Properties

Label 296.2.u.b.9.2
Level $296$
Weight $2$
Character 296.9
Analytic conductor $2.364$
Analytic rank $0$
Dimension $30$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [296,2,Mod(9,296)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(296, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([0, 0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("296.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 296 = 2^{3} \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 296.u (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.36357189983\)
Analytic rank: \(0\)
Dimension: \(30\)
Relative dimension: \(5\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 9.2
Character \(\chi\) \(=\) 296.9
Dual form 296.2.u.b.33.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.260200 + 1.47567i) q^{3} +(-1.75197 - 1.47008i) q^{5} +(-3.54112 - 2.97135i) q^{7} +(0.709192 + 0.258125i) q^{9} +(-2.89988 - 5.02274i) q^{11} +(1.41004 - 0.513213i) q^{13} +(2.62521 - 2.20281i) q^{15} +(-0.343576 - 0.125052i) q^{17} +(-0.769354 + 4.36322i) q^{19} +(5.30612 - 4.45236i) q^{21} +(1.15202 - 1.99536i) q^{23} +(0.0400348 + 0.227048i) q^{25} +(-2.81308 + 4.87240i) q^{27} +(-1.46198 - 2.53222i) q^{29} +0.428254 q^{31} +(8.16644 - 2.97234i) q^{33} +(1.83582 + 10.4115i) q^{35} +(-3.07776 - 5.24666i) q^{37} +(0.390438 + 2.21429i) q^{39} +(0.112369 - 0.0408990i) q^{41} -12.9003 q^{43} +(-0.863022 - 1.49480i) q^{45} +(3.30747 - 5.72870i) q^{47} +(2.49506 + 14.1502i) q^{49} +(0.273933 - 0.474465i) q^{51} +(-7.42052 + 6.22655i) q^{53} +(-2.30332 + 13.0628i) q^{55} +(-6.23847 - 2.27062i) q^{57} +(6.22119 - 5.22019i) q^{59} +(2.40272 - 0.874520i) q^{61} +(-1.74435 - 3.02131i) q^{63} +(-3.22482 - 1.17374i) q^{65} +(10.8202 + 9.07920i) q^{67} +(2.64473 + 2.21919i) q^{69} +(1.40794 - 7.98481i) q^{71} +13.2380 q^{73} -0.345465 q^{75} +(-4.65551 + 26.4027i) q^{77} +(8.48535 + 7.12005i) q^{79} +(-4.72366 - 3.96362i) q^{81} +(-6.92615 - 2.52091i) q^{83} +(0.418101 + 0.724172i) q^{85} +(4.11711 - 1.49851i) q^{87} +(10.7566 - 9.02586i) q^{89} +(-6.51806 - 2.37238i) q^{91} +(-0.111432 + 0.631960i) q^{93} +(7.76218 - 6.51324i) q^{95} +(-2.83368 + 4.90807i) q^{97} +(-0.760078 - 4.31062i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 30 q - 6 q^{5} - 3 q^{7} - 3 q^{11} + 9 q^{13} + 3 q^{15} - 27 q^{17} + 9 q^{19} + 15 q^{21} - 3 q^{23} - 12 q^{25} - 3 q^{27} + 9 q^{29} - 6 q^{31} - 6 q^{33} + 9 q^{35} + 9 q^{37} - 12 q^{39} - 48 q^{43}+ \cdots - 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/296\mathbb{Z}\right)^\times\).

\(n\) \(113\) \(149\) \(223\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.260200 + 1.47567i −0.150226 + 0.851976i 0.812795 + 0.582550i \(0.197945\pi\)
−0.963021 + 0.269426i \(0.913166\pi\)
\(4\) 0 0
\(5\) −1.75197 1.47008i −0.783507 0.657440i 0.160622 0.987016i \(-0.448650\pi\)
−0.944129 + 0.329576i \(0.893094\pi\)
\(6\) 0 0
\(7\) −3.54112 2.97135i −1.33842 1.12307i −0.982030 0.188727i \(-0.939564\pi\)
−0.356388 0.934338i \(-0.615992\pi\)
\(8\) 0 0
\(9\) 0.709192 + 0.258125i 0.236397 + 0.0860416i
\(10\) 0 0
\(11\) −2.89988 5.02274i −0.874347 1.51441i −0.857457 0.514556i \(-0.827957\pi\)
−0.0168905 0.999857i \(-0.505377\pi\)
\(12\) 0 0
\(13\) 1.41004 0.513213i 0.391075 0.142340i −0.138996 0.990293i \(-0.544388\pi\)
0.530071 + 0.847953i \(0.322165\pi\)
\(14\) 0 0
\(15\) 2.62521 2.20281i 0.677827 0.568764i
\(16\) 0 0
\(17\) −0.343576 0.125052i −0.0833295 0.0303294i 0.300019 0.953933i \(-0.403007\pi\)
−0.383349 + 0.923604i \(0.625229\pi\)
\(18\) 0 0
\(19\) −0.769354 + 4.36322i −0.176502 + 1.00099i 0.759894 + 0.650047i \(0.225251\pi\)
−0.936396 + 0.350945i \(0.885860\pi\)
\(20\) 0 0
\(21\) 5.30612 4.45236i 1.15789 0.971586i
\(22\) 0 0
\(23\) 1.15202 1.99536i 0.240213 0.416062i −0.720562 0.693391i \(-0.756116\pi\)
0.960775 + 0.277329i \(0.0894492\pi\)
\(24\) 0 0
\(25\) 0.0400348 + 0.227048i 0.00800695 + 0.0454097i
\(26\) 0 0
\(27\) −2.81308 + 4.87240i −0.541378 + 0.937694i
\(28\) 0 0
\(29\) −1.46198 2.53222i −0.271482 0.470221i 0.697760 0.716332i \(-0.254180\pi\)
−0.969242 + 0.246111i \(0.920847\pi\)
\(30\) 0 0
\(31\) 0.428254 0.0769166 0.0384583 0.999260i \(-0.487755\pi\)
0.0384583 + 0.999260i \(0.487755\pi\)
\(32\) 0 0
\(33\) 8.16644 2.97234i 1.42159 0.517418i
\(34\) 0 0
\(35\) 1.83582 + 10.4115i 0.310311 + 1.75986i
\(36\) 0 0
\(37\) −3.07776 5.24666i −0.505980 0.862545i
\(38\) 0 0
\(39\) 0.390438 + 2.21429i 0.0625202 + 0.354569i
\(40\) 0 0
\(41\) 0.112369 0.0408990i 0.0175491 0.00638734i −0.333231 0.942845i \(-0.608139\pi\)
0.350780 + 0.936458i \(0.385917\pi\)
\(42\) 0 0
\(43\) −12.9003 −1.96728 −0.983640 0.180146i \(-0.942343\pi\)
−0.983640 + 0.180146i \(0.942343\pi\)
\(44\) 0 0
\(45\) −0.863022 1.49480i −0.128652 0.222831i
\(46\) 0 0
\(47\) 3.30747 5.72870i 0.482444 0.835617i −0.517353 0.855772i \(-0.673083\pi\)
0.999797 + 0.0201552i \(0.00641603\pi\)
\(48\) 0 0
\(49\) 2.49506 + 14.1502i 0.356437 + 2.02145i
\(50\) 0 0
\(51\) 0.273933 0.474465i 0.0383582 0.0664384i
\(52\) 0 0
\(53\) −7.42052 + 6.22655i −1.01929 + 0.855283i −0.989538 0.144274i \(-0.953915\pi\)
−0.0297488 + 0.999557i \(0.509471\pi\)
\(54\) 0 0
\(55\) −2.30332 + 13.0628i −0.310580 + 1.76138i
\(56\) 0 0
\(57\) −6.23847 2.27062i −0.826306 0.300751i
\(58\) 0 0
\(59\) 6.22119 5.22019i 0.809929 0.679611i −0.140662 0.990058i \(-0.544923\pi\)
0.950591 + 0.310446i \(0.100478\pi\)
\(60\) 0 0
\(61\) 2.40272 0.874520i 0.307637 0.111971i −0.183588 0.983003i \(-0.558771\pi\)
0.491225 + 0.871032i \(0.336549\pi\)
\(62\) 0 0
\(63\) −1.74435 3.02131i −0.219768 0.380649i
\(64\) 0 0
\(65\) −3.22482 1.17374i −0.399989 0.145584i
\(66\) 0 0
\(67\) 10.8202 + 9.07920i 1.32189 + 1.10920i 0.985900 + 0.167336i \(0.0535165\pi\)
0.335994 + 0.941864i \(0.390928\pi\)
\(68\) 0 0
\(69\) 2.64473 + 2.21919i 0.318388 + 0.267160i
\(70\) 0 0
\(71\) 1.40794 7.98481i 0.167091 0.947623i −0.779790 0.626041i \(-0.784674\pi\)
0.946882 0.321582i \(-0.104215\pi\)
\(72\) 0 0
\(73\) 13.2380 1.54939 0.774697 0.632332i \(-0.217902\pi\)
0.774697 + 0.632332i \(0.217902\pi\)
\(74\) 0 0
\(75\) −0.345465 −0.0398908
\(76\) 0 0
\(77\) −4.65551 + 26.4027i −0.530544 + 3.00887i
\(78\) 0 0
\(79\) 8.48535 + 7.12005i 0.954676 + 0.801069i 0.980079 0.198609i \(-0.0636423\pi\)
−0.0254025 + 0.999677i \(0.508087\pi\)
\(80\) 0 0
\(81\) −4.72366 3.96362i −0.524851 0.440402i
\(82\) 0 0
\(83\) −6.92615 2.52091i −0.760243 0.276706i −0.0673338 0.997731i \(-0.521449\pi\)
−0.692910 + 0.721025i \(0.743671\pi\)
\(84\) 0 0
\(85\) 0.418101 + 0.724172i 0.0453494 + 0.0785475i
\(86\) 0 0
\(87\) 4.11711 1.49851i 0.441400 0.160657i
\(88\) 0 0
\(89\) 10.7566 9.02586i 1.14020 0.956739i 0.140753 0.990045i \(-0.455048\pi\)
0.999445 + 0.0333053i \(0.0106034\pi\)
\(90\) 0 0
\(91\) −6.51806 2.37238i −0.683278 0.248693i
\(92\) 0 0
\(93\) −0.111432 + 0.631960i −0.0115549 + 0.0655311i
\(94\) 0 0
\(95\) 7.76218 6.51324i 0.796383 0.668245i
\(96\) 0 0
\(97\) −2.83368 + 4.90807i −0.287716 + 0.498339i −0.973264 0.229688i \(-0.926229\pi\)
0.685548 + 0.728027i \(0.259563\pi\)
\(98\) 0 0
\(99\) −0.760078 4.31062i −0.0763908 0.433233i
\(100\) 0 0
\(101\) 5.70213 9.87638i 0.567383 0.982737i −0.429440 0.903095i \(-0.641289\pi\)
0.996824 0.0796415i \(-0.0253776\pi\)
\(102\) 0 0
\(103\) −2.91194 5.04362i −0.286922 0.496963i 0.686152 0.727459i \(-0.259299\pi\)
−0.973073 + 0.230495i \(0.925965\pi\)
\(104\) 0 0
\(105\) −15.8415 −1.54597
\(106\) 0 0
\(107\) −0.627797 + 0.228499i −0.0606914 + 0.0220899i −0.372187 0.928158i \(-0.621392\pi\)
0.311496 + 0.950247i \(0.399170\pi\)
\(108\) 0 0
\(109\) 0.790209 + 4.48150i 0.0756883 + 0.429249i 0.998980 + 0.0451505i \(0.0143767\pi\)
−0.923292 + 0.384099i \(0.874512\pi\)
\(110\) 0 0
\(111\) 8.54315 3.17656i 0.810879 0.301506i
\(112\) 0 0
\(113\) −1.95736 11.1008i −0.184133 1.04427i −0.927064 0.374903i \(-0.877676\pi\)
0.742931 0.669368i \(-0.233435\pi\)
\(114\) 0 0
\(115\) −4.95166 + 1.80226i −0.461745 + 0.168061i
\(116\) 0 0
\(117\) 1.13246 0.104696
\(118\) 0 0
\(119\) 0.845072 + 1.46371i 0.0774677 + 0.134178i
\(120\) 0 0
\(121\) −11.3186 + 19.6044i −1.02897 + 1.78222i
\(122\) 0 0
\(123\) 0.0311148 + 0.176461i 0.00280553 + 0.0159109i
\(124\) 0 0
\(125\) −5.45396 + 9.44654i −0.487817 + 0.844924i
\(126\) 0 0
\(127\) −4.43731 + 3.72334i −0.393748 + 0.330393i −0.818071 0.575117i \(-0.804956\pi\)
0.424323 + 0.905511i \(0.360512\pi\)
\(128\) 0 0
\(129\) 3.35666 19.0366i 0.295537 1.67608i
\(130\) 0 0
\(131\) 8.45349 + 3.07682i 0.738585 + 0.268823i 0.683794 0.729675i \(-0.260329\pi\)
0.0547909 + 0.998498i \(0.482551\pi\)
\(132\) 0 0
\(133\) 15.6890 13.1647i 1.36041 1.14152i
\(134\) 0 0
\(135\) 12.0913 4.40086i 1.04065 0.378766i
\(136\) 0 0
\(137\) −8.39920 14.5478i −0.717592 1.24291i −0.961951 0.273221i \(-0.911911\pi\)
0.244360 0.969685i \(-0.421422\pi\)
\(138\) 0 0
\(139\) −1.56922 0.571148i −0.133099 0.0484442i 0.274612 0.961555i \(-0.411451\pi\)
−0.407711 + 0.913111i \(0.633673\pi\)
\(140\) 0 0
\(141\) 7.59304 + 6.37132i 0.639450 + 0.536562i
\(142\) 0 0
\(143\) −6.66668 5.59401i −0.557496 0.467795i
\(144\) 0 0
\(145\) −1.16122 + 6.58560i −0.0964340 + 0.546904i
\(146\) 0 0
\(147\) −21.5301 −1.77578
\(148\) 0 0
\(149\) −8.20313 −0.672027 −0.336013 0.941857i \(-0.609079\pi\)
−0.336013 + 0.941857i \(0.609079\pi\)
\(150\) 0 0
\(151\) 0.827367 4.69223i 0.0673302 0.381849i −0.932458 0.361278i \(-0.882341\pi\)
0.999788 0.0205707i \(-0.00654831\pi\)
\(152\) 0 0
\(153\) −0.211383 0.177371i −0.0170893 0.0143396i
\(154\) 0 0
\(155\) −0.750290 0.629568i −0.0602647 0.0505681i
\(156\) 0 0
\(157\) −16.4806 5.99844i −1.31529 0.478728i −0.413347 0.910574i \(-0.635640\pi\)
−0.901947 + 0.431846i \(0.857862\pi\)
\(158\) 0 0
\(159\) −7.25750 12.5704i −0.575557 0.996894i
\(160\) 0 0
\(161\) −10.0084 + 3.64275i −0.788770 + 0.287089i
\(162\) 0 0
\(163\) 12.6901 10.6482i 0.993962 0.834033i 0.00782579 0.999969i \(-0.497509\pi\)
0.986137 + 0.165936i \(0.0530645\pi\)
\(164\) 0 0
\(165\) −18.6770 6.79786i −1.45400 0.529213i
\(166\) 0 0
\(167\) −0.109199 + 0.619296i −0.00845005 + 0.0479226i −0.988741 0.149635i \(-0.952190\pi\)
0.980291 + 0.197558i \(0.0633011\pi\)
\(168\) 0 0
\(169\) −8.23375 + 6.90894i −0.633366 + 0.531457i
\(170\) 0 0
\(171\) −1.67188 + 2.89577i −0.127852 + 0.221445i
\(172\) 0 0
\(173\) −2.52976 14.3470i −0.192334 1.09078i −0.916164 0.400804i \(-0.868731\pi\)
0.723829 0.689979i \(-0.242380\pi\)
\(174\) 0 0
\(175\) 0.532873 0.922963i 0.0402814 0.0697694i
\(176\) 0 0
\(177\) 6.08451 + 10.5387i 0.457340 + 0.792136i
\(178\) 0 0
\(179\) 21.6343 1.61702 0.808512 0.588480i \(-0.200274\pi\)
0.808512 + 0.588480i \(0.200274\pi\)
\(180\) 0 0
\(181\) 1.10465 0.402060i 0.0821080 0.0298849i −0.300640 0.953738i \(-0.597200\pi\)
0.382748 + 0.923853i \(0.374978\pi\)
\(182\) 0 0
\(183\) 0.665311 + 3.77317i 0.0491812 + 0.278920i
\(184\) 0 0
\(185\) −2.32086 + 13.7166i −0.170633 + 1.00846i
\(186\) 0 0
\(187\) 0.368229 + 2.08833i 0.0269276 + 0.152714i
\(188\) 0 0
\(189\) 24.4391 8.89510i 1.77768 0.647023i
\(190\) 0 0
\(191\) 10.6802 0.772790 0.386395 0.922333i \(-0.373720\pi\)
0.386395 + 0.922333i \(0.373720\pi\)
\(192\) 0 0
\(193\) −0.500032 0.866081i −0.0359931 0.0623418i 0.847468 0.530847i \(-0.178126\pi\)
−0.883461 + 0.468505i \(0.844793\pi\)
\(194\) 0 0
\(195\) 2.57114 4.45335i 0.184123 0.318911i
\(196\) 0 0
\(197\) −0.587993 3.33467i −0.0418928 0.237586i 0.956670 0.291173i \(-0.0940455\pi\)
−0.998563 + 0.0535874i \(0.982934\pi\)
\(198\) 0 0
\(199\) 13.8828 24.0457i 0.984126 1.70456i 0.338371 0.941013i \(-0.390124\pi\)
0.645755 0.763544i \(-0.276543\pi\)
\(200\) 0 0
\(201\) −16.2133 + 13.6045i −1.14360 + 0.959590i
\(202\) 0 0
\(203\) −2.34707 + 13.3109i −0.164732 + 0.934243i
\(204\) 0 0
\(205\) −0.256992 0.0935375i −0.0179491 0.00653294i
\(206\) 0 0
\(207\) 1.33206 1.11773i 0.0925844 0.0776875i
\(208\) 0 0
\(209\) 24.1464 8.78856i 1.67024 0.607918i
\(210\) 0 0
\(211\) −3.82794 6.63019i −0.263526 0.456441i 0.703650 0.710547i \(-0.251552\pi\)
−0.967176 + 0.254106i \(0.918219\pi\)
\(212\) 0 0
\(213\) 11.4166 + 4.15529i 0.782250 + 0.284716i
\(214\) 0 0
\(215\) 22.6010 + 18.9645i 1.54138 + 1.29337i
\(216\) 0 0
\(217\) −1.51650 1.27249i −0.102947 0.0863824i
\(218\) 0 0
\(219\) −3.44453 + 19.5349i −0.232760 + 1.32005i
\(220\) 0 0
\(221\) −0.548634 −0.0369051
\(222\) 0 0
\(223\) 0.949252 0.0635666 0.0317833 0.999495i \(-0.489881\pi\)
0.0317833 + 0.999495i \(0.489881\pi\)
\(224\) 0 0
\(225\) −0.0302145 + 0.171355i −0.00201430 + 0.0114237i
\(226\) 0 0
\(227\) −14.9814 12.5709i −0.994349 0.834358i −0.00815758 0.999967i \(-0.502597\pi\)
−0.986192 + 0.165609i \(0.947041\pi\)
\(228\) 0 0
\(229\) 3.75725 + 3.15271i 0.248286 + 0.208337i 0.758434 0.651750i \(-0.225965\pi\)
−0.510148 + 0.860087i \(0.670409\pi\)
\(230\) 0 0
\(231\) −37.7502 13.7399i −2.48378 0.904022i
\(232\) 0 0
\(233\) 7.80879 + 13.5252i 0.511571 + 0.886067i 0.999910 + 0.0134130i \(0.00426963\pi\)
−0.488339 + 0.872654i \(0.662397\pi\)
\(234\) 0 0
\(235\) −14.2162 + 5.17429i −0.927366 + 0.337533i
\(236\) 0 0
\(237\) −12.7147 + 10.6689i −0.825909 + 0.693020i
\(238\) 0 0
\(239\) 0.314666 + 0.114529i 0.0203541 + 0.00740827i 0.352177 0.935933i \(-0.385441\pi\)
−0.331823 + 0.943342i \(0.607664\pi\)
\(240\) 0 0
\(241\) 2.15209 12.2051i 0.138628 0.786201i −0.833636 0.552315i \(-0.813745\pi\)
0.972264 0.233886i \(-0.0751443\pi\)
\(242\) 0 0
\(243\) −5.85160 + 4.91008i −0.375381 + 0.314982i
\(244\) 0 0
\(245\) 16.4306 28.4587i 1.04971 1.81816i
\(246\) 0 0
\(247\) 1.15444 + 6.54716i 0.0734553 + 0.416586i
\(248\) 0 0
\(249\) 5.52220 9.56474i 0.349955 0.606141i
\(250\) 0 0
\(251\) 4.12847 + 7.15072i 0.260587 + 0.451349i 0.966398 0.257051i \(-0.0827507\pi\)
−0.705811 + 0.708400i \(0.749417\pi\)
\(252\) 0 0
\(253\) −13.3629 −0.840120
\(254\) 0 0
\(255\) −1.17743 + 0.428548i −0.0737332 + 0.0268367i
\(256\) 0 0
\(257\) −3.52215 19.9751i −0.219705 1.24601i −0.872552 0.488521i \(-0.837536\pi\)
0.652846 0.757490i \(-0.273575\pi\)
\(258\) 0 0
\(259\) −4.69096 + 27.7241i −0.291482 + 1.72269i
\(260\) 0 0
\(261\) −0.383194 2.17320i −0.0237191 0.134518i
\(262\) 0 0
\(263\) −21.8177 + 7.94100i −1.34534 + 0.489663i −0.911490 0.411323i \(-0.865067\pi\)
−0.433849 + 0.900986i \(0.642845\pi\)
\(264\) 0 0
\(265\) 22.1541 1.36092
\(266\) 0 0
\(267\) 10.5203 + 18.2217i 0.643831 + 1.11515i
\(268\) 0 0
\(269\) −1.11257 + 1.92704i −0.0678349 + 0.117493i −0.897948 0.440102i \(-0.854942\pi\)
0.830113 + 0.557595i \(0.188276\pi\)
\(270\) 0 0
\(271\) 5.00934 + 28.4094i 0.304296 + 1.72575i 0.626801 + 0.779180i \(0.284364\pi\)
−0.322505 + 0.946568i \(0.604525\pi\)
\(272\) 0 0
\(273\) 5.19683 9.00118i 0.314527 0.544776i
\(274\) 0 0
\(275\) 1.02431 0.859498i 0.0617682 0.0518297i
\(276\) 0 0
\(277\) −3.04550 + 17.2719i −0.182987 + 1.03777i 0.745529 + 0.666474i \(0.232197\pi\)
−0.928515 + 0.371295i \(0.878914\pi\)
\(278\) 0 0
\(279\) 0.303714 + 0.110543i 0.0181829 + 0.00661803i
\(280\) 0 0
\(281\) −13.4977 + 11.3259i −0.805203 + 0.675645i −0.949458 0.313895i \(-0.898366\pi\)
0.144255 + 0.989541i \(0.453921\pi\)
\(282\) 0 0
\(283\) 21.2213 7.72390i 1.26147 0.459138i 0.377210 0.926128i \(-0.376884\pi\)
0.884263 + 0.466990i \(0.154661\pi\)
\(284\) 0 0
\(285\) 7.59165 + 13.1491i 0.449691 + 0.778887i
\(286\) 0 0
\(287\) −0.519437 0.189060i −0.0306614 0.0111598i
\(288\) 0 0
\(289\) −12.9203 10.8415i −0.760021 0.637733i
\(290\) 0 0
\(291\) −6.50535 5.45864i −0.381350 0.319991i
\(292\) 0 0
\(293\) −5.00301 + 28.3735i −0.292279 + 1.65760i 0.385780 + 0.922591i \(0.373932\pi\)
−0.678059 + 0.735007i \(0.737179\pi\)
\(294\) 0 0
\(295\) −18.5735 −1.08139
\(296\) 0 0
\(297\) 32.6304 1.89341
\(298\) 0 0
\(299\) 0.600353 3.40477i 0.0347193 0.196903i
\(300\) 0 0
\(301\) 45.6816 + 38.3314i 2.63304 + 2.20938i
\(302\) 0 0
\(303\) 13.0905 + 10.9843i 0.752032 + 0.631030i
\(304\) 0 0
\(305\) −5.49512 2.00006i −0.314650 0.114523i
\(306\) 0 0
\(307\) −14.4318 24.9965i −0.823664 1.42663i −0.902936 0.429775i \(-0.858593\pi\)
0.0792721 0.996853i \(-0.474740\pi\)
\(308\) 0 0
\(309\) 8.20039 2.98470i 0.466504 0.169794i
\(310\) 0 0
\(311\) −8.73891 + 7.33281i −0.495538 + 0.415806i −0.856006 0.516966i \(-0.827061\pi\)
0.360468 + 0.932772i \(0.382617\pi\)
\(312\) 0 0
\(313\) 11.0014 + 4.00419i 0.621837 + 0.226330i 0.633674 0.773600i \(-0.281546\pi\)
−0.0118377 + 0.999930i \(0.503768\pi\)
\(314\) 0 0
\(315\) −1.38551 + 7.85760i −0.0780644 + 0.442725i
\(316\) 0 0
\(317\) −3.63509 + 3.05020i −0.204167 + 0.171317i −0.739138 0.673554i \(-0.764767\pi\)
0.534971 + 0.844870i \(0.320323\pi\)
\(318\) 0 0
\(319\) −8.47911 + 14.6862i −0.474739 + 0.822272i
\(320\) 0 0
\(321\) −0.173836 0.985874i −0.00970258 0.0550261i
\(322\) 0 0
\(323\) 0.809959 1.40289i 0.0450673 0.0780589i
\(324\) 0 0
\(325\) 0.172975 + 0.299601i 0.00959491 + 0.0166189i
\(326\) 0 0
\(327\) −6.81880 −0.377081
\(328\) 0 0
\(329\) −28.7341 + 10.4584i −1.58416 + 0.576588i
\(330\) 0 0
\(331\) −0.790965 4.48579i −0.0434754 0.246561i 0.955323 0.295563i \(-0.0955072\pi\)
−0.998799 + 0.0490016i \(0.984396\pi\)
\(332\) 0 0
\(333\) −0.828428 4.51533i −0.0453976 0.247439i
\(334\) 0 0
\(335\) −5.60950 31.8130i −0.306480 1.73813i
\(336\) 0 0
\(337\) −11.1450 + 4.05646i −0.607108 + 0.220969i −0.627238 0.778828i \(-0.715814\pi\)
0.0201292 + 0.999797i \(0.493592\pi\)
\(338\) 0 0
\(339\) 16.8903 0.917356
\(340\) 0 0
\(341\) −1.24189 2.15101i −0.0672518 0.116484i
\(342\) 0 0
\(343\) 17.0307 29.4981i 0.919573 1.59275i
\(344\) 0 0
\(345\) −1.37111 7.77594i −0.0738180 0.418643i
\(346\) 0 0
\(347\) 3.27651 5.67508i 0.175892 0.304654i −0.764578 0.644532i \(-0.777052\pi\)
0.940470 + 0.339878i \(0.110386\pi\)
\(348\) 0 0
\(349\) −14.0683 + 11.8047i −0.753060 + 0.631892i −0.936310 0.351174i \(-0.885783\pi\)
0.183250 + 0.983066i \(0.441338\pi\)
\(350\) 0 0
\(351\) −1.46598 + 8.31399i −0.0782483 + 0.443768i
\(352\) 0 0
\(353\) 29.3818 + 10.6941i 1.56383 + 0.569189i 0.971611 0.236586i \(-0.0760285\pi\)
0.592222 + 0.805775i \(0.298251\pi\)
\(354\) 0 0
\(355\) −14.2050 + 11.9194i −0.753923 + 0.632616i
\(356\) 0 0
\(357\) −2.37983 + 0.866188i −0.125954 + 0.0458435i
\(358\) 0 0
\(359\) −5.01282 8.68245i −0.264566 0.458242i 0.702884 0.711305i \(-0.251895\pi\)
−0.967450 + 0.253063i \(0.918562\pi\)
\(360\) 0 0
\(361\) −0.591652 0.215344i −0.0311396 0.0113339i
\(362\) 0 0
\(363\) −25.9845 21.8036i −1.36383 1.14439i
\(364\) 0 0
\(365\) −23.1927 19.4610i −1.21396 1.01863i
\(366\) 0 0
\(367\) −3.60310 + 20.4342i −0.188080 + 1.06666i 0.733853 + 0.679308i \(0.237720\pi\)
−0.921934 + 0.387348i \(0.873391\pi\)
\(368\) 0 0
\(369\) 0.0902482 0.00469813
\(370\) 0 0
\(371\) 44.7782 2.32477
\(372\) 0 0
\(373\) 1.73428 9.83558i 0.0897975 0.509267i −0.906420 0.422377i \(-0.861196\pi\)
0.996218 0.0868903i \(-0.0276930\pi\)
\(374\) 0 0
\(375\) −12.5208 10.5062i −0.646572 0.542538i
\(376\) 0 0
\(377\) −3.36101 2.82022i −0.173101 0.145249i
\(378\) 0 0
\(379\) 2.34138 + 0.852192i 0.120269 + 0.0437742i 0.401453 0.915879i \(-0.368505\pi\)
−0.281185 + 0.959654i \(0.590727\pi\)
\(380\) 0 0
\(381\) −4.33983 7.51680i −0.222336 0.385097i
\(382\) 0 0
\(383\) −9.17264 + 3.33857i −0.468700 + 0.170593i −0.565563 0.824705i \(-0.691341\pi\)
0.0968634 + 0.995298i \(0.469119\pi\)
\(384\) 0 0
\(385\) 46.9704 39.4129i 2.39383 2.00867i
\(386\) 0 0
\(387\) −9.14880 3.32989i −0.465060 0.169268i
\(388\) 0 0
\(389\) 4.81811 27.3249i 0.244288 1.38543i −0.577853 0.816141i \(-0.696109\pi\)
0.822141 0.569285i \(-0.192780\pi\)
\(390\) 0 0
\(391\) −0.645331 + 0.541497i −0.0326358 + 0.0273847i
\(392\) 0 0
\(393\) −6.73996 + 11.6739i −0.339986 + 0.588873i
\(394\) 0 0
\(395\) −4.39906 24.9483i −0.221341 1.25529i
\(396\) 0 0
\(397\) 7.60298 13.1688i 0.381583 0.660921i −0.609706 0.792628i \(-0.708712\pi\)
0.991289 + 0.131707i \(0.0420458\pi\)
\(398\) 0 0
\(399\) 15.3444 + 26.5772i 0.768180 + 1.33053i
\(400\) 0 0
\(401\) −16.4705 −0.822499 −0.411250 0.911523i \(-0.634908\pi\)
−0.411250 + 0.911523i \(0.634908\pi\)
\(402\) 0 0
\(403\) 0.603855 0.219785i 0.0300802 0.0109483i
\(404\) 0 0
\(405\) 2.44889 + 13.8883i 0.121686 + 0.690116i
\(406\) 0 0
\(407\) −17.4275 + 30.6735i −0.863848 + 1.52043i
\(408\) 0 0
\(409\) −4.03616 22.8902i −0.199575 1.13185i −0.905751 0.423811i \(-0.860692\pi\)
0.706175 0.708037i \(-0.250419\pi\)
\(410\) 0 0
\(411\) 23.6532 8.60907i 1.16673 0.424654i
\(412\) 0 0
\(413\) −37.5410 −1.84727
\(414\) 0 0
\(415\) 8.42849 + 14.5986i 0.413738 + 0.716615i
\(416\) 0 0
\(417\) 1.25113 2.16703i 0.0612683 0.106120i
\(418\) 0 0
\(419\) 1.07471 + 6.09498i 0.0525030 + 0.297759i 0.999741 0.0227727i \(-0.00724941\pi\)
−0.947238 + 0.320532i \(0.896138\pi\)
\(420\) 0 0
\(421\) 14.6700 25.4092i 0.714973 1.23837i −0.247998 0.968761i \(-0.579773\pi\)
0.962970 0.269608i \(-0.0868941\pi\)
\(422\) 0 0
\(423\) 3.82435 3.20901i 0.185946 0.156027i
\(424\) 0 0
\(425\) 0.0146378 0.0830148i 0.000710036 0.00402681i
\(426\) 0 0
\(427\) −11.1068 4.04256i −0.537497 0.195633i
\(428\) 0 0
\(429\) 9.98956 8.38224i 0.482301 0.404698i
\(430\) 0 0
\(431\) −5.61297 + 2.04295i −0.270367 + 0.0984056i −0.473646 0.880715i \(-0.657062\pi\)
0.203279 + 0.979121i \(0.434840\pi\)
\(432\) 0 0
\(433\) 1.15529 + 2.00102i 0.0555198 + 0.0961631i 0.892450 0.451147i \(-0.148985\pi\)
−0.836930 + 0.547310i \(0.815652\pi\)
\(434\) 0 0
\(435\) −9.41599 3.42714i −0.451462 0.164319i
\(436\) 0 0
\(437\) 7.81990 + 6.56167i 0.374076 + 0.313887i
\(438\) 0 0
\(439\) 12.9591 + 10.8739i 0.618502 + 0.518985i 0.897332 0.441355i \(-0.145502\pi\)
−0.278830 + 0.960340i \(0.589947\pi\)
\(440\) 0 0
\(441\) −1.88303 + 10.6792i −0.0896683 + 0.508534i
\(442\) 0 0
\(443\) 16.5099 0.784409 0.392205 0.919878i \(-0.371713\pi\)
0.392205 + 0.919878i \(0.371713\pi\)
\(444\) 0 0
\(445\) −32.1140 −1.52235
\(446\) 0 0
\(447\) 2.13445 12.1051i 0.100956 0.572551i
\(448\) 0 0
\(449\) −9.09088 7.62815i −0.429025 0.359995i 0.402559 0.915394i \(-0.368121\pi\)
−0.831584 + 0.555399i \(0.812565\pi\)
\(450\) 0 0
\(451\) −0.531281 0.445798i −0.0250171 0.0209918i
\(452\) 0 0
\(453\) 6.70889 + 2.44184i 0.315211 + 0.114727i
\(454\) 0 0
\(455\) 7.93188 + 13.7384i 0.371852 + 0.644067i
\(456\) 0 0
\(457\) 4.43033 1.61251i 0.207242 0.0754299i −0.236313 0.971677i \(-0.575939\pi\)
0.443555 + 0.896247i \(0.353717\pi\)
\(458\) 0 0
\(459\) 1.57581 1.32226i 0.0735525 0.0617179i
\(460\) 0 0
\(461\) −4.56103 1.66008i −0.212428 0.0773175i 0.233614 0.972329i \(-0.424945\pi\)
−0.446042 + 0.895012i \(0.647167\pi\)
\(462\) 0 0
\(463\) 0.387848 2.19960i 0.0180248 0.102224i −0.974468 0.224526i \(-0.927917\pi\)
0.992493 + 0.122302i \(0.0390277\pi\)
\(464\) 0 0
\(465\) 1.12426 0.943363i 0.0521362 0.0437474i
\(466\) 0 0
\(467\) 12.3177 21.3349i 0.569996 0.987261i −0.426570 0.904455i \(-0.640278\pi\)
0.996566 0.0828068i \(-0.0263885\pi\)
\(468\) 0 0
\(469\) −11.3380 64.3010i −0.523541 2.96915i
\(470\) 0 0
\(471\) 13.1399 22.7591i 0.605457 1.04868i
\(472\) 0 0
\(473\) 37.4094 + 64.7950i 1.72009 + 2.97928i
\(474\) 0 0
\(475\) −1.02146 −0.0468680
\(476\) 0 0
\(477\) −6.86980 + 2.50040i −0.314546 + 0.114486i
\(478\) 0 0
\(479\) 3.26791 + 18.5332i 0.149314 + 0.846804i 0.963801 + 0.266622i \(0.0859076\pi\)
−0.814487 + 0.580182i \(0.802981\pi\)
\(480\) 0 0
\(481\) −7.03241 5.81845i −0.320650 0.265299i
\(482\) 0 0
\(483\) −2.77131 15.7169i −0.126099 0.715142i
\(484\) 0 0
\(485\) 12.1798 4.43308i 0.553056 0.201296i
\(486\) 0 0
\(487\) −39.7247 −1.80010 −0.900050 0.435787i \(-0.856470\pi\)
−0.900050 + 0.435787i \(0.856470\pi\)
\(488\) 0 0
\(489\) 12.4113 + 21.4970i 0.561257 + 0.972126i
\(490\) 0 0
\(491\) −3.62359 + 6.27624i −0.163530 + 0.283243i −0.936132 0.351648i \(-0.885622\pi\)
0.772602 + 0.634891i \(0.218955\pi\)
\(492\) 0 0
\(493\) 0.185643 + 1.05283i 0.00836092 + 0.0474171i
\(494\) 0 0
\(495\) −5.00532 + 8.66947i −0.224972 + 0.389664i
\(496\) 0 0
\(497\) −28.7114 + 24.0917i −1.28788 + 1.08066i
\(498\) 0 0
\(499\) 4.97283 28.2023i 0.222615 1.26251i −0.644578 0.764538i \(-0.722967\pi\)
0.867193 0.497972i \(-0.165922\pi\)
\(500\) 0 0
\(501\) −0.885461 0.322281i −0.0395595 0.0143985i
\(502\) 0 0
\(503\) −13.4101 + 11.2524i −0.597928 + 0.501721i −0.890779 0.454437i \(-0.849840\pi\)
0.292851 + 0.956158i \(0.405396\pi\)
\(504\) 0 0
\(505\) −24.5091 + 8.92057i −1.09064 + 0.396960i
\(506\) 0 0
\(507\) −8.05286 13.9480i −0.357640 0.619451i
\(508\) 0 0
\(509\) −35.1289 12.7859i −1.55706 0.566723i −0.586999 0.809588i \(-0.699691\pi\)
−0.970060 + 0.242864i \(0.921913\pi\)
\(510\) 0 0
\(511\) −46.8775 39.3349i −2.07374 1.74007i
\(512\) 0 0
\(513\) −19.0951 16.0227i −0.843070 0.707420i
\(514\) 0 0
\(515\) −2.31290 + 13.1171i −0.101918 + 0.578008i
\(516\) 0 0
\(517\) −38.3650 −1.68729
\(518\) 0 0
\(519\) 21.8296 0.958215
\(520\) 0 0
\(521\) −0.532100 + 3.01769i −0.0233117 + 0.132207i −0.994243 0.107153i \(-0.965827\pi\)
0.970931 + 0.239360i \(0.0769377\pi\)
\(522\) 0 0
\(523\) 16.2249 + 13.6143i 0.709466 + 0.595313i 0.924449 0.381305i \(-0.124525\pi\)
−0.214983 + 0.976618i \(0.568970\pi\)
\(524\) 0 0
\(525\) 1.22333 + 1.02650i 0.0533906 + 0.0448000i
\(526\) 0 0
\(527\) −0.147138 0.0535538i −0.00640942 0.00233284i
\(528\) 0 0
\(529\) 8.84569 + 15.3212i 0.384595 + 0.666138i
\(530\) 0 0
\(531\) 5.75948 2.09628i 0.249940 0.0909707i
\(532\) 0 0
\(533\) 0.137455 0.115338i 0.00595383 0.00499586i
\(534\) 0 0
\(535\) 1.43580 + 0.522587i 0.0620749 + 0.0225934i
\(536\) 0 0
\(537\) −5.62924 + 31.9250i −0.242920 + 1.37767i
\(538\) 0 0
\(539\) 63.8373 53.5658i 2.74967 2.30724i
\(540\) 0 0
\(541\) 13.4696 23.3301i 0.579105 1.00304i −0.416478 0.909146i \(-0.636736\pi\)
0.995582 0.0938928i \(-0.0299311\pi\)
\(542\) 0 0
\(543\) 0.305876 + 1.73471i 0.0131264 + 0.0744436i
\(544\) 0 0
\(545\) 5.20374 9.01313i 0.222904 0.386080i
\(546\) 0 0
\(547\) −14.2475 24.6775i −0.609181 1.05513i −0.991376 0.131050i \(-0.958165\pi\)
0.382195 0.924082i \(-0.375168\pi\)
\(548\) 0 0
\(549\) 1.92973 0.0823587
\(550\) 0 0
\(551\) 12.1734 4.43075i 0.518604 0.188756i
\(552\) 0 0
\(553\) −8.89145 50.4259i −0.378103 2.14433i
\(554\) 0 0
\(555\) −19.6372 6.99386i −0.833551 0.296873i
\(556\) 0 0
\(557\) 7.64434 + 43.3532i 0.323901 + 1.83693i 0.517288 + 0.855811i \(0.326942\pi\)
−0.193387 + 0.981123i \(0.561947\pi\)
\(558\) 0 0
\(559\) −18.1900 + 6.62060i −0.769353 + 0.280022i
\(560\) 0 0
\(561\) −3.17749 −0.134154
\(562\) 0 0
\(563\) 16.2698 + 28.1801i 0.685689 + 1.18765i 0.973220 + 0.229877i \(0.0738325\pi\)
−0.287530 + 0.957772i \(0.592834\pi\)
\(564\) 0 0
\(565\) −12.8898 + 22.3257i −0.542277 + 0.939251i
\(566\) 0 0
\(567\) 4.94973 + 28.0713i 0.207869 + 1.17888i
\(568\) 0 0
\(569\) −13.4601 + 23.3136i −0.564277 + 0.977357i 0.432839 + 0.901471i \(0.357512\pi\)
−0.997117 + 0.0758857i \(0.975822\pi\)
\(570\) 0 0
\(571\) 8.98942 7.54302i 0.376195 0.315665i −0.435011 0.900425i \(-0.643256\pi\)
0.811207 + 0.584760i \(0.198811\pi\)
\(572\) 0 0
\(573\) −2.77898 + 15.7604i −0.116093 + 0.658399i
\(574\) 0 0
\(575\) 0.499165 + 0.181681i 0.0208166 + 0.00757663i
\(576\) 0 0
\(577\) −5.12542 + 4.30074i −0.213374 + 0.179042i −0.743210 0.669058i \(-0.766698\pi\)
0.529836 + 0.848100i \(0.322253\pi\)
\(578\) 0 0
\(579\) 1.40815 0.512526i 0.0585209 0.0212999i
\(580\) 0 0
\(581\) 17.0358 + 29.5069i 0.706764 + 1.22415i
\(582\) 0 0
\(583\) 52.7930 + 19.2151i 2.18646 + 0.795807i
\(584\) 0 0
\(585\) −1.98404 1.66481i −0.0820301 0.0688314i
\(586\) 0 0
\(587\) 18.5228 + 15.5425i 0.764520 + 0.641508i 0.939299 0.343099i \(-0.111477\pi\)
−0.174779 + 0.984608i \(0.555921\pi\)
\(588\) 0 0
\(589\) −0.329479 + 1.86857i −0.0135759 + 0.0769930i
\(590\) 0 0
\(591\) 5.07386 0.208711
\(592\) 0 0
\(593\) 21.5119 0.883388 0.441694 0.897166i \(-0.354378\pi\)
0.441694 + 0.897166i \(0.354378\pi\)
\(594\) 0 0
\(595\) 0.671225 3.80670i 0.0275175 0.156060i
\(596\) 0 0
\(597\) 31.8712 + 26.7431i 1.30440 + 1.09452i
\(598\) 0 0
\(599\) 14.7915 + 12.4116i 0.604366 + 0.507123i 0.892846 0.450363i \(-0.148705\pi\)
−0.288480 + 0.957486i \(0.593150\pi\)
\(600\) 0 0
\(601\) 15.2325 + 5.54418i 0.621347 + 0.226152i 0.633461 0.773775i \(-0.281634\pi\)
−0.0121137 + 0.999927i \(0.503856\pi\)
\(602\) 0 0
\(603\) 5.33001 + 9.23184i 0.217055 + 0.375950i
\(604\) 0 0
\(605\) 48.6500 17.7072i 1.97790 0.719899i
\(606\) 0 0
\(607\) 12.4121 10.4150i 0.503793 0.422733i −0.355145 0.934811i \(-0.615569\pi\)
0.858939 + 0.512078i \(0.171124\pi\)
\(608\) 0 0
\(609\) −19.0318 6.92700i −0.771206 0.280696i
\(610\) 0 0
\(611\) 1.72362 9.77513i 0.0697302 0.395459i
\(612\) 0 0
\(613\) 8.94765 7.50797i 0.361392 0.303244i −0.443953 0.896050i \(-0.646424\pi\)
0.805345 + 0.592806i \(0.201980\pi\)
\(614\) 0 0
\(615\) 0.204899 0.354896i 0.00826234 0.0143108i
\(616\) 0 0
\(617\) 3.01838 + 17.1181i 0.121515 + 0.689147i 0.983317 + 0.181901i \(0.0582252\pi\)
−0.861802 + 0.507246i \(0.830664\pi\)
\(618\) 0 0
\(619\) 3.05948 5.29917i 0.122971 0.212991i −0.797967 0.602701i \(-0.794091\pi\)
0.920938 + 0.389709i \(0.127425\pi\)
\(620\) 0 0
\(621\) 6.48147 + 11.2262i 0.260093 + 0.450494i
\(622\) 0 0
\(623\) −64.9094 −2.60054
\(624\) 0 0
\(625\) 24.5256 8.92659i 0.981024 0.357064i
\(626\) 0 0
\(627\) 6.68610 + 37.9188i 0.267017 + 1.51433i
\(628\) 0 0
\(629\) 0.401341 + 2.18750i 0.0160025 + 0.0872215i
\(630\) 0 0
\(631\) −4.74804 26.9275i −0.189017 1.07197i −0.920685 0.390306i \(-0.872369\pi\)
0.731669 0.681661i \(-0.238742\pi\)
\(632\) 0 0
\(633\) 10.7800 3.92359i 0.428465 0.155949i
\(634\) 0 0
\(635\) 13.2477 0.525718
\(636\) 0 0
\(637\) 10.7802 + 18.6718i 0.427126 + 0.739804i
\(638\) 0 0
\(639\) 3.05958 5.29934i 0.121035 0.209639i
\(640\) 0 0
\(641\) −2.59140 14.6966i −0.102354 0.580479i −0.992244 0.124304i \(-0.960330\pi\)
0.889890 0.456175i \(-0.150781\pi\)
\(642\) 0 0
\(643\) 7.91287 13.7055i 0.312053 0.540492i −0.666754 0.745278i \(-0.732317\pi\)
0.978807 + 0.204786i \(0.0656499\pi\)
\(644\) 0 0
\(645\) −33.8661 + 28.4170i −1.33347 + 1.11892i
\(646\) 0 0
\(647\) −6.66717 + 37.8114i −0.262113 + 1.48652i 0.515017 + 0.857180i \(0.327785\pi\)
−0.777131 + 0.629339i \(0.783326\pi\)
\(648\) 0 0
\(649\) −44.2604 16.1095i −1.73737 0.632352i
\(650\) 0 0
\(651\) 2.27237 1.90674i 0.0890611 0.0747311i
\(652\) 0 0
\(653\) 10.2087 3.71567i 0.399498 0.145405i −0.134455 0.990920i \(-0.542928\pi\)
0.533953 + 0.845514i \(0.320706\pi\)
\(654\) 0 0
\(655\) −10.2871 17.8178i −0.401951 0.696200i
\(656\) 0 0
\(657\) 9.38830 + 3.41706i 0.366273 + 0.133312i
\(658\) 0 0
\(659\) 13.9069 + 11.6693i 0.541737 + 0.454571i 0.872132 0.489272i \(-0.162737\pi\)
−0.330394 + 0.943843i \(0.607182\pi\)
\(660\) 0 0
\(661\) 5.39465 + 4.52664i 0.209827 + 0.176066i 0.741644 0.670793i \(-0.234046\pi\)
−0.531817 + 0.846859i \(0.678491\pi\)
\(662\) 0 0
\(663\) 0.142754 0.809601i 0.00554412 0.0314423i
\(664\) 0 0
\(665\) −46.8399 −1.81637
\(666\) 0 0
\(667\) −6.73692 −0.260854
\(668\) 0 0
\(669\) −0.246995 + 1.40078i −0.00954939 + 0.0541573i
\(670\) 0 0
\(671\) −11.3601 9.53225i −0.438552 0.367989i
\(672\) 0 0
\(673\) 8.74225 + 7.33562i 0.336989 + 0.282767i 0.795540 0.605900i \(-0.207187\pi\)
−0.458551 + 0.888668i \(0.651631\pi\)
\(674\) 0 0
\(675\) −1.21889 0.443641i −0.0469152 0.0170757i
\(676\) 0 0
\(677\) −14.9313 25.8619i −0.573858 0.993952i −0.996165 0.0874985i \(-0.972113\pi\)
0.422306 0.906453i \(-0.361221\pi\)
\(678\) 0 0
\(679\) 24.6180 8.96022i 0.944752 0.343862i
\(680\) 0 0
\(681\) 22.4486 18.8366i 0.860231 0.721819i
\(682\) 0 0
\(683\) −40.0133 14.5637i −1.53107 0.557263i −0.567184 0.823591i \(-0.691967\pi\)
−0.963882 + 0.266328i \(0.914189\pi\)
\(684\) 0 0
\(685\) −6.67132 + 37.8349i −0.254898 + 1.44560i
\(686\) 0 0
\(687\) −5.62998 + 4.72412i −0.214797 + 0.180236i
\(688\) 0 0
\(689\) −7.26768 + 12.5880i −0.276877 + 0.479564i
\(690\) 0 0
\(691\) 6.77155 + 38.4034i 0.257602 + 1.46093i 0.789305 + 0.614002i \(0.210441\pi\)
−0.531703 + 0.846931i \(0.678448\pi\)
\(692\) 0 0
\(693\) −10.1168 + 17.5229i −0.384307 + 0.665639i
\(694\) 0 0
\(695\) 1.90959 + 3.30751i 0.0724350 + 0.125461i
\(696\) 0 0
\(697\) −0.0437218 −0.00165608
\(698\) 0 0
\(699\) −21.9906 + 8.00391i −0.831759 + 0.302736i
\(700\) 0 0
\(701\) −3.97235 22.5283i −0.150033 0.850882i −0.963187 0.268833i \(-0.913362\pi\)
0.813153 0.582049i \(-0.197749\pi\)
\(702\) 0 0
\(703\) 25.2602 9.39240i 0.952707 0.354241i
\(704\) 0 0
\(705\) −3.93646 22.3248i −0.148256 0.840800i
\(706\) 0 0
\(707\) −49.5381 + 18.0304i −1.86307 + 0.678103i
\(708\) 0 0
\(709\) −24.7872 −0.930902 −0.465451 0.885074i \(-0.654108\pi\)
−0.465451 + 0.885074i \(0.654108\pi\)
\(710\) 0 0
\(711\) 4.17988 + 7.23976i 0.156758 + 0.271512i
\(712\) 0 0
\(713\) 0.493358 0.854521i 0.0184764 0.0320021i
\(714\) 0 0
\(715\) 3.45621 + 19.6011i 0.129255 + 0.733041i
\(716\) 0 0
\(717\) −0.250883 + 0.434542i −0.00936939 + 0.0162283i
\(718\) 0 0
\(719\) −16.5427 + 13.8810i −0.616939 + 0.517673i −0.896840 0.442356i \(-0.854143\pi\)
0.279901 + 0.960029i \(0.409698\pi\)
\(720\) 0 0
\(721\) −4.67486 + 26.5125i −0.174101 + 0.987376i
\(722\) 0 0
\(723\) 17.4507 + 6.35154i 0.648999 + 0.236216i
\(724\) 0 0
\(725\) 0.516406 0.433316i 0.0191788 0.0160929i
\(726\) 0 0
\(727\) 2.40292 0.874590i 0.0891193 0.0324368i −0.297076 0.954854i \(-0.596011\pi\)
0.386195 + 0.922417i \(0.373789\pi\)
\(728\) 0 0
\(729\) −14.9725 25.9331i −0.554537 0.960486i
\(730\) 0 0
\(731\) 4.43224 + 1.61320i 0.163932 + 0.0596665i
\(732\) 0 0
\(733\) 27.5944 + 23.1545i 1.01922 + 0.855230i 0.989530 0.144329i \(-0.0461024\pi\)
0.0296935 + 0.999559i \(0.490547\pi\)
\(734\) 0 0
\(735\) 37.7202 + 31.6510i 1.39133 + 1.16747i
\(736\) 0 0
\(737\) 14.2253 80.6755i 0.523994 2.97172i
\(738\) 0 0
\(739\) 9.09681 0.334632 0.167316 0.985903i \(-0.446490\pi\)
0.167316 + 0.985903i \(0.446490\pi\)
\(740\) 0 0
\(741\) −9.96181 −0.365956
\(742\) 0 0
\(743\) −1.55697 + 8.83000i −0.0571196 + 0.323941i −0.999957 0.00931280i \(-0.997036\pi\)
0.942837 + 0.333254i \(0.108147\pi\)
\(744\) 0 0
\(745\) 14.3717 + 12.0593i 0.526537 + 0.441817i
\(746\) 0 0
\(747\) −4.26126 3.57562i −0.155911 0.130825i
\(748\) 0 0
\(749\) 2.90205 + 1.05626i 0.106039 + 0.0385950i
\(750\) 0 0
\(751\) −17.8566 30.9286i −0.651597 1.12860i −0.982735 0.185017i \(-0.940766\pi\)
0.331138 0.943582i \(-0.392567\pi\)
\(752\) 0 0
\(753\) −11.6263 + 4.23163i −0.423686 + 0.154209i
\(754\) 0 0
\(755\) −8.34749 + 7.00437i −0.303796 + 0.254915i
\(756\) 0 0
\(757\) 39.0582 + 14.2160i 1.41960 + 0.516691i 0.933931 0.357454i \(-0.116355\pi\)
0.485665 + 0.874145i \(0.338577\pi\)
\(758\) 0 0
\(759\) 3.47703 19.7192i 0.126208 0.715762i
\(760\) 0 0
\(761\) 5.27255 4.42419i 0.191130 0.160377i −0.542201 0.840249i \(-0.682409\pi\)
0.733331 + 0.679872i \(0.237965\pi\)
\(762\) 0 0
\(763\) 10.5179 18.2175i 0.380773 0.659518i
\(764\) 0 0
\(765\) 0.109587 + 0.621499i 0.00396213 + 0.0224703i
\(766\) 0 0
\(767\) 6.09305 10.5535i 0.220007 0.381064i
\(768\) 0 0
\(769\) −2.66183 4.61043i −0.0959881 0.166256i 0.814032 0.580819i \(-0.197268\pi\)
−0.910021 + 0.414563i \(0.863934\pi\)
\(770\) 0 0
\(771\) 30.3930 1.09458
\(772\) 0 0
\(773\) 31.5436 11.4809i 1.13454 0.412940i 0.294604 0.955619i \(-0.404812\pi\)
0.839940 + 0.542679i \(0.182590\pi\)
\(774\) 0 0
\(775\) 0.0171450 + 0.0972344i 0.000615868 + 0.00349276i
\(776\) 0 0
\(777\) −39.6910 14.1361i −1.42391 0.507130i
\(778\) 0 0
\(779\) 0.0919998 + 0.521757i 0.00329623 + 0.0186939i
\(780\) 0 0
\(781\) −44.1885 + 16.0833i −1.58119 + 0.575506i
\(782\) 0 0
\(783\) 16.4506 0.587898
\(784\) 0 0
\(785\) 20.0554 + 34.7369i 0.715807 + 1.23981i
\(786\) 0 0
\(787\) −9.14463 + 15.8390i −0.325971 + 0.564598i −0.981708 0.190391i \(-0.939024\pi\)
0.655738 + 0.754989i \(0.272358\pi\)
\(788\) 0 0
\(789\) −6.04130 34.2619i −0.215076 1.21976i
\(790\) 0 0
\(791\) −26.0530 + 45.1251i −0.926339 + 1.60447i
\(792\) 0 0
\(793\) 2.93912 2.46622i 0.104371 0.0875779i
\(794\) 0 0
\(795\) −5.76449 + 32.6920i −0.204445 + 1.15947i
\(796\) 0 0
\(797\) 31.2275 + 11.3659i 1.10613 + 0.402600i 0.829574 0.558397i \(-0.188583\pi\)
0.276560 + 0.960997i \(0.410806\pi\)
\(798\) 0 0
\(799\) −1.85275 + 1.55464i −0.0655456 + 0.0549993i
\(800\) 0 0
\(801\) 9.95829 3.62452i 0.351859 0.128066i
\(802\) 0 0
\(803\) −38.3887 66.4912i −1.35471 2.34642i
\(804\) 0 0
\(805\) 22.8896 + 8.33112i 0.806751 + 0.293633i
\(806\) 0 0
\(807\) −2.55417 2.14320i −0.0899110 0.0754443i
\(808\) 0 0
\(809\) −9.69050 8.13129i −0.340700 0.285881i 0.456343 0.889804i \(-0.349159\pi\)
−0.797043 + 0.603923i \(0.793603\pi\)
\(810\) 0 0
\(811\) −6.32995 + 35.8989i −0.222275 + 1.26058i 0.645553 + 0.763716i \(0.276627\pi\)
−0.867827 + 0.496866i \(0.834484\pi\)
\(812\) 0 0
\(813\) −43.2262 −1.51601
\(814\) 0 0
\(815\) −37.8864 −1.32710
\(816\) 0 0
\(817\) 9.92491 56.2870i 0.347229 1.96923i
\(818\) 0 0
\(819\) −4.01018 3.36494i −0.140127 0.117581i
\(820\) 0 0
\(821\) 5.73792 + 4.81469i 0.200255 + 0.168034i 0.737401 0.675456i \(-0.236053\pi\)
−0.537146 + 0.843489i \(0.680497\pi\)
\(822\) 0 0
\(823\) −36.0723 13.1292i −1.25740 0.457657i −0.374505 0.927225i \(-0.622187\pi\)
−0.882896 + 0.469568i \(0.844410\pi\)
\(824\) 0 0
\(825\) 1.00181 + 1.73518i 0.0348784 + 0.0604112i
\(826\) 0 0
\(827\) 8.23186 2.99615i 0.286250 0.104186i −0.194905 0.980822i \(-0.562440\pi\)
0.481155 + 0.876636i \(0.340218\pi\)
\(828\) 0 0
\(829\) 3.09992 2.60114i 0.107665 0.0903414i −0.587366 0.809321i \(-0.699835\pi\)
0.695031 + 0.718980i \(0.255391\pi\)
\(830\) 0 0
\(831\) −24.6951 8.98829i −0.856664 0.311800i
\(832\) 0 0
\(833\) 0.912258 5.17367i 0.0316079 0.179257i
\(834\) 0 0
\(835\) 1.10173 0.924460i 0.0381269 0.0319923i
\(836\) 0 0
\(837\) −1.20471 + 2.08662i −0.0416410 + 0.0721243i
\(838\) 0 0
\(839\) 1.54853 + 8.78212i 0.0534610 + 0.303193i 0.999800 0.0199822i \(-0.00636094\pi\)
−0.946339 + 0.323175i \(0.895250\pi\)
\(840\) 0 0
\(841\) 10.2253 17.7107i 0.352595 0.610713i
\(842\) 0 0
\(843\) −13.2011 22.8650i −0.454671 0.787513i
\(844\) 0 0
\(845\) 24.5820 0.845647
\(846\) 0 0
\(847\) 98.3323 35.7900i 3.37874 1.22976i
\(848\) 0 0
\(849\) 5.87614 + 33.3252i 0.201669 + 1.14372i
\(850\) 0 0
\(851\) −14.0146 + 0.0969685i −0.480415 + 0.00332404i
\(852\) 0 0
\(853\) −4.75255 26.9530i −0.162724 0.922854i −0.951380 0.308020i \(-0.900334\pi\)
0.788656 0.614835i \(-0.210777\pi\)
\(854\) 0 0
\(855\) 7.18610 2.61553i 0.245760 0.0894492i
\(856\) 0 0
\(857\) −3.62035 −0.123669 −0.0618344 0.998086i \(-0.519695\pi\)
−0.0618344 + 0.998086i \(0.519695\pi\)
\(858\) 0 0
\(859\) 0.600179 + 1.03954i 0.0204778 + 0.0354687i 0.876083 0.482161i \(-0.160148\pi\)
−0.855605 + 0.517629i \(0.826815\pi\)
\(860\) 0 0
\(861\) 0.414146 0.717322i 0.0141141 0.0244463i
\(862\) 0 0
\(863\) −8.28755 47.0010i −0.282112 1.59993i −0.715424 0.698691i \(-0.753766\pi\)
0.433312 0.901244i \(-0.357345\pi\)
\(864\) 0 0
\(865\) −16.6592 + 28.8545i −0.566429 + 0.981084i
\(866\) 0 0
\(867\) 19.3602 16.2452i 0.657508 0.551715i
\(868\) 0 0
\(869\) 11.1557 63.2670i 0.378431 2.14619i
\(870\) 0 0
\(871\) 19.9164 + 7.24898i 0.674842 + 0.245622i
\(872\) 0 0
\(873\) −3.27651 + 2.74932i −0.110893 + 0.0930505i
\(874\) 0 0
\(875\) 47.3821 17.2457i 1.60181 0.583010i
\(876\) 0 0
\(877\) −18.5981 32.2128i −0.628012 1.08775i −0.987950 0.154772i \(-0.950536\pi\)
0.359939 0.932976i \(-0.382798\pi\)
\(878\) 0 0
\(879\) −40.5680 14.7656i −1.36833 0.498030i
\(880\) 0 0
\(881\) 0.922572 + 0.774130i 0.0310822 + 0.0260811i 0.658196 0.752846i \(-0.271320\pi\)
−0.627114 + 0.778927i \(0.715764\pi\)
\(882\) 0 0
\(883\) 16.3100 + 13.6857i 0.548875 + 0.460561i 0.874560 0.484918i \(-0.161150\pi\)
−0.325685 + 0.945478i \(0.605595\pi\)
\(884\) 0 0
\(885\) 4.83281 27.4082i 0.162453 0.921318i
\(886\) 0 0
\(887\) −24.9441 −0.837542 −0.418771 0.908092i \(-0.637539\pi\)
−0.418771 + 0.908092i \(0.637539\pi\)
\(888\) 0 0
\(889\) 26.7764 0.898052
\(890\) 0 0
\(891\) −6.21019 + 35.2198i −0.208049 + 1.17991i
\(892\) 0 0
\(893\) 22.4510 + 18.8386i 0.751293 + 0.630410i
\(894\) 0 0
\(895\) −37.9027 31.8042i −1.26695 1.06310i
\(896\) 0 0
\(897\) 4.86810 + 1.77184i 0.162541 + 0.0591601i
\(898\) 0 0
\(899\) −0.626096 1.08443i −0.0208815 0.0361678i
\(900\) 0 0
\(901\) 3.32815 1.21135i 0.110877 0.0403559i
\(902\) 0 0
\(903\) −68.4506 + 57.4369i −2.27789 + 1.91138i
\(904\) 0 0
\(905\) −2.52638 0.919527i −0.0839797 0.0305661i
\(906\) 0 0
\(907\) 1.33823 7.58946i 0.0444351 0.252004i −0.954496 0.298223i \(-0.903606\pi\)
0.998931 + 0.0462190i \(0.0147172\pi\)
\(908\) 0 0
\(909\) 6.59324 5.53239i 0.218684 0.183498i
\(910\) 0 0
\(911\) 11.9052 20.6205i 0.394438 0.683186i −0.598592 0.801054i \(-0.704273\pi\)
0.993029 + 0.117868i \(0.0376061\pi\)
\(912\) 0 0
\(913\) 7.42312 + 42.0986i 0.245669 + 1.39326i
\(914\) 0 0
\(915\) 4.38125 7.58855i 0.144840 0.250870i
\(916\) 0 0
\(917\) −20.7925 36.0137i −0.686629 1.18928i
\(918\) 0 0
\(919\) 42.8179 1.41243 0.706216 0.707997i \(-0.250401\pi\)
0.706216 + 0.707997i \(0.250401\pi\)
\(920\) 0 0
\(921\) 40.6417 14.7924i 1.33919 0.487425i
\(922\) 0 0
\(923\) −2.11266 11.9815i −0.0695390 0.394375i
\(924\) 0 0
\(925\) 1.06803 0.908848i 0.0351165 0.0298828i
\(926\) 0 0
\(927\) −0.763239 4.32854i −0.0250680 0.142168i
\(928\) 0 0
\(929\) 51.9266 18.8997i 1.70366 0.620080i 0.707422 0.706792i \(-0.249858\pi\)
0.996233 + 0.0867117i \(0.0276359\pi\)
\(930\) 0 0
\(931\) −63.6599 −2.08637
\(932\) 0 0
\(933\) −8.54692 14.8037i −0.279814 0.484651i
\(934\) 0 0
\(935\) 2.42489 4.20002i 0.0793022 0.137355i
\(936\) 0 0
\(937\) 4.88641 + 27.7122i 0.159632 + 0.905318i 0.954428 + 0.298442i \(0.0964668\pi\)
−0.794796 + 0.606877i \(0.792422\pi\)
\(938\) 0 0
\(939\) −8.77141 + 15.1925i −0.286244 + 0.495789i
\(940\) 0 0
\(941\) −2.90978 + 2.44159i −0.0948561 + 0.0795937i −0.688982 0.724778i \(-0.741942\pi\)
0.594126 + 0.804372i \(0.297498\pi\)
\(942\) 0 0
\(943\) 0.0478434 0.271333i 0.00155799 0.00883583i
\(944\) 0 0
\(945\) −55.8932 20.3434i −1.81820 0.661772i
\(946\) 0 0
\(947\) −5.71306 + 4.79383i −0.185650 + 0.155779i −0.730876 0.682510i \(-0.760888\pi\)
0.545226 + 0.838289i \(0.316444\pi\)
\(948\) 0 0
\(949\) 18.6662 6.79392i 0.605929 0.220540i
\(950\) 0 0
\(951\) −3.55523 6.15784i −0.115286 0.199682i
\(952\) 0 0
\(953\) 4.88614 + 1.77841i 0.158278 + 0.0576083i 0.419944 0.907550i \(-0.362050\pi\)
−0.261666 + 0.965158i \(0.584272\pi\)
\(954\) 0 0
\(955\) −18.7114 15.7007i −0.605486 0.508063i
\(956\) 0 0
\(957\) −19.4657 16.3337i −0.629238 0.527993i
\(958\) 0 0
\(959\) −13.4842 + 76.4726i −0.435427 + 2.46943i
\(960\) 0 0
\(961\) −30.8166 −0.994084
\(962\) 0 0
\(963\) −0.504210 −0.0162479
\(964\) 0 0
\(965\) −0.397166 + 2.25244i −0.0127852 + 0.0725085i
\(966\) 0 0
\(967\) 22.0122 + 18.4704i 0.707865 + 0.593969i 0.923999 0.382394i \(-0.124900\pi\)
−0.216134 + 0.976364i \(0.569345\pi\)
\(968\) 0 0
\(969\) 1.85945 + 1.56026i 0.0597340 + 0.0501228i
\(970\) 0 0
\(971\) 35.4110 + 12.8886i 1.13639 + 0.413613i 0.840610 0.541641i \(-0.182197\pi\)
0.295784 + 0.955255i \(0.404419\pi\)
\(972\) 0 0
\(973\) 3.85970 + 6.68520i 0.123736 + 0.214318i
\(974\) 0 0
\(975\) −0.487119 + 0.177297i −0.0156003 + 0.00567804i
\(976\) 0 0
\(977\) 18.6843 15.6780i 0.597764 0.501583i −0.292962 0.956124i \(-0.594641\pi\)
0.890726 + 0.454541i \(0.150197\pi\)
\(978\) 0 0
\(979\) −76.5274 27.8537i −2.44583 0.890209i
\(980\) 0 0
\(981\) −0.596375 + 3.38221i −0.0190408 + 0.107986i
\(982\) 0 0
\(983\) 42.3410 35.5283i 1.35047 1.13318i 0.371666 0.928367i \(-0.378787\pi\)
0.978802 0.204810i \(-0.0656577\pi\)
\(984\) 0 0
\(985\) −3.87209 + 6.70666i −0.123375 + 0.213692i
\(986\) 0 0
\(987\) −7.95644 45.1232i −0.253256 1.43629i
\(988\) 0 0
\(989\) −14.8615 + 25.7408i −0.472567 + 0.818510i
\(990\) 0 0
\(991\) 20.1746 + 34.9435i 0.640869 + 1.11002i 0.985239 + 0.171183i \(0.0547591\pi\)
−0.344370 + 0.938834i \(0.611908\pi\)
\(992\) 0 0
\(993\) 6.82533 0.216595
\(994\) 0 0
\(995\) −59.6715 + 21.7187i −1.89171 + 0.688528i
\(996\) 0 0
\(997\) −2.34851 13.3191i −0.0743781 0.421819i −0.999147 0.0412903i \(-0.986853\pi\)
0.924769 0.380529i \(-0.124258\pi\)
\(998\) 0 0
\(999\) 34.2218 0.236784i 1.08273 0.00749151i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 296.2.u.b.9.2 30
4.3 odd 2 592.2.bc.g.305.4 30
37.33 even 9 inner 296.2.u.b.33.2 yes 30
148.107 odd 18 592.2.bc.g.33.4 30
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
296.2.u.b.9.2 30 1.1 even 1 trivial
296.2.u.b.33.2 yes 30 37.33 even 9 inner
592.2.bc.g.33.4 30 148.107 odd 18
592.2.bc.g.305.4 30 4.3 odd 2