Properties

Label 676.2.e.g.653.2
Level $676$
Weight $2$
Character 676.653
Analytic conductor $5.398$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [676,2,Mod(529,676)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(676, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("676.529");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 676 = 2^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 676.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.39788717664\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.64827.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{5} + 3x^{4} + 5x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 653.2
Root \(0.900969 - 1.56052i\) of defining polynomial
Character \(\chi\) \(=\) 676.653
Dual form 676.2.e.g.529.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.678448 - 1.17511i) q^{3} +4.24698 q^{5} +(1.06853 - 1.85075i) q^{7} +(0.579417 - 1.00358i) q^{9} +(-1.67845 - 2.90716i) q^{11} +(-2.88135 - 4.99065i) q^{15} +(0.0304995 - 0.0528266i) q^{17} +(-3.09299 + 5.35722i) q^{19} -2.89977 q^{21} +(2.54892 + 4.41485i) q^{23} +13.0368 q^{25} -5.64310 q^{27} +(1.06853 + 1.85075i) q^{29} -2.85086 q^{31} +(-2.27748 + 3.94471i) q^{33} +(4.53803 - 7.86010i) q^{35} +(-1.73609 - 3.00700i) q^{37} +(-2.69806 - 4.67318i) q^{41} +(4.30678 - 7.45957i) q^{43} +(2.46077 - 4.26218i) q^{45} -6.96077 q^{47} +(1.21648 + 2.10701i) q^{49} -0.0827692 q^{51} +0.0217703 q^{53} +(-7.12833 - 12.3466i) q^{55} +8.39373 q^{57} +(2.90581 - 5.03302i) q^{59} +(-5.33997 + 9.24910i) q^{61} +(-1.23825 - 2.14471i) q^{63} +(3.70291 + 6.41362i) q^{67} +(3.45862 - 5.99050i) q^{69} +(-0.0244587 + 0.0423637i) q^{71} +4.51573 q^{73} +(-8.84481 - 15.3197i) q^{75} -7.17390 q^{77} +12.8170 q^{79} +(2.09030 + 3.62051i) q^{81} +3.55496 q^{83} +(0.129531 - 0.224354i) q^{85} +(1.44989 - 2.51128i) q^{87} +(-1.17360 - 2.03274i) q^{89} +(1.93416 + 3.35006i) q^{93} +(-13.1359 + 22.7520i) q^{95} +(1.71164 - 2.96464i) q^{97} -3.89008 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 16 q^{5} + q^{7} - 5 q^{9} - 6 q^{11} + 10 q^{17} - 4 q^{19} + 28 q^{21} - 3 q^{23} + 22 q^{25} - 42 q^{27} + q^{29} + 10 q^{31} - 14 q^{33} + 12 q^{35} - 4 q^{37} - 25 q^{41} - 5 q^{43} - 11 q^{45}+ \cdots - 22 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/676\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(509\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.678448 1.17511i −0.391702 0.678448i 0.600972 0.799270i \(-0.294780\pi\)
−0.992674 + 0.120822i \(0.961447\pi\)
\(4\) 0 0
\(5\) 4.24698 1.89931 0.949654 0.313302i \(-0.101435\pi\)
0.949654 + 0.313302i \(0.101435\pi\)
\(6\) 0 0
\(7\) 1.06853 1.85075i 0.403867 0.699518i −0.590322 0.807168i \(-0.700999\pi\)
0.994189 + 0.107650i \(0.0343325\pi\)
\(8\) 0 0
\(9\) 0.579417 1.00358i 0.193139 0.334526i
\(10\) 0 0
\(11\) −1.67845 2.90716i −0.506071 0.876541i −0.999975 0.00702454i \(-0.997764\pi\)
0.493904 0.869516i \(-0.335569\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −2.88135 4.99065i −0.743963 1.28858i
\(16\) 0 0
\(17\) 0.0304995 0.0528266i 0.00739721 0.0128123i −0.862303 0.506392i \(-0.830979\pi\)
0.869700 + 0.493580i \(0.164312\pi\)
\(18\) 0 0
\(19\) −3.09299 + 5.35722i −0.709581 + 1.22903i 0.255432 + 0.966827i \(0.417782\pi\)
−0.965013 + 0.262203i \(0.915551\pi\)
\(20\) 0 0
\(21\) −2.89977 −0.632782
\(22\) 0 0
\(23\) 2.54892 + 4.41485i 0.531486 + 0.920561i 0.999325 + 0.0367468i \(0.0116995\pi\)
−0.467839 + 0.883814i \(0.654967\pi\)
\(24\) 0 0
\(25\) 13.0368 2.60737
\(26\) 0 0
\(27\) −5.64310 −1.08602
\(28\) 0 0
\(29\) 1.06853 + 1.85075i 0.198421 + 0.343676i 0.948017 0.318220i \(-0.103085\pi\)
−0.749595 + 0.661896i \(0.769752\pi\)
\(30\) 0 0
\(31\) −2.85086 −0.512029 −0.256014 0.966673i \(-0.582409\pi\)
−0.256014 + 0.966673i \(0.582409\pi\)
\(32\) 0 0
\(33\) −2.27748 + 3.94471i −0.396458 + 0.686686i
\(34\) 0 0
\(35\) 4.53803 7.86010i 0.767067 1.32860i
\(36\) 0 0
\(37\) −1.73609 3.00700i −0.285412 0.494348i 0.687297 0.726377i \(-0.258797\pi\)
−0.972709 + 0.232028i \(0.925464\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.69806 4.67318i −0.421367 0.729828i 0.574707 0.818359i \(-0.305116\pi\)
−0.996073 + 0.0885311i \(0.971783\pi\)
\(42\) 0 0
\(43\) 4.30678 7.45957i 0.656778 1.13757i −0.324667 0.945828i \(-0.605252\pi\)
0.981445 0.191745i \(-0.0614145\pi\)
\(44\) 0 0
\(45\) 2.46077 4.26218i 0.366830 0.635368i
\(46\) 0 0
\(47\) −6.96077 −1.01533 −0.507666 0.861554i \(-0.669492\pi\)
−0.507666 + 0.861554i \(0.669492\pi\)
\(48\) 0 0
\(49\) 1.21648 + 2.10701i 0.173783 + 0.301001i
\(50\) 0 0
\(51\) −0.0827692 −0.0115900
\(52\) 0 0
\(53\) 0.0217703 0.00299038 0.00149519 0.999999i \(-0.499524\pi\)
0.00149519 + 0.999999i \(0.499524\pi\)
\(54\) 0 0
\(55\) −7.12833 12.3466i −0.961184 1.66482i
\(56\) 0 0
\(57\) 8.39373 1.11178
\(58\) 0 0
\(59\) 2.90581 5.03302i 0.378305 0.655243i −0.612511 0.790462i \(-0.709841\pi\)
0.990816 + 0.135219i \(0.0431738\pi\)
\(60\) 0 0
\(61\) −5.33997 + 9.24910i −0.683713 + 1.18423i 0.290126 + 0.956988i \(0.406303\pi\)
−0.973839 + 0.227237i \(0.927031\pi\)
\(62\) 0 0
\(63\) −1.23825 2.14471i −0.156005 0.270208i
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 3.70291 + 6.41362i 0.452382 + 0.783549i 0.998533 0.0541378i \(-0.0172410\pi\)
−0.546151 + 0.837686i \(0.683908\pi\)
\(68\) 0 0
\(69\) 3.45862 5.99050i 0.416368 0.721171i
\(70\) 0 0
\(71\) −0.0244587 + 0.0423637i −0.00290271 + 0.00502764i −0.867473 0.497484i \(-0.834257\pi\)
0.864570 + 0.502512i \(0.167591\pi\)
\(72\) 0 0
\(73\) 4.51573 0.528526 0.264263 0.964451i \(-0.414871\pi\)
0.264263 + 0.964451i \(0.414871\pi\)
\(74\) 0 0
\(75\) −8.84481 15.3197i −1.02131 1.76896i
\(76\) 0 0
\(77\) −7.17390 −0.817542
\(78\) 0 0
\(79\) 12.8170 1.44203 0.721013 0.692922i \(-0.243677\pi\)
0.721013 + 0.692922i \(0.243677\pi\)
\(80\) 0 0
\(81\) 2.09030 + 3.62051i 0.232256 + 0.402279i
\(82\) 0 0
\(83\) 3.55496 0.390207 0.195104 0.980783i \(-0.437496\pi\)
0.195104 + 0.980783i \(0.437496\pi\)
\(84\) 0 0
\(85\) 0.129531 0.224354i 0.0140496 0.0243346i
\(86\) 0 0
\(87\) 1.44989 2.51128i 0.155444 0.269237i
\(88\) 0 0
\(89\) −1.17360 2.03274i −0.124402 0.215470i 0.797097 0.603851i \(-0.206368\pi\)
−0.921499 + 0.388381i \(0.873034\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 1.93416 + 3.35006i 0.200563 + 0.347385i
\(94\) 0 0
\(95\) −13.1359 + 22.7520i −1.34771 + 2.33430i
\(96\) 0 0
\(97\) 1.71164 2.96464i 0.173790 0.301014i −0.765952 0.642898i \(-0.777732\pi\)
0.939742 + 0.341885i \(0.111065\pi\)
\(98\) 0 0
\(99\) −3.89008 −0.390968
\(100\) 0 0
\(101\) 5.68933 + 9.85421i 0.566110 + 0.980531i 0.996945 + 0.0781005i \(0.0248855\pi\)
−0.430836 + 0.902430i \(0.641781\pi\)
\(102\) 0 0
\(103\) −6.07606 −0.598692 −0.299346 0.954145i \(-0.596769\pi\)
−0.299346 + 0.954145i \(0.596769\pi\)
\(104\) 0 0
\(105\) −12.3153 −1.20185
\(106\) 0 0
\(107\) 8.01842 + 13.8883i 0.775170 + 1.34263i 0.934699 + 0.355440i \(0.115669\pi\)
−0.159529 + 0.987193i \(0.550998\pi\)
\(108\) 0 0
\(109\) −14.9095 −1.42807 −0.714034 0.700111i \(-0.753134\pi\)
−0.714034 + 0.700111i \(0.753134\pi\)
\(110\) 0 0
\(111\) −2.35570 + 4.08019i −0.223593 + 0.387275i
\(112\) 0 0
\(113\) −4.12229 + 7.14002i −0.387793 + 0.671677i −0.992152 0.125035i \(-0.960096\pi\)
0.604360 + 0.796712i \(0.293429\pi\)
\(114\) 0 0
\(115\) 10.8252 + 18.7498i 1.00946 + 1.74843i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −0.0651793 0.112894i −0.00597498 0.0103490i
\(120\) 0 0
\(121\) −0.134375 + 0.232744i −0.0122159 + 0.0211586i
\(122\) 0 0
\(123\) −3.66099 + 6.34102i −0.330100 + 0.571751i
\(124\) 0 0
\(125\) 34.1323 3.05288
\(126\) 0 0
\(127\) 3.32155 + 5.75310i 0.294740 + 0.510505i 0.974924 0.222536i \(-0.0714336\pi\)
−0.680184 + 0.733041i \(0.738100\pi\)
\(128\) 0 0
\(129\) −11.6877 −1.02905
\(130\) 0 0
\(131\) 7.86294 0.686988 0.343494 0.939155i \(-0.388390\pi\)
0.343494 + 0.939155i \(0.388390\pi\)
\(132\) 0 0
\(133\) 6.60992 + 11.4487i 0.573152 + 0.992729i
\(134\) 0 0
\(135\) −23.9661 −2.06268
\(136\) 0 0
\(137\) 0.493959 0.855562i 0.0422018 0.0730956i −0.844153 0.536102i \(-0.819896\pi\)
0.886355 + 0.463007i \(0.153229\pi\)
\(138\) 0 0
\(139\) 6.01842 10.4242i 0.510476 0.884170i −0.489451 0.872031i \(-0.662803\pi\)
0.999926 0.0121387i \(-0.00386395\pi\)
\(140\) 0 0
\(141\) 4.72252 + 8.17965i 0.397708 + 0.688850i
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 4.53803 + 7.86010i 0.376863 + 0.652746i
\(146\) 0 0
\(147\) 1.65064 2.85899i 0.136142 0.235805i
\(148\) 0 0
\(149\) −1.17964 + 2.04320i −0.0966402 + 0.167386i −0.910292 0.413967i \(-0.864143\pi\)
0.813652 + 0.581353i \(0.197476\pi\)
\(150\) 0 0
\(151\) −7.43967 −0.605431 −0.302716 0.953081i \(-0.597893\pi\)
−0.302716 + 0.953081i \(0.597893\pi\)
\(152\) 0 0
\(153\) −0.0353438 0.0612173i −0.00285738 0.00494912i
\(154\) 0 0
\(155\) −12.1075 −0.972500
\(156\) 0 0
\(157\) −10.9487 −0.873801 −0.436900 0.899510i \(-0.643924\pi\)
−0.436900 + 0.899510i \(0.643924\pi\)
\(158\) 0 0
\(159\) −0.0147700 0.0255824i −0.00117134 0.00202881i
\(160\) 0 0
\(161\) 10.8944 0.858599
\(162\) 0 0
\(163\) −3.51238 + 6.08362i −0.275111 + 0.476506i −0.970163 0.242454i \(-0.922048\pi\)
0.695052 + 0.718959i \(0.255381\pi\)
\(164\) 0 0
\(165\) −9.67241 + 16.7531i −0.752996 + 1.30423i
\(166\) 0 0
\(167\) 7.74094 + 13.4077i 0.599012 + 1.03752i 0.992967 + 0.118389i \(0.0377731\pi\)
−0.393955 + 0.919130i \(0.628894\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 3.58426 + 6.20812i 0.274095 + 0.474747i
\(172\) 0 0
\(173\) −6.89008 + 11.9340i −0.523843 + 0.907323i 0.475771 + 0.879569i \(0.342169\pi\)
−0.999615 + 0.0277544i \(0.991164\pi\)
\(174\) 0 0
\(175\) 13.9303 24.1279i 1.05303 1.82390i
\(176\) 0 0
\(177\) −7.88577 −0.592731
\(178\) 0 0
\(179\) −11.0613 19.1587i −0.826760 1.43199i −0.900567 0.434718i \(-0.856848\pi\)
0.0738068 0.997273i \(-0.476485\pi\)
\(180\) 0 0
\(181\) −13.6407 −1.01391 −0.506953 0.861974i \(-0.669228\pi\)
−0.506953 + 0.861974i \(0.669228\pi\)
\(182\) 0 0
\(183\) 14.4916 1.07125
\(184\) 0 0
\(185\) −7.37316 12.7707i −0.542085 0.938919i
\(186\) 0 0
\(187\) −0.204767 −0.0149740
\(188\) 0 0
\(189\) −6.02984 + 10.4440i −0.438606 + 0.759688i
\(190\) 0 0
\(191\) −2.24578 + 3.88981i −0.162499 + 0.281457i −0.935764 0.352626i \(-0.885289\pi\)
0.773265 + 0.634083i \(0.218622\pi\)
\(192\) 0 0
\(193\) −12.8877 22.3221i −0.927676 1.60678i −0.787199 0.616698i \(-0.788470\pi\)
−0.140477 0.990084i \(-0.544864\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 9.31163 + 16.1282i 0.663426 + 1.14909i 0.979710 + 0.200423i \(0.0642315\pi\)
−0.316284 + 0.948665i \(0.602435\pi\)
\(198\) 0 0
\(199\) 5.98307 10.3630i 0.424129 0.734613i −0.572210 0.820107i \(-0.693914\pi\)
0.996339 + 0.0854945i \(0.0272470\pi\)
\(200\) 0 0
\(201\) 5.02446 8.70262i 0.354398 0.613835i
\(202\) 0 0
\(203\) 4.56704 0.320543
\(204\) 0 0
\(205\) −11.4586 19.8469i −0.800304 1.38617i
\(206\) 0 0
\(207\) 5.90754 0.410603
\(208\) 0 0
\(209\) 20.7657 1.43639
\(210\) 0 0
\(211\) −1.48039 2.56410i −0.101914 0.176520i 0.810559 0.585657i \(-0.199163\pi\)
−0.912473 + 0.409137i \(0.865830\pi\)
\(212\) 0 0
\(213\) 0.0663757 0.00454799
\(214\) 0 0
\(215\) 18.2908 31.6806i 1.24742 2.16060i
\(216\) 0 0
\(217\) −3.04623 + 5.27622i −0.206791 + 0.358173i
\(218\) 0 0
\(219\) −3.06369 5.30646i −0.207025 0.358577i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 2.72132 + 4.71347i 0.182233 + 0.315637i 0.942641 0.333809i \(-0.108334\pi\)
−0.760407 + 0.649446i \(0.775001\pi\)
\(224\) 0 0
\(225\) 7.55376 13.0835i 0.503584 0.872233i
\(226\) 0 0
\(227\) −11.2240 + 19.4406i −0.744964 + 1.29032i 0.205248 + 0.978710i \(0.434200\pi\)
−0.950212 + 0.311605i \(0.899133\pi\)
\(228\) 0 0
\(229\) −16.6136 −1.09786 −0.548928 0.835870i \(-0.684964\pi\)
−0.548928 + 0.835870i \(0.684964\pi\)
\(230\) 0 0
\(231\) 4.86712 + 8.43009i 0.320233 + 0.554659i
\(232\) 0 0
\(233\) 9.73125 0.637515 0.318758 0.947836i \(-0.396734\pi\)
0.318758 + 0.947836i \(0.396734\pi\)
\(234\) 0 0
\(235\) −29.5623 −1.92843
\(236\) 0 0
\(237\) −8.69567 15.0613i −0.564844 0.978339i
\(238\) 0 0
\(239\) −2.82908 −0.182998 −0.0914991 0.995805i \(-0.529166\pi\)
−0.0914991 + 0.995805i \(0.529166\pi\)
\(240\) 0 0
\(241\) −9.17241 + 15.8871i −0.590847 + 1.02338i 0.403272 + 0.915080i \(0.367873\pi\)
−0.994119 + 0.108296i \(0.965460\pi\)
\(242\) 0 0
\(243\) −5.62833 + 9.74856i −0.361058 + 0.625370i
\(244\) 0 0
\(245\) 5.16637 + 8.94841i 0.330067 + 0.571693i
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) −2.41185 4.17745i −0.152845 0.264735i
\(250\) 0 0
\(251\) 1.26875 2.19754i 0.0800828 0.138707i −0.823203 0.567748i \(-0.807815\pi\)
0.903285 + 0.429040i \(0.141148\pi\)
\(252\) 0 0
\(253\) 8.55645 14.8202i 0.537939 0.931738i
\(254\) 0 0
\(255\) −0.351519 −0.0220130
\(256\) 0 0
\(257\) 11.7431 + 20.3396i 0.732514 + 1.26875i 0.955805 + 0.294000i \(0.0949865\pi\)
−0.223291 + 0.974752i \(0.571680\pi\)
\(258\) 0 0
\(259\) −7.42029 −0.461074
\(260\) 0 0
\(261\) 2.47650 0.153292
\(262\) 0 0
\(263\) 7.90462 + 13.6912i 0.487420 + 0.844235i 0.999895 0.0144662i \(-0.00460491\pi\)
−0.512476 + 0.858702i \(0.671272\pi\)
\(264\) 0 0
\(265\) 0.0924579 0.00567964
\(266\) 0 0
\(267\) −1.59246 + 2.75822i −0.0974568 + 0.168800i
\(268\) 0 0
\(269\) 15.4291 26.7239i 0.940727 1.62939i 0.176639 0.984276i \(-0.443477\pi\)
0.764088 0.645112i \(-0.223189\pi\)
\(270\) 0 0
\(271\) −8.09664 14.0238i −0.491836 0.851885i 0.508120 0.861286i \(-0.330341\pi\)
−0.999956 + 0.00940175i \(0.997007\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −21.8817 37.9001i −1.31951 2.28546i
\(276\) 0 0
\(277\) −6.55376 + 11.3514i −0.393777 + 0.682042i −0.992944 0.118582i \(-0.962165\pi\)
0.599167 + 0.800624i \(0.295499\pi\)
\(278\) 0 0
\(279\) −1.65183 + 2.86106i −0.0988927 + 0.171287i
\(280\) 0 0
\(281\) 14.2687 0.851202 0.425601 0.904911i \(-0.360063\pi\)
0.425601 + 0.904911i \(0.360063\pi\)
\(282\) 0 0
\(283\) 3.97823 + 6.89050i 0.236481 + 0.409597i 0.959702 0.281019i \(-0.0906725\pi\)
−0.723221 + 0.690617i \(0.757339\pi\)
\(284\) 0 0
\(285\) 35.6480 2.11161
\(286\) 0 0
\(287\) −11.5319 −0.680704
\(288\) 0 0
\(289\) 8.49814 + 14.7192i 0.499891 + 0.865836i
\(290\) 0 0
\(291\) −4.64502 −0.272296
\(292\) 0 0
\(293\) −9.81498 + 17.0000i −0.573397 + 0.993153i 0.422817 + 0.906215i \(0.361041\pi\)
−0.996214 + 0.0869378i \(0.972292\pi\)
\(294\) 0 0
\(295\) 12.3409 21.3751i 0.718517 1.24451i
\(296\) 0 0
\(297\) 9.47166 + 16.4054i 0.549601 + 0.951937i
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −9.20387 15.9416i −0.530502 0.918856i
\(302\) 0 0
\(303\) 7.71983 13.3711i 0.443493 0.768152i
\(304\) 0 0
\(305\) −22.6787 + 39.2807i −1.29858 + 2.24921i
\(306\) 0 0
\(307\) −15.6775 −0.894765 −0.447382 0.894343i \(-0.647644\pi\)
−0.447382 + 0.894343i \(0.647644\pi\)
\(308\) 0 0
\(309\) 4.12229 + 7.14002i 0.234509 + 0.406182i
\(310\) 0 0
\(311\) 16.4983 0.935531 0.467766 0.883853i \(-0.345059\pi\)
0.467766 + 0.883853i \(0.345059\pi\)
\(312\) 0 0
\(313\) −11.3937 −0.644012 −0.322006 0.946738i \(-0.604357\pi\)
−0.322006 + 0.946738i \(0.604357\pi\)
\(314\) 0 0
\(315\) −5.25882 9.10855i −0.296301 0.513209i
\(316\) 0 0
\(317\) 25.4470 1.42924 0.714622 0.699511i \(-0.246599\pi\)
0.714622 + 0.699511i \(0.246599\pi\)
\(318\) 0 0
\(319\) 3.58695 6.21278i 0.200831 0.347849i
\(320\) 0 0
\(321\) 10.8802 18.8450i 0.607271 1.05182i
\(322\) 0 0
\(323\) 0.188669 + 0.326784i 0.0104978 + 0.0181828i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 10.1153 + 17.5202i 0.559377 + 0.968869i
\(328\) 0 0
\(329\) −7.43780 + 12.8827i −0.410059 + 0.710244i
\(330\) 0 0
\(331\) −4.47770 + 7.75560i −0.246117 + 0.426286i −0.962445 0.271477i \(-0.912488\pi\)
0.716328 + 0.697763i \(0.245821\pi\)
\(332\) 0 0
\(333\) −4.02369 −0.220497
\(334\) 0 0
\(335\) 15.7262 + 27.2385i 0.859212 + 1.48820i
\(336\) 0 0
\(337\) 19.3110 1.05194 0.525968 0.850505i \(-0.323703\pi\)
0.525968 + 0.850505i \(0.323703\pi\)
\(338\) 0 0
\(339\) 11.1870 0.607597
\(340\) 0 0
\(341\) 4.78501 + 8.28788i 0.259123 + 0.448814i
\(342\) 0 0
\(343\) 20.1588 1.08847
\(344\) 0 0
\(345\) 14.6887 25.4415i 0.790811 1.36973i
\(346\) 0 0
\(347\) −18.0206 + 31.2125i −0.967395 + 1.67558i −0.264357 + 0.964425i \(0.585160\pi\)
−0.703038 + 0.711153i \(0.748173\pi\)
\(348\) 0 0
\(349\) −11.6208 20.1278i −0.622047 1.07742i −0.989104 0.147219i \(-0.952968\pi\)
0.367057 0.930199i \(-0.380365\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −12.1174 20.9880i −0.644947 1.11708i −0.984314 0.176426i \(-0.943546\pi\)
0.339367 0.940654i \(-0.389787\pi\)
\(354\) 0 0
\(355\) −0.103875 + 0.179918i −0.00551314 + 0.00954903i
\(356\) 0 0
\(357\) −0.0884415 + 0.153185i −0.00468082 + 0.00810742i
\(358\) 0 0
\(359\) 17.7332 0.935921 0.467960 0.883749i \(-0.344989\pi\)
0.467960 + 0.883749i \(0.344989\pi\)
\(360\) 0 0
\(361\) −9.63318 16.6852i −0.507009 0.878166i
\(362\) 0 0
\(363\) 0.364666 0.0191400
\(364\) 0 0
\(365\) 19.1782 1.00383
\(366\) 0 0
\(367\) −15.1042 26.1612i −0.788431 1.36560i −0.926928 0.375240i \(-0.877560\pi\)
0.138496 0.990363i \(-0.455773\pi\)
\(368\) 0 0
\(369\) −6.25321 −0.325529
\(370\) 0 0
\(371\) 0.0232622 0.0402913i 0.00120771 0.00209182i
\(372\) 0 0
\(373\) 0.340634 0.589995i 0.0176374 0.0305488i −0.857072 0.515197i \(-0.827719\pi\)
0.874709 + 0.484648i \(0.161052\pi\)
\(374\) 0 0
\(375\) −23.1570 40.1091i −1.19582 2.07122i
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −18.2479 31.6064i −0.937334 1.62351i −0.770419 0.637538i \(-0.779953\pi\)
−0.166915 0.985971i \(-0.553381\pi\)
\(380\) 0 0
\(381\) 4.50700 7.80635i 0.230901 0.399932i
\(382\) 0 0
\(383\) 2.60388 4.51004i 0.133052 0.230453i −0.791800 0.610781i \(-0.790856\pi\)
0.924852 + 0.380328i \(0.124189\pi\)
\(384\) 0 0
\(385\) −30.4674 −1.55276
\(386\) 0 0
\(387\) −4.99084 8.64440i −0.253699 0.439419i
\(388\) 0 0
\(389\) −17.5254 −0.888574 −0.444287 0.895885i \(-0.646543\pi\)
−0.444287 + 0.895885i \(0.646543\pi\)
\(390\) 0 0
\(391\) 0.310962 0.0157260
\(392\) 0 0
\(393\) −5.33459 9.23979i −0.269095 0.466086i
\(394\) 0 0
\(395\) 54.4336 2.73885
\(396\) 0 0
\(397\) 14.9025 25.8118i 0.747933 1.29546i −0.200879 0.979616i \(-0.564380\pi\)
0.948812 0.315842i \(-0.102287\pi\)
\(398\) 0 0
\(399\) 8.96897 15.5347i 0.449010 0.777708i
\(400\) 0 0
\(401\) −8.16703 14.1457i −0.407842 0.706403i 0.586806 0.809728i \(-0.300385\pi\)
−0.994648 + 0.103325i \(0.967052\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 8.87747 + 15.3762i 0.441125 + 0.764051i
\(406\) 0 0
\(407\) −5.82789 + 10.0942i −0.288878 + 0.500351i
\(408\) 0 0
\(409\) 4.74914 8.22574i 0.234830 0.406737i −0.724394 0.689387i \(-0.757880\pi\)
0.959223 + 0.282650i \(0.0912134\pi\)
\(410\) 0 0
\(411\) −1.34050 −0.0661221
\(412\) 0 0
\(413\) −6.20991 10.7559i −0.305570 0.529262i
\(414\) 0 0
\(415\) 15.0978 0.741124
\(416\) 0 0
\(417\) −16.3327 −0.799817
\(418\) 0 0
\(419\) −6.22252 10.7777i −0.303990 0.526526i 0.673046 0.739601i \(-0.264986\pi\)
−0.977036 + 0.213075i \(0.931652\pi\)
\(420\) 0 0
\(421\) 3.65578 0.178172 0.0890858 0.996024i \(-0.471605\pi\)
0.0890858 + 0.996024i \(0.471605\pi\)
\(422\) 0 0
\(423\) −4.03319 + 6.98569i −0.196100 + 0.339656i
\(424\) 0 0
\(425\) 0.397616 0.688692i 0.0192872 0.0334065i
\(426\) 0 0
\(427\) 11.4119 + 19.7659i 0.552258 + 0.956539i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 17.8110 + 30.8495i 0.857924 + 1.48597i 0.873906 + 0.486095i \(0.161579\pi\)
−0.0159818 + 0.999872i \(0.505087\pi\)
\(432\) 0 0
\(433\) 17.3463 30.0447i 0.833610 1.44386i −0.0615466 0.998104i \(-0.519603\pi\)
0.895157 0.445751i \(-0.147063\pi\)
\(434\) 0 0
\(435\) 6.15764 10.6653i 0.295236 0.511364i
\(436\) 0 0
\(437\) −31.5351 −1.50853
\(438\) 0 0
\(439\) −4.74429 8.21735i −0.226433 0.392193i 0.730316 0.683110i \(-0.239373\pi\)
−0.956748 + 0.290917i \(0.906040\pi\)
\(440\) 0 0
\(441\) 2.81940 0.134257
\(442\) 0 0
\(443\) 14.1849 0.673946 0.336973 0.941514i \(-0.390597\pi\)
0.336973 + 0.941514i \(0.390597\pi\)
\(444\) 0 0
\(445\) −4.98427 8.63301i −0.236277 0.409244i
\(446\) 0 0
\(447\) 3.20131 0.151417
\(448\) 0 0
\(449\) 3.49947 6.06126i 0.165150 0.286048i −0.771558 0.636158i \(-0.780522\pi\)
0.936709 + 0.350110i \(0.113856\pi\)
\(450\) 0 0
\(451\) −9.05711 + 15.6874i −0.426483 + 0.738690i
\(452\) 0 0
\(453\) 5.04743 + 8.74240i 0.237149 + 0.410754i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −1.60656 2.78265i −0.0751519 0.130167i 0.826000 0.563669i \(-0.190611\pi\)
−0.901152 + 0.433503i \(0.857277\pi\)
\(458\) 0 0
\(459\) −0.172112 + 0.298106i −0.00803348 + 0.0139144i
\(460\) 0 0
\(461\) −7.76391 + 13.4475i −0.361601 + 0.626312i −0.988225 0.153011i \(-0.951103\pi\)
0.626623 + 0.779322i \(0.284436\pi\)
\(462\) 0 0
\(463\) 32.0834 1.49104 0.745520 0.666483i \(-0.232201\pi\)
0.745520 + 0.666483i \(0.232201\pi\)
\(464\) 0 0
\(465\) 8.21432 + 14.2276i 0.380930 + 0.659790i
\(466\) 0 0
\(467\) 7.24459 0.335239 0.167620 0.985852i \(-0.446392\pi\)
0.167620 + 0.985852i \(0.446392\pi\)
\(468\) 0 0
\(469\) 15.8267 0.730809
\(470\) 0 0
\(471\) 7.42812 + 12.8659i 0.342270 + 0.592828i
\(472\) 0 0
\(473\) −28.9148 −1.32951
\(474\) 0 0
\(475\) −40.3228 + 69.8412i −1.85014 + 3.20453i
\(476\) 0 0
\(477\) 0.0126141 0.0218482i 0.000577558 0.00100036i
\(478\) 0 0
\(479\) −2.89104 5.00743i −0.132095 0.228795i 0.792389 0.610016i \(-0.208837\pi\)
−0.924484 + 0.381221i \(0.875504\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −7.39128 12.8021i −0.336315 0.582514i
\(484\) 0 0
\(485\) 7.26928 12.5908i 0.330081 0.571717i
\(486\) 0 0
\(487\) −2.07391 + 3.59211i −0.0939778 + 0.162774i −0.909182 0.416400i \(-0.863292\pi\)
0.815204 + 0.579174i \(0.196625\pi\)
\(488\) 0 0
\(489\) 9.53186 0.431046
\(490\) 0 0
\(491\) −3.59688 6.22997i −0.162325 0.281155i 0.773377 0.633946i \(-0.218566\pi\)
−0.935702 + 0.352791i \(0.885233\pi\)
\(492\) 0 0
\(493\) 0.130359 0.00587105
\(494\) 0 0
\(495\) −16.5211 −0.742569
\(496\) 0 0
\(497\) 0.0522697 + 0.0905338i 0.00234462 + 0.00406100i
\(498\) 0 0
\(499\) −41.5066 −1.85809 −0.929046 0.369964i \(-0.879370\pi\)
−0.929046 + 0.369964i \(0.879370\pi\)
\(500\) 0 0
\(501\) 10.5036 18.1929i 0.469268 0.812797i
\(502\) 0 0
\(503\) 12.9303 22.3959i 0.576532 0.998583i −0.419341 0.907829i \(-0.637739\pi\)
0.995873 0.0907545i \(-0.0289278\pi\)
\(504\) 0 0
\(505\) 24.1625 + 41.8506i 1.07522 + 1.86233i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.6962 30.6507i −0.784370 1.35857i −0.929374 0.369138i \(-0.879653\pi\)
0.145004 0.989431i \(-0.453680\pi\)
\(510\) 0 0
\(511\) 4.82520 8.35749i 0.213454 0.369714i
\(512\) 0 0
\(513\) 17.4541 30.2313i 0.770616 1.33475i
\(514\) 0 0
\(515\) −25.8049 −1.13710
\(516\) 0 0
\(517\) 11.6833 + 20.2361i 0.513831 + 0.889981i
\(518\) 0 0
\(519\) 18.6983 0.820762
\(520\) 0 0
\(521\) −34.2620 −1.50105 −0.750524 0.660844i \(-0.770199\pi\)
−0.750524 + 0.660844i \(0.770199\pi\)
\(522\) 0 0
\(523\) 7.30141 + 12.6464i 0.319268 + 0.552989i 0.980336 0.197338i \(-0.0632296\pi\)
−0.661067 + 0.750327i \(0.729896\pi\)
\(524\) 0 0
\(525\) −37.8039 −1.64990
\(526\) 0 0
\(527\) −0.0869495 + 0.150601i −0.00378758 + 0.00656028i
\(528\) 0 0
\(529\) −1.49396 + 2.58761i −0.0649547 + 0.112505i
\(530\) 0 0
\(531\) −3.36735 5.83243i −0.146131 0.253106i
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 34.0541 + 58.9834i 1.47229 + 2.55007i
\(536\) 0 0
\(537\) −15.0090 + 25.9964i −0.647687 + 1.12183i
\(538\) 0 0
\(539\) 4.08360 7.07300i 0.175893 0.304656i
\(540\) 0 0
\(541\) 18.8866 0.811999 0.406000 0.913873i \(-0.366923\pi\)
0.406000 + 0.913873i \(0.366923\pi\)
\(542\) 0 0
\(543\) 9.25451 + 16.0293i 0.397149 + 0.687882i
\(544\) 0 0
\(545\) −63.3202 −2.71234
\(546\) 0 0
\(547\) −34.6752 −1.48260 −0.741301 0.671172i \(-0.765791\pi\)
−0.741301 + 0.671172i \(0.765791\pi\)
\(548\) 0 0
\(549\) 6.18814 + 10.7182i 0.264103 + 0.457440i
\(550\) 0 0
\(551\) −13.2198 −0.563184
\(552\) 0 0
\(553\) 13.6954 23.7211i 0.582387 1.00872i
\(554\) 0 0
\(555\) −10.0046 + 17.3285i −0.424672 + 0.735553i
\(556\) 0 0
\(557\) 2.12833 + 3.68638i 0.0901804 + 0.156197i 0.907587 0.419864i \(-0.137922\pi\)
−0.817407 + 0.576061i \(0.804589\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0.138924 + 0.240623i 0.00586537 + 0.0101591i
\(562\) 0 0
\(563\) −10.5685 + 18.3052i −0.445411 + 0.771474i −0.998081 0.0619264i \(-0.980276\pi\)
0.552670 + 0.833400i \(0.313609\pi\)
\(564\) 0 0
\(565\) −17.5073 + 30.3235i −0.736537 + 1.27572i
\(566\) 0 0
\(567\) 8.93422 0.375202
\(568\) 0 0
\(569\) −17.7397 30.7261i −0.743689 1.28811i −0.950805 0.309790i \(-0.899741\pi\)
0.207116 0.978316i \(-0.433592\pi\)
\(570\) 0 0
\(571\) 3.94033 0.164898 0.0824488 0.996595i \(-0.473726\pi\)
0.0824488 + 0.996595i \(0.473726\pi\)
\(572\) 0 0
\(573\) 6.09459 0.254605
\(574\) 0 0
\(575\) 33.2298 + 57.5557i 1.38578 + 2.40024i
\(576\) 0 0
\(577\) −16.6256 −0.692135 −0.346067 0.938210i \(-0.612483\pi\)
−0.346067 + 0.938210i \(0.612483\pi\)
\(578\) 0 0
\(579\) −17.4873 + 30.2888i −0.726745 + 1.25876i
\(580\) 0 0
\(581\) 3.79859 6.57934i 0.157592 0.272957i
\(582\) 0 0
\(583\) −0.0365403 0.0632896i −0.00151334 0.00262119i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 4.00149 + 6.93079i 0.165159 + 0.286064i 0.936712 0.350101i \(-0.113853\pi\)
−0.771553 + 0.636166i \(0.780520\pi\)
\(588\) 0 0
\(589\) 8.81767 15.2726i 0.363326 0.629298i
\(590\) 0 0
\(591\) 12.6349 21.8843i 0.519731 0.900200i
\(592\) 0 0
\(593\) 15.8345 0.650243 0.325122 0.945672i \(-0.394595\pi\)
0.325122 + 0.945672i \(0.394595\pi\)
\(594\) 0 0
\(595\) −0.276815 0.479458i −0.0113483 0.0196559i
\(596\) 0 0
\(597\) −16.2368 −0.664529
\(598\) 0 0
\(599\) 25.9226 1.05917 0.529585 0.848257i \(-0.322348\pi\)
0.529585 + 0.848257i \(0.322348\pi\)
\(600\) 0 0
\(601\) −10.0308 17.3738i −0.409165 0.708694i 0.585632 0.810577i \(-0.300847\pi\)
−0.994796 + 0.101883i \(0.967513\pi\)
\(602\) 0 0
\(603\) 8.58211 0.349490
\(604\) 0 0
\(605\) −0.570688 + 0.988460i −0.0232018 + 0.0401866i
\(606\) 0 0
\(607\) −20.8807 + 36.1664i −0.847521 + 1.46795i 0.0358926 + 0.999356i \(0.488573\pi\)
−0.883414 + 0.468594i \(0.844761\pi\)
\(608\) 0 0
\(609\) −3.09850 5.36676i −0.125558 0.217472i
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 6.20895 + 10.7542i 0.250777 + 0.434359i 0.963740 0.266843i \(-0.0859806\pi\)
−0.712963 + 0.701202i \(0.752647\pi\)
\(614\) 0 0
\(615\) −15.5481 + 26.9302i −0.626962 + 1.08593i
\(616\) 0 0
\(617\) 8.60992 14.9128i 0.346622 0.600367i −0.639025 0.769186i \(-0.720662\pi\)
0.985647 + 0.168819i \(0.0539953\pi\)
\(618\) 0 0
\(619\) 42.6136 1.71278 0.856392 0.516326i \(-0.172701\pi\)
0.856392 + 0.516326i \(0.172701\pi\)
\(620\) 0 0
\(621\) −14.3838 24.9135i −0.577202 0.999744i
\(622\) 0 0
\(623\) −5.01613 −0.200967
\(624\) 0 0
\(625\) 79.7749 3.19100
\(626\) 0 0
\(627\) −14.0884 24.4019i −0.562638 0.974518i
\(628\) 0 0
\(629\) −0.211800 −0.00844501
\(630\) 0 0
\(631\) 13.4303 23.2619i 0.534651 0.926042i −0.464529 0.885558i \(-0.653777\pi\)
0.999180 0.0404845i \(-0.0128901\pi\)
\(632\) 0 0
\(633\) −2.00873 + 3.47922i −0.0798398 + 0.138287i
\(634\) 0 0
\(635\) 14.1066 + 24.4333i 0.559802 + 0.969605i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0.0283435 + 0.0490924i 0.00112125 + 0.00194207i
\(640\) 0 0
\(641\) −16.6523 + 28.8426i −0.657725 + 1.13921i 0.323479 + 0.946236i \(0.395148\pi\)
−0.981203 + 0.192977i \(0.938186\pi\)
\(642\) 0 0
\(643\) −15.3373 + 26.5650i −0.604843 + 1.04762i 0.387233 + 0.921982i \(0.373431\pi\)
−0.992076 + 0.125637i \(0.959902\pi\)
\(644\) 0 0
\(645\) −49.6375 −1.95447
\(646\) 0 0
\(647\) 1.62804 + 2.81985i 0.0640048 + 0.110860i 0.896252 0.443545i \(-0.146279\pi\)
−0.832247 + 0.554405i \(0.812946\pi\)
\(648\) 0 0
\(649\) −19.5090 −0.765796
\(650\) 0 0
\(651\) 8.26683 0.324003
\(652\) 0 0
\(653\) −7.40917 12.8331i −0.289943 0.502196i 0.683853 0.729620i \(-0.260303\pi\)
−0.973796 + 0.227424i \(0.926970\pi\)
\(654\) 0 0
\(655\) 33.3937 1.30480
\(656\) 0 0
\(657\) 2.61649 4.53189i 0.102079 0.176806i
\(658\) 0 0
\(659\) −15.2696 + 26.4477i −0.594818 + 1.03026i 0.398754 + 0.917058i \(0.369443\pi\)
−0.993572 + 0.113198i \(0.963891\pi\)
\(660\) 0 0
\(661\) 9.68382 + 16.7729i 0.376657 + 0.652389i 0.990574 0.136982i \(-0.0437402\pi\)
−0.613916 + 0.789371i \(0.710407\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 28.0722 + 48.6224i 1.08859 + 1.88550i
\(666\) 0 0
\(667\) −5.44720 + 9.43482i −0.210916 + 0.365318i
\(668\) 0 0
\(669\) 3.69255 6.39569i 0.142762 0.247272i
\(670\) 0 0
\(671\) 35.8514 1.38403
\(672\) 0 0
\(673\) −20.7729 35.9798i −0.800738 1.38692i −0.919131 0.393951i \(-0.871108\pi\)
0.118394 0.992967i \(-0.462226\pi\)
\(674\) 0 0
\(675\) −73.5682 −2.83164
\(676\) 0 0
\(677\) −40.6064 −1.56063 −0.780315 0.625387i \(-0.784941\pi\)
−0.780315 + 0.625387i \(0.784941\pi\)
\(678\) 0 0
\(679\) −3.65787 6.33562i −0.140376 0.243139i
\(680\) 0 0
\(681\) 30.4596 1.16722
\(682\) 0 0
\(683\) 1.20291 2.08350i 0.0460279 0.0797227i −0.842094 0.539331i \(-0.818677\pi\)
0.888122 + 0.459609i \(0.152010\pi\)
\(684\) 0 0
\(685\) 2.09783 3.63356i 0.0801541 0.138831i
\(686\) 0 0
\(687\) 11.2714 + 19.5227i 0.430032 + 0.744838i
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −3.40635 5.89996i −0.129583 0.224445i 0.793932 0.608007i \(-0.208031\pi\)
−0.923515 + 0.383562i \(0.874697\pi\)
\(692\) 0 0
\(693\) −4.15668 + 7.19958i −0.157899 + 0.273489i
\(694\) 0 0
\(695\) 25.5601 44.2714i 0.969550 1.67931i
\(696\) 0 0
\(697\) −0.329158 −0.0124677
\(698\) 0 0
\(699\) −6.60215 11.4353i −0.249716 0.432521i
\(700\) 0 0
\(701\) −12.7802 −0.482700 −0.241350 0.970438i \(-0.577590\pi\)
−0.241350 + 0.970438i \(0.577590\pi\)
\(702\) 0 0
\(703\) 21.4789 0.810092
\(704\) 0 0
\(705\) 20.0565 + 34.7388i 0.755370 + 1.30834i
\(706\) 0 0
\(707\) 24.3169 0.914532
\(708\) 0 0
\(709\) 2.47070 4.27937i 0.0927890 0.160715i −0.815895 0.578201i \(-0.803755\pi\)
0.908684 + 0.417485i \(0.137088\pi\)
\(710\) 0 0
\(711\) 7.42639 12.8629i 0.278511 0.482396i
\(712\) 0 0
\(713\) −7.26659 12.5861i −0.272136 0.471354i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 1.91939 + 3.32448i 0.0716808 + 0.124155i
\(718\) 0 0
\(719\) 18.8077 32.5760i 0.701410 1.21488i −0.266561 0.963818i \(-0.585887\pi\)
0.967971 0.251060i \(-0.0807793\pi\)
\(720\) 0 0
\(721\) −6.49247 + 11.2453i −0.241792 + 0.418796i
\(722\) 0 0
\(723\) 24.8920 0.925744
\(724\) 0 0
\(725\) 13.9303 + 24.1279i 0.517357 + 0.896089i
\(726\) 0 0
\(727\) −17.1879 −0.637464 −0.318732 0.947845i \(-0.603257\pi\)
−0.318732 + 0.947845i \(0.603257\pi\)
\(728\) 0 0
\(729\) 27.8159 1.03022
\(730\) 0 0
\(731\) −0.262709 0.455025i −0.00971665 0.0168297i
\(732\) 0 0
\(733\) −19.2597 −0.711371 −0.355686 0.934606i \(-0.615753\pi\)
−0.355686 + 0.934606i \(0.615753\pi\)
\(734\) 0 0
\(735\) 7.01022 12.1421i 0.258576 0.447867i
\(736\) 0 0
\(737\) 12.4303 21.5299i 0.457875 0.793063i
\(738\) 0 0
\(739\) −9.03923 15.6564i −0.332513 0.575930i 0.650491 0.759514i \(-0.274563\pi\)
−0.983004 + 0.183584i \(0.941230\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −16.4110 28.4246i −0.602059 1.04280i −0.992509 0.122173i \(-0.961014\pi\)
0.390449 0.920624i \(-0.372320\pi\)
\(744\) 0 0
\(745\) −5.00993 + 8.67745i −0.183549 + 0.317917i
\(746\) 0 0
\(747\) 2.05980 3.56768i 0.0753642 0.130535i
\(748\) 0 0
\(749\) 34.2717 1.25226
\(750\) 0 0
\(751\) 16.5851 + 28.7262i 0.605198 + 1.04823i 0.992020 + 0.126080i \(0.0402396\pi\)
−0.386822 + 0.922155i \(0.626427\pi\)
\(752\) 0 0
\(753\) −3.44312 −0.125474
\(754\) 0 0
\(755\) −31.5961 −1.14990
\(756\) 0 0
\(757\) 0.368313 + 0.637938i 0.0133866 + 0.0231862i 0.872641 0.488362i \(-0.162405\pi\)
−0.859255 + 0.511548i \(0.829072\pi\)
\(758\) 0 0
\(759\) −23.2204 −0.842848
\(760\) 0 0
\(761\) −18.1908 + 31.5074i −0.659417 + 1.14214i 0.321350 + 0.946961i \(0.395863\pi\)
−0.980767 + 0.195183i \(0.937470\pi\)
\(762\) 0 0
\(763\) −15.9312 + 27.5937i −0.576749 + 0.998959i
\(764\) 0 0
\(765\) −0.150104 0.259988i −0.00542704 0.00939990i
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 5.72617 + 9.91802i 0.206491 + 0.357653i 0.950607 0.310398i \(-0.100462\pi\)
−0.744116 + 0.668051i \(0.767129\pi\)
\(770\) 0 0
\(771\) 15.9342 27.5988i 0.573855 0.993945i
\(772\) 0 0
\(773\) −3.78866 + 6.56215i −0.136269 + 0.236024i −0.926081 0.377324i \(-0.876844\pi\)
0.789813 + 0.613348i \(0.210178\pi\)
\(774\) 0 0
\(775\) −37.1661 −1.33505
\(776\) 0 0
\(777\) 5.03428 + 8.71963i 0.180604 + 0.312815i
\(778\) 0 0
\(779\) 33.3803 1.19597
\(780\) 0 0
\(781\) 0.164210 0.00587591
\(782\) 0 0
\(783\) −6.02984 10.4440i −0.215489 0.373237i
\(784\) 0 0
\(785\) −46.4989 −1.65962
\(786\) 0 0
\(787\) 15.2533 26.4195i 0.543722 0.941754i −0.454964 0.890510i \(-0.650348\pi\)
0.998686 0.0512444i \(-0.0163187\pi\)
\(788\) 0 0
\(789\) 10.7257 18.5775i 0.381847 0.661378i
\(790\) 0 0
\(791\) 8.80960 + 15.2587i 0.313233 + 0.542536i
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) −0.0627278 0.108648i −0.00222473 0.00385334i
\(796\) 0 0
\(797\) −18.1218 + 31.3878i −0.641906 + 1.11181i 0.343101 + 0.939298i \(0.388523\pi\)
−0.985007 + 0.172515i \(0.944811\pi\)
\(798\) 0 0
\(799\) −0.212300 + 0.367714i −0.00751063 + 0.0130088i
\(800\) 0 0
\(801\) −2.72002 −0.0961073
\(802\) 0 0
\(803\) −7.57942 13.1279i −0.267472 0.463275i
\(804\) 0 0
\(805\) 46.2683 1.63074
\(806\) 0 0
\(807\) −41.8713 −1.47394
\(808\) 0 0
\(809\) −11.1618 19.3328i −0.392429 0.679706i 0.600341 0.799744i \(-0.295032\pi\)
−0.992769 + 0.120038i \(0.961698\pi\)
\(810\) 0 0
\(811\) −39.4922 −1.38676 −0.693379 0.720573i \(-0.743879\pi\)
−0.693379 + 0.720573i \(0.743879\pi\)
\(812\) 0 0
\(813\) −10.9863 + 19.0288i −0.385306 + 0.667370i
\(814\) 0 0
\(815\) −14.9170 + 25.8370i −0.522520 + 0.905030i
\(816\) 0 0
\(817\) 26.6417 + 46.1447i 0.932074 + 1.61440i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −5.69149 9.85795i −0.198634 0.344045i 0.749452 0.662059i \(-0.230317\pi\)
−0.948086 + 0.318014i \(0.896984\pi\)
\(822\) 0 0
\(823\) −12.8424 + 22.2437i −0.447659 + 0.775368i −0.998233 0.0594185i \(-0.981075\pi\)
0.550574 + 0.834786i \(0.314409\pi\)
\(824\) 0 0
\(825\) −29.6911 + 51.4265i −1.03371 + 1.79044i
\(826\) 0 0
\(827\) −36.7251 −1.27706 −0.638529 0.769598i \(-0.720457\pi\)
−0.638529 + 0.769598i \(0.720457\pi\)
\(828\) 0 0
\(829\) 5.79039 + 10.0292i 0.201109 + 0.348330i 0.948886 0.315619i \(-0.102212\pi\)
−0.747777 + 0.663950i \(0.768879\pi\)
\(830\) 0 0
\(831\) 17.7855 0.616974
\(832\) 0 0
\(833\) 0.148408 0.00514203
\(834\) 0 0
\(835\) 32.8756 + 56.9422i 1.13771 + 1.97057i
\(836\) 0 0
\(837\) 16.0877 0.556071
\(838\) 0 0
\(839\) −6.72886 + 11.6547i −0.232306 + 0.402366i −0.958486 0.285139i \(-0.907960\pi\)
0.726180 + 0.687504i \(0.241294\pi\)
\(840\) 0 0
\(841\) 12.2165 21.1596i 0.421258 0.729640i
\(842\) 0 0
\(843\) −9.68060 16.7673i −0.333418 0.577496i
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0.287168 + 0.497389i 0.00986720 + 0.0170905i
\(848\) 0 0
\(849\) 5.39804 9.34969i 0.185260 0.320880i
\(850\) 0 0
\(851\) 8.85032 15.3292i 0.303385 0.525478i
\(852\) 0 0
\(853\) −5.34050 −0.182855 −0.0914277 0.995812i \(-0.529143\pi\)
−0.0914277 + 0.995812i \(0.529143\pi\)
\(854\) 0 0
\(855\) 15.2223 + 26.3658i 0.520591 + 0.901690i
\(856\) 0 0
\(857\) 49.3381 1.68536 0.842679 0.538417i \(-0.180977\pi\)
0.842679 + 0.538417i \(0.180977\pi\)
\(858\) 0 0
\(859\) −4.92500 −0.168039 −0.0840194 0.996464i \(-0.526776\pi\)
−0.0840194 + 0.996464i \(0.526776\pi\)
\(860\) 0 0
\(861\) 7.82377 + 13.5512i 0.266633 + 0.461822i
\(862\) 0 0
\(863\) −40.0315 −1.36269 −0.681343 0.731964i \(-0.738604\pi\)
−0.681343 + 0.731964i \(0.738604\pi\)
\(864\) 0 0
\(865\) −29.2620 + 50.6833i −0.994939 + 1.72329i
\(866\) 0 0
\(867\) 11.5311 19.9724i 0.391616 0.678299i
\(868\) 0 0
\(869\) −21.5127 37.2610i −0.729767 1.26399i
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −1.98350 3.43552i −0.0671313 0.116275i
\(874\) 0 0
\(875\) 36.4714 63.1704i 1.23296 2.13555i
\(876\) 0 0
\(877\) 14.4690 25.0610i 0.488582 0.846249i −0.511331 0.859384i \(-0.670848\pi\)
0.999914 + 0.0131342i \(0.00418086\pi\)
\(878\) 0 0
\(879\) 26.6358 0.898404
\(880\) 0 0
\(881\) −10.8346 18.7661i −0.365027 0.632245i 0.623754 0.781621i \(-0.285607\pi\)
−0.988780 + 0.149376i \(0.952273\pi\)
\(882\) 0 0
\(883\) 11.7614 0.395802 0.197901 0.980222i \(-0.436588\pi\)
0.197901 + 0.980222i \(0.436588\pi\)
\(884\) 0 0
\(885\) −33.4907 −1.12578
\(886\) 0 0
\(887\) −13.4242 23.2515i −0.450742 0.780707i 0.547691 0.836681i \(-0.315507\pi\)
−0.998432 + 0.0559736i \(0.982174\pi\)
\(888\) 0 0
\(889\) 14.1967 0.476143
\(890\) 0 0
\(891\) 7.01693 12.1537i 0.235076 0.407163i
\(892\) 0 0
\(893\) 21.5296 37.2904i 0.720461 1.24787i
\(894\) 0 0
\(895\) −46.9771 81.3667i −1.57027 2.71979i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −3.04623 5.27622i −0.101597 0.175972i
\(900\) 0 0
\(901\) 0.000663981 0.00115005i 2.21204e−5 3.83137e-5i
\(902\) 0 0
\(903\) −12.4887 + 21.6310i −0.415598 + 0.719836i
\(904\) 0 0
\(905\) −57.9318 −1.92572
\(906\) 0 0
\(907\) −8.21528 14.2293i −0.272784 0.472476i 0.696790 0.717276i \(-0.254611\pi\)
−0.969574 + 0.244800i \(0.921278\pi\)
\(908\) 0 0
\(909\) 13.1860 0.437351
\(910\) 0 0
\(911\) 26.0519 0.863138 0.431569 0.902080i \(-0.357960\pi\)
0.431569 + 0.902080i \(0.357960\pi\)
\(912\) 0 0
\(913\) −5.96681 10.3348i −0.197473 0.342033i
\(914\) 0 0
\(915\) 61.5454 2.03463
\(916\) 0 0
\(917\) 8.40180 14.5523i 0.277452 0.480561i
\(918\) 0 0
\(919\) −2.18478 + 3.78416i −0.0720694 + 0.124828i −0.899808 0.436286i \(-0.856294\pi\)
0.827739 + 0.561114i \(0.189627\pi\)
\(920\) 0 0
\(921\) 10.6364 + 18.4228i 0.350481 + 0.607051i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −22.6332 39.2018i −0.744174 1.28895i
\(926\) 0 0
\(927\) −3.52057 + 6.09781i −0.115631 + 0.200278i
\(928\) 0 0
\(929\) 16.1434 27.9612i 0.529648 0.917377i −0.469754 0.882797i \(-0.655657\pi\)
0.999402 0.0345796i \(-0.0110092\pi\)
\(930\) 0 0
\(931\) −15.0502 −0.493252
\(932\) 0 0
\(933\) −11.1932 19.3872i −0.366450 0.634709i
\(934\) 0 0
\(935\) −0.869641 −0.0284403
\(936\) 0 0
\(937\) −48.5730 −1.58681 −0.793405 0.608693i \(-0.791694\pi\)
−0.793405 + 0.608693i \(0.791694\pi\)
\(938\) 0 0
\(939\) 7.73005 + 13.3888i 0.252261 + 0.436928i
\(940\) 0 0
\(941\) 4.82849 0.157404 0.0787022 0.996898i \(-0.474922\pi\)
0.0787022 + 0.996898i \(0.474922\pi\)
\(942\) 0 0
\(943\) 13.7543 23.8231i 0.447901 0.775787i
\(944\) 0 0
\(945\) −25.6086 + 44.3554i −0.833047 + 1.44288i
\(946\) 0 0
\(947\) 17.5532 + 30.4031i 0.570403 + 0.987968i 0.996524 + 0.0833014i \(0.0265464\pi\)
−0.426121 + 0.904666i \(0.640120\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −17.2644 29.9029i −0.559838 0.969667i
\(952\) 0 0
\(953\) 14.0933 24.4103i 0.456526 0.790727i −0.542248 0.840218i \(-0.682427\pi\)
0.998775 + 0.0494916i \(0.0157601\pi\)
\(954\) 0 0
\(955\) −9.53780 + 16.5199i −0.308636 + 0.534573i
\(956\) 0 0
\(957\) −9.73423 −0.314663
\(958\) 0 0
\(959\) −1.05562 1.82839i −0.0340878 0.0590418i
\(960\) 0 0
\(961\) −22.8726 −0.737827
\(962\) 0 0
\(963\) 18.5840 0.598862
\(964\) 0 0
\(965\) −54.7338 94.8017i −1.76194 3.05177i
\(966\) 0 0
\(967\) 44.6674 1.43641 0.718203 0.695834i \(-0.244965\pi\)
0.718203 + 0.695834i \(0.244965\pi\)
\(968\) 0 0
\(969\) 0.256004 0.443412i 0.00822404 0.0142445i
\(970\) 0 0
\(971\) 7.45539 12.9131i 0.239255 0.414402i −0.721246 0.692679i \(-0.756430\pi\)
0.960501 + 0.278277i \(0.0897635\pi\)
\(972\) 0 0
\(973\) −12.8617 22.2772i −0.412328 0.714174i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 17.6063 + 30.4951i 0.563276 + 0.975623i 0.997208 + 0.0746773i \(0.0237927\pi\)
−0.433931 + 0.900946i \(0.642874\pi\)
\(978\) 0 0
\(979\) −3.93967 + 6.82370i −0.125912 + 0.218086i
\(980\) 0 0
\(981\) −8.63879 + 14.9628i −0.275815 + 0.477726i
\(982\) 0 0
\(983\) −30.5646 −0.974861 −0.487430 0.873162i \(-0.662066\pi\)
−0.487430 + 0.873162i \(0.662066\pi\)
\(984\) 0 0
\(985\) 39.5463 + 68.4962i 1.26005 + 2.18247i
\(986\) 0 0
\(987\) 20.1847 0.642485
\(988\) 0 0
\(989\) 43.9105 1.39627
\(990\) 0 0
\(991\) −31.2869 54.1906i −0.993862 1.72142i −0.592736 0.805397i \(-0.701952\pi\)
−0.401126 0.916023i \(-0.631381\pi\)
\(992\) 0 0
\(993\) 12.1515 0.385617
\(994\) 0 0
\(995\) 25.4100 44.0114i 0.805551 1.39526i
\(996\) 0 0
\(997\) 0.942222 1.63198i 0.0298405 0.0516852i −0.850720 0.525620i \(-0.823833\pi\)
0.880560 + 0.473935i \(0.157167\pi\)
\(998\) 0 0
\(999\) 9.79696 + 16.9688i 0.309962 + 0.536870i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 676.2.e.g.653.2 6
13.2 odd 12 676.2.d.e.337.3 6
13.3 even 3 676.2.a.h.1.2 yes 3
13.4 even 6 676.2.e.f.529.2 6
13.5 odd 4 676.2.h.e.361.3 12
13.6 odd 12 676.2.h.e.485.3 12
13.7 odd 12 676.2.h.e.485.4 12
13.8 odd 4 676.2.h.e.361.4 12
13.9 even 3 inner 676.2.e.g.529.2 6
13.10 even 6 676.2.a.g.1.2 3
13.11 odd 12 676.2.d.e.337.4 6
13.12 even 2 676.2.e.f.653.2 6
39.2 even 12 6084.2.b.p.4393.6 6
39.11 even 12 6084.2.b.p.4393.1 6
39.23 odd 6 6084.2.a.bc.1.3 3
39.29 odd 6 6084.2.a.x.1.1 3
52.3 odd 6 2704.2.a.y.1.2 3
52.11 even 12 2704.2.f.n.337.4 6
52.15 even 12 2704.2.f.n.337.3 6
52.23 odd 6 2704.2.a.x.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
676.2.a.g.1.2 3 13.10 even 6
676.2.a.h.1.2 yes 3 13.3 even 3
676.2.d.e.337.3 6 13.2 odd 12
676.2.d.e.337.4 6 13.11 odd 12
676.2.e.f.529.2 6 13.4 even 6
676.2.e.f.653.2 6 13.12 even 2
676.2.e.g.529.2 6 13.9 even 3 inner
676.2.e.g.653.2 6 1.1 even 1 trivial
676.2.h.e.361.3 12 13.5 odd 4
676.2.h.e.361.4 12 13.8 odd 4
676.2.h.e.485.3 12 13.6 odd 12
676.2.h.e.485.4 12 13.7 odd 12
2704.2.a.x.1.2 3 52.23 odd 6
2704.2.a.y.1.2 3 52.3 odd 6
2704.2.f.n.337.3 6 52.15 even 12
2704.2.f.n.337.4 6 52.11 even 12
6084.2.a.x.1.1 3 39.29 odd 6
6084.2.a.bc.1.3 3 39.23 odd 6
6084.2.b.p.4393.1 6 39.11 even 12
6084.2.b.p.4393.6 6 39.2 even 12