Properties

Label 294.2.e.f.67.1
Level $294$
Weight $2$
Character 294.67
Analytic conductor $2.348$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [294,2,Mod(67,294)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(294, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("294.67");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 294 = 2 \cdot 3 \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 294.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.34760181943\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 42)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 67.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 294.67
Dual form 294.2.e.f.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(0.500000 - 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} +(1.50000 + 2.59808i) q^{5} +1.00000 q^{6} -1.00000 q^{8} +(-0.500000 - 0.866025i) q^{9} +(-1.50000 + 2.59808i) q^{10} +(-1.50000 + 2.59808i) q^{11} +(0.500000 + 0.866025i) q^{12} +4.00000 q^{13} +3.00000 q^{15} +(-0.500000 - 0.866025i) q^{16} +(0.500000 - 0.866025i) q^{18} +(-2.00000 - 3.46410i) q^{19} -3.00000 q^{20} -3.00000 q^{22} +(-0.500000 + 0.866025i) q^{24} +(-2.00000 + 3.46410i) q^{25} +(2.00000 + 3.46410i) q^{26} -1.00000 q^{27} +9.00000 q^{29} +(1.50000 + 2.59808i) q^{30} +(-0.500000 + 0.866025i) q^{31} +(0.500000 - 0.866025i) q^{32} +(1.50000 + 2.59808i) q^{33} +1.00000 q^{36} +(-4.00000 - 6.92820i) q^{37} +(2.00000 - 3.46410i) q^{38} +(2.00000 - 3.46410i) q^{39} +(-1.50000 - 2.59808i) q^{40} -10.0000 q^{43} +(-1.50000 - 2.59808i) q^{44} +(1.50000 - 2.59808i) q^{45} +(-3.00000 - 5.19615i) q^{47} -1.00000 q^{48} -4.00000 q^{50} +(-2.00000 + 3.46410i) q^{52} +(1.50000 - 2.59808i) q^{53} +(-0.500000 - 0.866025i) q^{54} -9.00000 q^{55} -4.00000 q^{57} +(4.50000 + 7.79423i) q^{58} +(1.50000 - 2.59808i) q^{59} +(-1.50000 + 2.59808i) q^{60} +(-5.00000 - 8.66025i) q^{61} -1.00000 q^{62} +1.00000 q^{64} +(6.00000 + 10.3923i) q^{65} +(-1.50000 + 2.59808i) q^{66} +(5.00000 - 8.66025i) q^{67} -6.00000 q^{71} +(0.500000 + 0.866025i) q^{72} +(1.00000 - 1.73205i) q^{73} +(4.00000 - 6.92820i) q^{74} +(2.00000 + 3.46410i) q^{75} +4.00000 q^{76} +4.00000 q^{78} +(0.500000 + 0.866025i) q^{79} +(1.50000 - 2.59808i) q^{80} +(-0.500000 + 0.866025i) q^{81} +9.00000 q^{83} +(-5.00000 - 8.66025i) q^{86} +(4.50000 - 7.79423i) q^{87} +(1.50000 - 2.59808i) q^{88} +(3.00000 + 5.19615i) q^{89} +3.00000 q^{90} +(0.500000 + 0.866025i) q^{93} +(3.00000 - 5.19615i) q^{94} +(6.00000 - 10.3923i) q^{95} +(-0.500000 - 0.866025i) q^{96} +1.00000 q^{97} +3.00000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + q^{3} - q^{4} + 3 q^{5} + 2 q^{6} - 2 q^{8} - q^{9} - 3 q^{10} - 3 q^{11} + q^{12} + 8 q^{13} + 6 q^{15} - q^{16} + q^{18} - 4 q^{19} - 6 q^{20} - 6 q^{22} - q^{24} - 4 q^{25} + 4 q^{26}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/294\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(199\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0.500000 0.866025i 0.288675 0.500000i
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.50000 + 2.59808i 0.670820 + 1.16190i 0.977672 + 0.210138i \(0.0673912\pi\)
−0.306851 + 0.951757i \(0.599275\pi\)
\(6\) 1.00000 0.408248
\(7\) 0 0
\(8\) −1.00000 −0.353553
\(9\) −0.500000 0.866025i −0.166667 0.288675i
\(10\) −1.50000 + 2.59808i −0.474342 + 0.821584i
\(11\) −1.50000 + 2.59808i −0.452267 + 0.783349i −0.998526 0.0542666i \(-0.982718\pi\)
0.546259 + 0.837616i \(0.316051\pi\)
\(12\) 0.500000 + 0.866025i 0.144338 + 0.250000i
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 3.00000 0.774597
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0.500000 0.866025i 0.117851 0.204124i
\(19\) −2.00000 3.46410i −0.458831 0.794719i 0.540068 0.841621i \(-0.318398\pi\)
−0.998899 + 0.0469020i \(0.985065\pi\)
\(20\) −3.00000 −0.670820
\(21\) 0 0
\(22\) −3.00000 −0.639602
\(23\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(24\) −0.500000 + 0.866025i −0.102062 + 0.176777i
\(25\) −2.00000 + 3.46410i −0.400000 + 0.692820i
\(26\) 2.00000 + 3.46410i 0.392232 + 0.679366i
\(27\) −1.00000 −0.192450
\(28\) 0 0
\(29\) 9.00000 1.67126 0.835629 0.549294i \(-0.185103\pi\)
0.835629 + 0.549294i \(0.185103\pi\)
\(30\) 1.50000 + 2.59808i 0.273861 + 0.474342i
\(31\) −0.500000 + 0.866025i −0.0898027 + 0.155543i −0.907428 0.420208i \(-0.861957\pi\)
0.817625 + 0.575751i \(0.195290\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 1.50000 + 2.59808i 0.261116 + 0.452267i
\(34\) 0 0
\(35\) 0 0
\(36\) 1.00000 0.166667
\(37\) −4.00000 6.92820i −0.657596 1.13899i −0.981236 0.192809i \(-0.938240\pi\)
0.323640 0.946180i \(-0.395093\pi\)
\(38\) 2.00000 3.46410i 0.324443 0.561951i
\(39\) 2.00000 3.46410i 0.320256 0.554700i
\(40\) −1.50000 2.59808i −0.237171 0.410792i
\(41\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(42\) 0 0
\(43\) −10.0000 −1.52499 −0.762493 0.646997i \(-0.776025\pi\)
−0.762493 + 0.646997i \(0.776025\pi\)
\(44\) −1.50000 2.59808i −0.226134 0.391675i
\(45\) 1.50000 2.59808i 0.223607 0.387298i
\(46\) 0 0
\(47\) −3.00000 5.19615i −0.437595 0.757937i 0.559908 0.828554i \(-0.310836\pi\)
−0.997503 + 0.0706177i \(0.977503\pi\)
\(48\) −1.00000 −0.144338
\(49\) 0 0
\(50\) −4.00000 −0.565685
\(51\) 0 0
\(52\) −2.00000 + 3.46410i −0.277350 + 0.480384i
\(53\) 1.50000 2.59808i 0.206041 0.356873i −0.744423 0.667708i \(-0.767275\pi\)
0.950464 + 0.310835i \(0.100609\pi\)
\(54\) −0.500000 0.866025i −0.0680414 0.117851i
\(55\) −9.00000 −1.21356
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 4.50000 + 7.79423i 0.590879 + 1.02343i
\(59\) 1.50000 2.59808i 0.195283 0.338241i −0.751710 0.659494i \(-0.770771\pi\)
0.946993 + 0.321253i \(0.104104\pi\)
\(60\) −1.50000 + 2.59808i −0.193649 + 0.335410i
\(61\) −5.00000 8.66025i −0.640184 1.10883i −0.985391 0.170305i \(-0.945525\pi\)
0.345207 0.938527i \(-0.387809\pi\)
\(62\) −1.00000 −0.127000
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 6.00000 + 10.3923i 0.744208 + 1.28901i
\(66\) −1.50000 + 2.59808i −0.184637 + 0.319801i
\(67\) 5.00000 8.66025i 0.610847 1.05802i −0.380251 0.924883i \(-0.624162\pi\)
0.991098 0.133135i \(-0.0425044\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0.500000 + 0.866025i 0.0589256 + 0.102062i
\(73\) 1.00000 1.73205i 0.117041 0.202721i −0.801553 0.597924i \(-0.795992\pi\)
0.918594 + 0.395203i \(0.129326\pi\)
\(74\) 4.00000 6.92820i 0.464991 0.805387i
\(75\) 2.00000 + 3.46410i 0.230940 + 0.400000i
\(76\) 4.00000 0.458831
\(77\) 0 0
\(78\) 4.00000 0.452911
\(79\) 0.500000 + 0.866025i 0.0562544 + 0.0974355i 0.892781 0.450490i \(-0.148751\pi\)
−0.836527 + 0.547926i \(0.815418\pi\)
\(80\) 1.50000 2.59808i 0.167705 0.290474i
\(81\) −0.500000 + 0.866025i −0.0555556 + 0.0962250i
\(82\) 0 0
\(83\) 9.00000 0.987878 0.493939 0.869496i \(-0.335557\pi\)
0.493939 + 0.869496i \(0.335557\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −5.00000 8.66025i −0.539164 0.933859i
\(87\) 4.50000 7.79423i 0.482451 0.835629i
\(88\) 1.50000 2.59808i 0.159901 0.276956i
\(89\) 3.00000 + 5.19615i 0.317999 + 0.550791i 0.980071 0.198650i \(-0.0636557\pi\)
−0.662071 + 0.749441i \(0.730322\pi\)
\(90\) 3.00000 0.316228
\(91\) 0 0
\(92\) 0 0
\(93\) 0.500000 + 0.866025i 0.0518476 + 0.0898027i
\(94\) 3.00000 5.19615i 0.309426 0.535942i
\(95\) 6.00000 10.3923i 0.615587 1.06623i
\(96\) −0.500000 0.866025i −0.0510310 0.0883883i
\(97\) 1.00000 0.101535 0.0507673 0.998711i \(-0.483833\pi\)
0.0507673 + 0.998711i \(0.483833\pi\)
\(98\) 0 0
\(99\) 3.00000 0.301511
\(100\) −2.00000 3.46410i −0.200000 0.346410i
\(101\) −9.00000 + 15.5885i −0.895533 + 1.55111i −0.0623905 + 0.998052i \(0.519872\pi\)
−0.833143 + 0.553058i \(0.813461\pi\)
\(102\) 0 0
\(103\) 4.00000 + 6.92820i 0.394132 + 0.682656i 0.992990 0.118199i \(-0.0377120\pi\)
−0.598858 + 0.800855i \(0.704379\pi\)
\(104\) −4.00000 −0.392232
\(105\) 0 0
\(106\) 3.00000 0.291386
\(107\) 1.50000 + 2.59808i 0.145010 + 0.251166i 0.929377 0.369132i \(-0.120345\pi\)
−0.784366 + 0.620298i \(0.787012\pi\)
\(108\) 0.500000 0.866025i 0.0481125 0.0833333i
\(109\) −7.00000 + 12.1244i −0.670478 + 1.16130i 0.307290 + 0.951616i \(0.400578\pi\)
−0.977769 + 0.209687i \(0.932756\pi\)
\(110\) −4.50000 7.79423i −0.429058 0.743151i
\(111\) −8.00000 −0.759326
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) −2.00000 3.46410i −0.187317 0.324443i
\(115\) 0 0
\(116\) −4.50000 + 7.79423i −0.417815 + 0.723676i
\(117\) −2.00000 3.46410i −0.184900 0.320256i
\(118\) 3.00000 0.276172
\(119\) 0 0
\(120\) −3.00000 −0.273861
\(121\) 1.00000 + 1.73205i 0.0909091 + 0.157459i
\(122\) 5.00000 8.66025i 0.452679 0.784063i
\(123\) 0 0
\(124\) −0.500000 0.866025i −0.0449013 0.0777714i
\(125\) 3.00000 0.268328
\(126\) 0 0
\(127\) 5.00000 0.443678 0.221839 0.975083i \(-0.428794\pi\)
0.221839 + 0.975083i \(0.428794\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) −5.00000 + 8.66025i −0.440225 + 0.762493i
\(130\) −6.00000 + 10.3923i −0.526235 + 0.911465i
\(131\) −4.50000 7.79423i −0.393167 0.680985i 0.599699 0.800226i \(-0.295287\pi\)
−0.992865 + 0.119241i \(0.961954\pi\)
\(132\) −3.00000 −0.261116
\(133\) 0 0
\(134\) 10.0000 0.863868
\(135\) −1.50000 2.59808i −0.129099 0.223607i
\(136\) 0 0
\(137\) −9.00000 + 15.5885i −0.768922 + 1.33181i 0.169226 + 0.985577i \(0.445873\pi\)
−0.938148 + 0.346235i \(0.887460\pi\)
\(138\) 0 0
\(139\) −2.00000 −0.169638 −0.0848189 0.996396i \(-0.527031\pi\)
−0.0848189 + 0.996396i \(0.527031\pi\)
\(140\) 0 0
\(141\) −6.00000 −0.505291
\(142\) −3.00000 5.19615i −0.251754 0.436051i
\(143\) −6.00000 + 10.3923i −0.501745 + 0.869048i
\(144\) −0.500000 + 0.866025i −0.0416667 + 0.0721688i
\(145\) 13.5000 + 23.3827i 1.12111 + 1.94183i
\(146\) 2.00000 0.165521
\(147\) 0 0
\(148\) 8.00000 0.657596
\(149\) −9.00000 15.5885i −0.737309 1.27706i −0.953703 0.300750i \(-0.902763\pi\)
0.216394 0.976306i \(-0.430570\pi\)
\(150\) −2.00000 + 3.46410i −0.163299 + 0.282843i
\(151\) 0.500000 0.866025i 0.0406894 0.0704761i −0.844963 0.534824i \(-0.820378\pi\)
0.885653 + 0.464348i \(0.153711\pi\)
\(152\) 2.00000 + 3.46410i 0.162221 + 0.280976i
\(153\) 0 0
\(154\) 0 0
\(155\) −3.00000 −0.240966
\(156\) 2.00000 + 3.46410i 0.160128 + 0.277350i
\(157\) −2.00000 + 3.46410i −0.159617 + 0.276465i −0.934731 0.355357i \(-0.884359\pi\)
0.775113 + 0.631822i \(0.217693\pi\)
\(158\) −0.500000 + 0.866025i −0.0397779 + 0.0688973i
\(159\) −1.50000 2.59808i −0.118958 0.206041i
\(160\) 3.00000 0.237171
\(161\) 0 0
\(162\) −1.00000 −0.0785674
\(163\) 8.00000 + 13.8564i 0.626608 + 1.08532i 0.988227 + 0.152992i \(0.0488907\pi\)
−0.361619 + 0.932326i \(0.617776\pi\)
\(164\) 0 0
\(165\) −4.50000 + 7.79423i −0.350325 + 0.606780i
\(166\) 4.50000 + 7.79423i 0.349268 + 0.604949i
\(167\) −6.00000 −0.464294 −0.232147 0.972681i \(-0.574575\pi\)
−0.232147 + 0.972681i \(0.574575\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) −2.00000 + 3.46410i −0.152944 + 0.264906i
\(172\) 5.00000 8.66025i 0.381246 0.660338i
\(173\) 9.00000 + 15.5885i 0.684257 + 1.18517i 0.973670 + 0.227964i \(0.0732068\pi\)
−0.289412 + 0.957205i \(0.593460\pi\)
\(174\) 9.00000 0.682288
\(175\) 0 0
\(176\) 3.00000 0.226134
\(177\) −1.50000 2.59808i −0.112747 0.195283i
\(178\) −3.00000 + 5.19615i −0.224860 + 0.389468i
\(179\) −6.00000 + 10.3923i −0.448461 + 0.776757i −0.998286 0.0585225i \(-0.981361\pi\)
0.549825 + 0.835280i \(0.314694\pi\)
\(180\) 1.50000 + 2.59808i 0.111803 + 0.193649i
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 0 0
\(183\) −10.0000 −0.739221
\(184\) 0 0
\(185\) 12.0000 20.7846i 0.882258 1.52811i
\(186\) −0.500000 + 0.866025i −0.0366618 + 0.0635001i
\(187\) 0 0
\(188\) 6.00000 0.437595
\(189\) 0 0
\(190\) 12.0000 0.870572
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0.500000 0.866025i 0.0360844 0.0625000i
\(193\) 9.50000 16.4545i 0.683825 1.18442i −0.289980 0.957033i \(-0.593649\pi\)
0.973805 0.227387i \(-0.0730182\pi\)
\(194\) 0.500000 + 0.866025i 0.0358979 + 0.0621770i
\(195\) 12.0000 0.859338
\(196\) 0 0
\(197\) 6.00000 0.427482 0.213741 0.976890i \(-0.431435\pi\)
0.213741 + 0.976890i \(0.431435\pi\)
\(198\) 1.50000 + 2.59808i 0.106600 + 0.184637i
\(199\) 10.0000 17.3205i 0.708881 1.22782i −0.256391 0.966573i \(-0.582534\pi\)
0.965272 0.261245i \(-0.0841331\pi\)
\(200\) 2.00000 3.46410i 0.141421 0.244949i
\(201\) −5.00000 8.66025i −0.352673 0.610847i
\(202\) −18.0000 −1.26648
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) −4.00000 + 6.92820i −0.278693 + 0.482711i
\(207\) 0 0
\(208\) −2.00000 3.46410i −0.138675 0.240192i
\(209\) 12.0000 0.830057
\(210\) 0 0
\(211\) 14.0000 0.963800 0.481900 0.876226i \(-0.339947\pi\)
0.481900 + 0.876226i \(0.339947\pi\)
\(212\) 1.50000 + 2.59808i 0.103020 + 0.178437i
\(213\) −3.00000 + 5.19615i −0.205557 + 0.356034i
\(214\) −1.50000 + 2.59808i −0.102538 + 0.177601i
\(215\) −15.0000 25.9808i −1.02299 1.77187i
\(216\) 1.00000 0.0680414
\(217\) 0 0
\(218\) −14.0000 −0.948200
\(219\) −1.00000 1.73205i −0.0675737 0.117041i
\(220\) 4.50000 7.79423i 0.303390 0.525487i
\(221\) 0 0
\(222\) −4.00000 6.92820i −0.268462 0.464991i
\(223\) 19.0000 1.27233 0.636167 0.771551i \(-0.280519\pi\)
0.636167 + 0.771551i \(0.280519\pi\)
\(224\) 0 0
\(225\) 4.00000 0.266667
\(226\) 0 0
\(227\) −13.5000 + 23.3827i −0.896026 + 1.55196i −0.0634974 + 0.997982i \(0.520225\pi\)
−0.832529 + 0.553981i \(0.813108\pi\)
\(228\) 2.00000 3.46410i 0.132453 0.229416i
\(229\) −2.00000 3.46410i −0.132164 0.228914i 0.792347 0.610071i \(-0.208859\pi\)
−0.924510 + 0.381157i \(0.875526\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) −9.00000 −0.590879
\(233\) 12.0000 + 20.7846i 0.786146 + 1.36165i 0.928312 + 0.371802i \(0.121260\pi\)
−0.142166 + 0.989843i \(0.545407\pi\)
\(234\) 2.00000 3.46410i 0.130744 0.226455i
\(235\) 9.00000 15.5885i 0.587095 1.01688i
\(236\) 1.50000 + 2.59808i 0.0976417 + 0.169120i
\(237\) 1.00000 0.0649570
\(238\) 0 0
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) −1.50000 2.59808i −0.0968246 0.167705i
\(241\) −0.500000 + 0.866025i −0.0322078 + 0.0557856i −0.881680 0.471848i \(-0.843587\pi\)
0.849472 + 0.527633i \(0.176921\pi\)
\(242\) −1.00000 + 1.73205i −0.0642824 + 0.111340i
\(243\) 0.500000 + 0.866025i 0.0320750 + 0.0555556i
\(244\) 10.0000 0.640184
\(245\) 0 0
\(246\) 0 0
\(247\) −8.00000 13.8564i −0.509028 0.881662i
\(248\) 0.500000 0.866025i 0.0317500 0.0549927i
\(249\) 4.50000 7.79423i 0.285176 0.493939i
\(250\) 1.50000 + 2.59808i 0.0948683 + 0.164317i
\(251\) −27.0000 −1.70422 −0.852112 0.523359i \(-0.824679\pi\)
−0.852112 + 0.523359i \(0.824679\pi\)
\(252\) 0 0
\(253\) 0 0
\(254\) 2.50000 + 4.33013i 0.156864 + 0.271696i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 3.00000 + 5.19615i 0.187135 + 0.324127i 0.944294 0.329104i \(-0.106747\pi\)
−0.757159 + 0.653231i \(0.773413\pi\)
\(258\) −10.0000 −0.622573
\(259\) 0 0
\(260\) −12.0000 −0.744208
\(261\) −4.50000 7.79423i −0.278543 0.482451i
\(262\) 4.50000 7.79423i 0.278011 0.481529i
\(263\) 3.00000 5.19615i 0.184988 0.320408i −0.758585 0.651575i \(-0.774109\pi\)
0.943572 + 0.331166i \(0.107442\pi\)
\(264\) −1.50000 2.59808i −0.0923186 0.159901i
\(265\) 9.00000 0.552866
\(266\) 0 0
\(267\) 6.00000 0.367194
\(268\) 5.00000 + 8.66025i 0.305424 + 0.529009i
\(269\) 10.5000 18.1865i 0.640196 1.10885i −0.345192 0.938532i \(-0.612186\pi\)
0.985389 0.170321i \(-0.0544803\pi\)
\(270\) 1.50000 2.59808i 0.0912871 0.158114i
\(271\) 5.50000 + 9.52628i 0.334101 + 0.578680i 0.983312 0.181928i \(-0.0582339\pi\)
−0.649211 + 0.760609i \(0.724901\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −18.0000 −1.08742
\(275\) −6.00000 10.3923i −0.361814 0.626680i
\(276\) 0 0
\(277\) −4.00000 + 6.92820i −0.240337 + 0.416275i −0.960810 0.277207i \(-0.910591\pi\)
0.720473 + 0.693482i \(0.243925\pi\)
\(278\) −1.00000 1.73205i −0.0599760 0.103882i
\(279\) 1.00000 0.0598684
\(280\) 0 0
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) −3.00000 5.19615i −0.178647 0.309426i
\(283\) 7.00000 12.1244i 0.416107 0.720718i −0.579437 0.815017i \(-0.696728\pi\)
0.995544 + 0.0942988i \(0.0300609\pi\)
\(284\) 3.00000 5.19615i 0.178017 0.308335i
\(285\) −6.00000 10.3923i −0.355409 0.615587i
\(286\) −12.0000 −0.709575
\(287\) 0 0
\(288\) −1.00000 −0.0589256
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) −13.5000 + 23.3827i −0.792747 + 1.37308i
\(291\) 0.500000 0.866025i 0.0293105 0.0507673i
\(292\) 1.00000 + 1.73205i 0.0585206 + 0.101361i
\(293\) −33.0000 −1.92788 −0.963940 0.266119i \(-0.914259\pi\)
−0.963940 + 0.266119i \(0.914259\pi\)
\(294\) 0 0
\(295\) 9.00000 0.524000
\(296\) 4.00000 + 6.92820i 0.232495 + 0.402694i
\(297\) 1.50000 2.59808i 0.0870388 0.150756i
\(298\) 9.00000 15.5885i 0.521356 0.903015i
\(299\) 0 0
\(300\) −4.00000 −0.230940
\(301\) 0 0
\(302\) 1.00000 0.0575435
\(303\) 9.00000 + 15.5885i 0.517036 + 0.895533i
\(304\) −2.00000 + 3.46410i −0.114708 + 0.198680i
\(305\) 15.0000 25.9808i 0.858898 1.48765i
\(306\) 0 0
\(307\) −8.00000 −0.456584 −0.228292 0.973593i \(-0.573314\pi\)
−0.228292 + 0.973593i \(0.573314\pi\)
\(308\) 0 0
\(309\) 8.00000 0.455104
\(310\) −1.50000 2.59808i −0.0851943 0.147561i
\(311\) 12.0000 20.7846i 0.680458 1.17859i −0.294384 0.955687i \(-0.595114\pi\)
0.974841 0.222900i \(-0.0715523\pi\)
\(312\) −2.00000 + 3.46410i −0.113228 + 0.196116i
\(313\) −15.5000 26.8468i −0.876112 1.51747i −0.855574 0.517681i \(-0.826795\pi\)
−0.0205381 0.999789i \(-0.506538\pi\)
\(314\) −4.00000 −0.225733
\(315\) 0 0
\(316\) −1.00000 −0.0562544
\(317\) −4.50000 7.79423i −0.252745 0.437767i 0.711535 0.702650i \(-0.248000\pi\)
−0.964281 + 0.264883i \(0.914667\pi\)
\(318\) 1.50000 2.59808i 0.0841158 0.145693i
\(319\) −13.5000 + 23.3827i −0.755855 + 1.30918i
\(320\) 1.50000 + 2.59808i 0.0838525 + 0.145237i
\(321\) 3.00000 0.167444
\(322\) 0 0
\(323\) 0 0
\(324\) −0.500000 0.866025i −0.0277778 0.0481125i
\(325\) −8.00000 + 13.8564i −0.443760 + 0.768615i
\(326\) −8.00000 + 13.8564i −0.443079 + 0.767435i
\(327\) 7.00000 + 12.1244i 0.387101 + 0.670478i
\(328\) 0 0
\(329\) 0 0
\(330\) −9.00000 −0.495434
\(331\) −10.0000 17.3205i −0.549650 0.952021i −0.998298 0.0583130i \(-0.981428\pi\)
0.448649 0.893708i \(-0.351905\pi\)
\(332\) −4.50000 + 7.79423i −0.246970 + 0.427764i
\(333\) −4.00000 + 6.92820i −0.219199 + 0.379663i
\(334\) −3.00000 5.19615i −0.164153 0.284321i
\(335\) 30.0000 1.63908
\(336\) 0 0
\(337\) −7.00000 −0.381314 −0.190657 0.981657i \(-0.561062\pi\)
−0.190657 + 0.981657i \(0.561062\pi\)
\(338\) 1.50000 + 2.59808i 0.0815892 + 0.141317i
\(339\) 0 0
\(340\) 0 0
\(341\) −1.50000 2.59808i −0.0812296 0.140694i
\(342\) −4.00000 −0.216295
\(343\) 0 0
\(344\) 10.0000 0.539164
\(345\) 0 0
\(346\) −9.00000 + 15.5885i −0.483843 + 0.838041i
\(347\) −6.00000 + 10.3923i −0.322097 + 0.557888i −0.980921 0.194409i \(-0.937721\pi\)
0.658824 + 0.752297i \(0.271054\pi\)
\(348\) 4.50000 + 7.79423i 0.241225 + 0.417815i
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) 0 0
\(351\) −4.00000 −0.213504
\(352\) 1.50000 + 2.59808i 0.0799503 + 0.138478i
\(353\) 12.0000 20.7846i 0.638696 1.10625i −0.347024 0.937856i \(-0.612808\pi\)
0.985719 0.168397i \(-0.0538590\pi\)
\(354\) 1.50000 2.59808i 0.0797241 0.138086i
\(355\) −9.00000 15.5885i −0.477670 0.827349i
\(356\) −6.00000 −0.317999
\(357\) 0 0
\(358\) −12.0000 −0.634220
\(359\) −15.0000 25.9808i −0.791670 1.37121i −0.924932 0.380131i \(-0.875879\pi\)
0.133263 0.991081i \(-0.457455\pi\)
\(360\) −1.50000 + 2.59808i −0.0790569 + 0.136931i
\(361\) 1.50000 2.59808i 0.0789474 0.136741i
\(362\) −4.00000 6.92820i −0.210235 0.364138i
\(363\) 2.00000 0.104973
\(364\) 0 0
\(365\) 6.00000 0.314054
\(366\) −5.00000 8.66025i −0.261354 0.452679i
\(367\) −9.50000 + 16.4545i −0.495896 + 0.858917i −0.999989 0.00473247i \(-0.998494\pi\)
0.504093 + 0.863649i \(0.331827\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 24.0000 1.24770
\(371\) 0 0
\(372\) −1.00000 −0.0518476
\(373\) −4.00000 6.92820i −0.207112 0.358729i 0.743691 0.668523i \(-0.233073\pi\)
−0.950804 + 0.309794i \(0.899740\pi\)
\(374\) 0 0
\(375\) 1.50000 2.59808i 0.0774597 0.134164i
\(376\) 3.00000 + 5.19615i 0.154713 + 0.267971i
\(377\) 36.0000 1.85409
\(378\) 0 0
\(379\) 8.00000 0.410932 0.205466 0.978664i \(-0.434129\pi\)
0.205466 + 0.978664i \(0.434129\pi\)
\(380\) 6.00000 + 10.3923i 0.307794 + 0.533114i
\(381\) 2.50000 4.33013i 0.128079 0.221839i
\(382\) 0 0
\(383\) 9.00000 + 15.5885i 0.459879 + 0.796533i 0.998954 0.0457244i \(-0.0145596\pi\)
−0.539076 + 0.842257i \(0.681226\pi\)
\(384\) 1.00000 0.0510310
\(385\) 0 0
\(386\) 19.0000 0.967075
\(387\) 5.00000 + 8.66025i 0.254164 + 0.440225i
\(388\) −0.500000 + 0.866025i −0.0253837 + 0.0439658i
\(389\) 3.00000 5.19615i 0.152106 0.263455i −0.779895 0.625910i \(-0.784728\pi\)
0.932002 + 0.362454i \(0.118061\pi\)
\(390\) 6.00000 + 10.3923i 0.303822 + 0.526235i
\(391\) 0 0
\(392\) 0 0
\(393\) −9.00000 −0.453990
\(394\) 3.00000 + 5.19615i 0.151138 + 0.261778i
\(395\) −1.50000 + 2.59808i −0.0754732 + 0.130723i
\(396\) −1.50000 + 2.59808i −0.0753778 + 0.130558i
\(397\) −2.00000 3.46410i −0.100377 0.173858i 0.811463 0.584404i \(-0.198672\pi\)
−0.911840 + 0.410546i \(0.865338\pi\)
\(398\) 20.0000 1.00251
\(399\) 0 0
\(400\) 4.00000 0.200000
\(401\) −12.0000 20.7846i −0.599251 1.03793i −0.992932 0.118686i \(-0.962132\pi\)
0.393680 0.919247i \(-0.371202\pi\)
\(402\) 5.00000 8.66025i 0.249377 0.431934i
\(403\) −2.00000 + 3.46410i −0.0996271 + 0.172559i
\(404\) −9.00000 15.5885i −0.447767 0.775555i
\(405\) −3.00000 −0.149071
\(406\) 0 0
\(407\) 24.0000 1.18964
\(408\) 0 0
\(409\) −12.5000 + 21.6506i −0.618085 + 1.07056i 0.371750 + 0.928333i \(0.378758\pi\)
−0.989835 + 0.142222i \(0.954575\pi\)
\(410\) 0 0
\(411\) 9.00000 + 15.5885i 0.443937 + 0.768922i
\(412\) −8.00000 −0.394132
\(413\) 0 0
\(414\) 0 0
\(415\) 13.5000 + 23.3827i 0.662689 + 1.14781i
\(416\) 2.00000 3.46410i 0.0980581 0.169842i
\(417\) −1.00000 + 1.73205i −0.0489702 + 0.0848189i
\(418\) 6.00000 + 10.3923i 0.293470 + 0.508304i
\(419\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(420\) 0 0
\(421\) −22.0000 −1.07221 −0.536107 0.844150i \(-0.680106\pi\)
−0.536107 + 0.844150i \(0.680106\pi\)
\(422\) 7.00000 + 12.1244i 0.340755 + 0.590204i
\(423\) −3.00000 + 5.19615i −0.145865 + 0.252646i
\(424\) −1.50000 + 2.59808i −0.0728464 + 0.126174i
\(425\) 0 0
\(426\) −6.00000 −0.290701
\(427\) 0 0
\(428\) −3.00000 −0.145010
\(429\) 6.00000 + 10.3923i 0.289683 + 0.501745i
\(430\) 15.0000 25.9808i 0.723364 1.25290i
\(431\) −6.00000 + 10.3923i −0.289010 + 0.500580i −0.973574 0.228373i \(-0.926659\pi\)
0.684564 + 0.728953i \(0.259993\pi\)
\(432\) 0.500000 + 0.866025i 0.0240563 + 0.0416667i
\(433\) 34.0000 1.63394 0.816968 0.576683i \(-0.195653\pi\)
0.816968 + 0.576683i \(0.195653\pi\)
\(434\) 0 0
\(435\) 27.0000 1.29455
\(436\) −7.00000 12.1244i −0.335239 0.580651i
\(437\) 0 0
\(438\) 1.00000 1.73205i 0.0477818 0.0827606i
\(439\) 17.5000 + 30.3109i 0.835229 + 1.44666i 0.893843 + 0.448379i \(0.147999\pi\)
−0.0586141 + 0.998281i \(0.518668\pi\)
\(440\) 9.00000 0.429058
\(441\) 0 0
\(442\) 0 0
\(443\) 16.5000 + 28.5788i 0.783939 + 1.35782i 0.929631 + 0.368492i \(0.120126\pi\)
−0.145692 + 0.989330i \(0.546541\pi\)
\(444\) 4.00000 6.92820i 0.189832 0.328798i
\(445\) −9.00000 + 15.5885i −0.426641 + 0.738964i
\(446\) 9.50000 + 16.4545i 0.449838 + 0.779142i
\(447\) −18.0000 −0.851371
\(448\) 0 0
\(449\) 12.0000 0.566315 0.283158 0.959073i \(-0.408618\pi\)
0.283158 + 0.959073i \(0.408618\pi\)
\(450\) 2.00000 + 3.46410i 0.0942809 + 0.163299i
\(451\) 0 0
\(452\) 0 0
\(453\) −0.500000 0.866025i −0.0234920 0.0406894i
\(454\) −27.0000 −1.26717
\(455\) 0 0
\(456\) 4.00000 0.187317
\(457\) 0.500000 + 0.866025i 0.0233890 + 0.0405110i 0.877483 0.479608i \(-0.159221\pi\)
−0.854094 + 0.520119i \(0.825888\pi\)
\(458\) 2.00000 3.46410i 0.0934539 0.161867i
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) −4.50000 7.79423i −0.208907 0.361838i
\(465\) −1.50000 + 2.59808i −0.0695608 + 0.120483i
\(466\) −12.0000 + 20.7846i −0.555889 + 0.962828i
\(467\) 18.0000 + 31.1769i 0.832941 + 1.44270i 0.895696 + 0.444667i \(0.146678\pi\)
−0.0627555 + 0.998029i \(0.519989\pi\)
\(468\) 4.00000 0.184900
\(469\) 0 0
\(470\) 18.0000 0.830278
\(471\) 2.00000 + 3.46410i 0.0921551 + 0.159617i
\(472\) −1.50000 + 2.59808i −0.0690431 + 0.119586i
\(473\) 15.0000 25.9808i 0.689701 1.19460i
\(474\) 0.500000 + 0.866025i 0.0229658 + 0.0397779i
\(475\) 16.0000 0.734130
\(476\) 0 0
\(477\) −3.00000 −0.137361
\(478\) −12.0000 20.7846i −0.548867 0.950666i
\(479\) −9.00000 + 15.5885i −0.411220 + 0.712255i −0.995023 0.0996406i \(-0.968231\pi\)
0.583803 + 0.811895i \(0.301564\pi\)
\(480\) 1.50000 2.59808i 0.0684653 0.118585i
\(481\) −16.0000 27.7128i −0.729537 1.26360i
\(482\) −1.00000 −0.0455488
\(483\) 0 0
\(484\) −2.00000 −0.0909091
\(485\) 1.50000 + 2.59808i 0.0681115 + 0.117973i
\(486\) −0.500000 + 0.866025i −0.0226805 + 0.0392837i
\(487\) −20.5000 + 35.5070i −0.928944 + 1.60898i −0.143851 + 0.989599i \(0.545949\pi\)
−0.785093 + 0.619378i \(0.787385\pi\)
\(488\) 5.00000 + 8.66025i 0.226339 + 0.392031i
\(489\) 16.0000 0.723545
\(490\) 0 0
\(491\) −33.0000 −1.48927 −0.744635 0.667472i \(-0.767376\pi\)
−0.744635 + 0.667472i \(0.767376\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 8.00000 13.8564i 0.359937 0.623429i
\(495\) 4.50000 + 7.79423i 0.202260 + 0.350325i
\(496\) 1.00000 0.0449013
\(497\) 0 0
\(498\) 9.00000 0.403300
\(499\) −1.00000 1.73205i −0.0447661 0.0775372i 0.842774 0.538267i \(-0.180921\pi\)
−0.887540 + 0.460730i \(0.847588\pi\)
\(500\) −1.50000 + 2.59808i −0.0670820 + 0.116190i
\(501\) −3.00000 + 5.19615i −0.134030 + 0.232147i
\(502\) −13.5000 23.3827i −0.602534 1.04362i
\(503\) 12.0000 0.535054 0.267527 0.963550i \(-0.413794\pi\)
0.267527 + 0.963550i \(0.413794\pi\)
\(504\) 0 0
\(505\) −54.0000 −2.40297
\(506\) 0 0
\(507\) 1.50000 2.59808i 0.0666173 0.115385i
\(508\) −2.50000 + 4.33013i −0.110920 + 0.192118i
\(509\) −1.50000 2.59808i −0.0664863 0.115158i 0.830866 0.556473i \(-0.187846\pi\)
−0.897352 + 0.441315i \(0.854512\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) −1.00000 −0.0441942
\(513\) 2.00000 + 3.46410i 0.0883022 + 0.152944i
\(514\) −3.00000 + 5.19615i −0.132324 + 0.229192i
\(515\) −12.0000 + 20.7846i −0.528783 + 0.915879i
\(516\) −5.00000 8.66025i −0.220113 0.381246i
\(517\) 18.0000 0.791639
\(518\) 0 0
\(519\) 18.0000 0.790112
\(520\) −6.00000 10.3923i −0.263117 0.455733i
\(521\) −9.00000 + 15.5885i −0.394297 + 0.682943i −0.993011 0.118020i \(-0.962345\pi\)
0.598714 + 0.800963i \(0.295679\pi\)
\(522\) 4.50000 7.79423i 0.196960 0.341144i
\(523\) −2.00000 3.46410i −0.0874539 0.151475i 0.818980 0.573822i \(-0.194540\pi\)
−0.906434 + 0.422347i \(0.861206\pi\)
\(524\) 9.00000 0.393167
\(525\) 0 0
\(526\) 6.00000 0.261612
\(527\) 0 0
\(528\) 1.50000 2.59808i 0.0652791 0.113067i
\(529\) 11.5000 19.9186i 0.500000 0.866025i
\(530\) 4.50000 + 7.79423i 0.195468 + 0.338560i
\(531\) −3.00000 −0.130189
\(532\) 0 0
\(533\) 0 0
\(534\) 3.00000 + 5.19615i 0.129823 + 0.224860i
\(535\) −4.50000 + 7.79423i −0.194552 + 0.336974i
\(536\) −5.00000 + 8.66025i −0.215967 + 0.374066i
\(537\) 6.00000 + 10.3923i 0.258919 + 0.448461i
\(538\) 21.0000 0.905374
\(539\) 0 0
\(540\) 3.00000 0.129099
\(541\) −13.0000 22.5167i −0.558914 0.968067i −0.997587 0.0694205i \(-0.977885\pi\)
0.438674 0.898646i \(-0.355448\pi\)
\(542\) −5.50000 + 9.52628i −0.236245 + 0.409189i
\(543\) −4.00000 + 6.92820i −0.171656 + 0.297318i
\(544\) 0 0
\(545\) −42.0000 −1.79908
\(546\) 0 0
\(547\) 8.00000 0.342055 0.171028 0.985266i \(-0.445291\pi\)
0.171028 + 0.985266i \(0.445291\pi\)
\(548\) −9.00000 15.5885i −0.384461 0.665906i
\(549\) −5.00000 + 8.66025i −0.213395 + 0.369611i
\(550\) 6.00000 10.3923i 0.255841 0.443129i
\(551\) −18.0000 31.1769i −0.766826 1.32818i
\(552\) 0 0
\(553\) 0 0
\(554\) −8.00000 −0.339887
\(555\) −12.0000 20.7846i −0.509372 0.882258i
\(556\) 1.00000 1.73205i 0.0424094 0.0734553i
\(557\) −1.50000 + 2.59808i −0.0635570 + 0.110084i −0.896053 0.443947i \(-0.853578\pi\)
0.832496 + 0.554031i \(0.186911\pi\)
\(558\) 0.500000 + 0.866025i 0.0211667 + 0.0366618i
\(559\) −40.0000 −1.69182
\(560\) 0 0
\(561\) 0 0
\(562\) 3.00000 + 5.19615i 0.126547 + 0.219186i
\(563\) 19.5000 33.7750i 0.821827 1.42345i −0.0824933 0.996592i \(-0.526288\pi\)
0.904320 0.426855i \(-0.140378\pi\)
\(564\) 3.00000 5.19615i 0.126323 0.218797i
\(565\) 0 0
\(566\) 14.0000 0.588464
\(567\) 0 0
\(568\) 6.00000 0.251754
\(569\) 18.0000 + 31.1769i 0.754599 + 1.30700i 0.945573 + 0.325409i \(0.105502\pi\)
−0.190974 + 0.981595i \(0.561165\pi\)
\(570\) 6.00000 10.3923i 0.251312 0.435286i
\(571\) 17.0000 29.4449i 0.711428 1.23223i −0.252893 0.967494i \(-0.581382\pi\)
0.964321 0.264735i \(-0.0852845\pi\)
\(572\) −6.00000 10.3923i −0.250873 0.434524i
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) −0.500000 0.866025i −0.0208333 0.0360844i
\(577\) 11.5000 19.9186i 0.478751 0.829222i −0.520952 0.853586i \(-0.674423\pi\)
0.999703 + 0.0243645i \(0.00775624\pi\)
\(578\) −8.50000 + 14.7224i −0.353553 + 0.612372i
\(579\) −9.50000 16.4545i −0.394807 0.683825i
\(580\) −27.0000 −1.12111
\(581\) 0 0
\(582\) 1.00000 0.0414513
\(583\) 4.50000 + 7.79423i 0.186371 + 0.322804i
\(584\) −1.00000 + 1.73205i −0.0413803 + 0.0716728i
\(585\) 6.00000 10.3923i 0.248069 0.429669i
\(586\) −16.5000 28.5788i −0.681609 1.18058i
\(587\) −21.0000 −0.866763 −0.433381 0.901211i \(-0.642680\pi\)
−0.433381 + 0.901211i \(0.642680\pi\)
\(588\) 0 0
\(589\) 4.00000 0.164817
\(590\) 4.50000 + 7.79423i 0.185262 + 0.320883i
\(591\) 3.00000 5.19615i 0.123404 0.213741i
\(592\) −4.00000 + 6.92820i −0.164399 + 0.284747i
\(593\) 12.0000 + 20.7846i 0.492781 + 0.853522i 0.999965 0.00831589i \(-0.00264706\pi\)
−0.507184 + 0.861838i \(0.669314\pi\)
\(594\) 3.00000 0.123091
\(595\) 0 0
\(596\) 18.0000 0.737309
\(597\) −10.0000 17.3205i −0.409273 0.708881i
\(598\) 0 0
\(599\) 9.00000 15.5885i 0.367730 0.636927i −0.621480 0.783430i \(-0.713468\pi\)
0.989210 + 0.146503i \(0.0468017\pi\)
\(600\) −2.00000 3.46410i −0.0816497 0.141421i
\(601\) −11.0000 −0.448699 −0.224350 0.974509i \(-0.572026\pi\)
−0.224350 + 0.974509i \(0.572026\pi\)
\(602\) 0 0
\(603\) −10.0000 −0.407231
\(604\) 0.500000 + 0.866025i 0.0203447 + 0.0352381i
\(605\) −3.00000 + 5.19615i −0.121967 + 0.211254i
\(606\) −9.00000 + 15.5885i −0.365600 + 0.633238i
\(607\) −3.50000 6.06218i −0.142061 0.246056i 0.786212 0.617957i \(-0.212039\pi\)
−0.928272 + 0.371901i \(0.878706\pi\)
\(608\) −4.00000 −0.162221
\(609\) 0 0
\(610\) 30.0000 1.21466
\(611\) −12.0000 20.7846i −0.485468 0.840855i
\(612\) 0 0
\(613\) 8.00000 13.8564i 0.323117 0.559655i −0.658012 0.753007i \(-0.728603\pi\)
0.981129 + 0.193352i \(0.0619359\pi\)
\(614\) −4.00000 6.92820i −0.161427 0.279600i
\(615\) 0 0
\(616\) 0 0
\(617\) −6.00000 −0.241551 −0.120775 0.992680i \(-0.538538\pi\)
−0.120775 + 0.992680i \(0.538538\pi\)
\(618\) 4.00000 + 6.92820i 0.160904 + 0.278693i
\(619\) −17.0000 + 29.4449i −0.683288 + 1.18349i 0.290684 + 0.956819i \(0.406117\pi\)
−0.973972 + 0.226670i \(0.927216\pi\)
\(620\) 1.50000 2.59808i 0.0602414 0.104341i
\(621\) 0 0
\(622\) 24.0000 0.962312
\(623\) 0 0
\(624\) −4.00000 −0.160128
\(625\) 14.5000 + 25.1147i 0.580000 + 1.00459i
\(626\) 15.5000 26.8468i 0.619505 1.07301i
\(627\) 6.00000 10.3923i 0.239617 0.415029i
\(628\) −2.00000 3.46410i −0.0798087 0.138233i
\(629\) 0 0
\(630\) 0 0
\(631\) −7.00000 −0.278666 −0.139333 0.990246i \(-0.544496\pi\)
−0.139333 + 0.990246i \(0.544496\pi\)
\(632\) −0.500000 0.866025i −0.0198889 0.0344486i
\(633\) 7.00000 12.1244i 0.278225 0.481900i
\(634\) 4.50000 7.79423i 0.178718 0.309548i
\(635\) 7.50000 + 12.9904i 0.297628 + 0.515508i
\(636\) 3.00000 0.118958
\(637\) 0 0
\(638\) −27.0000 −1.06894
\(639\) 3.00000 + 5.19615i 0.118678 + 0.205557i
\(640\) −1.50000 + 2.59808i −0.0592927 + 0.102698i
\(641\) 15.0000 25.9808i 0.592464 1.02618i −0.401435 0.915888i \(-0.631488\pi\)
0.993899 0.110291i \(-0.0351782\pi\)
\(642\) 1.50000 + 2.59808i 0.0592003 + 0.102538i
\(643\) 34.0000 1.34083 0.670415 0.741987i \(-0.266116\pi\)
0.670415 + 0.741987i \(0.266116\pi\)
\(644\) 0 0
\(645\) −30.0000 −1.18125
\(646\) 0 0
\(647\) −9.00000 + 15.5885i −0.353827 + 0.612845i −0.986916 0.161233i \(-0.948453\pi\)
0.633090 + 0.774078i \(0.281786\pi\)
\(648\) 0.500000 0.866025i 0.0196419 0.0340207i
\(649\) 4.50000 + 7.79423i 0.176640 + 0.305950i
\(650\) −16.0000 −0.627572
\(651\) 0 0
\(652\) −16.0000 −0.626608
\(653\) −1.50000 2.59808i −0.0586995 0.101671i 0.835182 0.549973i \(-0.185362\pi\)
−0.893882 + 0.448303i \(0.852029\pi\)
\(654\) −7.00000 + 12.1244i −0.273722 + 0.474100i
\(655\) 13.5000 23.3827i 0.527489 0.913637i
\(656\) 0 0
\(657\) −2.00000 −0.0780274
\(658\) 0 0
\(659\) −24.0000 −0.934907 −0.467454 0.884018i \(-0.654829\pi\)
−0.467454 + 0.884018i \(0.654829\pi\)
\(660\) −4.50000 7.79423i −0.175162 0.303390i
\(661\) 7.00000 12.1244i 0.272268 0.471583i −0.697174 0.716902i \(-0.745559\pi\)
0.969442 + 0.245319i \(0.0788928\pi\)
\(662\) 10.0000 17.3205i 0.388661 0.673181i
\(663\) 0 0
\(664\) −9.00000 −0.349268
\(665\) 0 0
\(666\) −8.00000 −0.309994
\(667\) 0 0
\(668\) 3.00000 5.19615i 0.116073 0.201045i
\(669\) 9.50000 16.4545i 0.367291 0.636167i
\(670\) 15.0000 + 25.9808i 0.579501 + 1.00372i
\(671\) 30.0000 1.15814
\(672\) 0 0
\(673\) 29.0000 1.11787 0.558934 0.829212i \(-0.311211\pi\)
0.558934 + 0.829212i \(0.311211\pi\)
\(674\) −3.50000 6.06218i −0.134815 0.233506i
\(675\) 2.00000 3.46410i 0.0769800 0.133333i
\(676\) −1.50000 + 2.59808i −0.0576923 + 0.0999260i
\(677\) −16.5000 28.5788i −0.634147 1.09837i −0.986695 0.162581i \(-0.948018\pi\)
0.352549 0.935793i \(-0.385315\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 13.5000 + 23.3827i 0.517321 + 0.896026i
\(682\) 1.50000 2.59808i 0.0574380 0.0994855i
\(683\) −16.5000 + 28.5788i −0.631355 + 1.09354i 0.355920 + 0.934516i \(0.384168\pi\)
−0.987275 + 0.159022i \(0.949166\pi\)
\(684\) −2.00000 3.46410i −0.0764719 0.132453i
\(685\) −54.0000 −2.06323
\(686\) 0 0
\(687\) −4.00000 −0.152610
\(688\) 5.00000 + 8.66025i 0.190623 + 0.330169i
\(689\) 6.00000 10.3923i 0.228582 0.395915i
\(690\) 0 0
\(691\) 4.00000 + 6.92820i 0.152167 + 0.263561i 0.932024 0.362397i \(-0.118041\pi\)
−0.779857 + 0.625958i \(0.784708\pi\)
\(692\) −18.0000 −0.684257
\(693\) 0 0
\(694\) −12.0000 −0.455514
\(695\) −3.00000 5.19615i −0.113796 0.197101i
\(696\) −4.50000 + 7.79423i −0.170572 + 0.295439i
\(697\) 0 0
\(698\) −13.0000 22.5167i −0.492057 0.852268i
\(699\) 24.0000 0.907763
\(700\) 0 0
\(701\) −15.0000 −0.566542 −0.283271 0.959040i \(-0.591420\pi\)
−0.283271 + 0.959040i \(0.591420\pi\)
\(702\) −2.00000 3.46410i −0.0754851 0.130744i
\(703\) −16.0000 + 27.7128i −0.603451 + 1.04521i
\(704\) −1.50000 + 2.59808i −0.0565334 + 0.0979187i
\(705\) −9.00000 15.5885i −0.338960 0.587095i
\(706\) 24.0000 0.903252
\(707\) 0 0
\(708\) 3.00000 0.112747
\(709\) 5.00000 + 8.66025i 0.187779 + 0.325243i 0.944509 0.328484i \(-0.106538\pi\)
−0.756730 + 0.653727i \(0.773204\pi\)
\(710\) 9.00000 15.5885i 0.337764 0.585024i
\(711\) 0.500000 0.866025i 0.0187515 0.0324785i
\(712\) −3.00000 5.19615i −0.112430 0.194734i
\(713\) 0 0
\(714\) 0 0
\(715\) −36.0000 −1.34632
\(716\) −6.00000 10.3923i −0.224231 0.388379i
\(717\) −12.0000 + 20.7846i −0.448148 + 0.776215i
\(718\) 15.0000 25.9808i 0.559795 0.969593i
\(719\) −9.00000 15.5885i −0.335643 0.581351i 0.647965 0.761670i \(-0.275620\pi\)
−0.983608 + 0.180319i \(0.942287\pi\)
\(720\) −3.00000 −0.111803
\(721\) 0 0
\(722\) 3.00000 0.111648
\(723\) 0.500000 + 0.866025i 0.0185952 + 0.0322078i
\(724\) 4.00000 6.92820i 0.148659 0.257485i
\(725\) −18.0000 + 31.1769i −0.668503 + 1.15788i
\(726\) 1.00000 + 1.73205i 0.0371135 + 0.0642824i
\(727\) 13.0000 0.482143 0.241072 0.970507i \(-0.422501\pi\)
0.241072 + 0.970507i \(0.422501\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) 3.00000 + 5.19615i 0.111035 + 0.192318i
\(731\) 0 0
\(732\) 5.00000 8.66025i 0.184805 0.320092i
\(733\) −5.00000 8.66025i −0.184679 0.319874i 0.758789 0.651336i \(-0.225791\pi\)
−0.943468 + 0.331463i \(0.892458\pi\)
\(734\) −19.0000 −0.701303
\(735\) 0 0
\(736\) 0 0
\(737\) 15.0000 + 25.9808i 0.552532 + 0.957014i
\(738\) 0 0
\(739\) −25.0000 + 43.3013i −0.919640 + 1.59286i −0.119677 + 0.992813i \(0.538186\pi\)
−0.799962 + 0.600050i \(0.795147\pi\)
\(740\) 12.0000 + 20.7846i 0.441129 + 0.764057i
\(741\) −16.0000 −0.587775
\(742\) 0 0
\(743\) 42.0000 1.54083 0.770415 0.637542i \(-0.220049\pi\)
0.770415 + 0.637542i \(0.220049\pi\)
\(744\) −0.500000 0.866025i −0.0183309 0.0317500i
\(745\) 27.0000 46.7654i 0.989203 1.71335i
\(746\) 4.00000 6.92820i 0.146450 0.253660i
\(747\) −4.50000 7.79423i −0.164646 0.285176i
\(748\) 0 0
\(749\) 0 0
\(750\) 3.00000 0.109545
\(751\) 3.50000 + 6.06218i 0.127717 + 0.221212i 0.922792 0.385299i \(-0.125902\pi\)
−0.795075 + 0.606511i \(0.792568\pi\)
\(752\) −3.00000 + 5.19615i −0.109399 + 0.189484i
\(753\) −13.5000 + 23.3827i −0.491967 + 0.852112i
\(754\) 18.0000 + 31.1769i 0.655521 + 1.13540i
\(755\) 3.00000 0.109181
\(756\) 0 0
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 4.00000 + 6.92820i 0.145287 + 0.251644i
\(759\) 0 0
\(760\) −6.00000 + 10.3923i −0.217643 + 0.376969i
\(761\) 6.00000 + 10.3923i 0.217500 + 0.376721i 0.954043 0.299670i \(-0.0968765\pi\)
−0.736543 + 0.676391i \(0.763543\pi\)
\(762\) 5.00000 0.181131
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) −9.00000 + 15.5885i −0.325183 + 0.563234i
\(767\) 6.00000 10.3923i 0.216647 0.375244i
\(768\) 0.500000 + 0.866025i 0.0180422 + 0.0312500i
\(769\) 19.0000 0.685158 0.342579 0.939489i \(-0.388700\pi\)
0.342579 + 0.939489i \(0.388700\pi\)
\(770\) 0 0
\(771\) 6.00000 0.216085
\(772\) 9.50000 + 16.4545i 0.341912 + 0.592210i
\(773\) 3.00000 5.19615i 0.107903 0.186893i −0.807018 0.590527i \(-0.798920\pi\)
0.914920 + 0.403634i \(0.132253\pi\)
\(774\) −5.00000 + 8.66025i −0.179721 + 0.311286i
\(775\) −2.00000 3.46410i −0.0718421 0.124434i
\(776\) −1.00000 −0.0358979
\(777\) 0 0
\(778\) 6.00000 0.215110
\(779\) 0 0
\(780\) −6.00000 + 10.3923i −0.214834 + 0.372104i
\(781\) 9.00000 15.5885i 0.322045 0.557799i
\(782\) 0 0
\(783\) −9.00000 −0.321634
\(784\) 0 0
\(785\) −12.0000 −0.428298
\(786\) −4.50000 7.79423i −0.160510 0.278011i
\(787\) 25.0000 43.3013i 0.891154 1.54352i 0.0526599 0.998613i \(-0.483230\pi\)
0.838494 0.544911i \(-0.183437\pi\)
\(788\) −3.00000 + 5.19615i −0.106871 + 0.185105i
\(789\) −3.00000 5.19615i −0.106803 0.184988i
\(790\) −3.00000 −0.106735
\(791\) 0 0
\(792\) −3.00000 −0.106600
\(793\) −20.0000 34.6410i −0.710221 1.23014i
\(794\) 2.00000 3.46410i 0.0709773 0.122936i
\(795\) 4.50000 7.79423i 0.159599 0.276433i
\(796\) 10.0000 + 17.3205i 0.354441 + 0.613909i
\(797\) 33.0000 1.16892 0.584460 0.811423i \(-0.301306\pi\)
0.584460 + 0.811423i \(0.301306\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 2.00000 + 3.46410i 0.0707107 + 0.122474i
\(801\) 3.00000 5.19615i 0.106000 0.183597i
\(802\) 12.0000 20.7846i 0.423735 0.733930i
\(803\) 3.00000 + 5.19615i 0.105868 + 0.183368i
\(804\) 10.0000 0.352673
\(805\) 0 0
\(806\) −4.00000 −0.140894
\(807\) −10.5000 18.1865i −0.369618 0.640196i
\(808\) 9.00000 15.5885i 0.316619 0.548400i
\(809\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(810\) −1.50000 2.59808i −0.0527046 0.0912871i
\(811\) −2.00000 −0.0702295 −0.0351147 0.999383i \(-0.511180\pi\)
−0.0351147 + 0.999383i \(0.511180\pi\)
\(812\) 0 0
\(813\) 11.0000 0.385787
\(814\) 12.0000 + 20.7846i 0.420600 + 0.728500i
\(815\) −24.0000 + 41.5692i −0.840683 + 1.45611i
\(816\) 0 0
\(817\) 20.0000 + 34.6410i 0.699711 + 1.21194i
\(818\) −25.0000 −0.874105
\(819\) 0 0
\(820\) 0 0
\(821\) 1.50000 + 2.59808i 0.0523504 + 0.0906735i 0.891013 0.453978i \(-0.149995\pi\)
−0.838663 + 0.544651i \(0.816662\pi\)
\(822\) −9.00000 + 15.5885i −0.313911 + 0.543710i
\(823\) 20.0000 34.6410i 0.697156 1.20751i −0.272292 0.962215i \(-0.587782\pi\)
0.969448 0.245295i \(-0.0788849\pi\)
\(824\) −4.00000 6.92820i −0.139347 0.241355i
\(825\) −12.0000 −0.417786
\(826\) 0 0
\(827\) 15.0000 0.521601 0.260801 0.965393i \(-0.416014\pi\)
0.260801 + 0.965393i \(0.416014\pi\)
\(828\) 0 0
\(829\) −2.00000 + 3.46410i −0.0694629 + 0.120313i −0.898665 0.438636i \(-0.855462\pi\)
0.829202 + 0.558949i \(0.188795\pi\)
\(830\) −13.5000 + 23.3827i −0.468592 + 0.811625i
\(831\) 4.00000 + 6.92820i 0.138758 + 0.240337i
\(832\) 4.00000 0.138675
\(833\) 0 0
\(834\) −2.00000 −0.0692543
\(835\) −9.00000 15.5885i −0.311458 0.539461i
\(836\) −6.00000 + 10.3923i −0.207514 + 0.359425i
\(837\) 0.500000 0.866025i 0.0172825 0.0299342i
\(838\) 0 0
\(839\) 24.0000 0.828572 0.414286 0.910147i \(-0.364031\pi\)
0.414286 + 0.910147i \(0.364031\pi\)
\(840\) 0 0
\(841\) 52.0000 1.79310
\(842\) −11.0000 19.0526i −0.379085 0.656595i
\(843\) 3.00000 5.19615i 0.103325 0.178965i
\(844\) −7.00000 + 12.1244i −0.240950 + 0.417338i
\(845\) 4.50000 + 7.79423i 0.154805 + 0.268130i
\(846\) −6.00000 −0.206284
\(847\) 0 0
\(848\) −3.00000 −0.103020
\(849\) −7.00000 12.1244i −0.240239 0.416107i
\(850\) 0 0
\(851\) 0 0
\(852\) −3.00000 5.19615i −0.102778 0.178017i
\(853\) 10.0000 0.342393 0.171197 0.985237i \(-0.445237\pi\)
0.171197 + 0.985237i \(0.445237\pi\)
\(854\) 0 0
\(855\) −12.0000 −0.410391
\(856\) −1.50000 2.59808i −0.0512689 0.0888004i
\(857\) −21.0000 + 36.3731i −0.717346 + 1.24248i 0.244701 + 0.969599i \(0.421310\pi\)
−0.962048 + 0.272882i \(0.912023\pi\)
\(858\) −6.00000 + 10.3923i −0.204837 + 0.354787i
\(859\) 25.0000 + 43.3013i 0.852989 + 1.47742i 0.878498 + 0.477746i \(0.158546\pi\)
−0.0255092 + 0.999675i \(0.508121\pi\)
\(860\) 30.0000 1.02299
\(861\) 0 0
\(862\) −12.0000 −0.408722
\(863\) −3.00000 5.19615i −0.102121 0.176879i 0.810437 0.585826i \(-0.199230\pi\)
−0.912558 + 0.408946i \(0.865896\pi\)
\(864\) −0.500000 + 0.866025i −0.0170103 + 0.0294628i
\(865\) −27.0000 + 46.7654i −0.918028 + 1.59007i
\(866\) 17.0000 + 29.4449i 0.577684 + 1.00058i
\(867\) 17.0000 0.577350
\(868\) 0 0
\(869\) −3.00000 −0.101768
\(870\) 13.5000 + 23.3827i 0.457693 + 0.792747i
\(871\) 20.0000 34.6410i 0.677674 1.17377i
\(872\) 7.00000 12.1244i 0.237050 0.410582i
\(873\) −0.500000 0.866025i −0.0169224 0.0293105i
\(874\) 0 0
\(875\) 0 0
\(876\) 2.00000 0.0675737
\(877\) −16.0000 27.7128i −0.540282 0.935795i −0.998888 0.0471555i \(-0.984984\pi\)
0.458606 0.888640i \(-0.348349\pi\)
\(878\) −17.5000 + 30.3109i −0.590596 + 1.02294i
\(879\) −16.5000 + 28.5788i −0.556531 + 0.963940i
\(880\) 4.50000 + 7.79423i 0.151695 + 0.262743i
\(881\) 6.00000 0.202145 0.101073 0.994879i \(-0.467773\pi\)
0.101073 + 0.994879i \(0.467773\pi\)
\(882\) 0 0
\(883\) 32.0000 1.07689 0.538443 0.842662i \(-0.319013\pi\)
0.538443 + 0.842662i \(0.319013\pi\)
\(884\) 0 0
\(885\) 4.50000 7.79423i 0.151266 0.262000i
\(886\) −16.5000 + 28.5788i −0.554328 + 0.960125i
\(887\) −12.0000 20.7846i −0.402921 0.697879i 0.591156 0.806557i \(-0.298672\pi\)
−0.994077 + 0.108678i \(0.965338\pi\)
\(888\) 8.00000 0.268462
\(889\) 0 0
\(890\) −18.0000 −0.603361
\(891\) −1.50000 2.59808i −0.0502519 0.0870388i
\(892\) −9.50000 + 16.4545i −0.318084 + 0.550937i
\(893\) −12.0000 + 20.7846i −0.401565 + 0.695530i
\(894\) −9.00000 15.5885i −0.301005 0.521356i
\(895\) −36.0000 −1.20335
\(896\) 0 0
\(897\) 0 0
\(898\) 6.00000 + 10.3923i 0.200223 + 0.346796i
\(899\) −4.50000 + 7.79423i −0.150083 + 0.259952i
\(900\) −2.00000 + 3.46410i −0.0666667 + 0.115470i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −12.0000 20.7846i −0.398893 0.690904i
\(906\) 0.500000 0.866025i 0.0166114 0.0287718i
\(907\) −4.00000 + 6.92820i −0.132818 + 0.230047i −0.924762 0.380547i \(-0.875736\pi\)
0.791944 + 0.610594i \(0.209069\pi\)
\(908\) −13.5000 23.3827i −0.448013 0.775982i
\(909\) 18.0000 0.597022
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 2.00000 + 3.46410i 0.0662266 + 0.114708i
\(913\) −13.5000 + 23.3827i −0.446785 + 0.773854i
\(914\) −0.500000 + 0.866025i −0.0165385 + 0.0286456i
\(915\) −15.0000 25.9808i −0.495885 0.858898i
\(916\) 4.00000 0.132164
\(917\) 0 0
\(918\) 0 0
\(919\) −4.00000 6.92820i −0.131948 0.228540i 0.792480 0.609898i \(-0.208790\pi\)
−0.924427 + 0.381358i \(0.875456\pi\)
\(920\) 0 0
\(921\) −4.00000 + 6.92820i −0.131804 + 0.228292i
\(922\) −15.0000 25.9808i −0.493999 0.855631i
\(923\) −24.0000 −0.789970
\(924\) 0 0
\(925\) 32.0000 1.05215
\(926\) 4.00000 + 6.92820i 0.131448 + 0.227675i
\(927\) 4.00000 6.92820i 0.131377 0.227552i
\(928\) 4.50000 7.79423i 0.147720 0.255858i
\(929\) −3.00000 5.19615i −0.0984268 0.170480i 0.812607 0.582812i \(-0.198048\pi\)
−0.911034 + 0.412332i \(0.864714\pi\)
\(930\) −3.00000 −0.0983739
\(931\) 0 0
\(932\) −24.0000 −0.786146
\(933\) −12.0000 20.7846i −0.392862 0.680458i
\(934\) −18.0000 + 31.1769i −0.588978 + 1.02014i
\(935\) 0 0
\(936\) 2.00000 + 3.46410i 0.0653720 + 0.113228i
\(937\) −35.0000 −1.14340 −0.571700 0.820463i \(-0.693716\pi\)
−0.571700 + 0.820463i \(0.693716\pi\)
\(938\) 0 0
\(939\) −31.0000 −1.01165
\(940\) 9.00000 + 15.5885i 0.293548 + 0.508439i
\(941\) −4.50000 + 7.79423i −0.146696 + 0.254085i −0.930004 0.367549i \(-0.880197\pi\)
0.783309 + 0.621633i \(0.213531\pi\)
\(942\) −2.00000 + 3.46410i −0.0651635 + 0.112867i
\(943\) 0 0
\(944\) −3.00000 −0.0976417
\(945\) 0 0
\(946\) 30.0000 0.975384
\(947\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(948\) −0.500000 + 0.866025i −0.0162392 + 0.0281272i
\(949\) 4.00000 6.92820i 0.129845 0.224899i
\(950\) 8.00000 + 13.8564i 0.259554 + 0.449561i
\(951\) −9.00000 −0.291845
\(952\) 0 0
\(953\) −6.00000 −0.194359 −0.0971795 0.995267i \(-0.530982\pi\)
−0.0971795 + 0.995267i \(0.530982\pi\)
\(954\) −1.50000 2.59808i −0.0485643 0.0841158i
\(955\) 0 0
\(956\) 12.0000 20.7846i 0.388108 0.672222i
\(957\) 13.5000 + 23.3827i 0.436393 + 0.755855i
\(958\) −18.0000 −0.581554
\(959\) 0 0
\(960\) 3.00000 0.0968246
\(961\) 15.0000 + 25.9808i 0.483871 + 0.838089i
\(962\) 16.0000 27.7128i 0.515861 0.893497i
\(963\) 1.50000 2.59808i 0.0483368 0.0837218i
\(964\) −0.500000 0.866025i −0.0161039 0.0278928i
\(965\) 57.0000 1.83489
\(966\) 0 0
\(967\) −1.00000 −0.0321578 −0.0160789 0.999871i \(-0.505118\pi\)
−0.0160789 + 0.999871i \(0.505118\pi\)
\(968\) −1.00000 1.73205i −0.0321412 0.0556702i
\(969\) 0 0
\(970\) −1.50000 + 2.59808i −0.0481621 + 0.0834192i
\(971\) −19.5000 33.7750i −0.625785 1.08389i −0.988389 0.151948i \(-0.951445\pi\)
0.362604 0.931943i \(-0.381888\pi\)
\(972\) −1.00000 −0.0320750
\(973\) 0 0
\(974\) −41.0000 −1.31372
\(975\) 8.00000 + 13.8564i 0.256205 + 0.443760i
\(976\) −5.00000 + 8.66025i −0.160046 + 0.277208i
\(977\) −21.0000 + 36.3731i −0.671850 + 1.16368i 0.305530 + 0.952183i \(0.401167\pi\)
−0.977379 + 0.211495i \(0.932167\pi\)
\(978\) 8.00000 + 13.8564i 0.255812 + 0.443079i
\(979\) −18.0000 −0.575282
\(980\) 0 0
\(981\) 14.0000 0.446986
\(982\) −16.5000 28.5788i −0.526536 0.911987i
\(983\) 18.0000 31.1769i 0.574111 0.994389i −0.422027 0.906583i \(-0.638681\pi\)
0.996138 0.0878058i \(-0.0279855\pi\)
\(984\) 0 0
\(985\) 9.00000 + 15.5885i 0.286764 + 0.496690i
\(986\) 0 0
\(987\) 0 0
\(988\) 16.0000 0.509028
\(989\) 0 0
\(990\) −4.50000 + 7.79423i −0.143019 + 0.247717i
\(991\) 6.50000 11.2583i 0.206479 0.357633i −0.744124 0.668042i \(-0.767133\pi\)
0.950603 + 0.310409i \(0.100466\pi\)
\(992\) 0.500000 + 0.866025i 0.0158750 + 0.0274963i
\(993\) −20.0000 −0.634681
\(994\) 0 0
\(995\) 60.0000 1.90213
\(996\) 4.50000 + 7.79423i 0.142588 + 0.246970i
\(997\) 7.00000 12.1244i 0.221692 0.383982i −0.733630 0.679549i \(-0.762175\pi\)
0.955322 + 0.295567i \(0.0955086\pi\)
\(998\) 1.00000 1.73205i 0.0316544 0.0548271i
\(999\) 4.00000 + 6.92820i 0.126554 + 0.219199i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 294.2.e.f.67.1 2
3.2 odd 2 882.2.g.b.361.1 2
4.3 odd 2 2352.2.q.m.1537.1 2
7.2 even 3 inner 294.2.e.f.79.1 2
7.3 odd 6 294.2.a.d.1.1 1
7.4 even 3 294.2.a.a.1.1 1
7.5 odd 6 42.2.e.b.37.1 yes 2
7.6 odd 2 42.2.e.b.25.1 2
21.2 odd 6 882.2.g.b.667.1 2
21.5 even 6 126.2.g.b.37.1 2
21.11 odd 6 882.2.a.k.1.1 1
21.17 even 6 882.2.a.g.1.1 1
21.20 even 2 126.2.g.b.109.1 2
28.3 even 6 2352.2.a.m.1.1 1
28.11 odd 6 2352.2.a.n.1.1 1
28.19 even 6 336.2.q.d.289.1 2
28.23 odd 6 2352.2.q.m.961.1 2
28.27 even 2 336.2.q.d.193.1 2
35.4 even 6 7350.2.a.cw.1.1 1
35.12 even 12 1050.2.o.b.499.2 4
35.13 even 4 1050.2.o.b.949.2 4
35.19 odd 6 1050.2.i.e.751.1 2
35.24 odd 6 7350.2.a.ce.1.1 1
35.27 even 4 1050.2.o.b.949.1 4
35.33 even 12 1050.2.o.b.499.1 4
35.34 odd 2 1050.2.i.e.151.1 2
56.3 even 6 9408.2.a.bu.1.1 1
56.5 odd 6 1344.2.q.v.961.1 2
56.11 odd 6 9408.2.a.bm.1.1 1
56.13 odd 2 1344.2.q.v.193.1 2
56.19 even 6 1344.2.q.j.961.1 2
56.27 even 2 1344.2.q.j.193.1 2
56.45 odd 6 9408.2.a.d.1.1 1
56.53 even 6 9408.2.a.db.1.1 1
63.5 even 6 1134.2.h.a.541.1 2
63.13 odd 6 1134.2.e.a.865.1 2
63.20 even 6 1134.2.h.a.109.1 2
63.34 odd 6 1134.2.h.p.109.1 2
63.40 odd 6 1134.2.h.p.541.1 2
63.41 even 6 1134.2.e.p.865.1 2
63.47 even 6 1134.2.e.p.919.1 2
63.61 odd 6 1134.2.e.a.919.1 2
84.11 even 6 7056.2.a.bz.1.1 1
84.47 odd 6 1008.2.s.n.289.1 2
84.59 odd 6 7056.2.a.g.1.1 1
84.83 odd 2 1008.2.s.n.865.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
42.2.e.b.25.1 2 7.6 odd 2
42.2.e.b.37.1 yes 2 7.5 odd 6
126.2.g.b.37.1 2 21.5 even 6
126.2.g.b.109.1 2 21.20 even 2
294.2.a.a.1.1 1 7.4 even 3
294.2.a.d.1.1 1 7.3 odd 6
294.2.e.f.67.1 2 1.1 even 1 trivial
294.2.e.f.79.1 2 7.2 even 3 inner
336.2.q.d.193.1 2 28.27 even 2
336.2.q.d.289.1 2 28.19 even 6
882.2.a.g.1.1 1 21.17 even 6
882.2.a.k.1.1 1 21.11 odd 6
882.2.g.b.361.1 2 3.2 odd 2
882.2.g.b.667.1 2 21.2 odd 6
1008.2.s.n.289.1 2 84.47 odd 6
1008.2.s.n.865.1 2 84.83 odd 2
1050.2.i.e.151.1 2 35.34 odd 2
1050.2.i.e.751.1 2 35.19 odd 6
1050.2.o.b.499.1 4 35.33 even 12
1050.2.o.b.499.2 4 35.12 even 12
1050.2.o.b.949.1 4 35.27 even 4
1050.2.o.b.949.2 4 35.13 even 4
1134.2.e.a.865.1 2 63.13 odd 6
1134.2.e.a.919.1 2 63.61 odd 6
1134.2.e.p.865.1 2 63.41 even 6
1134.2.e.p.919.1 2 63.47 even 6
1134.2.h.a.109.1 2 63.20 even 6
1134.2.h.a.541.1 2 63.5 even 6
1134.2.h.p.109.1 2 63.34 odd 6
1134.2.h.p.541.1 2 63.40 odd 6
1344.2.q.j.193.1 2 56.27 even 2
1344.2.q.j.961.1 2 56.19 even 6
1344.2.q.v.193.1 2 56.13 odd 2
1344.2.q.v.961.1 2 56.5 odd 6
2352.2.a.m.1.1 1 28.3 even 6
2352.2.a.n.1.1 1 28.11 odd 6
2352.2.q.m.961.1 2 28.23 odd 6
2352.2.q.m.1537.1 2 4.3 odd 2
7056.2.a.g.1.1 1 84.59 odd 6
7056.2.a.bz.1.1 1 84.11 even 6
7350.2.a.ce.1.1 1 35.24 odd 6
7350.2.a.cw.1.1 1 35.4 even 6
9408.2.a.d.1.1 1 56.45 odd 6
9408.2.a.bm.1.1 1 56.11 odd 6
9408.2.a.bu.1.1 1 56.3 even 6
9408.2.a.db.1.1 1 56.53 even 6