Properties

Label 676.2.d.e.337.4
Level $676$
Weight $2$
Character 676.337
Analytic conductor $5.398$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(337,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.d (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.153664.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} + 5x^{4} + 6x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.4
Root \(-1.24698i\) of defining polynomial
Character \(\chi\) \(=\) 676.337
Dual form 676.2.d.e.337.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.35690 q^{3} +4.24698i q^{5} +2.13706i q^{7} -1.15883 q^{9} -3.35690i q^{11} +5.76271i q^{15} +0.0609989 q^{17} +6.18598i q^{19} +2.89977i q^{21} +5.09783 q^{23} -13.0368 q^{25} -5.64310 q^{27} -2.13706 q^{29} -2.85086i q^{31} -4.55496i q^{33} -9.07606 q^{35} -3.47219i q^{37} +5.39612i q^{41} +8.61356 q^{43} -4.92154i q^{45} +6.96077i q^{47} +2.43296 q^{49} +0.0827692 q^{51} +0.0217703 q^{53} +14.2567 q^{55} +8.39373i q^{57} +5.81163i q^{59} +10.6799 q^{61} -2.47650i q^{63} -7.40581i q^{67} +6.91723 q^{69} +0.0489173i q^{71} -4.51573i q^{73} -17.6896 q^{75} +7.17390 q^{77} +12.8170 q^{79} -4.18060 q^{81} +3.55496i q^{83} +0.259061i q^{85} -2.89977 q^{87} -2.34721i q^{89} -3.86831i q^{93} -26.2717 q^{95} -3.42327i q^{97} +3.89008i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 10 q^{9} + 20 q^{17} - 6 q^{23} - 22 q^{25} - 42 q^{27} - 2 q^{29} - 24 q^{35} - 10 q^{43} - 24 q^{49} + 14 q^{51} - 6 q^{53} + 32 q^{55} + 16 q^{61} + 28 q^{69} - 14 q^{75} - 24 q^{77} + 18 q^{79}+ \cdots - 54 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.35690 0.783404 0.391702 0.920092i \(-0.371886\pi\)
0.391702 + 0.920092i \(0.371886\pi\)
\(4\) 0 0
\(5\) 4.24698i 1.89931i 0.313302 + 0.949654i \(0.398565\pi\)
−0.313302 + 0.949654i \(0.601435\pi\)
\(6\) 0 0
\(7\) 2.13706i 0.807734i 0.914818 + 0.403867i \(0.132334\pi\)
−0.914818 + 0.403867i \(0.867666\pi\)
\(8\) 0 0
\(9\) −1.15883 −0.386278
\(10\) 0 0
\(11\) − 3.35690i − 1.01214i −0.862492 0.506071i \(-0.831097\pi\)
0.862492 0.506071i \(-0.168903\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 5.76271i 1.48793i
\(16\) 0 0
\(17\) 0.0609989 0.0147944 0.00739721 0.999973i \(-0.497645\pi\)
0.00739721 + 0.999973i \(0.497645\pi\)
\(18\) 0 0
\(19\) 6.18598i 1.41916i 0.704624 + 0.709581i \(0.251116\pi\)
−0.704624 + 0.709581i \(0.748884\pi\)
\(20\) 0 0
\(21\) 2.89977i 0.632782i
\(22\) 0 0
\(23\) 5.09783 1.06297 0.531486 0.847067i \(-0.321634\pi\)
0.531486 + 0.847067i \(0.321634\pi\)
\(24\) 0 0
\(25\) −13.0368 −2.60737
\(26\) 0 0
\(27\) −5.64310 −1.08602
\(28\) 0 0
\(29\) −2.13706 −0.396843 −0.198421 0.980117i \(-0.563581\pi\)
−0.198421 + 0.980117i \(0.563581\pi\)
\(30\) 0 0
\(31\) − 2.85086i − 0.512029i −0.966673 0.256014i \(-0.917591\pi\)
0.966673 0.256014i \(-0.0824094\pi\)
\(32\) 0 0
\(33\) − 4.55496i − 0.792916i
\(34\) 0 0
\(35\) −9.07606 −1.53413
\(36\) 0 0
\(37\) − 3.47219i − 0.570824i −0.958405 0.285412i \(-0.907870\pi\)
0.958405 0.285412i \(-0.0921305\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.39612i 0.842733i 0.906890 + 0.421367i \(0.138449\pi\)
−0.906890 + 0.421367i \(0.861551\pi\)
\(42\) 0 0
\(43\) 8.61356 1.31356 0.656778 0.754084i \(-0.271919\pi\)
0.656778 + 0.754084i \(0.271919\pi\)
\(44\) 0 0
\(45\) − 4.92154i − 0.733660i
\(46\) 0 0
\(47\) 6.96077i 1.01533i 0.861554 + 0.507666i \(0.169492\pi\)
−0.861554 + 0.507666i \(0.830508\pi\)
\(48\) 0 0
\(49\) 2.43296 0.347566
\(50\) 0 0
\(51\) 0.0827692 0.0115900
\(52\) 0 0
\(53\) 0.0217703 0.00299038 0.00149519 0.999999i \(-0.499524\pi\)
0.00149519 + 0.999999i \(0.499524\pi\)
\(54\) 0 0
\(55\) 14.2567 1.92237
\(56\) 0 0
\(57\) 8.39373i 1.11178i
\(58\) 0 0
\(59\) 5.81163i 0.756609i 0.925681 + 0.378305i \(0.123493\pi\)
−0.925681 + 0.378305i \(0.876507\pi\)
\(60\) 0 0
\(61\) 10.6799 1.36743 0.683713 0.729751i \(-0.260364\pi\)
0.683713 + 0.729751i \(0.260364\pi\)
\(62\) 0 0
\(63\) − 2.47650i − 0.312010i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 7.40581i − 0.904764i −0.891824 0.452382i \(-0.850574\pi\)
0.891824 0.452382i \(-0.149426\pi\)
\(68\) 0 0
\(69\) 6.91723 0.832737
\(70\) 0 0
\(71\) 0.0489173i 0.00580542i 0.999996 + 0.00290271i \(0.000923963\pi\)
−0.999996 + 0.00290271i \(0.999076\pi\)
\(72\) 0 0
\(73\) − 4.51573i − 0.528526i −0.964451 0.264263i \(-0.914871\pi\)
0.964451 0.264263i \(-0.0851287\pi\)
\(74\) 0 0
\(75\) −17.6896 −2.04262
\(76\) 0 0
\(77\) 7.17390 0.817542
\(78\) 0 0
\(79\) 12.8170 1.44203 0.721013 0.692922i \(-0.243677\pi\)
0.721013 + 0.692922i \(0.243677\pi\)
\(80\) 0 0
\(81\) −4.18060 −0.464512
\(82\) 0 0
\(83\) 3.55496i 0.390207i 0.980783 + 0.195104i \(0.0625043\pi\)
−0.980783 + 0.195104i \(0.937496\pi\)
\(84\) 0 0
\(85\) 0.259061i 0.0280991i
\(86\) 0 0
\(87\) −2.89977 −0.310888
\(88\) 0 0
\(89\) − 2.34721i − 0.248803i −0.992232 0.124402i \(-0.960299\pi\)
0.992232 0.124402i \(-0.0397012\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) − 3.86831i − 0.401125i
\(94\) 0 0
\(95\) −26.2717 −2.69542
\(96\) 0 0
\(97\) − 3.42327i − 0.347581i −0.984783 0.173790i \(-0.944399\pi\)
0.984783 0.173790i \(-0.0556015\pi\)
\(98\) 0 0
\(99\) 3.89008i 0.390968i
\(100\) 0 0
\(101\) 11.3787 1.13222 0.566110 0.824330i \(-0.308448\pi\)
0.566110 + 0.824330i \(0.308448\pi\)
\(102\) 0 0
\(103\) 6.07606 0.598692 0.299346 0.954145i \(-0.403231\pi\)
0.299346 + 0.954145i \(0.403231\pi\)
\(104\) 0 0
\(105\) −12.3153 −1.20185
\(106\) 0 0
\(107\) −16.0368 −1.55034 −0.775170 0.631753i \(-0.782336\pi\)
−0.775170 + 0.631753i \(0.782336\pi\)
\(108\) 0 0
\(109\) − 14.9095i − 1.42807i −0.700111 0.714034i \(-0.746866\pi\)
0.700111 0.714034i \(-0.253134\pi\)
\(110\) 0 0
\(111\) − 4.71140i − 0.447186i
\(112\) 0 0
\(113\) 8.24459 0.775585 0.387793 0.921747i \(-0.373238\pi\)
0.387793 + 0.921747i \(0.373238\pi\)
\(114\) 0 0
\(115\) 21.6504i 2.01891i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0.130359i 0.0119500i
\(120\) 0 0
\(121\) −0.268750 −0.0244318
\(122\) 0 0
\(123\) 7.32198i 0.660201i
\(124\) 0 0
\(125\) − 34.1323i − 3.05288i
\(126\) 0 0
\(127\) 6.64310 0.589480 0.294740 0.955577i \(-0.404767\pi\)
0.294740 + 0.955577i \(0.404767\pi\)
\(128\) 0 0
\(129\) 11.6877 1.02905
\(130\) 0 0
\(131\) 7.86294 0.686988 0.343494 0.939155i \(-0.388390\pi\)
0.343494 + 0.939155i \(0.388390\pi\)
\(132\) 0 0
\(133\) −13.2198 −1.14630
\(134\) 0 0
\(135\) − 23.9661i − 2.06268i
\(136\) 0 0
\(137\) 0.987918i 0.0844036i 0.999109 + 0.0422018i \(0.0134372\pi\)
−0.999109 + 0.0422018i \(0.986563\pi\)
\(138\) 0 0
\(139\) −12.0368 −1.02095 −0.510476 0.859892i \(-0.670531\pi\)
−0.510476 + 0.859892i \(0.670531\pi\)
\(140\) 0 0
\(141\) 9.44504i 0.795416i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) − 9.07606i − 0.753726i
\(146\) 0 0
\(147\) 3.30127 0.272284
\(148\) 0 0
\(149\) 2.35929i 0.193280i 0.995319 + 0.0966402i \(0.0308096\pi\)
−0.995319 + 0.0966402i \(0.969190\pi\)
\(150\) 0 0
\(151\) 7.43967i 0.605431i 0.953081 + 0.302716i \(0.0978933\pi\)
−0.953081 + 0.302716i \(0.902107\pi\)
\(152\) 0 0
\(153\) −0.0706876 −0.00571475
\(154\) 0 0
\(155\) 12.1075 0.972500
\(156\) 0 0
\(157\) −10.9487 −0.873801 −0.436900 0.899510i \(-0.643924\pi\)
−0.436900 + 0.899510i \(0.643924\pi\)
\(158\) 0 0
\(159\) 0.0295400 0.00234267
\(160\) 0 0
\(161\) 10.8944i 0.858599i
\(162\) 0 0
\(163\) − 7.02475i − 0.550221i −0.961413 0.275111i \(-0.911286\pi\)
0.961413 0.275111i \(-0.0887145\pi\)
\(164\) 0 0
\(165\) 19.3448 1.50599
\(166\) 0 0
\(167\) 15.4819i 1.19802i 0.800740 + 0.599012i \(0.204440\pi\)
−0.800740 + 0.599012i \(0.795560\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) − 7.16852i − 0.548191i
\(172\) 0 0
\(173\) −13.7802 −1.04769 −0.523843 0.851815i \(-0.675502\pi\)
−0.523843 + 0.851815i \(0.675502\pi\)
\(174\) 0 0
\(175\) − 27.8605i − 2.10606i
\(176\) 0 0
\(177\) 7.88577i 0.592731i
\(178\) 0 0
\(179\) −22.1226 −1.65352 −0.826760 0.562555i \(-0.809819\pi\)
−0.826760 + 0.562555i \(0.809819\pi\)
\(180\) 0 0
\(181\) 13.6407 1.01391 0.506953 0.861974i \(-0.330772\pi\)
0.506953 + 0.861974i \(0.330772\pi\)
\(182\) 0 0
\(183\) 14.4916 1.07125
\(184\) 0 0
\(185\) 14.7463 1.08417
\(186\) 0 0
\(187\) − 0.204767i − 0.0149740i
\(188\) 0 0
\(189\) − 12.0597i − 0.877212i
\(190\) 0 0
\(191\) 4.49157 0.324998 0.162499 0.986709i \(-0.448045\pi\)
0.162499 + 0.986709i \(0.448045\pi\)
\(192\) 0 0
\(193\) − 25.7754i − 1.85535i −0.373385 0.927676i \(-0.621803\pi\)
0.373385 0.927676i \(-0.378197\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) − 18.6233i − 1.32685i −0.748242 0.663426i \(-0.769102\pi\)
0.748242 0.663426i \(-0.230898\pi\)
\(198\) 0 0
\(199\) 11.9661 0.848258 0.424129 0.905602i \(-0.360580\pi\)
0.424129 + 0.905602i \(0.360580\pi\)
\(200\) 0 0
\(201\) − 10.0489i − 0.708796i
\(202\) 0 0
\(203\) − 4.56704i − 0.320543i
\(204\) 0 0
\(205\) −22.9172 −1.60061
\(206\) 0 0
\(207\) −5.90754 −0.410603
\(208\) 0 0
\(209\) 20.7657 1.43639
\(210\) 0 0
\(211\) 2.96077 0.203828 0.101914 0.994793i \(-0.467503\pi\)
0.101914 + 0.994793i \(0.467503\pi\)
\(212\) 0 0
\(213\) 0.0663757i 0.00454799i
\(214\) 0 0
\(215\) 36.5816i 2.49485i
\(216\) 0 0
\(217\) 6.09246 0.413583
\(218\) 0 0
\(219\) − 6.12737i − 0.414050i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) − 5.44265i − 0.364467i −0.983255 0.182233i \(-0.941667\pi\)
0.983255 0.182233i \(-0.0583326\pi\)
\(224\) 0 0
\(225\) 15.1075 1.00717
\(226\) 0 0
\(227\) 22.4480i 1.48993i 0.667105 + 0.744964i \(0.267533\pi\)
−0.667105 + 0.744964i \(0.732467\pi\)
\(228\) 0 0
\(229\) 16.6136i 1.09786i 0.835870 + 0.548928i \(0.184964\pi\)
−0.835870 + 0.548928i \(0.815036\pi\)
\(230\) 0 0
\(231\) 9.73423 0.640466
\(232\) 0 0
\(233\) −9.73125 −0.637515 −0.318758 0.947836i \(-0.603266\pi\)
−0.318758 + 0.947836i \(0.603266\pi\)
\(234\) 0 0
\(235\) −29.5623 −1.92843
\(236\) 0 0
\(237\) 17.3913 1.12969
\(238\) 0 0
\(239\) − 2.82908i − 0.182998i −0.995805 0.0914991i \(-0.970834\pi\)
0.995805 0.0914991i \(-0.0291659\pi\)
\(240\) 0 0
\(241\) − 18.3448i − 1.18169i −0.806784 0.590847i \(-0.798794\pi\)
0.806784 0.590847i \(-0.201206\pi\)
\(242\) 0 0
\(243\) 11.2567 0.722116
\(244\) 0 0
\(245\) 10.3327i 0.660134i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 4.82371i 0.305690i
\(250\) 0 0
\(251\) 2.53750 0.160166 0.0800828 0.996788i \(-0.474482\pi\)
0.0800828 + 0.996788i \(0.474482\pi\)
\(252\) 0 0
\(253\) − 17.1129i − 1.07588i
\(254\) 0 0
\(255\) 0.351519i 0.0220130i
\(256\) 0 0
\(257\) 23.4862 1.46503 0.732514 0.680752i \(-0.238347\pi\)
0.732514 + 0.680752i \(0.238347\pi\)
\(258\) 0 0
\(259\) 7.42029 0.461074
\(260\) 0 0
\(261\) 2.47650 0.153292
\(262\) 0 0
\(263\) −15.8092 −0.974839 −0.487420 0.873168i \(-0.662062\pi\)
−0.487420 + 0.873168i \(0.662062\pi\)
\(264\) 0 0
\(265\) 0.0924579i 0.00567964i
\(266\) 0 0
\(267\) − 3.18492i − 0.194914i
\(268\) 0 0
\(269\) −30.8582 −1.88145 −0.940727 0.339164i \(-0.889856\pi\)
−0.940727 + 0.339164i \(0.889856\pi\)
\(270\) 0 0
\(271\) − 16.1933i − 0.983671i −0.870688 0.491836i \(-0.836326\pi\)
0.870688 0.491836i \(-0.163674\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 43.7633i 2.63903i
\(276\) 0 0
\(277\) −13.1075 −0.787555 −0.393777 0.919206i \(-0.628832\pi\)
−0.393777 + 0.919206i \(0.628832\pi\)
\(278\) 0 0
\(279\) 3.30367i 0.197785i
\(280\) 0 0
\(281\) − 14.2687i − 0.851202i −0.904911 0.425601i \(-0.860063\pi\)
0.904911 0.425601i \(-0.139937\pi\)
\(282\) 0 0
\(283\) 7.95646 0.472962 0.236481 0.971636i \(-0.424006\pi\)
0.236481 + 0.971636i \(0.424006\pi\)
\(284\) 0 0
\(285\) −35.6480 −2.11161
\(286\) 0 0
\(287\) −11.5319 −0.680704
\(288\) 0 0
\(289\) −16.9963 −0.999781
\(290\) 0 0
\(291\) − 4.64502i − 0.272296i
\(292\) 0 0
\(293\) − 19.6300i − 1.14679i −0.819278 0.573397i \(-0.805625\pi\)
0.819278 0.573397i \(-0.194375\pi\)
\(294\) 0 0
\(295\) −24.6819 −1.43703
\(296\) 0 0
\(297\) 18.9433i 1.09920i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 18.4077i 1.06100i
\(302\) 0 0
\(303\) 15.4397 0.886986
\(304\) 0 0
\(305\) 45.3575i 2.59716i
\(306\) 0 0
\(307\) 15.6775i 0.894765i 0.894343 + 0.447382i \(0.147644\pi\)
−0.894343 + 0.447382i \(0.852356\pi\)
\(308\) 0 0
\(309\) 8.24459 0.469018
\(310\) 0 0
\(311\) −16.4983 −0.935531 −0.467766 0.883853i \(-0.654941\pi\)
−0.467766 + 0.883853i \(0.654941\pi\)
\(312\) 0 0
\(313\) −11.3937 −0.644012 −0.322006 0.946738i \(-0.604357\pi\)
−0.322006 + 0.946738i \(0.604357\pi\)
\(314\) 0 0
\(315\) 10.5176 0.592602
\(316\) 0 0
\(317\) 25.4470i 1.42924i 0.699511 + 0.714622i \(0.253401\pi\)
−0.699511 + 0.714622i \(0.746599\pi\)
\(318\) 0 0
\(319\) 7.17390i 0.401661i
\(320\) 0 0
\(321\) −21.7603 −1.21454
\(322\) 0 0
\(323\) 0.377338i 0.0209957i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) − 20.2306i − 1.11875i
\(328\) 0 0
\(329\) −14.8756 −0.820119
\(330\) 0 0
\(331\) 8.95539i 0.492233i 0.969240 + 0.246117i \(0.0791546\pi\)
−0.969240 + 0.246117i \(0.920845\pi\)
\(332\) 0 0
\(333\) 4.02369i 0.220497i
\(334\) 0 0
\(335\) 31.4523 1.71842
\(336\) 0 0
\(337\) −19.3110 −1.05194 −0.525968 0.850505i \(-0.676297\pi\)
−0.525968 + 0.850505i \(0.676297\pi\)
\(338\) 0 0
\(339\) 11.1870 0.607597
\(340\) 0 0
\(341\) −9.57002 −0.518246
\(342\) 0 0
\(343\) 20.1588i 1.08847i
\(344\) 0 0
\(345\) 29.3773i 1.58162i
\(346\) 0 0
\(347\) 36.0411 1.93479 0.967395 0.253272i \(-0.0815068\pi\)
0.967395 + 0.253272i \(0.0815068\pi\)
\(348\) 0 0
\(349\) − 23.2416i − 1.24409i −0.782980 0.622047i \(-0.786301\pi\)
0.782980 0.622047i \(-0.213699\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 24.2349i 1.28989i 0.764228 + 0.644947i \(0.223120\pi\)
−0.764228 + 0.644947i \(0.776880\pi\)
\(354\) 0 0
\(355\) −0.207751 −0.0110263
\(356\) 0 0
\(357\) 0.176883i 0.00936164i
\(358\) 0 0
\(359\) − 17.7332i − 0.935921i −0.883749 0.467960i \(-0.844989\pi\)
0.883749 0.467960i \(-0.155011\pi\)
\(360\) 0 0
\(361\) −19.2664 −1.01402
\(362\) 0 0
\(363\) −0.364666 −0.0191400
\(364\) 0 0
\(365\) 19.1782 1.00383
\(366\) 0 0
\(367\) 30.2083 1.57686 0.788431 0.615123i \(-0.210894\pi\)
0.788431 + 0.615123i \(0.210894\pi\)
\(368\) 0 0
\(369\) − 6.25321i − 0.325529i
\(370\) 0 0
\(371\) 0.0465244i 0.00241543i
\(372\) 0 0
\(373\) −0.681268 −0.0352747 −0.0176374 0.999844i \(-0.505614\pi\)
−0.0176374 + 0.999844i \(0.505614\pi\)
\(374\) 0 0
\(375\) − 46.3139i − 2.39164i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 36.4959i 1.87467i 0.348433 + 0.937334i \(0.386714\pi\)
−0.348433 + 0.937334i \(0.613286\pi\)
\(380\) 0 0
\(381\) 9.01400 0.461801
\(382\) 0 0
\(383\) − 5.20775i − 0.266104i −0.991109 0.133052i \(-0.957522\pi\)
0.991109 0.133052i \(-0.0424777\pi\)
\(384\) 0 0
\(385\) 30.4674i 1.55276i
\(386\) 0 0
\(387\) −9.98169 −0.507398
\(388\) 0 0
\(389\) 17.5254 0.888574 0.444287 0.895885i \(-0.353457\pi\)
0.444287 + 0.895885i \(0.353457\pi\)
\(390\) 0 0
\(391\) 0.310962 0.0157260
\(392\) 0 0
\(393\) 10.6692 0.538189
\(394\) 0 0
\(395\) 54.4336i 2.73885i
\(396\) 0 0
\(397\) 29.8049i 1.49587i 0.663774 + 0.747933i \(0.268954\pi\)
−0.663774 + 0.747933i \(0.731046\pi\)
\(398\) 0 0
\(399\) −17.9379 −0.898020
\(400\) 0 0
\(401\) − 16.3341i − 0.815684i −0.913053 0.407842i \(-0.866281\pi\)
0.913053 0.407842i \(-0.133719\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) − 17.7549i − 0.882250i
\(406\) 0 0
\(407\) −11.6558 −0.577755
\(408\) 0 0
\(409\) − 9.49827i − 0.469659i −0.972037 0.234830i \(-0.924547\pi\)
0.972037 0.234830i \(-0.0754532\pi\)
\(410\) 0 0
\(411\) 1.34050i 0.0661221i
\(412\) 0 0
\(413\) −12.4198 −0.611139
\(414\) 0 0
\(415\) −15.0978 −0.741124
\(416\) 0 0
\(417\) −16.3327 −0.799817
\(418\) 0 0
\(419\) 12.4450 0.607980 0.303990 0.952675i \(-0.401681\pi\)
0.303990 + 0.952675i \(0.401681\pi\)
\(420\) 0 0
\(421\) 3.65578i 0.178172i 0.996024 + 0.0890858i \(0.0283945\pi\)
−0.996024 + 0.0890858i \(0.971605\pi\)
\(422\) 0 0
\(423\) − 8.06638i − 0.392201i
\(424\) 0 0
\(425\) −0.795233 −0.0385745
\(426\) 0 0
\(427\) 22.8237i 1.10452i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) − 35.6219i − 1.71585i −0.513777 0.857924i \(-0.671754\pi\)
0.513777 0.857924i \(-0.328246\pi\)
\(432\) 0 0
\(433\) 34.6926 1.66722 0.833610 0.552353i \(-0.186270\pi\)
0.833610 + 0.552353i \(0.186270\pi\)
\(434\) 0 0
\(435\) − 12.3153i − 0.590472i
\(436\) 0 0
\(437\) 31.5351i 1.50853i
\(438\) 0 0
\(439\) −9.48858 −0.452865 −0.226433 0.974027i \(-0.572706\pi\)
−0.226433 + 0.974027i \(0.572706\pi\)
\(440\) 0 0
\(441\) −2.81940 −0.134257
\(442\) 0 0
\(443\) 14.1849 0.673946 0.336973 0.941514i \(-0.390597\pi\)
0.336973 + 0.941514i \(0.390597\pi\)
\(444\) 0 0
\(445\) 9.96854 0.472554
\(446\) 0 0
\(447\) 3.20131i 0.151417i
\(448\) 0 0
\(449\) 6.99894i 0.330300i 0.986268 + 0.165150i \(0.0528109\pi\)
−0.986268 + 0.165150i \(0.947189\pi\)
\(450\) 0 0
\(451\) 18.1142 0.852966
\(452\) 0 0
\(453\) 10.0949i 0.474297i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 3.21313i 0.150304i 0.997172 + 0.0751519i \(0.0239442\pi\)
−0.997172 + 0.0751519i \(0.976056\pi\)
\(458\) 0 0
\(459\) −0.344223 −0.0160670
\(460\) 0 0
\(461\) 15.5278i 0.723202i 0.932333 + 0.361601i \(0.117770\pi\)
−0.932333 + 0.361601i \(0.882230\pi\)
\(462\) 0 0
\(463\) − 32.0834i − 1.49104i −0.666483 0.745520i \(-0.732201\pi\)
0.666483 0.745520i \(-0.267799\pi\)
\(464\) 0 0
\(465\) 16.4286 0.761860
\(466\) 0 0
\(467\) −7.24459 −0.335239 −0.167620 0.985852i \(-0.553608\pi\)
−0.167620 + 0.985852i \(0.553608\pi\)
\(468\) 0 0
\(469\) 15.8267 0.730809
\(470\) 0 0
\(471\) −14.8562 −0.684539
\(472\) 0 0
\(473\) − 28.9148i − 1.32951i
\(474\) 0 0
\(475\) − 80.6456i − 3.70027i
\(476\) 0 0
\(477\) −0.0252281 −0.00115512
\(478\) 0 0
\(479\) − 5.78209i − 0.264190i −0.991237 0.132095i \(-0.957830\pi\)
0.991237 0.132095i \(-0.0421704\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 14.7826i 0.672630i
\(484\) 0 0
\(485\) 14.5386 0.660162
\(486\) 0 0
\(487\) 4.14782i 0.187956i 0.995574 + 0.0939778i \(0.0299583\pi\)
−0.995574 + 0.0939778i \(0.970042\pi\)
\(488\) 0 0
\(489\) − 9.53186i − 0.431046i
\(490\) 0 0
\(491\) −7.19375 −0.324649 −0.162325 0.986737i \(-0.551899\pi\)
−0.162325 + 0.986737i \(0.551899\pi\)
\(492\) 0 0
\(493\) −0.130359 −0.00587105
\(494\) 0 0
\(495\) −16.5211 −0.742569
\(496\) 0 0
\(497\) −0.104539 −0.00468924
\(498\) 0 0
\(499\) − 41.5066i − 1.85809i −0.369964 0.929046i \(-0.620630\pi\)
0.369964 0.929046i \(-0.379370\pi\)
\(500\) 0 0
\(501\) 21.0073i 0.938537i
\(502\) 0 0
\(503\) −25.8605 −1.15306 −0.576532 0.817074i \(-0.695595\pi\)
−0.576532 + 0.817074i \(0.695595\pi\)
\(504\) 0 0
\(505\) 48.3250i 2.15043i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 35.3924i 1.56874i 0.620293 + 0.784370i \(0.287014\pi\)
−0.620293 + 0.784370i \(0.712986\pi\)
\(510\) 0 0
\(511\) 9.65040 0.426909
\(512\) 0 0
\(513\) − 34.9081i − 1.54123i
\(514\) 0 0
\(515\) 25.8049i 1.13710i
\(516\) 0 0
\(517\) 23.3666 1.02766
\(518\) 0 0
\(519\) −18.6983 −0.820762
\(520\) 0 0
\(521\) −34.2620 −1.50105 −0.750524 0.660844i \(-0.770199\pi\)
−0.750524 + 0.660844i \(0.770199\pi\)
\(522\) 0 0
\(523\) −14.6028 −0.638536 −0.319268 0.947664i \(-0.603437\pi\)
−0.319268 + 0.947664i \(0.603437\pi\)
\(524\) 0 0
\(525\) − 37.8039i − 1.64990i
\(526\) 0 0
\(527\) − 0.173899i − 0.00757516i
\(528\) 0 0
\(529\) 2.98792 0.129909
\(530\) 0 0
\(531\) − 6.73471i − 0.292261i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) − 68.1081i − 2.94457i
\(536\) 0 0
\(537\) −30.0180 −1.29537
\(538\) 0 0
\(539\) − 8.16719i − 0.351786i
\(540\) 0 0
\(541\) − 18.8866i − 0.811999i −0.913873 0.406000i \(-0.866923\pi\)
0.913873 0.406000i \(-0.133077\pi\)
\(542\) 0 0
\(543\) 18.5090 0.794298
\(544\) 0 0
\(545\) 63.3202 2.71234
\(546\) 0 0
\(547\) −34.6752 −1.48260 −0.741301 0.671172i \(-0.765791\pi\)
−0.741301 + 0.671172i \(0.765791\pi\)
\(548\) 0 0
\(549\) −12.3763 −0.528206
\(550\) 0 0
\(551\) − 13.2198i − 0.563184i
\(552\) 0 0
\(553\) 27.3907i 1.16477i
\(554\) 0 0
\(555\) 20.0092 0.849344
\(556\) 0 0
\(557\) 4.25667i 0.180361i 0.995925 + 0.0901804i \(0.0287444\pi\)
−0.995925 + 0.0901804i \(0.971256\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) − 0.277848i − 0.0117307i
\(562\) 0 0
\(563\) −21.1371 −0.890821 −0.445411 0.895326i \(-0.646942\pi\)
−0.445411 + 0.895326i \(0.646942\pi\)
\(564\) 0 0
\(565\) 35.0146i 1.47307i
\(566\) 0 0
\(567\) − 8.93422i − 0.375202i
\(568\) 0 0
\(569\) −35.4795 −1.48738 −0.743689 0.668526i \(-0.766926\pi\)
−0.743689 + 0.668526i \(0.766926\pi\)
\(570\) 0 0
\(571\) −3.94033 −0.164898 −0.0824488 0.996595i \(-0.526274\pi\)
−0.0824488 + 0.996595i \(0.526274\pi\)
\(572\) 0 0
\(573\) 6.09459 0.254605
\(574\) 0 0
\(575\) −66.4596 −2.77156
\(576\) 0 0
\(577\) − 16.6256i − 0.692135i −0.938210 0.346067i \(-0.887517\pi\)
0.938210 0.346067i \(-0.112483\pi\)
\(578\) 0 0
\(579\) − 34.9745i − 1.45349i
\(580\) 0 0
\(581\) −7.59717 −0.315184
\(582\) 0 0
\(583\) − 0.0730805i − 0.00302669i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 8.00298i − 0.330318i −0.986267 0.165159i \(-0.947186\pi\)
0.986267 0.165159i \(-0.0528138\pi\)
\(588\) 0 0
\(589\) 17.6353 0.726651
\(590\) 0 0
\(591\) − 25.2698i − 1.03946i
\(592\) 0 0
\(593\) − 15.8345i − 0.650243i −0.945672 0.325122i \(-0.894595\pi\)
0.945672 0.325122i \(-0.105405\pi\)
\(594\) 0 0
\(595\) −0.553630 −0.0226966
\(596\) 0 0
\(597\) 16.2368 0.664529
\(598\) 0 0
\(599\) 25.9226 1.05917 0.529585 0.848257i \(-0.322348\pi\)
0.529585 + 0.848257i \(0.322348\pi\)
\(600\) 0 0
\(601\) 20.0616 0.818329 0.409165 0.912461i \(-0.365820\pi\)
0.409165 + 0.912461i \(0.365820\pi\)
\(602\) 0 0
\(603\) 8.58211i 0.349490i
\(604\) 0 0
\(605\) − 1.14138i − 0.0464035i
\(606\) 0 0
\(607\) 41.7614 1.69504 0.847521 0.530762i \(-0.178094\pi\)
0.847521 + 0.530762i \(0.178094\pi\)
\(608\) 0 0
\(609\) − 6.19700i − 0.251115i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) − 12.4179i − 0.501554i −0.968045 0.250777i \(-0.919314\pi\)
0.968045 0.250777i \(-0.0806861\pi\)
\(614\) 0 0
\(615\) −31.0963 −1.25392
\(616\) 0 0
\(617\) − 17.2198i − 0.693244i −0.938005 0.346622i \(-0.887329\pi\)
0.938005 0.346622i \(-0.112671\pi\)
\(618\) 0 0
\(619\) − 42.6136i − 1.71278i −0.516326 0.856392i \(-0.672701\pi\)
0.516326 0.856392i \(-0.327299\pi\)
\(620\) 0 0
\(621\) −28.7676 −1.15440
\(622\) 0 0
\(623\) 5.01613 0.200967
\(624\) 0 0
\(625\) 79.7749 3.19100
\(626\) 0 0
\(627\) 28.1769 1.12528
\(628\) 0 0
\(629\) − 0.211800i − 0.00844501i
\(630\) 0 0
\(631\) 26.8605i 1.06930i 0.845073 + 0.534651i \(0.179557\pi\)
−0.845073 + 0.534651i \(0.820443\pi\)
\(632\) 0 0
\(633\) 4.01746 0.159680
\(634\) 0 0
\(635\) 28.2131i 1.11960i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) − 0.0566871i − 0.00224251i
\(640\) 0 0
\(641\) −33.3045 −1.31545 −0.657725 0.753258i \(-0.728481\pi\)
−0.657725 + 0.753258i \(0.728481\pi\)
\(642\) 0 0
\(643\) 30.6746i 1.20969i 0.796344 + 0.604843i \(0.206764\pi\)
−0.796344 + 0.604843i \(0.793236\pi\)
\(644\) 0 0
\(645\) 49.6375i 1.95447i
\(646\) 0 0
\(647\) 3.25608 0.128010 0.0640048 0.997950i \(-0.479613\pi\)
0.0640048 + 0.997950i \(0.479613\pi\)
\(648\) 0 0
\(649\) 19.5090 0.765796
\(650\) 0 0
\(651\) 8.26683 0.324003
\(652\) 0 0
\(653\) 14.8183 0.579886 0.289943 0.957044i \(-0.406364\pi\)
0.289943 + 0.957044i \(0.406364\pi\)
\(654\) 0 0
\(655\) 33.3937i 1.30480i
\(656\) 0 0
\(657\) 5.23298i 0.204158i
\(658\) 0 0
\(659\) 30.5392 1.18964 0.594818 0.803860i \(-0.297224\pi\)
0.594818 + 0.803860i \(0.297224\pi\)
\(660\) 0 0
\(661\) 19.3676i 0.753314i 0.926353 + 0.376657i \(0.122927\pi\)
−0.926353 + 0.376657i \(0.877073\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) − 56.1444i − 2.17718i
\(666\) 0 0
\(667\) −10.8944 −0.421833
\(668\) 0 0
\(669\) − 7.38511i − 0.285525i
\(670\) 0 0
\(671\) − 35.8514i − 1.38403i
\(672\) 0 0
\(673\) −41.5459 −1.60148 −0.800738 0.599015i \(-0.795559\pi\)
−0.800738 + 0.599015i \(0.795559\pi\)
\(674\) 0 0
\(675\) 73.5682 2.83164
\(676\) 0 0
\(677\) −40.6064 −1.56063 −0.780315 0.625387i \(-0.784941\pi\)
−0.780315 + 0.625387i \(0.784941\pi\)
\(678\) 0 0
\(679\) 7.31575 0.280753
\(680\) 0 0
\(681\) 30.4596i 1.16722i
\(682\) 0 0
\(683\) 2.40581i 0.0920559i 0.998940 + 0.0460279i \(0.0146563\pi\)
−0.998940 + 0.0460279i \(0.985344\pi\)
\(684\) 0 0
\(685\) −4.19567 −0.160308
\(686\) 0 0
\(687\) 22.5429i 0.860064i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 6.81269i 0.259167i 0.991569 + 0.129583i \(0.0413640\pi\)
−0.991569 + 0.129583i \(0.958636\pi\)
\(692\) 0 0
\(693\) −8.31336 −0.315798
\(694\) 0 0
\(695\) − 51.1202i − 1.93910i
\(696\) 0 0
\(697\) 0.329158i 0.0124677i
\(698\) 0 0
\(699\) −13.2043 −0.499432
\(700\) 0 0
\(701\) 12.7802 0.482700 0.241350 0.970438i \(-0.422410\pi\)
0.241350 + 0.970438i \(0.422410\pi\)
\(702\) 0 0
\(703\) 21.4789 0.810092
\(704\) 0 0
\(705\) −40.1129 −1.51074
\(706\) 0 0
\(707\) 24.3169i 0.914532i
\(708\) 0 0
\(709\) 4.94139i 0.185578i 0.995686 + 0.0927890i \(0.0295782\pi\)
−0.995686 + 0.0927890i \(0.970422\pi\)
\(710\) 0 0
\(711\) −14.8528 −0.557023
\(712\) 0 0
\(713\) − 14.5332i − 0.544272i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) − 3.83877i − 0.143362i
\(718\) 0 0
\(719\) 37.6155 1.40282 0.701410 0.712758i \(-0.252554\pi\)
0.701410 + 0.712758i \(0.252554\pi\)
\(720\) 0 0
\(721\) 12.9849i 0.483584i
\(722\) 0 0
\(723\) − 24.8920i − 0.925744i
\(724\) 0 0
\(725\) 27.8605 1.03471
\(726\) 0 0
\(727\) 17.1879 0.637464 0.318732 0.947845i \(-0.396743\pi\)
0.318732 + 0.947845i \(0.396743\pi\)
\(728\) 0 0
\(729\) 27.8159 1.03022
\(730\) 0 0
\(731\) 0.525418 0.0194333
\(732\) 0 0
\(733\) − 19.2597i − 0.711371i −0.934606 0.355686i \(-0.884247\pi\)
0.934606 0.355686i \(-0.115753\pi\)
\(734\) 0 0
\(735\) 14.0204i 0.517152i
\(736\) 0 0
\(737\) −24.8605 −0.915750
\(738\) 0 0
\(739\) − 18.0785i − 0.665027i −0.943099 0.332513i \(-0.892103\pi\)
0.943099 0.332513i \(-0.107897\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 32.8219i 1.20412i 0.798451 + 0.602059i \(0.205653\pi\)
−0.798451 + 0.602059i \(0.794347\pi\)
\(744\) 0 0
\(745\) −10.0199 −0.367099
\(746\) 0 0
\(747\) − 4.11960i − 0.150728i
\(748\) 0 0
\(749\) − 34.2717i − 1.25226i
\(750\) 0 0
\(751\) 33.1702 1.21040 0.605198 0.796075i \(-0.293094\pi\)
0.605198 + 0.796075i \(0.293094\pi\)
\(752\) 0 0
\(753\) 3.44312 0.125474
\(754\) 0 0
\(755\) −31.5961 −1.14990
\(756\) 0 0
\(757\) −0.736627 −0.0267732 −0.0133866 0.999910i \(-0.504261\pi\)
−0.0133866 + 0.999910i \(0.504261\pi\)
\(758\) 0 0
\(759\) − 23.2204i − 0.842848i
\(760\) 0 0
\(761\) − 36.3817i − 1.31883i −0.751777 0.659417i \(-0.770803\pi\)
0.751777 0.659417i \(-0.229197\pi\)
\(762\) 0 0
\(763\) 31.8625 1.15350
\(764\) 0 0
\(765\) − 0.300209i − 0.0108541i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) − 11.4523i − 0.412982i −0.978449 0.206491i \(-0.933796\pi\)
0.978449 0.206491i \(-0.0662044\pi\)
\(770\) 0 0
\(771\) 31.8683 1.14771
\(772\) 0 0
\(773\) 7.57732i 0.272537i 0.990672 + 0.136269i \(0.0435110\pi\)
−0.990672 + 0.136269i \(0.956489\pi\)
\(774\) 0 0
\(775\) 37.1661i 1.33505i
\(776\) 0 0
\(777\) 10.0686 0.361207
\(778\) 0 0
\(779\) −33.3803 −1.19597
\(780\) 0 0
\(781\) 0.164210 0.00587591
\(782\) 0 0
\(783\) 12.0597 0.430977
\(784\) 0 0
\(785\) − 46.4989i − 1.65962i
\(786\) 0 0
\(787\) 30.5066i 1.08744i 0.839265 + 0.543722i \(0.182985\pi\)
−0.839265 + 0.543722i \(0.817015\pi\)
\(788\) 0 0
\(789\) −21.4515 −0.763693
\(790\) 0 0
\(791\) 17.6192i 0.626467i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0.125456i 0.00444946i
\(796\) 0 0
\(797\) −36.2435 −1.28381 −0.641906 0.766784i \(-0.721856\pi\)
−0.641906 + 0.766784i \(0.721856\pi\)
\(798\) 0 0
\(799\) 0.424600i 0.0150213i
\(800\) 0 0
\(801\) 2.72002i 0.0961073i
\(802\) 0 0
\(803\) −15.1588 −0.534944
\(804\) 0 0
\(805\) −46.2683 −1.63074
\(806\) 0 0
\(807\) −41.8713 −1.47394
\(808\) 0 0
\(809\) 22.3236 0.784857 0.392429 0.919782i \(-0.371635\pi\)
0.392429 + 0.919782i \(0.371635\pi\)
\(810\) 0 0
\(811\) − 39.4922i − 1.38676i −0.720573 0.693379i \(-0.756121\pi\)
0.720573 0.693379i \(-0.243879\pi\)
\(812\) 0 0
\(813\) − 21.9726i − 0.770612i
\(814\) 0 0
\(815\) 29.8340 1.04504
\(816\) 0 0
\(817\) 53.2833i 1.86415i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 11.3830i 0.397269i 0.980074 + 0.198634i \(0.0636506\pi\)
−0.980074 + 0.198634i \(0.936349\pi\)
\(822\) 0 0
\(823\) −25.6848 −0.895317 −0.447659 0.894205i \(-0.647742\pi\)
−0.447659 + 0.894205i \(0.647742\pi\)
\(824\) 0 0
\(825\) 59.3822i 2.06742i
\(826\) 0 0
\(827\) 36.7251i 1.27706i 0.769598 + 0.638529i \(0.220457\pi\)
−0.769598 + 0.638529i \(0.779543\pi\)
\(828\) 0 0
\(829\) 11.5808 0.402217 0.201109 0.979569i \(-0.435546\pi\)
0.201109 + 0.979569i \(0.435546\pi\)
\(830\) 0 0
\(831\) −17.7855 −0.616974
\(832\) 0 0
\(833\) 0.148408 0.00514203
\(834\) 0 0
\(835\) −65.7512 −2.27541
\(836\) 0 0
\(837\) 16.0877i 0.556071i
\(838\) 0 0
\(839\) − 13.4577i − 0.464612i −0.972643 0.232306i \(-0.925373\pi\)
0.972643 0.232306i \(-0.0746271\pi\)
\(840\) 0 0
\(841\) −24.4330 −0.842516
\(842\) 0 0
\(843\) − 19.3612i − 0.666835i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) − 0.574335i − 0.0197344i
\(848\) 0 0
\(849\) 10.7961 0.370521
\(850\) 0 0
\(851\) − 17.7006i − 0.606770i
\(852\) 0 0
\(853\) 5.34050i 0.182855i 0.995812 + 0.0914277i \(0.0291430\pi\)
−0.995812 + 0.0914277i \(0.970857\pi\)
\(854\) 0 0
\(855\) 30.4446 1.04118
\(856\) 0 0
\(857\) −49.3381 −1.68536 −0.842679 0.538417i \(-0.819023\pi\)
−0.842679 + 0.538417i \(0.819023\pi\)
\(858\) 0 0
\(859\) −4.92500 −0.168039 −0.0840194 0.996464i \(-0.526776\pi\)
−0.0840194 + 0.996464i \(0.526776\pi\)
\(860\) 0 0
\(861\) −15.6475 −0.533266
\(862\) 0 0
\(863\) − 40.0315i − 1.36269i −0.731964 0.681343i \(-0.761396\pi\)
0.731964 0.681343i \(-0.238604\pi\)
\(864\) 0 0
\(865\) − 58.5241i − 1.98988i
\(866\) 0 0
\(867\) −23.0622 −0.783233
\(868\) 0 0
\(869\) − 43.0253i − 1.45953i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 3.96700i 0.134263i
\(874\) 0 0
\(875\) 72.9428 2.46592
\(876\) 0 0
\(877\) − 28.9379i − 0.977165i −0.872518 0.488582i \(-0.837514\pi\)
0.872518 0.488582i \(-0.162486\pi\)
\(878\) 0 0
\(879\) − 26.6358i − 0.898404i
\(880\) 0 0
\(881\) −21.6692 −0.730053 −0.365027 0.930997i \(-0.618940\pi\)
−0.365027 + 0.930997i \(0.618940\pi\)
\(882\) 0 0
\(883\) −11.7614 −0.395802 −0.197901 0.980222i \(-0.563412\pi\)
−0.197901 + 0.980222i \(0.563412\pi\)
\(884\) 0 0
\(885\) −33.4907 −1.12578
\(886\) 0 0
\(887\) 26.8485 0.901483 0.450742 0.892654i \(-0.351160\pi\)
0.450742 + 0.892654i \(0.351160\pi\)
\(888\) 0 0
\(889\) 14.1967i 0.476143i
\(890\) 0 0
\(891\) 14.0339i 0.470152i
\(892\) 0 0
\(893\) −43.0592 −1.44092
\(894\) 0 0
\(895\) − 93.9542i − 3.14054i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 6.09246i 0.203195i
\(900\) 0 0
\(901\) 0.00132796 4.42409e−5 0
\(902\) 0 0
\(903\) 24.9774i 0.831195i
\(904\) 0 0
\(905\) 57.9318i 1.92572i
\(906\) 0 0
\(907\) −16.4306 −0.545568 −0.272784 0.962075i \(-0.587944\pi\)
−0.272784 + 0.962075i \(0.587944\pi\)
\(908\) 0 0
\(909\) −13.1860 −0.437351
\(910\) 0 0
\(911\) 26.0519 0.863138 0.431569 0.902080i \(-0.357960\pi\)
0.431569 + 0.902080i \(0.357960\pi\)
\(912\) 0 0
\(913\) 11.9336 0.394945
\(914\) 0 0
\(915\) 61.5454i 2.03463i
\(916\) 0 0
\(917\) 16.8036i 0.554904i
\(918\) 0 0
\(919\) 4.36957 0.144139 0.0720694 0.997400i \(-0.477040\pi\)
0.0720694 + 0.997400i \(0.477040\pi\)
\(920\) 0 0
\(921\) 21.2728i 0.700963i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 45.2664i 1.48835i
\(926\) 0 0
\(927\) −7.04115 −0.231262
\(928\) 0 0
\(929\) − 32.2868i − 1.05930i −0.848218 0.529648i \(-0.822324\pi\)
0.848218 0.529648i \(-0.177676\pi\)
\(930\) 0 0
\(931\) 15.0502i 0.493252i
\(932\) 0 0
\(933\) −22.3864 −0.732899
\(934\) 0 0
\(935\) 0.869641 0.0284403
\(936\) 0 0
\(937\) −48.5730 −1.58681 −0.793405 0.608693i \(-0.791694\pi\)
−0.793405 + 0.608693i \(0.791694\pi\)
\(938\) 0 0
\(939\) −15.4601 −0.504522
\(940\) 0 0
\(941\) 4.82849i 0.157404i 0.996898 + 0.0787022i \(0.0250776\pi\)
−0.996898 + 0.0787022i \(0.974922\pi\)
\(942\) 0 0
\(943\) 27.5086i 0.895802i
\(944\) 0 0
\(945\) 51.2172 1.66609
\(946\) 0 0
\(947\) 35.1065i 1.14081i 0.821365 + 0.570403i \(0.193213\pi\)
−0.821365 + 0.570403i \(0.806787\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 34.5289i 1.11968i
\(952\) 0 0
\(953\) 28.1866 0.913053 0.456526 0.889710i \(-0.349093\pi\)
0.456526 + 0.889710i \(0.349093\pi\)
\(954\) 0 0
\(955\) 19.0756i 0.617272i
\(956\) 0 0
\(957\) 9.73423i 0.314663i
\(958\) 0 0
\(959\) −2.11124 −0.0681756
\(960\) 0 0
\(961\) 22.8726 0.737827
\(962\) 0 0
\(963\) 18.5840 0.598862
\(964\) 0 0
\(965\) 109.468 3.52388
\(966\) 0 0
\(967\) 44.6674i 1.43641i 0.695834 + 0.718203i \(0.255035\pi\)
−0.695834 + 0.718203i \(0.744965\pi\)
\(968\) 0 0
\(969\) 0.512009i 0.0164481i
\(970\) 0 0
\(971\) −14.9108 −0.478510 −0.239255 0.970957i \(-0.576903\pi\)
−0.239255 + 0.970957i \(0.576903\pi\)
\(972\) 0 0
\(973\) − 25.7235i − 0.824657i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 35.2127i − 1.12655i −0.826269 0.563276i \(-0.809541\pi\)
0.826269 0.563276i \(-0.190459\pi\)
\(978\) 0 0
\(979\) −7.87933 −0.251824
\(980\) 0 0
\(981\) 17.2776i 0.551631i
\(982\) 0 0
\(983\) 30.5646i 0.974861i 0.873162 + 0.487430i \(0.162066\pi\)
−0.873162 + 0.487430i \(0.837934\pi\)
\(984\) 0 0
\(985\) 79.0926 2.52010
\(986\) 0 0
\(987\) −20.1847 −0.642485
\(988\) 0 0
\(989\) 43.9105 1.39627
\(990\) 0 0
\(991\) 62.5739 1.98772 0.993862 0.110626i \(-0.0352856\pi\)
0.993862 + 0.110626i \(0.0352856\pi\)
\(992\) 0 0
\(993\) 12.1515i 0.385617i
\(994\) 0 0
\(995\) 50.8200i 1.61110i
\(996\) 0 0
\(997\) −1.88444 −0.0596809 −0.0298405 0.999555i \(-0.509500\pi\)
−0.0298405 + 0.999555i \(0.509500\pi\)
\(998\) 0 0
\(999\) 19.5939i 0.619924i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.d.e.337.4 6
3.2 odd 2 6084.2.b.p.4393.1 6
4.3 odd 2 2704.2.f.n.337.4 6
13.2 odd 12 676.2.e.g.529.2 6
13.3 even 3 676.2.h.e.485.4 12
13.4 even 6 676.2.h.e.361.3 12
13.5 odd 4 676.2.a.h.1.2 yes 3
13.6 odd 12 676.2.e.g.653.2 6
13.7 odd 12 676.2.e.f.653.2 6
13.8 odd 4 676.2.a.g.1.2 3
13.9 even 3 676.2.h.e.361.4 12
13.10 even 6 676.2.h.e.485.3 12
13.11 odd 12 676.2.e.f.529.2 6
13.12 even 2 inner 676.2.d.e.337.3 6
39.5 even 4 6084.2.a.x.1.1 3
39.8 even 4 6084.2.a.bc.1.3 3
39.38 odd 2 6084.2.b.p.4393.6 6
52.31 even 4 2704.2.a.y.1.2 3
52.47 even 4 2704.2.a.x.1.2 3
52.51 odd 2 2704.2.f.n.337.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
676.2.a.g.1.2 3 13.8 odd 4
676.2.a.h.1.2 yes 3 13.5 odd 4
676.2.d.e.337.3 6 13.12 even 2 inner
676.2.d.e.337.4 6 1.1 even 1 trivial
676.2.e.f.529.2 6 13.11 odd 12
676.2.e.f.653.2 6 13.7 odd 12
676.2.e.g.529.2 6 13.2 odd 12
676.2.e.g.653.2 6 13.6 odd 12
676.2.h.e.361.3 12 13.4 even 6
676.2.h.e.361.4 12 13.9 even 3
676.2.h.e.485.3 12 13.10 even 6
676.2.h.e.485.4 12 13.3 even 3
2704.2.a.x.1.2 3 52.47 even 4
2704.2.a.y.1.2 3 52.31 even 4
2704.2.f.n.337.3 6 52.51 odd 2
2704.2.f.n.337.4 6 4.3 odd 2
6084.2.a.x.1.1 3 39.5 even 4
6084.2.a.bc.1.3 3 39.8 even 4
6084.2.b.p.4393.1 6 3.2 odd 2
6084.2.b.p.4393.6 6 39.38 odd 2