Properties

Label 285.1.n.b.254.1
Level 285285
Weight 11
Character 285.254
Analytic conductor 0.1420.142
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -15
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [285,1,Mod(239,285)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("285.239");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 285=3519 285 = 3 \cdot 5 \cdot 19
Weight: k k == 1 1
Character orbit: [χ][\chi] == 285.n (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.1422335286000.142233528600
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.5415.1
Artin image: C3×S3C_3\times S_3
Artin field: Galois closure of 6.0.1218375.1

Embedding invariants

Embedding label 254.1
Root 0.5000000.866025i0.500000 - 0.866025i of defining polynomial
Character χ\chi == 285.254
Dual form 285.1.n.b.239.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.500000+0.866025i)q2+(0.5000000.866025i)q3+(0.5000000.866025i)q5+(0.5000000.866025i)q6+1.00000q8+(0.500000+0.866025i)q9+(0.5000000.866025i)q10+(0.500000+0.866025i)q15+(0.500000+0.866025i)q16+(0.500000+0.866025i)q171.00000q18+(0.5000000.866025i)q19+(1.00000+1.73205i)q23+(0.5000000.866025i)q24+(0.500000+0.866025i)q25+1.00000q271.00000q301.00000q31+(0.500000+0.866025i)q34+(0.5000000.866025i)q38+(0.5000000.866025i)q40+1.00000q452.00000q46+(0.5000000.866025i)q47+(0.5000000.866025i)q48+1.00000q491.00000q50+(0.5000000.866025i)q51+(0.5000000.866025i)q53+(0.500000+0.866025i)q54+(0.500000+0.866025i)q57+(1.00000+1.73205i)q61+(0.5000000.866025i)q62+1.00000q64+2.00000q69+(0.500000+0.866025i)q72+1.00000q75+(1.000001.73205i)q79+(0.5000000.866025i)q80+(0.5000000.866025i)q811.00000q83+(0.5000000.866025i)q85+(0.500000+0.866025i)q90+(0.500000+0.866025i)q93+1.00000q94+(0.500000+0.866025i)q95+(0.500000+0.866025i)q98+O(q100)q+(0.500000 + 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{3} +(-0.500000 - 0.866025i) q^{5} +(0.500000 - 0.866025i) q^{6} +1.00000 q^{8} +(-0.500000 + 0.866025i) q^{9} +(0.500000 - 0.866025i) q^{10} +(-0.500000 + 0.866025i) q^{15} +(0.500000 + 0.866025i) q^{16} +(0.500000 + 0.866025i) q^{17} -1.00000 q^{18} +(-0.500000 - 0.866025i) q^{19} +(-1.00000 + 1.73205i) q^{23} +(-0.500000 - 0.866025i) q^{24} +(-0.500000 + 0.866025i) q^{25} +1.00000 q^{27} -1.00000 q^{30} -1.00000 q^{31} +(-0.500000 + 0.866025i) q^{34} +(0.500000 - 0.866025i) q^{38} +(-0.500000 - 0.866025i) q^{40} +1.00000 q^{45} -2.00000 q^{46} +(0.500000 - 0.866025i) q^{47} +(0.500000 - 0.866025i) q^{48} +1.00000 q^{49} -1.00000 q^{50} +(0.500000 - 0.866025i) q^{51} +(0.500000 - 0.866025i) q^{53} +(0.500000 + 0.866025i) q^{54} +(-0.500000 + 0.866025i) q^{57} +(-1.00000 + 1.73205i) q^{61} +(-0.500000 - 0.866025i) q^{62} +1.00000 q^{64} +2.00000 q^{69} +(-0.500000 + 0.866025i) q^{72} +1.00000 q^{75} +(-1.00000 - 1.73205i) q^{79} +(0.500000 - 0.866025i) q^{80} +(-0.500000 - 0.866025i) q^{81} -1.00000 q^{83} +(0.500000 - 0.866025i) q^{85} +(0.500000 + 0.866025i) q^{90} +(0.500000 + 0.866025i) q^{93} +1.00000 q^{94} +(-0.500000 + 0.866025i) q^{95} +(0.500000 + 0.866025i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q3q5+q6+2q8q9+q10q15+q16+q172q18q192q23q24q25+2q272q302q31q34+q38++q98+O(q100) 2 q + q^{2} - q^{3} - q^{5} + q^{6} + 2 q^{8} - q^{9} + q^{10} - q^{15} + q^{16} + q^{17} - 2 q^{18} - q^{19} - 2 q^{23} - q^{24} - q^{25} + 2 q^{27} - 2 q^{30} - 2 q^{31} - q^{34} + q^{38}+ \cdots + q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/285Z)×\left(\mathbb{Z}/285\mathbb{Z}\right)^\times.

nn 172172 191191 211211
χ(n)\chi(n) 1-1 1-1 e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
33 −0.500000 0.866025i −0.500000 0.866025i
44 0 0
55 −0.500000 0.866025i −0.500000 0.866025i
66 0.500000 0.866025i 0.500000 0.866025i
77 0 0 1.00000 00
−1.00000 π\pi
88 1.00000 1.00000
99 −0.500000 + 0.866025i −0.500000 + 0.866025i
1010 0.500000 0.866025i 0.500000 0.866025i
1111 0 0 1.00000 00
−1.00000 π\pi
1212 0 0
1313 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1414 0 0
1515 −0.500000 + 0.866025i −0.500000 + 0.866025i
1616 0.500000 + 0.866025i 0.500000 + 0.866025i
1717 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 −1.00000 −1.00000
1919 −0.500000 0.866025i −0.500000 0.866025i
2020 0 0
2121 0 0
2222 0 0
2323 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2424 −0.500000 0.866025i −0.500000 0.866025i
2525 −0.500000 + 0.866025i −0.500000 + 0.866025i
2626 0 0
2727 1.00000 1.00000
2828 0 0
2929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3030 −1.00000 −1.00000
3131 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0 0
3333 0 0
3434 −0.500000 + 0.866025i −0.500000 + 0.866025i
3535 0 0
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0.500000 0.866025i 0.500000 0.866025i
3939 0 0
4040 −0.500000 0.866025i −0.500000 0.866025i
4141 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4242 0 0
4343 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4444 0 0
4545 1.00000 1.00000
4646 −2.00000 −2.00000
4747 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
4848 0.500000 0.866025i 0.500000 0.866025i
4949 1.00000 1.00000
5050 −1.00000 −1.00000
5151 0.500000 0.866025i 0.500000 0.866025i
5252 0 0
5353 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
5454 0.500000 + 0.866025i 0.500000 + 0.866025i
5555 0 0
5656 0 0
5757 −0.500000 + 0.866025i −0.500000 + 0.866025i
5858 0 0
5959 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6060 0 0
6161 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 −0.500000 0.866025i −0.500000 0.866025i
6363 0 0
6464 1.00000 1.00000
6565 0 0
6666 0 0
6767 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6868 0 0
6969 2.00000 2.00000
7070 0 0
7171 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7272 −0.500000 + 0.866025i −0.500000 + 0.866025i
7373 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
7474 0 0
7575 1.00000 1.00000
7676 0 0
7777 0 0
7878 0 0
7979 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
8080 0.500000 0.866025i 0.500000 0.866025i
8181 −0.500000 0.866025i −0.500000 0.866025i
8282 0 0
8383 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 0.500000 0.866025i 0.500000 0.866025i
8686 0 0
8787 0 0
8888 0 0
8989 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9090 0.500000 + 0.866025i 0.500000 + 0.866025i
9191 0 0
9292 0 0
9393 0.500000 + 0.866025i 0.500000 + 0.866025i
9494 1.00000 1.00000
9595 −0.500000 + 0.866025i −0.500000 + 0.866025i
9696 0 0
9797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9898 0.500000 + 0.866025i 0.500000 + 0.866025i
9999 0 0
100100 0 0
101101 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
102102 1.00000 1.00000
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 1.00000 1.00000
107107 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
108108 0 0
109109 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
110110 0 0
111111 0 0
112112 0 0
113113 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
114114 −1.00000 −1.00000
115115 2.00000 2.00000
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 −0.500000 + 0.866025i −0.500000 + 0.866025i
121121 1.00000 1.00000
122122 −2.00000 −2.00000
123123 0 0
124124 0 0
125125 1.00000 1.00000
126126 0 0
127127 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
128128 0.500000 + 0.866025i 0.500000 + 0.866025i
129129 0 0
130130 0 0
131131 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
132132 0 0
133133 0 0
134134 0 0
135135 −0.500000 0.866025i −0.500000 0.866025i
136136 0.500000 + 0.866025i 0.500000 + 0.866025i
137137 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
138138 1.00000 + 1.73205i 1.00000 + 1.73205i
139139 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
140140 0 0
141141 −1.00000 −1.00000
142142 0 0
143143 0 0
144144 −1.00000 −1.00000
145145 0 0
146146 0 0
147147 −0.500000 0.866025i −0.500000 0.866025i
148148 0 0
149149 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
150150 0.500000 + 0.866025i 0.500000 + 0.866025i
151151 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 −0.500000 0.866025i −0.500000 0.866025i
153153 −1.00000 −1.00000
154154 0 0
155155 0.500000 + 0.866025i 0.500000 + 0.866025i
156156 0 0
157157 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
158158 1.00000 1.73205i 1.00000 1.73205i
159159 −1.00000 −1.00000
160160 0 0
161161 0 0
162162 0.500000 0.866025i 0.500000 0.866025i
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 −0.500000 0.866025i −0.500000 0.866025i
167167 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
168168 0 0
169169 −0.500000 0.866025i −0.500000 0.866025i
170170 1.00000 1.00000
171171 1.00000 1.00000
172172 0 0
173173 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 0 0 1.00000 00
−1.00000 π\pi
180180 0 0
181181 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
182182 0 0
183183 2.00000 2.00000
184184 −1.00000 + 1.73205i −1.00000 + 1.73205i
185185 0 0
186186 −0.500000 + 0.866025i −0.500000 + 0.866025i
187187 0 0
188188 0 0
189189 0 0
190190 −1.00000 −1.00000
191191 0 0 1.00000 00
−1.00000 π\pi
192192 −0.500000 0.866025i −0.500000 0.866025i
193193 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 0 0
196196 0 0
197197 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
198198 0 0
199199 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 −0.500000 + 0.866025i −0.500000 + 0.866025i
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −1.00000 1.73205i −1.00000 1.73205i
208208 0 0
209209 0 0
210210 0 0
211211 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
212212 0 0
213213 0 0
214214 −0.500000 0.866025i −0.500000 0.866025i
215215 0 0
216216 1.00000 1.00000
217217 0 0
218218 −0.500000 + 0.866025i −0.500000 + 0.866025i
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
224224 0 0
225225 −0.500000 0.866025i −0.500000 0.866025i
226226 −0.500000 0.866025i −0.500000 0.866025i
227227 2.00000 2.00000 1.00000 00
1.00000 00
228228 0 0
229229 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
230230 1.00000 + 1.73205i 1.00000 + 1.73205i
231231 0 0
232232 0 0
233233 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 −1.00000 −1.00000
236236 0 0
237237 −1.00000 + 1.73205i −1.00000 + 1.73205i
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 −1.00000 −1.00000
241241 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
242242 0.500000 + 0.866025i 0.500000 + 0.866025i
243243 −0.500000 + 0.866025i −0.500000 + 0.866025i
244244 0 0
245245 −0.500000 0.866025i −0.500000 0.866025i
246246 0 0
247247 0 0
248248 −1.00000 −1.00000
249249 0.500000 + 0.866025i 0.500000 + 0.866025i
250250 0.500000 + 0.866025i 0.500000 + 0.866025i
251251 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 0 0
254254 0 0
255255 −1.00000 −1.00000
256256 0 0
257257 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 −1.00000 −1.00000
266266 0 0
267267 0 0
268268 0 0
269269 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
270270 0.500000 0.866025i 0.500000 0.866025i
271271 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
272272 −0.500000 + 0.866025i −0.500000 + 0.866025i
273273 0 0
274274 1.00000 1.00000
275275 0 0
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 1.00000 1.00000
279279 0.500000 0.866025i 0.500000 0.866025i
280280 0 0
281281 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 −0.500000 0.866025i −0.500000 0.866025i
283283 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
284284 0 0
285285 1.00000 1.00000
286286 0 0
287287 0 0
288288 0 0
289289 0 0
290290 0 0
291291 0 0
292292 0 0
293293 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
294294 0.500000 0.866025i 0.500000 0.866025i
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 −0.500000 0.866025i −0.500000 0.866025i
303303 0 0
304304 0.500000 0.866025i 0.500000 0.866025i
305305 2.00000 2.00000
306306 −0.500000 0.866025i −0.500000 0.866025i
307307 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
308308 0 0
309309 0 0
310310 −0.500000 + 0.866025i −0.500000 + 0.866025i
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 0 0
315315 0 0
316316 0 0
317317 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
318318 −0.500000 0.866025i −0.500000 0.866025i
319319 0 0
320320 −0.500000 0.866025i −0.500000 0.866025i
321321 0.500000 + 0.866025i 0.500000 + 0.866025i
322322 0 0
323323 0.500000 0.866025i 0.500000 0.866025i
324324 0 0
325325 0 0
326326 0 0
327327 0.500000 0.866025i 0.500000 0.866025i
328328 0 0
329329 0 0
330330 0 0
331331 2.00000 2.00000 1.00000 00
1.00000 00
332332 0 0
333333 0 0
334334 1.00000 1.00000
335335 0 0
336336 0 0
337337 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
338338 0.500000 0.866025i 0.500000 0.866025i
339339 0.500000 + 0.866025i 0.500000 + 0.866025i
340340 0 0
341341 0 0
342342 0.500000 + 0.866025i 0.500000 + 0.866025i
343343 0 0
344344 0 0
345345 −1.00000 1.73205i −1.00000 1.73205i
346346 1.00000 1.73205i 1.00000 1.73205i
347347 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 0 0
353353 2.00000 2.00000 1.00000 00
1.00000 00
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 0 0
359359 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
360360 1.00000 1.00000
361361 −0.500000 + 0.866025i −0.500000 + 0.866025i
362362 1.00000 1.00000
363363 −0.500000 0.866025i −0.500000 0.866025i
364364 0 0
365365 0 0
366366 1.00000 + 1.73205i 1.00000 + 1.73205i
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 −2.00000 −2.00000
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 0 0
375375 −0.500000 0.866025i −0.500000 0.866025i
376376 0.500000 0.866025i 0.500000 0.866025i
377377 0 0
378378 0 0
379379 2.00000 2.00000 1.00000 00
1.00000 00
380380 0 0
381381 0 0
382382 0 0
383383 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 0.500000 0.866025i 0.500000 0.866025i
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
390390 0 0
391391 −2.00000 −2.00000
392392 1.00000 1.00000
393393 0 0
394394 −0.500000 0.866025i −0.500000 0.866025i
395395 −1.00000 + 1.73205i −1.00000 + 1.73205i
396396 0 0
397397 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
398398 −2.00000 −2.00000
399399 0 0
400400 −1.00000 −1.00000
401401 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.500000 + 0.866025i −0.500000 + 0.866025i
406406 0 0
407407 0 0
408408 0.500000 0.866025i 0.500000 0.866025i
409409 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 −1.00000 −1.00000
412412 0 0
413413 0 0
414414 1.00000 1.73205i 1.00000 1.73205i
415415 0.500000 + 0.866025i 0.500000 + 0.866025i
416416 0 0
417417 −1.00000 −1.00000
418418 0 0
419419 0 0 1.00000 00
−1.00000 π\pi
420420 0 0
421421 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
422422 −0.500000 + 0.866025i −0.500000 + 0.866025i
423423 0.500000 + 0.866025i 0.500000 + 0.866025i
424424 0.500000 0.866025i 0.500000 0.866025i
425425 −1.00000 −1.00000
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
432432 0.500000 + 0.866025i 0.500000 + 0.866025i
433433 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
434434 0 0
435435 0 0
436436 0 0
437437 2.00000 2.00000
438438 0 0
439439 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 0 0
441441 −0.500000 + 0.866025i −0.500000 + 0.866025i
442442 0 0
443443 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0.500000 0.866025i 0.500000 0.866025i
451451 0 0
452452 0 0
453453 0.500000 + 0.866025i 0.500000 + 0.866025i
454454 1.00000 + 1.73205i 1.00000 + 1.73205i
455455 0 0
456456 −0.500000 + 0.866025i −0.500000 + 0.866025i
457457 0 0 1.00000 00
−1.00000 π\pi
458458 −0.500000 0.866025i −0.500000 0.866025i
459459 0.500000 + 0.866025i 0.500000 + 0.866025i
460460 0 0
461461 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0.500000 0.866025i 0.500000 0.866025i
466466 −0.500000 + 0.866025i −0.500000 + 0.866025i
467467 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
468468 0 0
469469 0 0
470470 −0.500000 0.866025i −0.500000 0.866025i
471471 0 0
472472 0 0
473473 0 0
474474 −2.00000 −2.00000
475475 1.00000 1.00000
476476 0 0
477477 0.500000 + 0.866025i 0.500000 + 0.866025i
478478 0 0
479479 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
480480 0 0
481481 0 0
482482 1.00000 1.00000
483483 0 0
484484 0 0
485485 0 0
486486 −1.00000 −1.00000
487487 0 0 1.00000 00
−1.00000 π\pi
488488 −1.00000 + 1.73205i −1.00000 + 1.73205i
489489 0 0
490490 0.500000 0.866025i 0.500000 0.866025i
491491 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 −0.500000 0.866025i −0.500000 0.866025i
497497 0 0
498498 −0.500000 + 0.866025i −0.500000 + 0.866025i
499499 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
500500 0 0
501501 −1.00000 −1.00000
502502 0 0
503503 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
504504 0 0
505505 0 0
506506 0 0
507507 −0.500000 + 0.866025i −0.500000 + 0.866025i
508508 0 0
509509 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
510510 −0.500000 0.866025i −0.500000 0.866025i
511511 0 0
512512 1.00000 1.00000
513513 −0.500000 0.866025i −0.500000 0.866025i
514514 −2.00000 −2.00000
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 −1.00000 + 1.73205i −1.00000 + 1.73205i
520520 0 0
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 0 0
525525 0 0
526526 −0.500000 + 0.866025i −0.500000 + 0.866025i
527527 −0.500000 0.866025i −0.500000 0.866025i
528528 0 0
529529 −1.50000 2.59808i −1.50000 2.59808i
530530 −0.500000 0.866025i −0.500000 0.866025i
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0.500000 + 0.866025i 0.500000 + 0.866025i
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
542542 −0.500000 + 0.866025i −0.500000 + 0.866025i
543543 −1.00000 −1.00000
544544 0 0
545545 0.500000 0.866025i 0.500000 0.866025i
546546 0 0
547547 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
548548 0 0
549549 −1.00000 1.73205i −1.00000 1.73205i
550550 0 0
551551 0 0
552552 2.00000 2.00000
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
558558 1.00000 1.00000
559559 0 0
560560 0 0
561561 0 0
562562 0 0
563563 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 0.500000 + 0.866025i 0.500000 + 0.866025i
566566 0 0
567567 0 0
568568 0 0
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0.500000 + 0.866025i 0.500000 + 0.866025i
571571 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
572572 0 0
573573 0 0
574574 0 0
575575 −1.00000 1.73205i −1.00000 1.73205i
576576 −0.500000 + 0.866025i −0.500000 + 0.866025i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 −0.500000 0.866025i −0.500000 0.866025i
587587 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0 0
589589 0.500000 + 0.866025i 0.500000 + 0.866025i
590590 0 0
591591 0.500000 + 0.866025i 0.500000 + 0.866025i
592592 0 0
593593 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
594594 0 0
595595 0 0
596596 0 0
597597 2.00000 2.00000
598598 0 0
599599 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 1.00000 1.00000
601601 2.00000 2.00000 1.00000 00
1.00000 00
602602 0 0
603603 0 0
604604 0 0
605605 −0.500000 0.866025i −0.500000 0.866025i
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 0 0
609609 0 0
610610 1.00000 + 1.73205i 1.00000 + 1.73205i
611611 0 0
612612 0 0
613613 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 0 0
615615 0 0
616616 0 0
617617 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
618618 0 0
619619 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 −1.00000 + 1.73205i −1.00000 + 1.73205i
622622 0 0
623623 0 0
624624 0 0
625625 −0.500000 0.866025i −0.500000 0.866025i
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
632632 −1.00000 1.73205i −1.00000 1.73205i
633633 0.500000 0.866025i 0.500000 0.866025i
634634 1.00000 1.00000
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0.500000 0.866025i 0.500000 0.866025i
641641 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
642642 −0.500000 + 0.866025i −0.500000 + 0.866025i
643643 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
644644 0 0
645645 0 0
646646 1.00000 1.00000
647647 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
648648 −0.500000 0.866025i −0.500000 0.866025i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 2.00000 2.00000 1.00000 00
1.00000 00
654654 1.00000 1.00000
655655 0 0
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
662662 1.00000 + 1.73205i 1.00000 + 1.73205i
663663 0 0
664664 −1.00000 −1.00000
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 0 0 1.00000 00
−1.00000 π\pi
674674 0 0
675675 −0.500000 + 0.866025i −0.500000 + 0.866025i
676676 0 0
677677 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 −0.500000 + 0.866025i −0.500000 + 0.866025i
679679 0 0
680680 0.500000 0.866025i 0.500000 0.866025i
681681 −1.00000 1.73205i −1.00000 1.73205i
682682 0 0
683683 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 0 0
685685 −1.00000 −1.00000
686686 0 0
687687 0.500000 + 0.866025i 0.500000 + 0.866025i
688688 0 0
689689 0 0
690690 1.00000 1.73205i 1.00000 1.73205i
691691 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 −0.500000 + 0.866025i −0.500000 + 0.866025i
695695 −1.00000 −1.00000
696696 0 0
697697 0 0
698698 −0.500000 0.866025i −0.500000 0.866025i
699699 0.500000 0.866025i 0.500000 0.866025i
700700 0 0
701701 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
702702 0 0
703703 0 0
704704 0 0
705705 0.500000 + 0.866025i 0.500000 + 0.866025i
706706 1.00000 + 1.73205i 1.00000 + 1.73205i
707707 0 0
708708 0 0
709709 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
710710 0 0
711711 2.00000 2.00000
712712 0 0
713713 1.00000 1.73205i 1.00000 1.73205i
714714 0 0
715715 0 0
716716 0 0
717717 0 0
718718 0 0
719719 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
720720 0.500000 + 0.866025i 0.500000 + 0.866025i
721721 0 0
722722 −1.00000 −1.00000
723723 −1.00000 −1.00000
724724 0 0
725725 0 0
726726 0.500000 0.866025i 0.500000 0.866025i
727727 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
728728 0 0
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 −0.500000 + 0.866025i −0.500000 + 0.866025i
736736 0 0
737737 0 0
738738 0 0
739739 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
740740 0 0
741741 0 0
742742 0 0
743743 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
744744 0.500000 + 0.866025i 0.500000 + 0.866025i
745745 0 0
746746 0 0
747747 0.500000 0.866025i 0.500000 0.866025i
748748 0 0
749749 0 0
750750 0.500000 0.866025i 0.500000 0.866025i
751751 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
752752 1.00000 1.00000
753753 0 0
754754 0 0
755755 0.500000 + 0.866025i 0.500000 + 0.866025i
756756 0 0
757757 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
758758 1.00000 + 1.73205i 1.00000 + 1.73205i
759759 0 0
760760 −0.500000 + 0.866025i −0.500000 + 0.866025i
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 0 0
765765 0.500000 + 0.866025i 0.500000 + 0.866025i
766766 −0.500000 + 0.866025i −0.500000 + 0.866025i
767767 0 0
768768 0 0
769769 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
770770 0 0
771771 2.00000 2.00000
772772 0 0
773773 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
774774 0 0
775775 0.500000 0.866025i 0.500000 0.866025i
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 0 0
781781 0 0
782782 −1.00000 1.73205i −1.00000 1.73205i
783783 0 0
784784 0.500000 + 0.866025i 0.500000 + 0.866025i
785785 0 0
786786 0 0
787787 0 0 1.00000 00
−1.00000 π\pi
788788 0 0
789789 0.500000 0.866025i 0.500000 0.866025i
790790 −2.00000 −2.00000
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0.500000 + 0.866025i 0.500000 + 0.866025i
796796 0 0
797797 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
798798 0 0
799799 1.00000 1.00000
800800 0 0
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 −1.00000 −1.00000
811811 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
812812 0 0
813813 0.500000 0.866025i 0.500000 0.866025i
814814 0 0
815815 0 0
816816 1.00000 1.00000
817817 0 0
818818 −2.00000 −2.00000
819819 0 0
820820 0 0
821821 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 −0.500000 0.866025i −0.500000 0.866025i
823823 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
824824 0 0
825825 0 0
826826 0 0
827827 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
828828 0 0
829829 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 −0.500000 + 0.866025i −0.500000 + 0.866025i
831831 0 0
832832 0 0
833833 0.500000 + 0.866025i 0.500000 + 0.866025i
834834 −0.500000 0.866025i −0.500000 0.866025i
835835 −1.00000 −1.00000
836836 0 0
837837 −1.00000 −1.00000
838838 0 0
839839 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
840840 0 0
841841 −0.500000 0.866025i −0.500000 0.866025i
842842 1.00000 1.73205i 1.00000 1.73205i
843843 0 0
844844 0 0
845845 −0.500000 + 0.866025i −0.500000 + 0.866025i
846846 −0.500000 + 0.866025i −0.500000 + 0.866025i
847847 0 0
848848 1.00000 1.00000
849849 0 0
850850 −0.500000 0.866025i −0.500000 0.866025i
851851 0 0
852852 0 0
853853 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
854854 0 0
855855 −0.500000 0.866025i −0.500000 0.866025i
856856 −1.00000 −1.00000
857857 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
858858 0 0
859859 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
860860 0 0
861861 0 0
862862 0 0
863863 2.00000 2.00000 1.00000 00
1.00000 00
864864 0 0
865865 −1.00000 + 1.73205i −1.00000 + 1.73205i
866866 0 0
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0.500000 + 0.866025i 0.500000 + 0.866025i
873873 0 0
874874 1.00000 + 1.73205i 1.00000 + 1.73205i
875875 0 0
876876 0 0
877877 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
878878 −0.500000 + 0.866025i −0.500000 + 0.866025i
879879 0.500000 + 0.866025i 0.500000 + 0.866025i
880880 0 0
881881 0 0 1.00000 00
−1.00000 π\pi
882882 −1.00000 −1.00000
883883 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
884884 0 0
885885 0 0
886886 1.00000 1.00000
887887 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 −1.00000 −1.00000
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 0 0
899899 0 0
900900 0 0
901901 1.00000 1.00000
902902 0 0
903903 0 0
904904 −1.00000 −1.00000
905905 −1.00000 −1.00000
906906 −0.500000 + 0.866025i −0.500000 + 0.866025i
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 −1.00000 −1.00000
913913 0 0
914914 0 0
915915 −1.00000 1.73205i −1.00000 1.73205i
916916 0 0
917917 0 0
918918 −0.500000 + 0.866025i −0.500000 + 0.866025i
919919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 2.00000 2.00000
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
930930 1.00000 1.00000
931931 −0.500000 0.866025i −0.500000 0.866025i
932932 0 0
933933 0 0
934934 −0.500000 0.866025i −0.500000 0.866025i
935935 0 0
936936 0 0
937937 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
942942 0 0
943943 0 0
944944 0 0
945945 0 0
946946 0 0
947947 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
948948 0 0
949949 0 0
950950 0.500000 + 0.866025i 0.500000 + 0.866025i
951951 −1.00000 −1.00000
952952 0 0
953953 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
954954 −0.500000 + 0.866025i −0.500000 + 0.866025i
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 −0.500000 + 0.866025i −0.500000 + 0.866025i
961961 0 0
962962 0 0
963963 0.500000 0.866025i 0.500000 0.866025i
964964 0 0
965965 0 0
966966 0 0
967967 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
968968 1.00000 1.00000
969969 −1.00000 −1.00000
970970 0 0
971971 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 −2.00000 −2.00000
977977 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 0 0
980980 0 0
981981 −1.00000 −1.00000
982982 0 0
983983 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
984984 0 0
985985 0.500000 + 0.866025i 0.500000 + 0.866025i
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 −1.00000 1.73205i −1.00000 1.73205i
994994 0 0
995995 2.00000 2.00000
996996 0 0
997997 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
998998 −0.500000 + 0.866025i −0.500000 + 0.866025i
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 285.1.n.b.254.1 yes 2
3.2 odd 2 285.1.n.a.254.1 yes 2
5.2 odd 4 1425.1.t.b.26.1 4
5.3 odd 4 1425.1.t.b.26.2 4
5.4 even 2 285.1.n.a.254.1 yes 2
15.2 even 4 1425.1.t.b.26.2 4
15.8 even 4 1425.1.t.b.26.1 4
15.14 odd 2 CM 285.1.n.b.254.1 yes 2
19.11 even 3 inner 285.1.n.b.239.1 yes 2
57.11 odd 6 285.1.n.a.239.1 2
95.49 even 6 285.1.n.a.239.1 2
95.68 odd 12 1425.1.t.b.1151.1 4
95.87 odd 12 1425.1.t.b.1151.2 4
285.68 even 12 1425.1.t.b.1151.2 4
285.182 even 12 1425.1.t.b.1151.1 4
285.239 odd 6 inner 285.1.n.b.239.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
285.1.n.a.239.1 2 57.11 odd 6
285.1.n.a.239.1 2 95.49 even 6
285.1.n.a.254.1 yes 2 3.2 odd 2
285.1.n.a.254.1 yes 2 5.4 even 2
285.1.n.b.239.1 yes 2 19.11 even 3 inner
285.1.n.b.239.1 yes 2 285.239 odd 6 inner
285.1.n.b.254.1 yes 2 1.1 even 1 trivial
285.1.n.b.254.1 yes 2 15.14 odd 2 CM
1425.1.t.b.26.1 4 5.2 odd 4
1425.1.t.b.26.1 4 15.8 even 4
1425.1.t.b.26.2 4 5.3 odd 4
1425.1.t.b.26.2 4 15.2 even 4
1425.1.t.b.1151.1 4 95.68 odd 12
1425.1.t.b.1151.1 4 285.182 even 12
1425.1.t.b.1151.2 4 95.87 odd 12
1425.1.t.b.1151.2 4 285.68 even 12