0000 0.582069 0.291034 0.956713i \(-0.406001\pi\)
0.291034 + 0.956713i \(0.406001\pi\)
\(854\) 4.00000 + 3.46410i 0.136877 + 0.118539i
\(855\) 0 0
\(856\) 7.50000 12.9904i 0.256345 0.444002i
\(857\) −16.5000 28.5788i −0.563629 0.976235i −0.997176 0.0751033i \(-0.976071\pi\)
0.433546 0.901131i \(-0.357262\pi\)
\(858\) 0 0
\(859\) −5.50000 + 9.52628i −0.187658 + 0.325032i −0.944469 0.328601i \(-0.893423\pi\)
0.756811 + 0.653633i \(0.226756\pi\)
\(860\) 33.0000 1.12529
\(861\) 0 0
\(862\) −3.00000 −0.102180
\(863\) 7.50000 12.9904i 0.255303 0.442198i −0.709675 0.704529i \(-0.751158\pi\)
0.964978 + 0.262332i \(0.0844915\pi\)
\(864\) 0 0
\(865\) 9.00000 + 15.5885i 0.306009 + 0.530023i
\(866\) 7.00000 12.1244i 0.237870 0.412002i
\(867\) 0 0
\(868\) 2.00000 10.3923i 0.0678844 0.352738i
\(869\) 24.0000 0.814144
\(870\) 0 0
\(871\) 10.0000 + 17.3205i 0.338837 + 0.586883i
\(872\) −3.50000 6.06218i −0.118525 0.205291i
\(873\) 0 0
\(874\) −15.0000 −0.507383
\(875\) −7.50000 + 2.59808i −0.253546 + 0.0878310i
\(876\) 0 0
\(877\) 21.5000 37.2391i 0.726003 1.25747i −0.232556 0.972583i \(-0.574709\pi\)
0.958560 0.284892i \(-0.0919577\pi\)
\(878\) 4.00000 + 6.92820i 0.134993 + 0.233816i
\(879\) 0 0
\(880\) −4.50000 + 7.79423i −0.151695 + 0.262743i
\(881\) −6.00000 −0.202145 −0.101073 0.994879i \(-0.532227\pi\)
−0.101073 + 0.994879i \(0.532227\pi\)
\(882\) 0 0
\(883\) −4.00000 −0.134611 −0.0673054 0.997732i \(-0.521440\pi\)
−0.0673054 + 0.997732i \(0.521440\pi\)
\(884\) 7.50000 12.9904i 0.252252 0.436914i
\(885\) 0 0
\(886\) 0 0
\(887\) −19.5000 + 33.7750i −0.654746 + 1.13405i 0.327212 + 0.944951i \(0.393891\pi\)
−0.981957 + 0.189102i \(0.939442\pi\)
\(888\) 0 0
\(889\) −40.0000 + 13.8564i −1.34156 + 0.464729i
\(890\) 45.0000 1.50840
\(891\) 0 0
\(892\) −8.50000 14.7224i −0.284601 0.492943i
\(893\) 0 0
\(894\) 0 0
\(895\) −9.00000 −0.300837
\(896\) 0.500000 2.59808i 0.0167038 0.0867956i
\(897\) 0 0
\(898\) −15.0000 + 25.9808i −0.500556 + 0.866989i
\(899\) 6.00000 + 10.3923i 0.200111 + 0.346603i
\(900\) 0 0
\(901\) 4.50000 7.79423i 0.149917 0.259663i
\(902\) −27.0000 −0.899002
\(903\) 0 0
\(904\) 15.0000 0.498893
\(905\) 15.0000 25.9808i 0.498617 0.863630i
\(906\) 0 0
\(907\) −8.50000 14.7224i −0.282238 0.488850i 0.689698 0.724097i \(-0.257743\pi\)
−0.971936 + 0.235247i \(0.924410\pi\)
\(908\) 4.50000 7.79423i 0.149338 0.258661i
\(909\) 0 0
\(910\) 30.0000 + 25.9808i 0.994490 + 0.861254i
\(911\) −9.00000 −0.298183 −0.149092 0.988823i \(-0.547635\pi\)
−0.149092 + 0.988823i \(0.547635\pi\)
\(912\) 0 0
\(913\) 4.50000 + 7.79423i 0.148928 + 0.257951i
\(914\) −17.0000 29.4449i −0.562310 0.973950i
\(915\) 0 0
\(916\) 17.0000 0.561696
\(917\) 1.50000 7.79423i 0.0495344 0.257388i
\(918\) 0 0
\(919\) 0.500000 0.866025i 0.0164935 0.0285675i −0.857661 0.514216i \(-0.828083\pi\)
0.874154 + 0.485648i \(0.161416\pi\)
\(920\) 4.50000 + 7.79423i 0.148361 + 0.256968i
\(921\) 0 0
\(922\) −4.50000 + 7.79423i −0.148200 + 0.256689i
\(923\) 0 0
\(924\) 0 0
\(925\) −28.0000 −0.920634
\(926\) 17.5000 30.3109i 0.575086 0.996078i
\(927\) 0 0
\(928\) 1.50000 + 2.59808i 0.0492399 + 0.0852860i
\(929\) −9.00000 + 15.5885i −0.295280 + 0.511441i −0.975050 0.221985i \(-0.928746\pi\)
0.679770 + 0.733426i \(0.262080\pi\)
\(930\) 0 0
\(931\) 5.00000 + 34.6410i 0.163868 + 1.13531i
\(932\) −27.0000 −0.884414
\(933\) 0 0
\(934\) 1.50000 + 2.59808i 0.0490815 + 0.0850117i
\(935\) 13.5000 + 23.3827i 0.441497 + 0.764696i
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 10.0000 3.46410i 0.326512 0.113107i
\(939\) 0 0
\(940\) 0 0
\(941\) 27.0000 + 46.7654i 0.880175 + 1.52451i 0.851146 + 0.524929i \(0.175908\pi\)
0.0290288 + 0.999579i \(0.490759\pi\)
\(942\) 0 0
\(943\) −13.5000 + 23.3827i −0.439620 + 0.761445i
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) −33.0000 −1.07292
\(947\) −6.00000 + 10.3923i −0.194974 + 0.337705i −0.946892 0.321552i \(-0.895796\pi\)
0.751918 + 0.659256i \(0.229129\pi\)
\(948\) 0 0
\(949\) −27.5000 47.6314i −0.892688 1.54618i
\(950\) 10.0000 17.3205i 0.324443 0.561951i
\(951\) 0 0
\(952\) −6.00000 5.19615i −0.194461 0.168408i
\(953\) 6.00000 0.194359 0.0971795 0.995267i \(-0.469018\pi\)
0.0971795 + 0.995267i \(0.469018\pi\)
\(954\) 0 0
\(955\) 18.0000 + 31.1769i 0.582466 + 1.00886i
\(956\) 13.5000 + 23.3827i 0.436621 + 0.756250i
\(957\) 0 0
\(958\) −9.00000 −0.290777
\(959\) 6.00000 + 5.19615i 0.193750 + 0.167793i
\(960\) 0 0
\(961\) 7.50000 12.9904i 0.241935 0.419045i
\(962\) −17.5000 30.3109i −0.564223 0.977262i
\(963\) 0 0
\(964\) −11.5000 + 19.9186i −0.370390 + 0.641534i
\(965\) 42.0000 1.35203
\(966\) 0 0
\(967\) −49.0000 −1.57573 −0.787867 0.615846i \(-0.788815\pi\)
−0.787867 + 0.615846i \(0.788815\pi\)
\(968\) −1.00000 + 1.73205i −0.0321412 + 0.0556702i
\(969\) 0 0
\(970\) −1.50000 2.59808i −0.0481621 0.0834192i
\(971\) −13.5000 + 23.3827i −0.433236 + 0.750386i −0.997150 0.0754473i \(-0.975962\pi\)
0.563914 + 0.825833i \(0.309295\pi\)
\(972\) 0 0
\(973\) 12.5000 4.33013i 0.400732 0.138817i
\(974\) 31.0000 0.993304
\(975\) 0 0
\(976\) −1.00000 1.73205i −0.0320092 0.0554416i
\(977\) 3.00000 + 5.19615i 0.0959785 + 0.166240i 0.910017 0.414572i \(-0.136069\pi\)
−0.814038 + 0.580812i \(0.802735\pi\)
\(978\) 0 0
\(979\) −45.0000 −1.43821
\(980\) 16.5000 12.9904i 0.527073 0.414963i
\(981\) 0 0
\(982\) 19.5000 33.7750i 0.622270 1.07780i
\(983\) −10.5000 18.1865i −0.334898 0.580060i 0.648567 0.761157i \(-0.275369\pi\)
−0.983465 + 0.181097i \(0.942035\pi\)
\(984\) 0 0
\(985\) −9.00000 + 15.5885i −0.286764 + 0.496690i
\(986\) 9.00000 0.286618
\(987\) 0 0
\(988\) 25.0000 0.795356
\(989\) −16.5000 + 28.5788i −0.524669 + 0.908754i
\(990\) 0 0
\(991\) −14.5000 25.1147i −0.460608 0.797796i 0.538384 0.842700i \(-0.319035\pi\)
−0.998991 + 0.0449040i \(0.985702\pi\)
\(992\) −2.00000 + 3.46410i −0.0635001 + 0.109985i
\(993\) 0 0
\(994\) 0 0
\(995\) −21.0000 −0.665745
\(996\) 0 0
\(997\) −20.5000 35.5070i −0.649242 1.12452i −0.983304 0.181968i \(-0.941753\pi\)
0.334063 0.942551i \(-0.391580\pi\)
\(998\) 5.50000 + 9.52628i 0.174099 + 0.301549i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1134.2.g.f.163.1 2
3.2 odd 2 1134.2.g.d.163.1 2
7.2 even 3 7938.2.a.o.1.1 1
7.4 even 3 inner 1134.2.g.f.487.1 2
7.5 odd 6 7938.2.a.c.1.1 1
9.2 odd 6 126.2.e.b.121.1 yes 2
9.4 even 3 378.2.h.b.289.1 2
9.5 odd 6 126.2.h.a.79.1 yes 2
9.7 even 3 378.2.e.a.37.1 2
21.2 odd 6 7938.2.a.r.1.1 1
21.5 even 6 7938.2.a.bd.1.1 1
21.11 odd 6 1134.2.g.d.487.1 2
36.7 odd 6 3024.2.q.a.2305.1 2
36.11 even 6 1008.2.q.e.625.1 2
36.23 even 6 1008.2.t.c.961.1 2
36.31 odd 6 3024.2.t.f.289.1 2
63.2 odd 6 882.2.f.e.589.1 2
63.4 even 3 378.2.e.a.235.1 2
63.5 even 6 882.2.f.a.295.1 2
63.11 odd 6 126.2.h.a.67.1 yes 2
63.13 odd 6 2646.2.h.f.667.1 2
63.16 even 3 2646.2.f.e.1765.1 2
63.20 even 6 882.2.e.h.373.1 2
63.23 odd 6 882.2.f.e.295.1 2
63.25 even 3 378.2.h.b.361.1 2
63.31 odd 6 2646.2.e.e.2125.1 2
63.32 odd 6 126.2.e.b.25.1 2
63.34 odd 6 2646.2.e.e.1549.1 2
63.38 even 6 882.2.h.e.67.1 2
63.40 odd 6 2646.2.f.i.883.1 2
63.41 even 6 882.2.h.e.79.1 2
63.47 even 6 882.2.f.a.589.1 2
63.52 odd 6 2646.2.h.f.361.1 2
63.58 even 3 2646.2.f.e.883.1 2
63.59 even 6 882.2.e.h.655.1 2
63.61 odd 6 2646.2.f.i.1765.1 2
252.11 even 6 1008.2.t.c.193.1 2
252.67 odd 6 3024.2.q.a.2881.1 2
252.95 even 6 1008.2.q.e.529.1 2
252.151 odd 6 3024.2.t.f.1873.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
126.2.e.b.25.1 2 63.32 odd 6
126.2.e.b.121.1 yes 2 9.2 odd 6
126.2.h.a.67.1 yes 2 63.11 odd 6
126.2.h.a.79.1 yes 2 9.5 odd 6
378.2.e.a.37.1 2 9.7 even 3
378.2.e.a.235.1 2 63.4 even 3
378.2.h.b.289.1 2 9.4 even 3
378.2.h.b.361.1 2 63.25 even 3
882.2.e.h.373.1 2 63.20 even 6
882.2.e.h.655.1 2 63.59 even 6
882.2.f.a.295.1 2 63.5 even 6
882.2.f.a.589.1 2 63.47 even 6
882.2.f.e.295.1 2 63.23 odd 6
882.2.f.e.589.1 2 63.2 odd 6
882.2.h.e.67.1 2 63.38 even 6
882.2.h.e.79.1 2 63.41 even 6
1008.2.q.e.529.1 2 252.95 even 6
1008.2.q.e.625.1 2 36.11 even 6
1008.2.t.c.193.1 2 252.11 even 6
1008.2.t.c.961.1 2 36.23 even 6
1134.2.g.d.163.1 2 3.2 odd 2
1134.2.g.d.487.1 2 21.11 odd 6
1134.2.g.f.163.1 2 1.1 even 1 trivial
1134.2.g.f.487.1 2 7.4 even 3 inner
2646.2.e.e.1549.1 2 63.34 odd 6
2646.2.e.e.2125.1 2 63.31 odd 6
2646.2.f.e.883.1 2 63.58 even 3
2646.2.f.e.1765.1 2 63.16 even 3
2646.2.f.i.883.1 2 63.40 odd 6
2646.2.f.i.1765.1 2 63.61 odd 6
2646.2.h.f.361.1 2 63.52 odd 6
2646.2.h.f.667.1 2 63.13 odd 6
3024.2.q.a.2305.1 2 36.7 odd 6
3024.2.q.a.2881.1 2 252.67 odd 6
3024.2.t.f.289.1 2 36.31 odd 6
3024.2.t.f.1873.1 2 252.151 odd 6
7938.2.a.c.1.1 1 7.5 odd 6
7938.2.a.o.1.1 1 7.2 even 3
7938.2.a.r.1.1 1 21.2 odd 6
7938.2.a.bd.1.1 1 21.5 even 6