Properties

Label 2704.2.a.x.1.2
Level $2704$
Weight $2$
Character 2704.1
Self dual yes
Analytic conductor $21.592$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2704,2,Mod(1,2704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2704.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2704 = 2^{4} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(21.5915487066\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 676)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 2704.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.35690 q^{3} -4.24698 q^{5} -2.13706 q^{7} -1.15883 q^{9} +3.35690 q^{11} +5.76271 q^{15} -0.0609989 q^{17} +6.18598 q^{19} +2.89977 q^{21} +5.09783 q^{23} +13.0368 q^{25} +5.64310 q^{27} -2.13706 q^{29} -2.85086 q^{31} -4.55496 q^{33} +9.07606 q^{35} -3.47219 q^{37} -5.39612 q^{41} +8.61356 q^{43} +4.92154 q^{45} -6.96077 q^{47} -2.43296 q^{49} +0.0827692 q^{51} +0.0217703 q^{53} -14.2567 q^{55} -8.39373 q^{57} -5.81163 q^{59} +10.6799 q^{61} +2.47650 q^{63} -7.40581 q^{67} -6.91723 q^{69} +0.0489173 q^{71} -4.51573 q^{73} -17.6896 q^{75} -7.17390 q^{77} -12.8170 q^{79} -4.18060 q^{81} +3.55496 q^{83} +0.259061 q^{85} +2.89977 q^{87} -2.34721 q^{89} +3.86831 q^{93} -26.2717 q^{95} +3.42327 q^{97} -3.89008 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 8 q^{5} - q^{7} + 5 q^{9} + 6 q^{11} - 10 q^{17} + 4 q^{19} - 14 q^{21} - 3 q^{23} + 11 q^{25} + 21 q^{27} - q^{29} + 5 q^{31} - 14 q^{33} + 12 q^{35} - 4 q^{37} - 25 q^{41} - 5 q^{43} - 11 q^{45}+ \cdots - 11 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.35690 −0.783404 −0.391702 0.920092i \(-0.628114\pi\)
−0.391702 + 0.920092i \(0.628114\pi\)
\(4\) 0 0
\(5\) −4.24698 −1.89931 −0.949654 0.313302i \(-0.898565\pi\)
−0.949654 + 0.313302i \(0.898565\pi\)
\(6\) 0 0
\(7\) −2.13706 −0.807734 −0.403867 0.914818i \(-0.632334\pi\)
−0.403867 + 0.914818i \(0.632334\pi\)
\(8\) 0 0
\(9\) −1.15883 −0.386278
\(10\) 0 0
\(11\) 3.35690 1.01214 0.506071 0.862492i \(-0.331097\pi\)
0.506071 + 0.862492i \(0.331097\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 5.76271 1.48793
\(16\) 0 0
\(17\) −0.0609989 −0.0147944 −0.00739721 0.999973i \(-0.502355\pi\)
−0.00739721 + 0.999973i \(0.502355\pi\)
\(18\) 0 0
\(19\) 6.18598 1.41916 0.709581 0.704624i \(-0.248884\pi\)
0.709581 + 0.704624i \(0.248884\pi\)
\(20\) 0 0
\(21\) 2.89977 0.632782
\(22\) 0 0
\(23\) 5.09783 1.06297 0.531486 0.847067i \(-0.321634\pi\)
0.531486 + 0.847067i \(0.321634\pi\)
\(24\) 0 0
\(25\) 13.0368 2.60737
\(26\) 0 0
\(27\) 5.64310 1.08602
\(28\) 0 0
\(29\) −2.13706 −0.396843 −0.198421 0.980117i \(-0.563581\pi\)
−0.198421 + 0.980117i \(0.563581\pi\)
\(30\) 0 0
\(31\) −2.85086 −0.512029 −0.256014 0.966673i \(-0.582409\pi\)
−0.256014 + 0.966673i \(0.582409\pi\)
\(32\) 0 0
\(33\) −4.55496 −0.792916
\(34\) 0 0
\(35\) 9.07606 1.53413
\(36\) 0 0
\(37\) −3.47219 −0.570824 −0.285412 0.958405i \(-0.592130\pi\)
−0.285412 + 0.958405i \(0.592130\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −5.39612 −0.842733 −0.421367 0.906890i \(-0.638449\pi\)
−0.421367 + 0.906890i \(0.638449\pi\)
\(42\) 0 0
\(43\) 8.61356 1.31356 0.656778 0.754084i \(-0.271919\pi\)
0.656778 + 0.754084i \(0.271919\pi\)
\(44\) 0 0
\(45\) 4.92154 0.733660
\(46\) 0 0
\(47\) −6.96077 −1.01533 −0.507666 0.861554i \(-0.669492\pi\)
−0.507666 + 0.861554i \(0.669492\pi\)
\(48\) 0 0
\(49\) −2.43296 −0.347566
\(50\) 0 0
\(51\) 0.0827692 0.0115900
\(52\) 0 0
\(53\) 0.0217703 0.00299038 0.00149519 0.999999i \(-0.499524\pi\)
0.00149519 + 0.999999i \(0.499524\pi\)
\(54\) 0 0
\(55\) −14.2567 −1.92237
\(56\) 0 0
\(57\) −8.39373 −1.11178
\(58\) 0 0
\(59\) −5.81163 −0.756609 −0.378305 0.925681i \(-0.623493\pi\)
−0.378305 + 0.925681i \(0.623493\pi\)
\(60\) 0 0
\(61\) 10.6799 1.36743 0.683713 0.729751i \(-0.260364\pi\)
0.683713 + 0.729751i \(0.260364\pi\)
\(62\) 0 0
\(63\) 2.47650 0.312010
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.40581 −0.904764 −0.452382 0.891824i \(-0.649426\pi\)
−0.452382 + 0.891824i \(0.649426\pi\)
\(68\) 0 0
\(69\) −6.91723 −0.832737
\(70\) 0 0
\(71\) 0.0489173 0.00580542 0.00290271 0.999996i \(-0.499076\pi\)
0.00290271 + 0.999996i \(0.499076\pi\)
\(72\) 0 0
\(73\) −4.51573 −0.528526 −0.264263 0.964451i \(-0.585129\pi\)
−0.264263 + 0.964451i \(0.585129\pi\)
\(74\) 0 0
\(75\) −17.6896 −2.04262
\(76\) 0 0
\(77\) −7.17390 −0.817542
\(78\) 0 0
\(79\) −12.8170 −1.44203 −0.721013 0.692922i \(-0.756323\pi\)
−0.721013 + 0.692922i \(0.756323\pi\)
\(80\) 0 0
\(81\) −4.18060 −0.464512
\(82\) 0 0
\(83\) 3.55496 0.390207 0.195104 0.980783i \(-0.437496\pi\)
0.195104 + 0.980783i \(0.437496\pi\)
\(84\) 0 0
\(85\) 0.259061 0.0280991
\(86\) 0 0
\(87\) 2.89977 0.310888
\(88\) 0 0
\(89\) −2.34721 −0.248803 −0.124402 0.992232i \(-0.539701\pi\)
−0.124402 + 0.992232i \(0.539701\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 3.86831 0.401125
\(94\) 0 0
\(95\) −26.2717 −2.69542
\(96\) 0 0
\(97\) 3.42327 0.347581 0.173790 0.984783i \(-0.444399\pi\)
0.173790 + 0.984783i \(0.444399\pi\)
\(98\) 0 0
\(99\) −3.89008 −0.390968
\(100\) 0 0
\(101\) −11.3787 −1.13222 −0.566110 0.824330i \(-0.691552\pi\)
−0.566110 + 0.824330i \(0.691552\pi\)
\(102\) 0 0
\(103\) 6.07606 0.598692 0.299346 0.954145i \(-0.403231\pi\)
0.299346 + 0.954145i \(0.403231\pi\)
\(104\) 0 0
\(105\) −12.3153 −1.20185
\(106\) 0 0
\(107\) 16.0368 1.55034 0.775170 0.631753i \(-0.217664\pi\)
0.775170 + 0.631753i \(0.217664\pi\)
\(108\) 0 0
\(109\) 14.9095 1.42807 0.714034 0.700111i \(-0.246866\pi\)
0.714034 + 0.700111i \(0.246866\pi\)
\(110\) 0 0
\(111\) 4.71140 0.447186
\(112\) 0 0
\(113\) 8.24459 0.775585 0.387793 0.921747i \(-0.373238\pi\)
0.387793 + 0.921747i \(0.373238\pi\)
\(114\) 0 0
\(115\) −21.6504 −2.01891
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.130359 0.0119500
\(120\) 0 0
\(121\) 0.268750 0.0244318
\(122\) 0 0
\(123\) 7.32198 0.660201
\(124\) 0 0
\(125\) −34.1323 −3.05288
\(126\) 0 0
\(127\) 6.64310 0.589480 0.294740 0.955577i \(-0.404767\pi\)
0.294740 + 0.955577i \(0.404767\pi\)
\(128\) 0 0
\(129\) −11.6877 −1.02905
\(130\) 0 0
\(131\) −7.86294 −0.686988 −0.343494 0.939155i \(-0.611610\pi\)
−0.343494 + 0.939155i \(0.611610\pi\)
\(132\) 0 0
\(133\) −13.2198 −1.14630
\(134\) 0 0
\(135\) −23.9661 −2.06268
\(136\) 0 0
\(137\) 0.987918 0.0844036 0.0422018 0.999109i \(-0.486563\pi\)
0.0422018 + 0.999109i \(0.486563\pi\)
\(138\) 0 0
\(139\) 12.0368 1.02095 0.510476 0.859892i \(-0.329469\pi\)
0.510476 + 0.859892i \(0.329469\pi\)
\(140\) 0 0
\(141\) 9.44504 0.795416
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 9.07606 0.753726
\(146\) 0 0
\(147\) 3.30127 0.272284
\(148\) 0 0
\(149\) −2.35929 −0.193280 −0.0966402 0.995319i \(-0.530810\pi\)
−0.0966402 + 0.995319i \(0.530810\pi\)
\(150\) 0 0
\(151\) −7.43967 −0.605431 −0.302716 0.953081i \(-0.597893\pi\)
−0.302716 + 0.953081i \(0.597893\pi\)
\(152\) 0 0
\(153\) 0.0706876 0.00571475
\(154\) 0 0
\(155\) 12.1075 0.972500
\(156\) 0 0
\(157\) −10.9487 −0.873801 −0.436900 0.899510i \(-0.643924\pi\)
−0.436900 + 0.899510i \(0.643924\pi\)
\(158\) 0 0
\(159\) −0.0295400 −0.00234267
\(160\) 0 0
\(161\) −10.8944 −0.858599
\(162\) 0 0
\(163\) 7.02475 0.550221 0.275111 0.961413i \(-0.411286\pi\)
0.275111 + 0.961413i \(0.411286\pi\)
\(164\) 0 0
\(165\) 19.3448 1.50599
\(166\) 0 0
\(167\) −15.4819 −1.19802 −0.599012 0.800740i \(-0.704440\pi\)
−0.599012 + 0.800740i \(0.704440\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −7.16852 −0.548191
\(172\) 0 0
\(173\) 13.7802 1.04769 0.523843 0.851815i \(-0.324498\pi\)
0.523843 + 0.851815i \(0.324498\pi\)
\(174\) 0 0
\(175\) −27.8605 −2.10606
\(176\) 0 0
\(177\) 7.88577 0.592731
\(178\) 0 0
\(179\) −22.1226 −1.65352 −0.826760 0.562555i \(-0.809819\pi\)
−0.826760 + 0.562555i \(0.809819\pi\)
\(180\) 0 0
\(181\) −13.6407 −1.01391 −0.506953 0.861974i \(-0.669228\pi\)
−0.506953 + 0.861974i \(0.669228\pi\)
\(182\) 0 0
\(183\) −14.4916 −1.07125
\(184\) 0 0
\(185\) 14.7463 1.08417
\(186\) 0 0
\(187\) −0.204767 −0.0149740
\(188\) 0 0
\(189\) −12.0597 −0.877212
\(190\) 0 0
\(191\) −4.49157 −0.324998 −0.162499 0.986709i \(-0.551955\pi\)
−0.162499 + 0.986709i \(0.551955\pi\)
\(192\) 0 0
\(193\) −25.7754 −1.85535 −0.927676 0.373385i \(-0.878197\pi\)
−0.927676 + 0.373385i \(0.878197\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.6233 1.32685 0.663426 0.748242i \(-0.269102\pi\)
0.663426 + 0.748242i \(0.269102\pi\)
\(198\) 0 0
\(199\) 11.9661 0.848258 0.424129 0.905602i \(-0.360580\pi\)
0.424129 + 0.905602i \(0.360580\pi\)
\(200\) 0 0
\(201\) 10.0489 0.708796
\(202\) 0 0
\(203\) 4.56704 0.320543
\(204\) 0 0
\(205\) 22.9172 1.60061
\(206\) 0 0
\(207\) −5.90754 −0.410603
\(208\) 0 0
\(209\) 20.7657 1.43639
\(210\) 0 0
\(211\) −2.96077 −0.203828 −0.101914 0.994793i \(-0.532497\pi\)
−0.101914 + 0.994793i \(0.532497\pi\)
\(212\) 0 0
\(213\) −0.0663757 −0.00454799
\(214\) 0 0
\(215\) −36.5816 −2.49485
\(216\) 0 0
\(217\) 6.09246 0.413583
\(218\) 0 0
\(219\) 6.12737 0.414050
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −5.44265 −0.364467 −0.182233 0.983255i \(-0.558333\pi\)
−0.182233 + 0.983255i \(0.558333\pi\)
\(224\) 0 0
\(225\) −15.1075 −1.00717
\(226\) 0 0
\(227\) 22.4480 1.48993 0.744964 0.667105i \(-0.232467\pi\)
0.744964 + 0.667105i \(0.232467\pi\)
\(228\) 0 0
\(229\) 16.6136 1.09786 0.548928 0.835870i \(-0.315036\pi\)
0.548928 + 0.835870i \(0.315036\pi\)
\(230\) 0 0
\(231\) 9.73423 0.640466
\(232\) 0 0
\(233\) 9.73125 0.637515 0.318758 0.947836i \(-0.396734\pi\)
0.318758 + 0.947836i \(0.396734\pi\)
\(234\) 0 0
\(235\) 29.5623 1.92843
\(236\) 0 0
\(237\) 17.3913 1.12969
\(238\) 0 0
\(239\) −2.82908 −0.182998 −0.0914991 0.995805i \(-0.529166\pi\)
−0.0914991 + 0.995805i \(0.529166\pi\)
\(240\) 0 0
\(241\) −18.3448 −1.18169 −0.590847 0.806784i \(-0.701206\pi\)
−0.590847 + 0.806784i \(0.701206\pi\)
\(242\) 0 0
\(243\) −11.2567 −0.722116
\(244\) 0 0
\(245\) 10.3327 0.660134
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −4.82371 −0.305690
\(250\) 0 0
\(251\) 2.53750 0.160166 0.0800828 0.996788i \(-0.474482\pi\)
0.0800828 + 0.996788i \(0.474482\pi\)
\(252\) 0 0
\(253\) 17.1129 1.07588
\(254\) 0 0
\(255\) −0.351519 −0.0220130
\(256\) 0 0
\(257\) −23.4862 −1.46503 −0.732514 0.680752i \(-0.761653\pi\)
−0.732514 + 0.680752i \(0.761653\pi\)
\(258\) 0 0
\(259\) 7.42029 0.461074
\(260\) 0 0
\(261\) 2.47650 0.153292
\(262\) 0 0
\(263\) 15.8092 0.974839 0.487420 0.873168i \(-0.337938\pi\)
0.487420 + 0.873168i \(0.337938\pi\)
\(264\) 0 0
\(265\) −0.0924579 −0.00567964
\(266\) 0 0
\(267\) 3.18492 0.194914
\(268\) 0 0
\(269\) −30.8582 −1.88145 −0.940727 0.339164i \(-0.889856\pi\)
−0.940727 + 0.339164i \(0.889856\pi\)
\(270\) 0 0
\(271\) 16.1933 0.983671 0.491836 0.870688i \(-0.336326\pi\)
0.491836 + 0.870688i \(0.336326\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 43.7633 2.63903
\(276\) 0 0
\(277\) 13.1075 0.787555 0.393777 0.919206i \(-0.371168\pi\)
0.393777 + 0.919206i \(0.371168\pi\)
\(278\) 0 0
\(279\) 3.30367 0.197785
\(280\) 0 0
\(281\) −14.2687 −0.851202 −0.425601 0.904911i \(-0.639937\pi\)
−0.425601 + 0.904911i \(0.639937\pi\)
\(282\) 0 0
\(283\) 7.95646 0.472962 0.236481 0.971636i \(-0.424006\pi\)
0.236481 + 0.971636i \(0.424006\pi\)
\(284\) 0 0
\(285\) 35.6480 2.11161
\(286\) 0 0
\(287\) 11.5319 0.680704
\(288\) 0 0
\(289\) −16.9963 −0.999781
\(290\) 0 0
\(291\) −4.64502 −0.272296
\(292\) 0 0
\(293\) −19.6300 −1.14679 −0.573397 0.819278i \(-0.694375\pi\)
−0.573397 + 0.819278i \(0.694375\pi\)
\(294\) 0 0
\(295\) 24.6819 1.43703
\(296\) 0 0
\(297\) 18.9433 1.09920
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −18.4077 −1.06100
\(302\) 0 0
\(303\) 15.4397 0.886986
\(304\) 0 0
\(305\) −45.3575 −2.59716
\(306\) 0 0
\(307\) −15.6775 −0.894765 −0.447382 0.894343i \(-0.647644\pi\)
−0.447382 + 0.894343i \(0.647644\pi\)
\(308\) 0 0
\(309\) −8.24459 −0.469018
\(310\) 0 0
\(311\) −16.4983 −0.935531 −0.467766 0.883853i \(-0.654941\pi\)
−0.467766 + 0.883853i \(0.654941\pi\)
\(312\) 0 0
\(313\) −11.3937 −0.644012 −0.322006 0.946738i \(-0.604357\pi\)
−0.322006 + 0.946738i \(0.604357\pi\)
\(314\) 0 0
\(315\) −10.5176 −0.592602
\(316\) 0 0
\(317\) −25.4470 −1.42924 −0.714622 0.699511i \(-0.753401\pi\)
−0.714622 + 0.699511i \(0.753401\pi\)
\(318\) 0 0
\(319\) −7.17390 −0.401661
\(320\) 0 0
\(321\) −21.7603 −1.21454
\(322\) 0 0
\(323\) −0.377338 −0.0209957
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −20.2306 −1.11875
\(328\) 0 0
\(329\) 14.8756 0.820119
\(330\) 0 0
\(331\) 8.95539 0.492233 0.246117 0.969240i \(-0.420845\pi\)
0.246117 + 0.969240i \(0.420845\pi\)
\(332\) 0 0
\(333\) 4.02369 0.220497
\(334\) 0 0
\(335\) 31.4523 1.71842
\(336\) 0 0
\(337\) 19.3110 1.05194 0.525968 0.850505i \(-0.323703\pi\)
0.525968 + 0.850505i \(0.323703\pi\)
\(338\) 0 0
\(339\) −11.1870 −0.607597
\(340\) 0 0
\(341\) −9.57002 −0.518246
\(342\) 0 0
\(343\) 20.1588 1.08847
\(344\) 0 0
\(345\) 29.3773 1.58162
\(346\) 0 0
\(347\) −36.0411 −1.93479 −0.967395 0.253272i \(-0.918493\pi\)
−0.967395 + 0.253272i \(0.918493\pi\)
\(348\) 0 0
\(349\) −23.2416 −1.24409 −0.622047 0.782980i \(-0.713699\pi\)
−0.622047 + 0.782980i \(0.713699\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −24.2349 −1.28989 −0.644947 0.764228i \(-0.723120\pi\)
−0.644947 + 0.764228i \(0.723120\pi\)
\(354\) 0 0
\(355\) −0.207751 −0.0110263
\(356\) 0 0
\(357\) −0.176883 −0.00936164
\(358\) 0 0
\(359\) 17.7332 0.935921 0.467960 0.883749i \(-0.344989\pi\)
0.467960 + 0.883749i \(0.344989\pi\)
\(360\) 0 0
\(361\) 19.2664 1.01402
\(362\) 0 0
\(363\) −0.364666 −0.0191400
\(364\) 0 0
\(365\) 19.1782 1.00383
\(366\) 0 0
\(367\) −30.2083 −1.57686 −0.788431 0.615123i \(-0.789106\pi\)
−0.788431 + 0.615123i \(0.789106\pi\)
\(368\) 0 0
\(369\) 6.25321 0.325529
\(370\) 0 0
\(371\) −0.0465244 −0.00241543
\(372\) 0 0
\(373\) −0.681268 −0.0352747 −0.0176374 0.999844i \(-0.505614\pi\)
−0.0176374 + 0.999844i \(0.505614\pi\)
\(374\) 0 0
\(375\) 46.3139 2.39164
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 36.4959 1.87467 0.937334 0.348433i \(-0.113286\pi\)
0.937334 + 0.348433i \(0.113286\pi\)
\(380\) 0 0
\(381\) −9.01400 −0.461801
\(382\) 0 0
\(383\) −5.20775 −0.266104 −0.133052 0.991109i \(-0.542478\pi\)
−0.133052 + 0.991109i \(0.542478\pi\)
\(384\) 0 0
\(385\) 30.4674 1.55276
\(386\) 0 0
\(387\) −9.98169 −0.507398
\(388\) 0 0
\(389\) −17.5254 −0.888574 −0.444287 0.895885i \(-0.646543\pi\)
−0.444287 + 0.895885i \(0.646543\pi\)
\(390\) 0 0
\(391\) −0.310962 −0.0157260
\(392\) 0 0
\(393\) 10.6692 0.538189
\(394\) 0 0
\(395\) 54.4336 2.73885
\(396\) 0 0
\(397\) 29.8049 1.49587 0.747933 0.663774i \(-0.231046\pi\)
0.747933 + 0.663774i \(0.231046\pi\)
\(398\) 0 0
\(399\) 17.9379 0.898020
\(400\) 0 0
\(401\) −16.3341 −0.815684 −0.407842 0.913053i \(-0.633719\pi\)
−0.407842 + 0.913053i \(0.633719\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 17.7549 0.882250
\(406\) 0 0
\(407\) −11.6558 −0.577755
\(408\) 0 0
\(409\) 9.49827 0.469659 0.234830 0.972037i \(-0.424547\pi\)
0.234830 + 0.972037i \(0.424547\pi\)
\(410\) 0 0
\(411\) −1.34050 −0.0661221
\(412\) 0 0
\(413\) 12.4198 0.611139
\(414\) 0 0
\(415\) −15.0978 −0.741124
\(416\) 0 0
\(417\) −16.3327 −0.799817
\(418\) 0 0
\(419\) −12.4450 −0.607980 −0.303990 0.952675i \(-0.598319\pi\)
−0.303990 + 0.952675i \(0.598319\pi\)
\(420\) 0 0
\(421\) −3.65578 −0.178172 −0.0890858 0.996024i \(-0.528395\pi\)
−0.0890858 + 0.996024i \(0.528395\pi\)
\(422\) 0 0
\(423\) 8.06638 0.392201
\(424\) 0 0
\(425\) −0.795233 −0.0385745
\(426\) 0 0
\(427\) −22.8237 −1.10452
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −35.6219 −1.71585 −0.857924 0.513777i \(-0.828246\pi\)
−0.857924 + 0.513777i \(0.828246\pi\)
\(432\) 0 0
\(433\) −34.6926 −1.66722 −0.833610 0.552353i \(-0.813730\pi\)
−0.833610 + 0.552353i \(0.813730\pi\)
\(434\) 0 0
\(435\) −12.3153 −0.590472
\(436\) 0 0
\(437\) 31.5351 1.50853
\(438\) 0 0
\(439\) −9.48858 −0.452865 −0.226433 0.974027i \(-0.572706\pi\)
−0.226433 + 0.974027i \(0.572706\pi\)
\(440\) 0 0
\(441\) 2.81940 0.134257
\(442\) 0 0
\(443\) −14.1849 −0.673946 −0.336973 0.941514i \(-0.609403\pi\)
−0.336973 + 0.941514i \(0.609403\pi\)
\(444\) 0 0
\(445\) 9.96854 0.472554
\(446\) 0 0
\(447\) 3.20131 0.151417
\(448\) 0 0
\(449\) 6.99894 0.330300 0.165150 0.986268i \(-0.447189\pi\)
0.165150 + 0.986268i \(0.447189\pi\)
\(450\) 0 0
\(451\) −18.1142 −0.852966
\(452\) 0 0
\(453\) 10.0949 0.474297
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.21313 −0.150304 −0.0751519 0.997172i \(-0.523944\pi\)
−0.0751519 + 0.997172i \(0.523944\pi\)
\(458\) 0 0
\(459\) −0.344223 −0.0160670
\(460\) 0 0
\(461\) −15.5278 −0.723202 −0.361601 0.932333i \(-0.617770\pi\)
−0.361601 + 0.932333i \(0.617770\pi\)
\(462\) 0 0
\(463\) 32.0834 1.49104 0.745520 0.666483i \(-0.232201\pi\)
0.745520 + 0.666483i \(0.232201\pi\)
\(464\) 0 0
\(465\) −16.4286 −0.761860
\(466\) 0 0
\(467\) −7.24459 −0.335239 −0.167620 0.985852i \(-0.553608\pi\)
−0.167620 + 0.985852i \(0.553608\pi\)
\(468\) 0 0
\(469\) 15.8267 0.730809
\(470\) 0 0
\(471\) 14.8562 0.684539
\(472\) 0 0
\(473\) 28.9148 1.32951
\(474\) 0 0
\(475\) 80.6456 3.70027
\(476\) 0 0
\(477\) −0.0252281 −0.00115512
\(478\) 0 0
\(479\) 5.78209 0.264190 0.132095 0.991237i \(-0.457830\pi\)
0.132095 + 0.991237i \(0.457830\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 14.7826 0.672630
\(484\) 0 0
\(485\) −14.5386 −0.660162
\(486\) 0 0
\(487\) 4.14782 0.187956 0.0939778 0.995574i \(-0.470042\pi\)
0.0939778 + 0.995574i \(0.470042\pi\)
\(488\) 0 0
\(489\) −9.53186 −0.431046
\(490\) 0 0
\(491\) −7.19375 −0.324649 −0.162325 0.986737i \(-0.551899\pi\)
−0.162325 + 0.986737i \(0.551899\pi\)
\(492\) 0 0
\(493\) 0.130359 0.00587105
\(494\) 0 0
\(495\) 16.5211 0.742569
\(496\) 0 0
\(497\) −0.104539 −0.00468924
\(498\) 0 0
\(499\) −41.5066 −1.85809 −0.929046 0.369964i \(-0.879370\pi\)
−0.929046 + 0.369964i \(0.879370\pi\)
\(500\) 0 0
\(501\) 21.0073 0.938537
\(502\) 0 0
\(503\) 25.8605 1.15306 0.576532 0.817074i \(-0.304405\pi\)
0.576532 + 0.817074i \(0.304405\pi\)
\(504\) 0 0
\(505\) 48.3250 2.15043
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −35.3924 −1.56874 −0.784370 0.620293i \(-0.787014\pi\)
−0.784370 + 0.620293i \(0.787014\pi\)
\(510\) 0 0
\(511\) 9.65040 0.426909
\(512\) 0 0
\(513\) 34.9081 1.54123
\(514\) 0 0
\(515\) −25.8049 −1.13710
\(516\) 0 0
\(517\) −23.3666 −1.02766
\(518\) 0 0
\(519\) −18.6983 −0.820762
\(520\) 0 0
\(521\) −34.2620 −1.50105 −0.750524 0.660844i \(-0.770199\pi\)
−0.750524 + 0.660844i \(0.770199\pi\)
\(522\) 0 0
\(523\) 14.6028 0.638536 0.319268 0.947664i \(-0.396563\pi\)
0.319268 + 0.947664i \(0.396563\pi\)
\(524\) 0 0
\(525\) 37.8039 1.64990
\(526\) 0 0
\(527\) 0.173899 0.00757516
\(528\) 0 0
\(529\) 2.98792 0.129909
\(530\) 0 0
\(531\) 6.73471 0.292261
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −68.1081 −2.94457
\(536\) 0 0
\(537\) 30.0180 1.29537
\(538\) 0 0
\(539\) −8.16719 −0.351786
\(540\) 0 0
\(541\) −18.8866 −0.811999 −0.406000 0.913873i \(-0.633077\pi\)
−0.406000 + 0.913873i \(0.633077\pi\)
\(542\) 0 0
\(543\) 18.5090 0.794298
\(544\) 0 0
\(545\) −63.3202 −2.71234
\(546\) 0 0
\(547\) 34.6752 1.48260 0.741301 0.671172i \(-0.234209\pi\)
0.741301 + 0.671172i \(0.234209\pi\)
\(548\) 0 0
\(549\) −12.3763 −0.528206
\(550\) 0 0
\(551\) −13.2198 −0.563184
\(552\) 0 0
\(553\) 27.3907 1.16477
\(554\) 0 0
\(555\) −20.0092 −0.849344
\(556\) 0 0
\(557\) 4.25667 0.180361 0.0901804 0.995925i \(-0.471256\pi\)
0.0901804 + 0.995925i \(0.471256\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.277848 0.0117307
\(562\) 0 0
\(563\) −21.1371 −0.890821 −0.445411 0.895326i \(-0.646942\pi\)
−0.445411 + 0.895326i \(0.646942\pi\)
\(564\) 0 0
\(565\) −35.0146 −1.47307
\(566\) 0 0
\(567\) 8.93422 0.375202
\(568\) 0 0
\(569\) 35.4795 1.48738 0.743689 0.668526i \(-0.233074\pi\)
0.743689 + 0.668526i \(0.233074\pi\)
\(570\) 0 0
\(571\) −3.94033 −0.164898 −0.0824488 0.996595i \(-0.526274\pi\)
−0.0824488 + 0.996595i \(0.526274\pi\)
\(572\) 0 0
\(573\) 6.09459 0.254605
\(574\) 0 0
\(575\) 66.4596 2.77156
\(576\) 0 0
\(577\) 16.6256 0.692135 0.346067 0.938210i \(-0.387517\pi\)
0.346067 + 0.938210i \(0.387517\pi\)
\(578\) 0 0
\(579\) 34.9745 1.45349
\(580\) 0 0
\(581\) −7.59717 −0.315184
\(582\) 0 0
\(583\) 0.0730805 0.00302669
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −8.00298 −0.330318 −0.165159 0.986267i \(-0.552814\pi\)
−0.165159 + 0.986267i \(0.552814\pi\)
\(588\) 0 0
\(589\) −17.6353 −0.726651
\(590\) 0 0
\(591\) −25.2698 −1.03946
\(592\) 0 0
\(593\) −15.8345 −0.650243 −0.325122 0.945672i \(-0.605405\pi\)
−0.325122 + 0.945672i \(0.605405\pi\)
\(594\) 0 0
\(595\) −0.553630 −0.0226966
\(596\) 0 0
\(597\) −16.2368 −0.664529
\(598\) 0 0
\(599\) −25.9226 −1.05917 −0.529585 0.848257i \(-0.677652\pi\)
−0.529585 + 0.848257i \(0.677652\pi\)
\(600\) 0 0
\(601\) 20.0616 0.818329 0.409165 0.912461i \(-0.365820\pi\)
0.409165 + 0.912461i \(0.365820\pi\)
\(602\) 0 0
\(603\) 8.58211 0.349490
\(604\) 0 0
\(605\) −1.14138 −0.0464035
\(606\) 0 0
\(607\) −41.7614 −1.69504 −0.847521 0.530762i \(-0.821906\pi\)
−0.847521 + 0.530762i \(0.821906\pi\)
\(608\) 0 0
\(609\) −6.19700 −0.251115
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 12.4179 0.501554 0.250777 0.968045i \(-0.419314\pi\)
0.250777 + 0.968045i \(0.419314\pi\)
\(614\) 0 0
\(615\) −31.0963 −1.25392
\(616\) 0 0
\(617\) 17.2198 0.693244 0.346622 0.938005i \(-0.387329\pi\)
0.346622 + 0.938005i \(0.387329\pi\)
\(618\) 0 0
\(619\) 42.6136 1.71278 0.856392 0.516326i \(-0.172701\pi\)
0.856392 + 0.516326i \(0.172701\pi\)
\(620\) 0 0
\(621\) 28.7676 1.15440
\(622\) 0 0
\(623\) 5.01613 0.200967
\(624\) 0 0
\(625\) 79.7749 3.19100
\(626\) 0 0
\(627\) −28.1769 −1.12528
\(628\) 0 0
\(629\) 0.211800 0.00844501
\(630\) 0 0
\(631\) −26.8605 −1.06930 −0.534651 0.845073i \(-0.679557\pi\)
−0.534651 + 0.845073i \(0.679557\pi\)
\(632\) 0 0
\(633\) 4.01746 0.159680
\(634\) 0 0
\(635\) −28.2131 −1.11960
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −0.0566871 −0.00224251
\(640\) 0 0
\(641\) 33.3045 1.31545 0.657725 0.753258i \(-0.271519\pi\)
0.657725 + 0.753258i \(0.271519\pi\)
\(642\) 0 0
\(643\) 30.6746 1.20969 0.604843 0.796344i \(-0.293236\pi\)
0.604843 + 0.796344i \(0.293236\pi\)
\(644\) 0 0
\(645\) 49.6375 1.95447
\(646\) 0 0
\(647\) 3.25608 0.128010 0.0640048 0.997950i \(-0.479613\pi\)
0.0640048 + 0.997950i \(0.479613\pi\)
\(648\) 0 0
\(649\) −19.5090 −0.765796
\(650\) 0 0
\(651\) −8.26683 −0.324003
\(652\) 0 0
\(653\) 14.8183 0.579886 0.289943 0.957044i \(-0.406364\pi\)
0.289943 + 0.957044i \(0.406364\pi\)
\(654\) 0 0
\(655\) 33.3937 1.30480
\(656\) 0 0
\(657\) 5.23298 0.204158
\(658\) 0 0
\(659\) −30.5392 −1.18964 −0.594818 0.803860i \(-0.702776\pi\)
−0.594818 + 0.803860i \(0.702776\pi\)
\(660\) 0 0
\(661\) 19.3676 0.753314 0.376657 0.926353i \(-0.377073\pi\)
0.376657 + 0.926353i \(0.377073\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 56.1444 2.17718
\(666\) 0 0
\(667\) −10.8944 −0.421833
\(668\) 0 0
\(669\) 7.38511 0.285525
\(670\) 0 0
\(671\) 35.8514 1.38403
\(672\) 0 0
\(673\) 41.5459 1.60148 0.800738 0.599015i \(-0.204441\pi\)
0.800738 + 0.599015i \(0.204441\pi\)
\(674\) 0 0
\(675\) 73.5682 2.83164
\(676\) 0 0
\(677\) −40.6064 −1.56063 −0.780315 0.625387i \(-0.784941\pi\)
−0.780315 + 0.625387i \(0.784941\pi\)
\(678\) 0 0
\(679\) −7.31575 −0.280753
\(680\) 0 0
\(681\) −30.4596 −1.16722
\(682\) 0 0
\(683\) −2.40581 −0.0920559 −0.0460279 0.998940i \(-0.514656\pi\)
−0.0460279 + 0.998940i \(0.514656\pi\)
\(684\) 0 0
\(685\) −4.19567 −0.160308
\(686\) 0 0
\(687\) −22.5429 −0.860064
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 6.81269 0.259167 0.129583 0.991569i \(-0.458636\pi\)
0.129583 + 0.991569i \(0.458636\pi\)
\(692\) 0 0
\(693\) 8.31336 0.315798
\(694\) 0 0
\(695\) −51.1202 −1.93910
\(696\) 0 0
\(697\) 0.329158 0.0124677
\(698\) 0 0
\(699\) −13.2043 −0.499432
\(700\) 0 0
\(701\) −12.7802 −0.482700 −0.241350 0.970438i \(-0.577590\pi\)
−0.241350 + 0.970438i \(0.577590\pi\)
\(702\) 0 0
\(703\) −21.4789 −0.810092
\(704\) 0 0
\(705\) −40.1129 −1.51074
\(706\) 0 0
\(707\) 24.3169 0.914532
\(708\) 0 0
\(709\) 4.94139 0.185578 0.0927890 0.995686i \(-0.470422\pi\)
0.0927890 + 0.995686i \(0.470422\pi\)
\(710\) 0 0
\(711\) 14.8528 0.557023
\(712\) 0 0
\(713\) −14.5332 −0.544272
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 3.83877 0.143362
\(718\) 0 0
\(719\) 37.6155 1.40282 0.701410 0.712758i \(-0.252554\pi\)
0.701410 + 0.712758i \(0.252554\pi\)
\(720\) 0 0
\(721\) −12.9849 −0.483584
\(722\) 0 0
\(723\) 24.8920 0.925744
\(724\) 0 0
\(725\) −27.8605 −1.03471
\(726\) 0 0
\(727\) 17.1879 0.637464 0.318732 0.947845i \(-0.396743\pi\)
0.318732 + 0.947845i \(0.396743\pi\)
\(728\) 0 0
\(729\) 27.8159 1.03022
\(730\) 0 0
\(731\) −0.525418 −0.0194333
\(732\) 0 0
\(733\) 19.2597 0.711371 0.355686 0.934606i \(-0.384247\pi\)
0.355686 + 0.934606i \(0.384247\pi\)
\(734\) 0 0
\(735\) −14.0204 −0.517152
\(736\) 0 0
\(737\) −24.8605 −0.915750
\(738\) 0 0
\(739\) 18.0785 0.665027 0.332513 0.943099i \(-0.392103\pi\)
0.332513 + 0.943099i \(0.392103\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 32.8219 1.20412 0.602059 0.798451i \(-0.294347\pi\)
0.602059 + 0.798451i \(0.294347\pi\)
\(744\) 0 0
\(745\) 10.0199 0.367099
\(746\) 0 0
\(747\) −4.11960 −0.150728
\(748\) 0 0
\(749\) −34.2717 −1.25226
\(750\) 0 0
\(751\) 33.1702 1.21040 0.605198 0.796075i \(-0.293094\pi\)
0.605198 + 0.796075i \(0.293094\pi\)
\(752\) 0 0
\(753\) −3.44312 −0.125474
\(754\) 0 0
\(755\) 31.5961 1.14990
\(756\) 0 0
\(757\) −0.736627 −0.0267732 −0.0133866 0.999910i \(-0.504261\pi\)
−0.0133866 + 0.999910i \(0.504261\pi\)
\(758\) 0 0
\(759\) −23.2204 −0.842848
\(760\) 0 0
\(761\) −36.3817 −1.31883 −0.659417 0.751777i \(-0.729197\pi\)
−0.659417 + 0.751777i \(0.729197\pi\)
\(762\) 0 0
\(763\) −31.8625 −1.15350
\(764\) 0 0
\(765\) −0.300209 −0.0108541
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 11.4523 0.412982 0.206491 0.978449i \(-0.433796\pi\)
0.206491 + 0.978449i \(0.433796\pi\)
\(770\) 0 0
\(771\) 31.8683 1.14771
\(772\) 0 0
\(773\) −7.57732 −0.272537 −0.136269 0.990672i \(-0.543511\pi\)
−0.136269 + 0.990672i \(0.543511\pi\)
\(774\) 0 0
\(775\) −37.1661 −1.33505
\(776\) 0 0
\(777\) −10.0686 −0.361207
\(778\) 0 0
\(779\) −33.3803 −1.19597
\(780\) 0 0
\(781\) 0.164210 0.00587591
\(782\) 0 0
\(783\) −12.0597 −0.430977
\(784\) 0 0
\(785\) 46.4989 1.65962
\(786\) 0 0
\(787\) −30.5066 −1.08744 −0.543722 0.839265i \(-0.682985\pi\)
−0.543722 + 0.839265i \(0.682985\pi\)
\(788\) 0 0
\(789\) −21.4515 −0.763693
\(790\) 0 0
\(791\) −17.6192 −0.626467
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.125456 0.00444946
\(796\) 0 0
\(797\) 36.2435 1.28381 0.641906 0.766784i \(-0.278144\pi\)
0.641906 + 0.766784i \(0.278144\pi\)
\(798\) 0 0
\(799\) 0.424600 0.0150213
\(800\) 0 0
\(801\) 2.72002 0.0961073
\(802\) 0 0
\(803\) −15.1588 −0.534944
\(804\) 0 0
\(805\) 46.2683 1.63074
\(806\) 0 0
\(807\) 41.8713 1.47394
\(808\) 0 0
\(809\) 22.3236 0.784857 0.392429 0.919782i \(-0.371635\pi\)
0.392429 + 0.919782i \(0.371635\pi\)
\(810\) 0 0
\(811\) −39.4922 −1.38676 −0.693379 0.720573i \(-0.743879\pi\)
−0.693379 + 0.720573i \(0.743879\pi\)
\(812\) 0 0
\(813\) −21.9726 −0.770612
\(814\) 0 0
\(815\) −29.8340 −1.04504
\(816\) 0 0
\(817\) 53.2833 1.86415
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −11.3830 −0.397269 −0.198634 0.980074i \(-0.563651\pi\)
−0.198634 + 0.980074i \(0.563651\pi\)
\(822\) 0 0
\(823\) −25.6848 −0.895317 −0.447659 0.894205i \(-0.647742\pi\)
−0.447659 + 0.894205i \(0.647742\pi\)
\(824\) 0 0
\(825\) −59.3822 −2.06742
\(826\) 0 0
\(827\) −36.7251 −1.27706 −0.638529 0.769598i \(-0.720457\pi\)
−0.638529 + 0.769598i \(0.720457\pi\)
\(828\) 0 0
\(829\) −11.5808 −0.402217 −0.201109 0.979569i \(-0.564454\pi\)
−0.201109 + 0.979569i \(0.564454\pi\)
\(830\) 0 0
\(831\) −17.7855 −0.616974
\(832\) 0 0
\(833\) 0.148408 0.00514203
\(834\) 0 0
\(835\) 65.7512 2.27541
\(836\) 0 0
\(837\) −16.0877 −0.556071
\(838\) 0 0
\(839\) 13.4577 0.464612 0.232306 0.972643i \(-0.425373\pi\)
0.232306 + 0.972643i \(0.425373\pi\)
\(840\) 0 0
\(841\) −24.4330 −0.842516
\(842\) 0 0
\(843\) 19.3612 0.666835
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −0.574335 −0.0197344
\(848\) 0 0
\(849\) −10.7961 −0.370521
\(850\) 0 0
\(851\) −17.7006 −0.606770
\(852\) 0 0
\(853\) 5.34050 0.182855 0.0914277 0.995812i \(-0.470857\pi\)
0.0914277 + 0.995812i \(0.470857\pi\)
\(854\) 0 0
\(855\) 30.4446 1.04118
\(856\) 0 0
\(857\) 49.3381 1.68536 0.842679 0.538417i \(-0.180977\pi\)
0.842679 + 0.538417i \(0.180977\pi\)
\(858\) 0 0
\(859\) 4.92500 0.168039 0.0840194 0.996464i \(-0.473224\pi\)
0.0840194 + 0.996464i \(0.473224\pi\)
\(860\) 0 0
\(861\) −15.6475 −0.533266
\(862\) 0 0
\(863\) −40.0315 −1.36269 −0.681343 0.731964i \(-0.738604\pi\)
−0.681343 + 0.731964i \(0.738604\pi\)
\(864\) 0 0
\(865\) −58.5241 −1.98988
\(866\) 0 0
\(867\) 23.0622 0.783233
\(868\) 0 0
\(869\) −43.0253 −1.45953
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −3.96700 −0.134263
\(874\) 0 0
\(875\) 72.9428 2.46592
\(876\) 0 0
\(877\) 28.9379 0.977165 0.488582 0.872518i \(-0.337514\pi\)
0.488582 + 0.872518i \(0.337514\pi\)
\(878\) 0 0
\(879\) 26.6358 0.898404
\(880\) 0 0
\(881\) 21.6692 0.730053 0.365027 0.930997i \(-0.381060\pi\)
0.365027 + 0.930997i \(0.381060\pi\)
\(882\) 0 0
\(883\) −11.7614 −0.395802 −0.197901 0.980222i \(-0.563412\pi\)
−0.197901 + 0.980222i \(0.563412\pi\)
\(884\) 0 0
\(885\) −33.4907 −1.12578
\(886\) 0 0
\(887\) −26.8485 −0.901483 −0.450742 0.892654i \(-0.648840\pi\)
−0.450742 + 0.892654i \(0.648840\pi\)
\(888\) 0 0
\(889\) −14.1967 −0.476143
\(890\) 0 0
\(891\) −14.0339 −0.470152
\(892\) 0 0
\(893\) −43.0592 −1.44092
\(894\) 0 0
\(895\) 93.9542 3.14054
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.09246 0.203195
\(900\) 0 0
\(901\) −0.00132796 −4.42409e−5 0
\(902\) 0 0
\(903\) 24.9774 0.831195
\(904\) 0 0
\(905\) 57.9318 1.92572
\(906\) 0 0
\(907\) −16.4306 −0.545568 −0.272784 0.962075i \(-0.587944\pi\)
−0.272784 + 0.962075i \(0.587944\pi\)
\(908\) 0 0
\(909\) 13.1860 0.437351
\(910\) 0 0
\(911\) −26.0519 −0.863138 −0.431569 0.902080i \(-0.642040\pi\)
−0.431569 + 0.902080i \(0.642040\pi\)
\(912\) 0 0
\(913\) 11.9336 0.394945
\(914\) 0 0
\(915\) 61.5454 2.03463
\(916\) 0 0
\(917\) 16.8036 0.554904
\(918\) 0 0
\(919\) −4.36957 −0.144139 −0.0720694 0.997400i \(-0.522960\pi\)
−0.0720694 + 0.997400i \(0.522960\pi\)
\(920\) 0 0
\(921\) 21.2728 0.700963
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −45.2664 −1.48835
\(926\) 0 0
\(927\) −7.04115 −0.231262
\(928\) 0 0
\(929\) 32.2868 1.05930 0.529648 0.848218i \(-0.322324\pi\)
0.529648 + 0.848218i \(0.322324\pi\)
\(930\) 0 0
\(931\) −15.0502 −0.493252
\(932\) 0 0
\(933\) 22.3864 0.732899
\(934\) 0 0
\(935\) 0.869641 0.0284403
\(936\) 0 0
\(937\) −48.5730 −1.58681 −0.793405 0.608693i \(-0.791694\pi\)
−0.793405 + 0.608693i \(0.791694\pi\)
\(938\) 0 0
\(939\) 15.4601 0.504522
\(940\) 0 0
\(941\) −4.82849 −0.157404 −0.0787022 0.996898i \(-0.525078\pi\)
−0.0787022 + 0.996898i \(0.525078\pi\)
\(942\) 0 0
\(943\) −27.5086 −0.895802
\(944\) 0 0
\(945\) 51.2172 1.66609
\(946\) 0 0
\(947\) −35.1065 −1.14081 −0.570403 0.821365i \(-0.693213\pi\)
−0.570403 + 0.821365i \(0.693213\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 34.5289 1.11968
\(952\) 0 0
\(953\) −28.1866 −0.913053 −0.456526 0.889710i \(-0.650907\pi\)
−0.456526 + 0.889710i \(0.650907\pi\)
\(954\) 0 0
\(955\) 19.0756 0.617272
\(956\) 0 0
\(957\) 9.73423 0.314663
\(958\) 0 0
\(959\) −2.11124 −0.0681756
\(960\) 0 0
\(961\) −22.8726 −0.737827
\(962\) 0 0
\(963\) −18.5840 −0.598862
\(964\) 0 0
\(965\) 109.468 3.52388
\(966\) 0 0
\(967\) 44.6674 1.43641 0.718203 0.695834i \(-0.244965\pi\)
0.718203 + 0.695834i \(0.244965\pi\)
\(968\) 0 0
\(969\) 0.512009 0.0164481
\(970\) 0 0
\(971\) 14.9108 0.478510 0.239255 0.970957i \(-0.423097\pi\)
0.239255 + 0.970957i \(0.423097\pi\)
\(972\) 0 0
\(973\) −25.7235 −0.824657
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 35.2127 1.12655 0.563276 0.826269i \(-0.309541\pi\)
0.563276 + 0.826269i \(0.309541\pi\)
\(978\) 0 0
\(979\) −7.87933 −0.251824
\(980\) 0 0
\(981\) −17.2776 −0.551631
\(982\) 0 0
\(983\) −30.5646 −0.974861 −0.487430 0.873162i \(-0.662066\pi\)
−0.487430 + 0.873162i \(0.662066\pi\)
\(984\) 0 0
\(985\) −79.0926 −2.52010
\(986\) 0 0
\(987\) −20.1847 −0.642485
\(988\) 0 0
\(989\) 43.9105 1.39627
\(990\) 0 0
\(991\) −62.5739 −1.98772 −0.993862 0.110626i \(-0.964714\pi\)
−0.993862 + 0.110626i \(0.964714\pi\)
\(992\) 0 0
\(993\) −12.1515 −0.385617
\(994\) 0 0
\(995\) −50.8200 −1.61110
\(996\) 0 0
\(997\) −1.88444 −0.0596809 −0.0298405 0.999555i \(-0.509500\pi\)
−0.0298405 + 0.999555i \(0.509500\pi\)
\(998\) 0 0
\(999\) −19.5939 −0.619924
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2704.2.a.x.1.2 3
4.3 odd 2 676.2.a.g.1.2 3
12.11 even 2 6084.2.a.bc.1.3 3
13.5 odd 4 2704.2.f.n.337.4 6
13.8 odd 4 2704.2.f.n.337.3 6
13.12 even 2 2704.2.a.y.1.2 3
52.3 odd 6 676.2.e.f.529.2 6
52.7 even 12 676.2.h.e.361.3 12
52.11 even 12 676.2.h.e.485.3 12
52.15 even 12 676.2.h.e.485.4 12
52.19 even 12 676.2.h.e.361.4 12
52.23 odd 6 676.2.e.g.529.2 6
52.31 even 4 676.2.d.e.337.4 6
52.35 odd 6 676.2.e.f.653.2 6
52.43 odd 6 676.2.e.g.653.2 6
52.47 even 4 676.2.d.e.337.3 6
52.51 odd 2 676.2.a.h.1.2 yes 3
156.47 odd 4 6084.2.b.p.4393.6 6
156.83 odd 4 6084.2.b.p.4393.1 6
156.155 even 2 6084.2.a.x.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
676.2.a.g.1.2 3 4.3 odd 2
676.2.a.h.1.2 yes 3 52.51 odd 2
676.2.d.e.337.3 6 52.47 even 4
676.2.d.e.337.4 6 52.31 even 4
676.2.e.f.529.2 6 52.3 odd 6
676.2.e.f.653.2 6 52.35 odd 6
676.2.e.g.529.2 6 52.23 odd 6
676.2.e.g.653.2 6 52.43 odd 6
676.2.h.e.361.3 12 52.7 even 12
676.2.h.e.361.4 12 52.19 even 12
676.2.h.e.485.3 12 52.11 even 12
676.2.h.e.485.4 12 52.15 even 12
2704.2.a.x.1.2 3 1.1 even 1 trivial
2704.2.a.y.1.2 3 13.12 even 2
2704.2.f.n.337.3 6 13.8 odd 4
2704.2.f.n.337.4 6 13.5 odd 4
6084.2.a.x.1.1 3 156.155 even 2
6084.2.a.bc.1.3 3 12.11 even 2
6084.2.b.p.4393.1 6 156.83 odd 4
6084.2.b.p.4393.6 6 156.47 odd 4