Properties

Label 2793.1.ew.a.773.1
Level $2793$
Weight $1$
Character 2793.773
Analytic conductor $1.394$
Analytic rank $0$
Dimension $36$
Projective image $D_{126}$
CM discriminant -3
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2793,1,Mod(143,2793)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2793, base_ring=CyclotomicField(126))
 
chi = DirichletCharacter(H, H._module([63, 93, 119]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2793.143");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2793 = 3 \cdot 7^{2} \cdot 19 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 2793.ew (of order \(126\), degree \(36\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.39388858028\)
Analytic rank: \(0\)
Dimension: \(36\)
Coefficient field: \(\Q(\zeta_{63})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{36} - x^{33} + x^{27} - x^{24} + x^{18} - x^{12} + x^{9} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{126}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{126} - \cdots)\)

Embedding invariants

Embedding label 773.1
Root \(-0.969077 + 0.246757i\) of defining polynomial
Character \(\chi\) \(=\) 2793.773
Dual form 2793.1.ew.a.383.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.980172 + 0.198146i) q^{3} +(0.969077 + 0.246757i) q^{4} +(-0.124344 + 0.992239i) q^{7} +(0.921476 + 0.388435i) q^{9} +(0.900969 + 0.433884i) q^{12} +(0.0270521 + 0.0418849i) q^{13} +(0.878222 + 0.478254i) q^{16} +(-0.733052 - 0.680173i) q^{19} +(-0.318487 + 0.947927i) q^{21} +(-0.921476 - 0.388435i) q^{25} +(0.826239 + 0.563320i) q^{27} +(-0.365341 + 0.930874i) q^{28} +(-0.583744 - 1.01107i) q^{31} +(0.797133 + 0.603804i) q^{36} +(-0.198579 + 0.0148814i) q^{37} +(0.0182164 + 0.0464147i) q^{39} +(-0.952952 - 0.518950i) q^{43} +(0.766044 + 0.642788i) q^{48} +(-0.969077 - 0.246757i) q^{49} +(0.0158802 + 0.0472650i) q^{52} +(-0.583744 - 0.811938i) q^{57} +(0.161686 - 1.61581i) q^{61} +(-0.500000 + 0.866025i) q^{63} +(0.733052 + 0.680173i) q^{64} +(0.683828 + 1.87880i) q^{67} +(-1.62225 + 0.831677i) q^{73} +(-0.826239 - 0.563320i) q^{75} +(-0.542546 - 0.840026i) q^{76} +(1.89600 - 0.334316i) q^{79} +(0.698237 + 0.715867i) q^{81} +(-0.542546 + 0.840026i) q^{84} +(-0.0449236 + 0.0216340i) q^{91} +(-0.371829 - 1.10669i) q^{93} +(1.46402 - 1.22846i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 36 q + 6 q^{12} - 3 q^{13} + 3 q^{19} + 3 q^{27} - 3 q^{28} - 3 q^{43} + 3 q^{52} - 18 q^{61} - 18 q^{63} - 3 q^{64} + 3 q^{67} + 6 q^{73} - 3 q^{75} + 6 q^{79} - 3 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2793\mathbb{Z}\right)^\times\).

\(n\) \(932\) \(2110\) \(2206\)
\(\chi(n)\) \(-1\) \(e\left(\frac{19}{42}\right)\) \(e\left(\frac{5}{18}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0 −0.992239 0.124344i \(-0.960317\pi\)
0.992239 + 0.124344i \(0.0396825\pi\)
\(3\) 0.980172 + 0.198146i 0.980172 + 0.198146i
\(4\) 0.969077 + 0.246757i 0.969077 + 0.246757i
\(5\) 0 0 0.198146 0.980172i \(-0.436508\pi\)
−0.198146 + 0.980172i \(0.563492\pi\)
\(6\) 0 0
\(7\) −0.124344 + 0.992239i −0.124344 + 0.992239i
\(8\) 0 0
\(9\) 0.921476 + 0.388435i 0.921476 + 0.388435i
\(10\) 0 0
\(11\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(12\) 0.900969 + 0.433884i 0.900969 + 0.433884i
\(13\) 0.0270521 + 0.0418849i 0.0270521 + 0.0418849i 0.853291 0.521435i \(-0.174603\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0.878222 + 0.478254i 0.878222 + 0.478254i
\(17\) 0 0 −0.962624 0.270840i \(-0.912698\pi\)
0.962624 + 0.270840i \(0.0873016\pi\)
\(18\) 0 0
\(19\) −0.733052 0.680173i −0.733052 0.680173i
\(20\) 0 0
\(21\) −0.318487 + 0.947927i −0.318487 + 0.947927i
\(22\) 0 0
\(23\) 0 0 0.698237 0.715867i \(-0.253968\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(24\) 0 0
\(25\) −0.921476 0.388435i −0.921476 0.388435i
\(26\) 0 0
\(27\) 0.826239 + 0.563320i 0.826239 + 0.563320i
\(28\) −0.365341 + 0.930874i −0.365341 + 0.930874i
\(29\) 0 0 0.911506 0.411287i \(-0.134921\pi\)
−0.911506 + 0.411287i \(0.865079\pi\)
\(30\) 0 0
\(31\) −0.583744 1.01107i −0.583744 1.01107i −0.995031 0.0995678i \(-0.968254\pi\)
0.411287 0.911506i \(-0.365079\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0.797133 + 0.603804i 0.797133 + 0.603804i
\(37\) −0.198579 + 0.0148814i −0.198579 + 0.0148814i −0.173648 0.984808i \(-0.555556\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(38\) 0 0
\(39\) 0.0182164 + 0.0464147i 0.0182164 + 0.0464147i
\(40\) 0 0
\(41\) 0 0 −0.318487 0.947927i \(-0.603175\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(42\) 0 0
\(43\) −0.952952 0.518950i −0.952952 0.518950i −0.0747301 0.997204i \(-0.523810\pi\)
−0.878222 + 0.478254i \(0.841270\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 0 0 −0.0498459 0.998757i \(-0.515873\pi\)
0.0498459 + 0.998757i \(0.484127\pi\)
\(48\) 0.766044 + 0.642788i 0.766044 + 0.642788i
\(49\) −0.969077 0.246757i −0.969077 0.246757i
\(50\) 0 0
\(51\) 0 0
\(52\) 0.0158802 + 0.0472650i 0.0158802 + 0.0472650i
\(53\) 0 0 0.246757 0.969077i \(-0.420635\pi\)
−0.246757 + 0.969077i \(0.579365\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −0.583744 0.811938i −0.583744 0.811938i
\(58\) 0 0
\(59\) 0 0 −0.878222 0.478254i \(-0.841270\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(60\) 0 0
\(61\) 0.161686 1.61581i 0.161686 1.61581i −0.500000 0.866025i \(-0.666667\pi\)
0.661686 0.749781i \(-0.269841\pi\)
\(62\) 0 0
\(63\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(64\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(65\) 0 0
\(66\) 0 0
\(67\) 0.683828 + 1.87880i 0.683828 + 1.87880i 0.365341 + 0.930874i \(0.380952\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 0 0 0.811938 0.583744i \(-0.198413\pi\)
−0.811938 + 0.583744i \(0.801587\pi\)
\(72\) 0 0
\(73\) −1.62225 + 0.831677i −1.62225 + 0.831677i −0.623490 + 0.781831i \(0.714286\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(74\) 0 0
\(75\) −0.826239 0.563320i −0.826239 0.563320i
\(76\) −0.542546 0.840026i −0.542546 0.840026i
\(77\) 0 0
\(78\) 0 0
\(79\) 1.89600 0.334316i 1.89600 0.334316i 0.900969 0.433884i \(-0.142857\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(80\) 0 0
\(81\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(82\) 0 0
\(83\) 0 0 0.680173 0.733052i \(-0.261905\pi\)
−0.680173 + 0.733052i \(0.738095\pi\)
\(84\) −0.542546 + 0.840026i −0.542546 + 0.840026i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.797133 0.603804i \(-0.206349\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(90\) 0 0
\(91\) −0.0449236 + 0.0216340i −0.0449236 + 0.0216340i
\(92\) 0 0
\(93\) −0.371829 1.10669i −0.371829 1.10669i
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.46402 1.22846i 1.46402 1.22846i 0.542546 0.840026i \(-0.317460\pi\)
0.921476 0.388435i \(-0.126984\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) −0.797133 0.603804i −0.797133 0.603804i
\(101\) 0 0 −0.478254 0.878222i \(-0.658730\pi\)
0.478254 + 0.878222i \(0.341270\pi\)
\(102\) 0 0
\(103\) 0.245910 0.0370649i 0.245910 0.0370649i −0.0249307 0.999689i \(-0.507937\pi\)
0.270840 + 0.962624i \(0.412698\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(108\) 0.661686 + 0.749781i 0.661686 + 0.749781i
\(109\) 0.295771 + 0.0370649i 0.295771 + 0.0370649i 0.270840 0.962624i \(-0.412698\pi\)
0.0249307 + 0.999689i \(0.492063\pi\)
\(110\) 0 0
\(111\) −0.197590 0.0247613i −0.197590 0.0247613i
\(112\) −0.583744 + 0.811938i −0.583744 + 0.811938i
\(113\) 0 0 −0.974928 0.222521i \(-0.928571\pi\)
0.974928 + 0.222521i \(0.0714286\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0.00865834 + 0.0491039i 0.00865834 + 0.0491039i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −0.900969 + 0.433884i −0.900969 + 0.433884i
\(122\) 0 0
\(123\) 0 0
\(124\) −0.316203 1.12385i −0.316203 1.12385i
\(125\) 0 0
\(126\) 0 0
\(127\) 0.194143 1.94017i 0.194143 1.94017i −0.124344 0.992239i \(-0.539683\pi\)
0.318487 0.947927i \(-0.396825\pi\)
\(128\) 0 0
\(129\) −0.831229 0.697484i −0.831229 0.697484i
\(130\) 0 0
\(131\) 0 0 −0.521435 0.853291i \(-0.674603\pi\)
0.521435 + 0.853291i \(0.325397\pi\)
\(132\) 0 0
\(133\) 0.766044 0.642788i 0.766044 0.642788i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 0 0 0.980172 0.198146i \(-0.0634921\pi\)
−0.980172 + 0.198146i \(0.936508\pi\)
\(138\) 0 0
\(139\) −0.543789 + 0.889872i −0.543789 + 0.889872i 0.456211 + 0.889872i \(0.349206\pi\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 0 0
\(144\) 0.623490 + 0.781831i 0.623490 + 0.781831i
\(145\) 0 0
\(146\) 0 0
\(147\) −0.900969 0.433884i −0.900969 0.433884i
\(148\) −0.196110 0.0345796i −0.196110 0.0345796i
\(149\) 0 0 0.921476 0.388435i \(-0.126984\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(150\) 0 0
\(151\) −1.35654 0.101659i −1.35654 0.101659i −0.623490 0.781831i \(-0.714286\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.00619995 + 0.0494744i 0.00619995 + 0.0494744i
\(157\) −0.988565 1.61772i −0.988565 1.61772i −0.766044 0.642788i \(-0.777778\pi\)
−0.222521 0.974928i \(-0.571429\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.483482 + 1.23189i 0.483482 + 1.23189i 0.939693 + 0.342020i \(0.111111\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(168\) 0 0
\(169\) 0.410265 0.909240i 0.410265 0.909240i
\(170\) 0 0
\(171\) −0.411287 0.911506i −0.411287 0.911506i
\(172\) −0.795429 0.738050i −0.795429 0.738050i
\(173\) 0 0 0.995031 0.0995678i \(-0.0317460\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(174\) 0 0
\(175\) 0.500000 0.866025i 0.500000 0.866025i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(180\) 0 0
\(181\) 1.57646 1.19412i 1.57646 1.19412i 0.698237 0.715867i \(-0.253968\pi\)
0.878222 0.478254i \(-0.158730\pi\)
\(182\) 0 0
\(183\) 0.478646 1.55173i 0.478646 1.55173i
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.661686 + 0.749781i −0.661686 + 0.749781i
\(190\) 0 0
\(191\) 0 0 0.365341 0.930874i \(-0.380952\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(192\) 0.583744 + 0.811938i 0.583744 + 0.811938i
\(193\) −0.297133 + 1.46983i −0.297133 + 1.46983i 0.500000 + 0.866025i \(0.333333\pi\)
−0.797133 + 0.603804i \(0.793651\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) −0.878222 0.478254i −0.878222 0.478254i
\(197\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(198\) 0 0
\(199\) −0.928021 + 1.51864i −0.928021 + 1.51864i −0.0747301 + 0.997204i \(0.523810\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(200\) 0 0
\(201\) 0.297992 + 1.97705i 0.297992 + 1.97705i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0.00372615 + 0.0497220i 0.00372615 + 0.0497220i
\(209\) 0 0
\(210\) 0 0
\(211\) −0.439165 + 0.225147i −0.439165 + 0.225147i −0.661686 0.749781i \(-0.730159\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 1.07581 0.453493i 1.07581 0.453493i
\(218\) 0 0
\(219\) −1.75488 + 0.493745i −1.75488 + 0.493745i
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0.815183 + 1.13385i 0.815183 + 1.13385i 0.988831 + 0.149042i \(0.0476190\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(224\) 0 0
\(225\) −0.698237 0.715867i −0.698237 0.715867i
\(226\) 0 0
\(227\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(228\) −0.365341 0.930874i −0.365341 0.930874i
\(229\) 0.115786 0.768193i 0.115786 0.768193i −0.853291 0.521435i \(-0.825397\pi\)
0.969077 0.246757i \(-0.0793651\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 0 0 0.969077 0.246757i \(-0.0793651\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 1.92465 + 0.0479978i 1.92465 + 0.0479978i
\(238\) 0 0
\(239\) 0 0 −0.988831 0.149042i \(-0.952381\pi\)
0.988831 + 0.149042i \(0.0476190\pi\)
\(240\) 0 0
\(241\) −0.172518 0.613166i −0.172518 0.613166i −0.998757 0.0498459i \(-0.984127\pi\)
0.826239 0.563320i \(-0.190476\pi\)
\(242\) 0 0
\(243\) 0.542546 + 0.840026i 0.542546 + 0.840026i
\(244\) 0.555398 1.52594i 0.555398 1.52594i
\(245\) 0 0
\(246\) 0 0
\(247\) 0.00865834 0.0491039i 0.00865834 0.0491039i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 0.749781 0.661686i \(-0.230159\pi\)
−0.749781 + 0.661686i \(0.769841\pi\)
\(252\) −0.698237 + 0.715867i −0.698237 + 0.715867i
\(253\) 0 0
\(254\) 0 0
\(255\) 0 0
\(256\) 0.542546 + 0.840026i 0.542546 + 0.840026i
\(257\) 0 0 0.583744 0.811938i \(-0.301587\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(258\) 0 0
\(259\) 0.00992609 0.198888i 0.00992609 0.198888i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0 0 0.766044 0.642788i \(-0.222222\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0.199074 + 1.98944i 0.199074 + 1.98944i
\(269\) 0 0 −0.456211 0.889872i \(-0.650794\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(270\) 0 0
\(271\) −1.69699 0.765713i −1.69699 0.765713i −0.998757 0.0498459i \(-0.984127\pi\)
−0.698237 0.715867i \(-0.746032\pi\)
\(272\) 0 0
\(273\) −0.0483195 + 0.0123037i −0.0483195 + 0.0123037i
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 0.658322 + 0.317031i 0.658322 + 0.317031i 0.733052 0.680173i \(-0.238095\pi\)
−0.0747301 + 0.997204i \(0.523810\pi\)
\(278\) 0 0
\(279\) −0.145170 1.15843i −0.145170 1.15843i
\(280\) 0 0
\(281\) 0 0 −0.0498459 0.998757i \(-0.515873\pi\)
0.0498459 + 0.998757i \(0.484127\pi\)
\(282\) 0 0
\(283\) 0.337071 + 0.799627i 0.337071 + 0.799627i 0.998757 + 0.0498459i \(0.0158730\pi\)
−0.661686 + 0.749781i \(0.730159\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 0.853291 + 0.521435i 0.853291 + 0.521435i
\(290\) 0 0
\(291\) 1.67841 0.914013i 1.67841 0.914013i
\(292\) −1.77730 + 0.405658i −1.77730 + 0.405658i
\(293\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0 0
\(300\) −0.661686 0.749781i −0.661686 0.749781i
\(301\) 0.633416 0.881028i 0.633416 0.881028i
\(302\) 0 0
\(303\) 0 0
\(304\) −0.318487 0.947927i −0.318487 0.947927i
\(305\) 0 0
\(306\) 0 0
\(307\) −0.182301 + 1.45473i −0.182301 + 1.45473i 0.583744 + 0.811938i \(0.301587\pi\)
−0.766044 + 0.642788i \(0.777778\pi\)
\(308\) 0 0
\(309\) 0.248378 + 0.0123960i 0.248378 + 0.0123960i
\(310\) 0 0
\(311\) 0 0 0.997204 0.0747301i \(-0.0238095\pi\)
−0.997204 + 0.0747301i \(0.976190\pi\)
\(312\) 0 0
\(313\) −1.10952 0.195639i −1.10952 0.195639i −0.411287 0.911506i \(-0.634921\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 1.91987 + 0.143874i 1.91987 + 0.143874i
\(317\) 0 0 0.246757 0.969077i \(-0.420635\pi\)
−0.246757 + 0.969077i \(0.579365\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 0 0
\(324\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(325\) −0.00865834 0.0491039i −0.00865834 0.0491039i
\(326\) 0 0
\(327\) 0.282562 + 0.0949359i 0.282562 + 0.0949359i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.0561584 0.0823692i −0.0561584 0.0823692i 0.797133 0.603804i \(-0.206349\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(332\) 0 0
\(333\) −0.188766 0.0634221i −0.188766 0.0634221i
\(334\) 0 0
\(335\) 0 0
\(336\) −0.733052 + 0.680173i −0.733052 + 0.680173i
\(337\) 0.189528 0.348032i 0.189528 0.348032i −0.766044 0.642788i \(-0.777778\pi\)
0.955573 + 0.294755i \(0.0952381\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 0.365341 0.930874i 0.365341 0.930874i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 0 0 0.995031 0.0995678i \(-0.0317460\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(348\) 0 0
\(349\) −1.12413 + 0.441189i −1.12413 + 0.441189i −0.853291 0.521435i \(-0.825397\pi\)
−0.270840 + 0.962624i \(0.587302\pi\)
\(350\) 0 0
\(351\) −0.00124308 + 0.0498459i −0.00124308 + 0.0498459i
\(352\) 0 0
\(353\) 0 0 −0.781831 0.623490i \(-0.785714\pi\)
0.781831 + 0.623490i \(0.214286\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 0 0 0.853291 0.521435i \(-0.174603\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(360\) 0 0
\(361\) 0.0747301 + 0.997204i 0.0747301 + 0.997204i
\(362\) 0 0
\(363\) −0.969077 + 0.246757i −0.969077 + 0.246757i
\(364\) −0.0488728 + 0.00987984i −0.0488728 + 0.00987984i
\(365\) 0 0
\(366\) 0 0
\(367\) −0.371541 + 0.881399i −0.371541 + 0.881399i 0.623490 + 0.781831i \(0.285714\pi\)
−0.995031 + 0.0995678i \(0.968254\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) −0.0872464 1.16422i −0.0872464 1.16422i
\(373\) 0.589510i 0.589510i 0.955573 + 0.294755i \(0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.63793 + 0.373847i −1.63793 + 0.373847i −0.939693 0.342020i \(-0.888889\pi\)
−0.698237 + 0.715867i \(0.746032\pi\)
\(380\) 0 0
\(381\) 0.574730 1.86323i 0.574730 1.86323i
\(382\) 0 0
\(383\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −0.676544 0.848359i −0.676544 0.848359i
\(388\) 1.72188 0.829215i 1.72188 0.829215i
\(389\) 0 0 −0.853291 0.521435i \(-0.825397\pi\)
0.853291 + 0.521435i \(0.174603\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −1.35718 + 0.455988i −1.35718 + 0.455988i −0.900969 0.433884i \(-0.857143\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(398\) 0 0
\(399\) 0.878222 0.478254i 0.878222 0.478254i
\(400\) −0.623490 0.781831i −0.623490 0.781831i
\(401\) 0 0 −0.840026 0.542546i \(-0.817460\pi\)
0.840026 + 0.542546i \(0.182540\pi\)
\(402\) 0 0
\(403\) 0.0265572 0.0518017i 0.0265572 0.0518017i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) −0.148717 0.0148814i −0.148717 0.0148814i 0.0249307 0.999689i \(-0.492063\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0.247452 + 0.0247613i 0.247452 + 0.0247613i
\(413\) 0 0
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −0.709332 + 0.764478i −0.709332 + 0.764478i
\(418\) 0 0
\(419\) 0 0 −0.433884 0.900969i \(-0.642857\pi\)
0.433884 + 0.900969i \(0.357143\pi\)
\(420\) 0 0
\(421\) 1.11937 1.09181i 1.11937 1.09181i 0.124344 0.992239i \(-0.460317\pi\)
0.995031 0.0995678i \(-0.0317460\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 1.58316 + 0.361346i 1.58316 + 0.361346i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 0 0 0.749781 0.661686i \(-0.230159\pi\)
−0.749781 + 0.661686i \(0.769841\pi\)
\(432\) 0.456211 + 0.889872i 0.456211 + 0.889872i
\(433\) 1.61852 0.881399i 1.61852 0.881399i 0.623490 0.781831i \(-0.285714\pi\)
0.995031 0.0995678i \(-0.0317460\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0.277479 + 0.108903i 0.277479 + 0.108903i
\(437\) 0 0
\(438\) 0 0
\(439\) 0.218403 1.74281i 0.218403 1.74281i −0.365341 0.930874i \(-0.619048\pi\)
0.583744 0.811938i \(-0.301587\pi\)
\(440\) 0 0
\(441\) −0.797133 0.603804i −0.797133 0.603804i
\(442\) 0 0
\(443\) 0 0 0.456211 0.889872i \(-0.349206\pi\)
−0.456211 + 0.889872i \(0.650794\pi\)
\(444\) −0.185370 0.0727524i −0.185370 0.0727524i
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.766044 + 0.642788i −0.766044 + 0.642788i
\(449\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(450\) 0 0
\(451\) 0 0
\(452\) 0 0
\(453\) −1.30950 0.368437i −1.30950 0.368437i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −0.813387 0.122598i −0.813387 0.122598i −0.270840 0.962624i \(-0.587302\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 −0.962624 0.270840i \(-0.912698\pi\)
0.962624 + 0.270840i \(0.0873016\pi\)
\(462\) 0 0
\(463\) −0.127533 + 1.70181i −0.127533 + 1.70181i 0.456211 + 0.889872i \(0.349206\pi\)
−0.583744 + 0.811938i \(0.698413\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 −0.997204 0.0747301i \(-0.976190\pi\)
0.997204 + 0.0747301i \(0.0238095\pi\)
\(468\) −0.00372615 + 0.0497220i −0.00372615 + 0.0497220i
\(469\) −1.94925 + 0.444904i −1.94925 + 0.444904i
\(470\) 0 0
\(471\) −0.648420 1.78152i −0.648420 1.78152i
\(472\) 0 0
\(473\) 0 0
\(474\) 0 0
\(475\) 0.411287 + 0.911506i 0.411287 + 0.911506i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 0 0 −0.889872 0.456211i \(-0.849206\pi\)
0.889872 + 0.456211i \(0.150794\pi\)
\(480\) 0 0
\(481\) −0.00599528 0.00791487i −0.00599528 0.00791487i
\(482\) 0 0
\(483\) 0 0
\(484\) −0.980172 + 0.198146i −0.980172 + 0.198146i
\(485\) 0 0
\(486\) 0 0
\(487\) −1.85654 0.728639i −1.85654 0.728639i −0.955573 0.294755i \(-0.904762\pi\)
−0.900969 0.433884i \(-0.857143\pi\)
\(488\) 0 0
\(489\) 0.229801 + 1.30327i 0.229801 + 1.30327i
\(490\) 0 0
\(491\) 0 0 −0.939693 0.342020i \(-0.888889\pi\)
0.939693 + 0.342020i \(0.111111\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) −0.0291063 1.16712i −0.0291063 1.16712i
\(497\) 0 0
\(498\) 0 0
\(499\) 0.907887 + 1.77090i 0.907887 + 1.77090i 0.542546 + 0.840026i \(0.317460\pi\)
0.365341 + 0.930874i \(0.380952\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 −0.889872 0.456211i \(-0.849206\pi\)
0.889872 + 0.456211i \(0.150794\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0.582292 0.809919i 0.582292 0.809919i
\(508\) 0.666890 1.83227i 0.666890 1.83227i
\(509\) 0 0 0.939693 0.342020i \(-0.111111\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(510\) 0 0
\(511\) −0.623507 1.71307i −0.623507 1.71307i
\(512\) 0 0
\(513\) −0.222521 0.974928i −0.222521 0.974928i
\(514\) 0 0
\(515\) 0 0
\(516\) −0.633416 0.881028i −0.633416 0.881028i
\(517\) 0 0
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 1.31680 + 1.49211i 1.31680 + 1.49211i 0.733052 + 0.680173i \(0.238095\pi\)
0.583744 + 0.811938i \(0.301587\pi\)
\(524\) 0 0
\(525\) 0.661686 0.749781i 0.661686 0.749781i
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −0.0249307 0.999689i −0.0249307 0.999689i
\(530\) 0 0
\(531\) 0 0
\(532\) 0.900969 0.433884i 0.900969 0.433884i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −0.911287 + 0.0454804i −0.911287 + 0.0454804i −0.500000 0.866025i \(-0.666667\pi\)
−0.411287 + 0.911506i \(0.634921\pi\)
\(542\) 0 0
\(543\) 1.78181 0.858075i 1.78181 0.858075i
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −0.684732 1.25738i −0.684732 1.25738i −0.955573 0.294755i \(-0.904762\pi\)
0.270840 0.962624i \(-0.412698\pi\)
\(548\) 0 0
\(549\) 0.776625 1.42612i 0.776625 1.42612i
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) 0.0959657 + 1.92286i 0.0959657 + 1.92286i
\(554\) 0 0
\(555\) 0 0
\(556\) −0.746556 + 0.728171i −0.746556 + 0.728171i
\(557\) 0 0 0.173648 0.984808i \(-0.444444\pi\)
−0.173648 + 0.984808i \(0.555556\pi\)
\(558\) 0 0
\(559\) −0.00404321 0.0539529i −0.00404321 0.0539529i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 0 0 0.955573 0.294755i \(-0.0952381\pi\)
−0.955573 + 0.294755i \(0.904762\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −0.797133 + 0.603804i −0.797133 + 0.603804i
\(568\) 0 0
\(569\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(570\) 0 0
\(571\) 0.447558 0.305140i 0.447558 0.305140i −0.318487 0.947927i \(-0.603175\pi\)
0.766044 + 0.642788i \(0.222222\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0.411287 + 0.911506i 0.411287 + 0.911506i
\(577\) −1.06356 1.14625i −1.06356 1.14625i −0.988831 0.149042i \(-0.952381\pi\)
−0.0747301 0.997204i \(-0.523810\pi\)
\(578\) 0 0
\(579\) −0.582482 + 1.38181i −0.582482 + 1.38181i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 −0.642788 0.766044i \(-0.722222\pi\)
0.642788 + 0.766044i \(0.277778\pi\)
\(588\) −0.766044 0.642788i −0.766044 0.642788i
\(589\) −0.259790 + 1.13822i −0.259790 + 1.13822i
\(590\) 0 0
\(591\) 0 0
\(592\) −0.181513 0.0819019i −0.181513 0.0819019i
\(593\) 0 0 0.521435 0.853291i \(-0.325397\pi\)
−0.521435 + 0.853291i \(0.674603\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −1.21053 + 1.30464i −1.21053 + 1.30464i
\(598\) 0 0
\(599\) 0 0 0.840026 0.542546i \(-0.182540\pi\)
−0.840026 + 0.542546i \(0.817460\pi\)
\(600\) 0 0
\(601\) −1.79589 0.553959i −1.79589 0.553959i −0.797133 0.603804i \(-0.793651\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(602\) 0 0
\(603\) −0.0996608 + 1.99689i −0.0996608 + 1.99689i
\(604\) −1.28951 0.433252i −1.28951 0.433252i
\(605\) 0 0
\(606\) 0 0
\(607\) −0.173648 0.300767i −0.173648 0.300767i 0.766044 0.642788i \(-0.222222\pi\)
−0.939693 + 0.342020i \(0.888889\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −0.0810891 + 0.125550i −0.0810891 + 0.125550i −0.878222 0.478254i \(-0.841270\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 0 0 −0.411287 0.911506i \(-0.634921\pi\)
0.411287 + 0.911506i \(0.365079\pi\)
\(618\) 0 0
\(619\) 1.96962i 1.96962i −0.173648 0.984808i \(-0.555556\pi\)
0.173648 0.984808i \(-0.444444\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) −0.00619995 + 0.0494744i −0.00619995 + 0.0494744i
\(625\) 0.698237 + 0.715867i 0.698237 + 0.715867i
\(626\) 0 0
\(627\) 0 0
\(628\) −0.558813 1.81163i −0.558813 1.81163i
\(629\) 0 0
\(630\) 0 0
\(631\) −1.28245 1.45319i −1.28245 1.45319i −0.826239 0.563320i \(-0.809524\pi\)
−0.456211 0.889872i \(-0.650794\pi\)
\(632\) 0 0
\(633\) −0.475069 + 0.133664i −0.475069 + 0.133664i
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −0.0158802 0.0472650i −0.0158802 0.0472650i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 0 0 −0.0995678 0.995031i \(-0.531746\pi\)
0.0995678 + 0.995031i \(0.468254\pi\)
\(642\) 0 0
\(643\) 0.206641 + 0.338153i 0.206641 + 0.338153i 0.939693 0.342020i \(-0.111111\pi\)
−0.733052 + 0.680173i \(0.761905\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.930874 0.365341i \(-0.119048\pi\)
−0.930874 + 0.365341i \(0.880952\pi\)
\(648\) 0 0
\(649\) 0 0
\(650\) 0 0
\(651\) 1.14434 0.231333i 1.14434 0.231333i
\(652\) 0.164553 + 1.31310i 0.164553 + 1.31310i
\(653\) 0 0 0.623490 0.781831i \(-0.285714\pi\)
−0.623490 + 0.781831i \(0.714286\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −1.81791 + 0.136234i −1.81791 + 0.136234i
\(658\) 0 0
\(659\) 0 0 −0.715867 0.698237i \(-0.753968\pi\)
0.715867 + 0.698237i \(0.246032\pi\)
\(660\) 0 0
\(661\) −0.797133 + 0.603804i −0.797133 + 0.603804i −0.921476 0.388435i \(-0.873016\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0.574352 + 1.27289i 0.574352 + 1.27289i
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 0.650591 + 0.701170i 0.650591 + 0.701170i 0.969077 0.246757i \(-0.0793651\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(674\) 0 0
\(675\) −0.542546 0.840026i −0.542546 0.840026i
\(676\) 0.621940 0.779888i 0.621940 0.779888i
\(677\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(678\) 0 0
\(679\) 1.03688 + 1.60541i 1.03688 + 1.60541i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 0 0 −0.149042 0.988831i \(-0.547619\pi\)
0.149042 + 0.988831i \(0.452381\pi\)
\(684\) −0.173648 0.984808i −0.173648 0.984808i
\(685\) 0 0
\(686\) 0 0
\(687\) 0.265705 0.730019i 0.265705 0.730019i
\(688\) −0.588713 0.911506i −0.588713 0.911506i
\(689\) 0 0
\(690\) 0 0
\(691\) −1.35417 + 1.07992i −1.35417 + 1.07992i −0.365341 + 0.930874i \(0.619048\pi\)
−0.988831 + 0.149042i \(0.952381\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 0.698237 0.715867i 0.698237 0.715867i
\(701\) 0 0 −0.456211 0.889872i \(-0.650794\pi\)
0.456211 + 0.889872i \(0.349206\pi\)
\(702\) 0 0
\(703\) 0.155691 + 0.124159i 0.155691 + 0.124159i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 1.78596 + 0.454762i 1.78596 + 0.454762i 0.988831 0.149042i \(-0.0476190\pi\)
0.797133 + 0.603804i \(0.206349\pi\)
\(710\) 0 0
\(711\) 1.87698 + 0.428408i 1.87698 + 0.428408i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 0 0 0.478254 0.878222i \(-0.341270\pi\)
−0.478254 + 0.878222i \(0.658730\pi\)
\(720\) 0 0
\(721\) 0.00619995 + 0.248610i 0.00619995 + 0.248610i
\(722\) 0 0
\(723\) −0.0476011 0.635192i −0.0476011 0.635192i
\(724\) 1.82237 0.768193i 1.82237 0.768193i
\(725\) 0 0
\(726\) 0 0
\(727\) 0.963900 + 0.850647i 0.963900 + 0.850647i 0.988831 0.149042i \(-0.0476190\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(728\) 0 0
\(729\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(730\) 0 0
\(731\) 0 0
\(732\) 0.846746 1.38564i 0.846746 1.38564i
\(733\) −0.173761 + 0.563320i −0.173761 + 0.563320i 0.826239 + 0.563320i \(0.190476\pi\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 0 0
\(738\) 0 0
\(739\) 1.02531 + 1.42612i 1.02531 + 1.42612i 0.900969 + 0.433884i \(0.142857\pi\)
0.124344 + 0.992239i \(0.460317\pi\)
\(740\) 0 0
\(741\) 0.0182164 0.0464147i 0.0182164 0.0464147i
\(742\) 0 0
\(743\) 0 0 0.198146 0.980172i \(-0.436508\pi\)
−0.198146 + 0.980172i \(0.563492\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −1.48792 + 1.31310i −1.48792 + 1.31310i −0.661686 + 0.749781i \(0.730159\pi\)
−0.826239 + 0.563320i \(0.809524\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) −0.826239 + 0.563320i −0.826239 + 0.563320i
\(757\) 1.95060 0.195187i 1.95060 0.195187i 0.955573 0.294755i \(-0.0952381\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 0.563320 0.826239i \(-0.309524\pi\)
−0.563320 + 0.826239i \(0.690476\pi\)
\(762\) 0 0
\(763\) −0.0735546 + 0.288867i −0.0735546 + 0.288867i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0.365341 + 0.930874i 0.365341 + 0.930874i
\(769\) 0.413027 + 0.545271i 0.413027 + 0.545271i 0.955573 0.294755i \(-0.0952381\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −0.650636 + 1.35106i −0.650636 + 1.35106i
\(773\) 0 0 0.998757 0.0498459i \(-0.0158730\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(774\) 0 0
\(775\) 0.145170 + 1.15843i 0.145170 + 1.15843i
\(776\) 0 0
\(777\) 0.0491382 0.192978i 0.0491382 0.192978i
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −0.733052 0.680173i −0.733052 0.680173i
\(785\) 0 0
\(786\) 0 0
\(787\) −0.337733 0.423503i −0.337733 0.423503i 0.583744 0.811938i \(-0.301587\pi\)
−0.921476 + 0.388435i \(0.873016\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 0.0720518 0.0369388i 0.0720518 0.0369388i
\(794\) 0 0
\(795\) 0 0
\(796\) −1.27406 + 1.24268i −1.27406 + 1.24268i
\(797\) 0 0 −0.222521 0.974928i \(-0.571429\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) −0.199074 + 1.98944i −0.199074 + 1.98944i
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 0.222521 0.974928i \(-0.428571\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) 0 0
\(811\) 0.510189 0.523071i 0.510189 0.523071i −0.411287 0.911506i \(-0.634921\pi\)
0.921476 + 0.388435i \(0.126984\pi\)
\(812\) 0 0
\(813\) −1.51162 1.08678i −1.51162 1.08678i
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0.345587 + 1.02859i 0.345587 + 1.02859i
\(818\) 0 0
\(819\) −0.0497994 + 0.00248538i −0.0497994 + 0.00248538i
\(820\) 0 0
\(821\) 0 0 −0.995031 0.0995678i \(-0.968254\pi\)
0.995031 + 0.0995678i \(0.0317460\pi\)
\(822\) 0 0
\(823\) −0.970100 1.09926i −0.970100 1.09926i −0.995031 0.0995678i \(-0.968254\pi\)
0.0249307 0.999689i \(-0.492063\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 0 0 −0.198146 0.980172i \(-0.563492\pi\)
0.198146 + 0.980172i \(0.436508\pi\)
\(828\) 0 0
\(829\) 0.447558 + 0.305140i 0.447558 + 0.305140i 0.766044 0.642788i \(-0.222222\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(830\) 0 0
\(831\) 0.582450 + 0.441189i 0.582450 + 0.441189i
\(832\) −0.00865834 + 0.0491039i −0.00865834 + 0.0491039i
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0.0872464 1.16422i 0.0872464 1.16422i
\(838\) 0 0
\(839\) 0 0 0.853291 0.521435i \(-0.174603\pi\)
−0.853291 + 0.521435i \(0.825397\pi\)
\(840\) 0 0
\(841\) 0.661686 0.749781i 0.661686 0.749781i
\(842\) 0 0
\(843\) 0 0
\(844\) −0.481141 + 0.109817i −0.481141 + 0.109817i
\(845\) 0 0
\(846\) 0 0
\(847\) −0.318487 0.947927i −0.318487 0.947927i
\(848\) 0 0
\(849\) 0.171945 + 0.850562i 0.171945 + 0.850562i
\(850\) 0 0
\(851\) 0 0
\(852\) 0 0
\(853\) −0.414565 1.62810i −0.414565 1.62810i −0.733052 0.680173i \(-0.761905\pi\)
0.318487 0.947927i \(-0.396825\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 0 0 −0.998757 0.0498459i \(-0.984127\pi\)
0.998757 + 0.0498459i \(0.0158730\pi\)
\(858\) 0 0
\(859\) 1.20269 + 1.17307i 1.20269 + 1.17307i 0.980172 + 0.198146i \(0.0634921\pi\)
0.222521 + 0.974928i \(0.428571\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0.733052 + 0.680173i 0.733052 + 0.680173i
\(868\) 1.15445 0.174005i 1.15445 0.174005i
\(869\) 0 0
\(870\) 0 0
\(871\) −0.0601943 + 0.0794676i −0.0601943 + 0.0794676i
\(872\) 0 0
\(873\) 1.82624 0.563320i 1.82624 0.563320i
\(874\) 0 0
\(875\) 0 0
\(876\) −1.82245 + 0.0454489i −1.82245 + 0.0454489i
\(877\) 1.48792 + 1.31310i 1.48792 + 1.31310i 0.826239 + 0.563320i \(0.190476\pi\)
0.661686 + 0.749781i \(0.269841\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) 0 0
\(883\) 1.50171 + 1.26009i 1.50171 + 1.26009i 0.878222 + 0.478254i \(0.158730\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 0 0 0.0249307 0.999689i \(-0.492063\pi\)
−0.0249307 + 0.999689i \(0.507937\pi\)
\(888\) 0 0
\(889\) 1.90097 + 0.433884i 1.90097 + 0.433884i
\(890\) 0 0
\(891\) 0 0
\(892\) 0.510189 + 1.29994i 0.510189 + 1.29994i
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) −0.500000 0.866025i −0.500000 0.866025i
\(901\) 0 0
\(902\) 0 0
\(903\) 0.795429 0.738050i 0.795429 0.738050i
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 1.56392 + 1.01008i 1.56392 + 1.01008i 0.980172 + 0.198146i \(0.0634921\pi\)
0.583744 + 0.811938i \(0.301587\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 0 0 0.433884 0.900969i \(-0.357143\pi\)
−0.433884 + 0.900969i \(0.642857\pi\)
\(912\) −0.124344 0.992239i −0.124344 0.992239i
\(913\) 0 0
\(914\) 0 0
\(915\) 0 0
\(916\) 0.301763 0.715867i 0.301763 0.715867i
\(917\) 0 0
\(918\) 0 0
\(919\) −1.58250 0.762092i −1.58250 0.762092i −0.583744 0.811938i \(-0.698413\pi\)
−0.998757 + 0.0498459i \(0.984127\pi\)
\(920\) 0 0
\(921\) −0.466934 + 1.38976i −0.466934 + 1.38976i
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 0.188766 + 0.0634221i 0.188766 + 0.0634221i
\(926\) 0 0
\(927\) 0.240997 + 0.0613655i 0.240997 + 0.0613655i
\(928\) 0 0
\(929\) 0 0 −0.992239 0.124344i \(-0.960317\pi\)
0.992239 + 0.124344i \(0.0396825\pi\)
\(930\) 0 0
\(931\) 0.542546 + 0.840026i 0.542546 + 0.840026i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) −0.0945006 0.0317505i −0.0945006 0.0317505i 0.270840 0.962624i \(-0.412698\pi\)
−0.365341 + 0.930874i \(0.619048\pi\)
\(938\) 0 0
\(939\) −1.04876 0.411608i −1.04876 0.411608i
\(940\) 0 0
\(941\) 0 0 0.318487 0.947927i \(-0.396825\pi\)
−0.318487 + 0.947927i \(0.603175\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 0 0 −0.878222 0.478254i \(-0.841270\pi\)
0.878222 + 0.478254i \(0.158730\pi\)
\(948\) 1.85329 + 0.521435i 1.85329 + 0.521435i
\(949\) −0.0787199 0.0454489i −0.0787199 0.0454489i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 0 0 −0.0995678 0.995031i \(-0.531746\pi\)
0.0995678 + 0.995031i \(0.468254\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −0.181513 + 0.314390i −0.181513 + 0.314390i
\(962\) 0 0
\(963\) 0 0
\(964\) −0.0158802 0.636775i −0.0158802 0.636775i
\(965\) 0 0
\(966\) 0 0
\(967\) 1.46908 + 1.11278i 1.46908 + 1.11278i 0.969077 + 0.246757i \(0.0793651\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 0.542546 0.840026i \(-0.317460\pi\)
−0.542546 + 0.840026i \(0.682540\pi\)
\(972\) 0.318487 + 0.947927i 0.318487 + 0.947927i
\(973\) −0.815349 0.650219i −0.815349 0.650219i
\(974\) 0 0
\(975\) 0.00124308 0.0498459i 0.00124308 0.0498459i
\(976\) 0.914762 1.34171i 0.914762 1.34171i
\(977\) 0 0 0.781831 0.623490i \(-0.214286\pi\)
−0.781831 + 0.623490i \(0.785714\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0.258149 + 0.149042i 0.258149 + 0.149042i
\(982\) 0 0
\(983\) 0 0 −0.318487 0.947927i \(-0.603175\pi\)
0.318487 + 0.947927i \(0.396825\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0.0205073 0.0454489i 0.0205073 0.0454489i
\(989\) 0 0
\(990\) 0 0
\(991\) 0.729160 0.962624i 0.729160 0.962624i −0.270840 0.962624i \(-0.587302\pi\)
1.00000 \(0\)
\(992\) 0 0
\(993\) −0.0387238 0.0918636i −0.0387238 0.0918636i
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −0.0681084 + 0.680641i −0.0681084 + 0.680641i 0.900969 + 0.433884i \(0.142857\pi\)
−0.969077 + 0.246757i \(0.920635\pi\)
\(998\) 0 0
\(999\) −0.172457 0.0995678i −0.172457 0.0995678i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2793.1.ew.a.773.1 yes 36
3.2 odd 2 CM 2793.1.ew.a.773.1 yes 36
19.3 odd 18 2793.1.er.a.1067.1 yes 36
49.40 odd 42 2793.1.er.a.89.1 36
57.41 even 18 2793.1.er.a.1067.1 yes 36
147.89 even 42 2793.1.er.a.89.1 36
931.383 even 126 inner 2793.1.ew.a.383.1 yes 36
2793.383 odd 126 inner 2793.1.ew.a.383.1 yes 36
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
2793.1.er.a.89.1 36 49.40 odd 42
2793.1.er.a.89.1 36 147.89 even 42
2793.1.er.a.1067.1 yes 36 19.3 odd 18
2793.1.er.a.1067.1 yes 36 57.41 even 18
2793.1.ew.a.383.1 yes 36 931.383 even 126 inner
2793.1.ew.a.383.1 yes 36 2793.383 odd 126 inner
2793.1.ew.a.773.1 yes 36 1.1 even 1 trivial
2793.1.ew.a.773.1 yes 36 3.2 odd 2 CM