Properties

Label 297.2.e.d.100.2
Level $297$
Weight $2$
Character 297.100
Analytic conductor $2.372$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(100,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.100");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.e (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\zeta_{18})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - x^{3} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 99)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.2
Root \(0.939693 - 0.342020i\) of defining polynomial
Character \(\chi\) \(=\) 297.100
Dual form 297.2.e.d.199.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.173648 - 0.300767i) q^{2} +(0.939693 + 1.62760i) q^{4} +(0.326352 + 0.565258i) q^{5} +(-0.266044 + 0.460802i) q^{7} +1.34730 q^{8} +0.226682 q^{10} +(-0.500000 + 0.866025i) q^{11} +(1.15270 + 1.99654i) q^{13} +(0.0923963 + 0.160035i) q^{14} +(-1.64543 + 2.84997i) q^{16} +4.41147 q^{17} -4.18479 q^{19} +(-0.613341 + 1.06234i) q^{20} +(0.173648 + 0.300767i) q^{22} +(0.705737 + 1.22237i) q^{23} +(2.28699 - 3.96118i) q^{25} +0.800660 q^{26} -1.00000 q^{28} +(3.17752 - 5.50362i) q^{29} +(1.08125 + 1.87278i) q^{31} +(1.91875 + 3.32337i) q^{32} +(0.766044 - 1.32683i) q^{34} -0.347296 q^{35} -3.16250 q^{37} +(-0.726682 + 1.25865i) q^{38} +(0.439693 + 0.761570i) q^{40} +(-4.65657 - 8.06542i) q^{41} +(6.14930 - 10.6509i) q^{43} -1.87939 q^{44} +0.490200 q^{46} +(-1.93242 + 3.34705i) q^{47} +(3.35844 + 5.81699i) q^{49} +(-0.794263 - 1.37570i) q^{50} +(-2.16637 + 3.75227i) q^{52} -12.6236 q^{53} -0.652704 q^{55} +(-0.358441 + 0.620838i) q^{56} +(-1.10354 - 1.91139i) q^{58} +(-1.61721 - 2.80109i) q^{59} +(4.26604 - 7.38901i) q^{61} +0.751030 q^{62} -5.24897 q^{64} +(-0.752374 + 1.30315i) q^{65} +(-2.48158 - 4.29823i) q^{67} +(4.14543 + 7.18009i) q^{68} +(-0.0603074 + 0.104455i) q^{70} -9.98545 q^{71} -7.49525 q^{73} +(-0.549163 + 0.951178i) q^{74} +(-3.93242 - 6.81115i) q^{76} +(-0.266044 - 0.460802i) q^{77} +(2.43969 - 4.22567i) q^{79} -2.14796 q^{80} -3.23442 q^{82} +(-2.29813 + 3.98048i) q^{83} +(1.43969 + 2.49362i) q^{85} +(-2.13563 - 3.69902i) q^{86} +(-0.673648 + 1.16679i) q^{88} +16.9513 q^{89} -1.22668 q^{91} +(-1.32635 + 2.29731i) q^{92} +(0.671122 + 1.16242i) q^{94} +(-1.36571 - 2.36549i) q^{95} +(-6.32295 + 10.9517i) q^{97} +2.33275 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + 3 q^{5} + 3 q^{7} + 6 q^{8} - 12 q^{10} - 3 q^{11} + 9 q^{13} - 3 q^{14} + 6 q^{16} + 6 q^{17} - 18 q^{19} + 3 q^{20} - 6 q^{23} + 6 q^{25} - 24 q^{26} - 6 q^{28} - 6 q^{29} + 9 q^{31} + 9 q^{32}+ \cdots - 24 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.173648 0.300767i 0.122788 0.212675i −0.798078 0.602554i \(-0.794150\pi\)
0.920866 + 0.389879i \(0.127483\pi\)
\(3\) 0 0
\(4\) 0.939693 + 1.62760i 0.469846 + 0.813798i
\(5\) 0.326352 + 0.565258i 0.145949 + 0.252791i 0.929727 0.368251i \(-0.120043\pi\)
−0.783778 + 0.621042i \(0.786710\pi\)
\(6\) 0 0
\(7\) −0.266044 + 0.460802i −0.100555 + 0.174167i −0.911914 0.410382i \(-0.865395\pi\)
0.811358 + 0.584549i \(0.198729\pi\)
\(8\) 1.34730 0.476341
\(9\) 0 0
\(10\) 0.226682 0.0716830
\(11\) −0.500000 + 0.866025i −0.150756 + 0.261116i
\(12\) 0 0
\(13\) 1.15270 + 1.99654i 0.319702 + 0.553741i 0.980426 0.196889i \(-0.0630837\pi\)
−0.660723 + 0.750629i \(0.729750\pi\)
\(14\) 0.0923963 + 0.160035i 0.0246939 + 0.0427712i
\(15\) 0 0
\(16\) −1.64543 + 2.84997i −0.411357 + 0.712492i
\(17\) 4.41147 1.06994 0.534970 0.844871i \(-0.320323\pi\)
0.534970 + 0.844871i \(0.320323\pi\)
\(18\) 0 0
\(19\) −4.18479 −0.960057 −0.480029 0.877253i \(-0.659374\pi\)
−0.480029 + 0.877253i \(0.659374\pi\)
\(20\) −0.613341 + 1.06234i −0.137147 + 0.237546i
\(21\) 0 0
\(22\) 0.173648 + 0.300767i 0.0370219 + 0.0641238i
\(23\) 0.705737 + 1.22237i 0.147156 + 0.254882i 0.930175 0.367115i \(-0.119655\pi\)
−0.783019 + 0.621998i \(0.786321\pi\)
\(24\) 0 0
\(25\) 2.28699 3.96118i 0.457398 0.792236i
\(26\) 0.800660 0.157022
\(27\) 0 0
\(28\) −1.00000 −0.188982
\(29\) 3.17752 5.50362i 0.590050 1.02200i −0.404175 0.914682i \(-0.632441\pi\)
0.994225 0.107315i \(-0.0342255\pi\)
\(30\) 0 0
\(31\) 1.08125 + 1.87278i 0.194199 + 0.336362i 0.946638 0.322300i \(-0.104456\pi\)
−0.752439 + 0.658662i \(0.771123\pi\)
\(32\) 1.91875 + 3.32337i 0.339190 + 0.587494i
\(33\) 0 0
\(34\) 0.766044 1.32683i 0.131376 0.227549i
\(35\) −0.347296 −0.0587038
\(36\) 0 0
\(37\) −3.16250 −0.519912 −0.259956 0.965620i \(-0.583708\pi\)
−0.259956 + 0.965620i \(0.583708\pi\)
\(38\) −0.726682 + 1.25865i −0.117883 + 0.204180i
\(39\) 0 0
\(40\) 0.439693 + 0.761570i 0.0695215 + 0.120415i
\(41\) −4.65657 8.06542i −0.727235 1.25961i −0.958048 0.286609i \(-0.907472\pi\)
0.230813 0.972998i \(-0.425861\pi\)
\(42\) 0 0
\(43\) 6.14930 10.6509i 0.937759 1.62425i 0.168122 0.985766i \(-0.446230\pi\)
0.769638 0.638481i \(-0.220437\pi\)
\(44\) −1.87939 −0.283328
\(45\) 0 0
\(46\) 0.490200 0.0722760
\(47\) −1.93242 + 3.34705i −0.281872 + 0.488217i −0.971846 0.235617i \(-0.924289\pi\)
0.689974 + 0.723834i \(0.257622\pi\)
\(48\) 0 0
\(49\) 3.35844 + 5.81699i 0.479777 + 0.830999i
\(50\) −0.794263 1.37570i −0.112326 0.194554i
\(51\) 0 0
\(52\) −2.16637 + 3.75227i −0.300422 + 0.520346i
\(53\) −12.6236 −1.73399 −0.866993 0.498320i \(-0.833950\pi\)
−0.866993 + 0.498320i \(0.833950\pi\)
\(54\) 0 0
\(55\) −0.652704 −0.0880105
\(56\) −0.358441 + 0.620838i −0.0478987 + 0.0829629i
\(57\) 0 0
\(58\) −1.10354 1.91139i −0.144902 0.250978i
\(59\) −1.61721 2.80109i −0.210543 0.364671i 0.741342 0.671128i \(-0.234190\pi\)
−0.951885 + 0.306457i \(0.900857\pi\)
\(60\) 0 0
\(61\) 4.26604 7.38901i 0.546211 0.946065i −0.452319 0.891856i \(-0.649403\pi\)
0.998530 0.0542088i \(-0.0172637\pi\)
\(62\) 0.751030 0.0953809
\(63\) 0 0
\(64\) −5.24897 −0.656121
\(65\) −0.752374 + 1.30315i −0.0933205 + 0.161636i
\(66\) 0 0
\(67\) −2.48158 4.29823i −0.303173 0.525112i 0.673680 0.739024i \(-0.264713\pi\)
−0.976853 + 0.213912i \(0.931379\pi\)
\(68\) 4.14543 + 7.18009i 0.502707 + 0.870714i
\(69\) 0 0
\(70\) −0.0603074 + 0.104455i −0.00720811 + 0.0124848i
\(71\) −9.98545 −1.18506 −0.592528 0.805550i \(-0.701870\pi\)
−0.592528 + 0.805550i \(0.701870\pi\)
\(72\) 0 0
\(73\) −7.49525 −0.877253 −0.438626 0.898669i \(-0.644535\pi\)
−0.438626 + 0.898669i \(0.644535\pi\)
\(74\) −0.549163 + 0.951178i −0.0638389 + 0.110572i
\(75\) 0 0
\(76\) −3.93242 6.81115i −0.451079 0.781292i
\(77\) −0.266044 0.460802i −0.0303186 0.0525133i
\(78\) 0 0
\(79\) 2.43969 4.22567i 0.274487 0.475425i −0.695519 0.718508i \(-0.744825\pi\)
0.970006 + 0.243083i \(0.0781587\pi\)
\(80\) −2.14796 −0.240149
\(81\) 0 0
\(82\) −3.23442 −0.357182
\(83\) −2.29813 + 3.98048i −0.252253 + 0.436915i −0.964146 0.265373i \(-0.914505\pi\)
0.711893 + 0.702288i \(0.247838\pi\)
\(84\) 0 0
\(85\) 1.43969 + 2.49362i 0.156157 + 0.270471i
\(86\) −2.13563 3.69902i −0.230291 0.398875i
\(87\) 0 0
\(88\) −0.673648 + 1.16679i −0.0718111 + 0.124381i
\(89\) 16.9513 1.79683 0.898417 0.439143i \(-0.144718\pi\)
0.898417 + 0.439143i \(0.144718\pi\)
\(90\) 0 0
\(91\) −1.22668 −0.128591
\(92\) −1.32635 + 2.29731i −0.138282 + 0.239511i
\(93\) 0 0
\(94\) 0.671122 + 1.16242i 0.0692209 + 0.119894i
\(95\) −1.36571 2.36549i −0.140119 0.242694i
\(96\) 0 0
\(97\) −6.32295 + 10.9517i −0.641998 + 1.11197i 0.342988 + 0.939340i \(0.388561\pi\)
−0.984986 + 0.172634i \(0.944772\pi\)
\(98\) 2.33275 0.235643
\(99\) 0 0
\(100\) 8.59627 0.859627
\(101\) 8.54576 14.8017i 0.850335 1.47282i −0.0305715 0.999533i \(-0.509733\pi\)
0.880906 0.473291i \(-0.156934\pi\)
\(102\) 0 0
\(103\) −1.42989 2.47665i −0.140891 0.244031i 0.786941 0.617028i \(-0.211664\pi\)
−0.927833 + 0.372997i \(0.878330\pi\)
\(104\) 1.55303 + 2.68993i 0.152287 + 0.263770i
\(105\) 0 0
\(106\) −2.19207 + 3.79677i −0.212912 + 0.368775i
\(107\) −9.92902 −0.959874 −0.479937 0.877303i \(-0.659341\pi\)
−0.479937 + 0.877303i \(0.659341\pi\)
\(108\) 0 0
\(109\) 13.8161 1.32335 0.661673 0.749792i \(-0.269847\pi\)
0.661673 + 0.749792i \(0.269847\pi\)
\(110\) −0.113341 + 0.196312i −0.0108066 + 0.0187176i
\(111\) 0 0
\(112\) −0.875515 1.51644i −0.0827284 0.143290i
\(113\) 0.879385 + 1.52314i 0.0827256 + 0.143285i 0.904420 0.426644i \(-0.140304\pi\)
−0.821694 + 0.569929i \(0.806971\pi\)
\(114\) 0 0
\(115\) −0.460637 + 0.797847i −0.0429546 + 0.0743996i
\(116\) 11.9436 1.10893
\(117\) 0 0
\(118\) −1.12330 −0.103408
\(119\) −1.17365 + 2.03282i −0.107588 + 0.186348i
\(120\) 0 0
\(121\) −0.500000 0.866025i −0.0454545 0.0787296i
\(122\) −1.48158 2.56617i −0.134136 0.232331i
\(123\) 0 0
\(124\) −2.03209 + 3.51968i −0.182487 + 0.316077i
\(125\) 6.24897 0.558925
\(126\) 0 0
\(127\) 6.90167 0.612425 0.306212 0.951963i \(-0.400938\pi\)
0.306212 + 0.951963i \(0.400938\pi\)
\(128\) −4.74897 + 8.22546i −0.419754 + 0.727035i
\(129\) 0 0
\(130\) 0.261297 + 0.452579i 0.0229172 + 0.0396938i
\(131\) 5.17024 + 8.95513i 0.451726 + 0.782413i 0.998493 0.0548718i \(-0.0174750\pi\)
−0.546767 + 0.837285i \(0.684142\pi\)
\(132\) 0 0
\(133\) 1.11334 1.92836i 0.0965389 0.167210i
\(134\) −1.72369 −0.148904
\(135\) 0 0
\(136\) 5.94356 0.509656
\(137\) 7.09240 12.2844i 0.605944 1.04953i −0.385957 0.922517i \(-0.626129\pi\)
0.991901 0.127010i \(-0.0405379\pi\)
\(138\) 0 0
\(139\) −0.0505072 0.0874810i −0.00428396 0.00742004i 0.863875 0.503705i \(-0.168030\pi\)
−0.868159 + 0.496285i \(0.834697\pi\)
\(140\) −0.326352 0.565258i −0.0275818 0.0477730i
\(141\) 0 0
\(142\) −1.73396 + 3.00330i −0.145510 + 0.252031i
\(143\) −2.30541 −0.192788
\(144\) 0 0
\(145\) 4.14796 0.344469
\(146\) −1.30154 + 2.25433i −0.107716 + 0.186570i
\(147\) 0 0
\(148\) −2.97178 5.14728i −0.244279 0.423104i
\(149\) −1.53074 2.65133i −0.125403 0.217205i 0.796487 0.604656i \(-0.206689\pi\)
−0.921891 + 0.387450i \(0.873356\pi\)
\(150\) 0 0
\(151\) −9.70099 + 16.8026i −0.789455 + 1.36738i 0.136846 + 0.990592i \(0.456304\pi\)
−0.926301 + 0.376784i \(0.877030\pi\)
\(152\) −5.63816 −0.457315
\(153\) 0 0
\(154\) −0.184793 −0.0148910
\(155\) −0.705737 + 1.22237i −0.0566862 + 0.0981833i
\(156\) 0 0
\(157\) 6.36231 + 11.0198i 0.507768 + 0.879479i 0.999960 + 0.00899272i \(0.00286251\pi\)
−0.492192 + 0.870487i \(0.663804\pi\)
\(158\) −0.847296 1.46756i −0.0674073 0.116753i
\(159\) 0 0
\(160\) −1.25237 + 2.16918i −0.0990088 + 0.171488i
\(161\) −0.751030 −0.0591894
\(162\) 0 0
\(163\) −12.7888 −1.00170 −0.500848 0.865535i \(-0.666978\pi\)
−0.500848 + 0.865535i \(0.666978\pi\)
\(164\) 8.75150 15.1580i 0.683377 1.18364i
\(165\) 0 0
\(166\) 0.798133 + 1.38241i 0.0619472 + 0.107296i
\(167\) 10.3623 + 17.9480i 0.801860 + 1.38886i 0.918391 + 0.395675i \(0.129489\pi\)
−0.116531 + 0.993187i \(0.537177\pi\)
\(168\) 0 0
\(169\) 3.84255 6.65549i 0.295581 0.511961i
\(170\) 1.00000 0.0766965
\(171\) 0 0
\(172\) 23.1138 1.76241
\(173\) −11.2515 + 19.4882i −0.855435 + 1.48166i 0.0208050 + 0.999784i \(0.493377\pi\)
−0.876240 + 0.481874i \(0.839956\pi\)
\(174\) 0 0
\(175\) 1.21688 + 2.10770i 0.0919876 + 0.159327i
\(176\) −1.64543 2.84997i −0.124029 0.214824i
\(177\) 0 0
\(178\) 2.94356 5.09840i 0.220629 0.382141i
\(179\) 10.7219 0.801395 0.400697 0.916210i \(-0.368768\pi\)
0.400697 + 0.916210i \(0.368768\pi\)
\(180\) 0 0
\(181\) −4.15745 −0.309021 −0.154510 0.987991i \(-0.549380\pi\)
−0.154510 + 0.987991i \(0.549380\pi\)
\(182\) −0.213011 + 0.368946i −0.0157894 + 0.0273481i
\(183\) 0 0
\(184\) 0.950837 + 1.64690i 0.0700966 + 0.121411i
\(185\) −1.03209 1.78763i −0.0758807 0.131429i
\(186\) 0 0
\(187\) −2.20574 + 3.82045i −0.161299 + 0.279379i
\(188\) −7.26352 −0.529747
\(189\) 0 0
\(190\) −0.948615 −0.0688198
\(191\) 1.20187 2.08169i 0.0869640 0.150626i −0.819262 0.573419i \(-0.805617\pi\)
0.906226 + 0.422793i \(0.138950\pi\)
\(192\) 0 0
\(193\) 0.226682 + 0.392624i 0.0163169 + 0.0282617i 0.874069 0.485803i \(-0.161473\pi\)
−0.857752 + 0.514064i \(0.828139\pi\)
\(194\) 2.19594 + 3.80347i 0.157659 + 0.273074i
\(195\) 0 0
\(196\) −6.31180 + 10.9324i −0.450843 + 0.780883i
\(197\) 19.6236 1.39812 0.699062 0.715061i \(-0.253601\pi\)
0.699062 + 0.715061i \(0.253601\pi\)
\(198\) 0 0
\(199\) 3.63041 0.257353 0.128677 0.991687i \(-0.458927\pi\)
0.128677 + 0.991687i \(0.458927\pi\)
\(200\) 3.08125 5.33688i 0.217877 0.377375i
\(201\) 0 0
\(202\) −2.96791 5.14057i −0.208821 0.361689i
\(203\) 1.69072 + 2.92842i 0.118665 + 0.205535i
\(204\) 0 0
\(205\) 3.03936 5.26433i 0.212278 0.367677i
\(206\) −0.993193 −0.0691990
\(207\) 0 0
\(208\) −7.58677 −0.526048
\(209\) 2.09240 3.62414i 0.144734 0.250687i
\(210\) 0 0
\(211\) −10.8366 18.7696i −0.746024 1.29215i −0.949715 0.313116i \(-0.898627\pi\)
0.203691 0.979035i \(-0.434706\pi\)
\(212\) −11.8623 20.5461i −0.814707 1.41111i
\(213\) 0 0
\(214\) −1.72416 + 2.98632i −0.117861 + 0.204141i
\(215\) 8.02734 0.547460
\(216\) 0 0
\(217\) −1.15064 −0.0781108
\(218\) 2.39915 4.15545i 0.162491 0.281442i
\(219\) 0 0
\(220\) −0.613341 1.06234i −0.0413514 0.0716228i
\(221\) 5.08512 + 8.80769i 0.342062 + 0.592469i
\(222\) 0 0
\(223\) −9.56805 + 16.5723i −0.640724 + 1.10977i 0.344548 + 0.938769i \(0.388032\pi\)
−0.985271 + 0.170997i \(0.945301\pi\)
\(224\) −2.04189 −0.136429
\(225\) 0 0
\(226\) 0.610815 0.0406308
\(227\) −7.79679 + 13.5044i −0.517491 + 0.896321i 0.482303 + 0.876005i \(0.339801\pi\)
−0.999794 + 0.0203161i \(0.993533\pi\)
\(228\) 0 0
\(229\) 7.70574 + 13.3467i 0.509209 + 0.881977i 0.999943 + 0.0106670i \(0.00339547\pi\)
−0.490734 + 0.871310i \(0.663271\pi\)
\(230\) 0.159978 + 0.277089i 0.0105486 + 0.0182707i
\(231\) 0 0
\(232\) 4.28106 7.41501i 0.281065 0.486819i
\(233\) −4.29086 −0.281104 −0.140552 0.990073i \(-0.544888\pi\)
−0.140552 + 0.990073i \(0.544888\pi\)
\(234\) 0 0
\(235\) −2.52259 −0.164556
\(236\) 3.03936 5.26433i 0.197846 0.342679i
\(237\) 0 0
\(238\) 0.407604 + 0.705990i 0.0264210 + 0.0457626i
\(239\) −10.0667 17.4360i −0.651161 1.12784i −0.982842 0.184452i \(-0.940949\pi\)
0.331681 0.943392i \(-0.392384\pi\)
\(240\) 0 0
\(241\) 3.72281 6.44810i 0.239807 0.415359i −0.720852 0.693090i \(-0.756249\pi\)
0.960659 + 0.277731i \(0.0895824\pi\)
\(242\) −0.347296 −0.0223251
\(243\) 0 0
\(244\) 16.0351 1.02654
\(245\) −2.19207 + 3.79677i −0.140046 + 0.242567i
\(246\) 0 0
\(247\) −4.82383 8.35511i −0.306933 0.531623i
\(248\) 1.45677 + 2.52319i 0.0925048 + 0.160223i
\(249\) 0 0
\(250\) 1.08512 1.87949i 0.0686292 0.118869i
\(251\) −12.5202 −0.790270 −0.395135 0.918623i \(-0.629302\pi\)
−0.395135 + 0.918623i \(0.629302\pi\)
\(252\) 0 0
\(253\) −1.41147 −0.0887386
\(254\) 1.19846 2.07580i 0.0751983 0.130247i
\(255\) 0 0
\(256\) −3.59967 6.23481i −0.224979 0.389676i
\(257\) 3.24170 + 5.61478i 0.202211 + 0.350241i 0.949241 0.314551i \(-0.101854\pi\)
−0.747029 + 0.664791i \(0.768521\pi\)
\(258\) 0 0
\(259\) 0.841367 1.45729i 0.0522800 0.0905516i
\(260\) −2.82800 −0.175385
\(261\) 0 0
\(262\) 3.59121 0.221866
\(263\) 1.04916 1.81720i 0.0646942 0.112054i −0.831864 0.554979i \(-0.812726\pi\)
0.896558 + 0.442926i \(0.146059\pi\)
\(264\) 0 0
\(265\) −4.11974 7.13559i −0.253073 0.438336i
\(266\) −0.386659 0.669713i −0.0237076 0.0410628i
\(267\) 0 0
\(268\) 4.66385 8.07802i 0.284890 0.493444i
\(269\) −29.2490 −1.78334 −0.891671 0.452685i \(-0.850466\pi\)
−0.891671 + 0.452685i \(0.850466\pi\)
\(270\) 0 0
\(271\) −21.7246 −1.31968 −0.659838 0.751408i \(-0.729375\pi\)
−0.659838 + 0.751408i \(0.729375\pi\)
\(272\) −7.25877 + 12.5726i −0.440128 + 0.762323i
\(273\) 0 0
\(274\) −2.46316 4.26632i −0.148805 0.257738i
\(275\) 2.28699 + 3.96118i 0.137911 + 0.238868i
\(276\) 0 0
\(277\) 2.22803 3.85905i 0.133869 0.231868i −0.791296 0.611434i \(-0.790593\pi\)
0.925165 + 0.379565i \(0.123926\pi\)
\(278\) −0.0350819 −0.00210407
\(279\) 0 0
\(280\) −0.467911 −0.0279630
\(281\) −10.2476 + 17.7494i −0.611322 + 1.05884i 0.379696 + 0.925111i \(0.376029\pi\)
−0.991018 + 0.133730i \(0.957305\pi\)
\(282\) 0 0
\(283\) −3.44356 5.96443i −0.204699 0.354548i 0.745338 0.666687i \(-0.232288\pi\)
−0.950037 + 0.312138i \(0.898955\pi\)
\(284\) −9.38326 16.2523i −0.556794 0.964395i
\(285\) 0 0
\(286\) −0.400330 + 0.693392i −0.0236720 + 0.0410011i
\(287\) 4.95542 0.292509
\(288\) 0 0
\(289\) 2.46110 0.144771
\(290\) 0.720285 1.24757i 0.0422966 0.0732598i
\(291\) 0 0
\(292\) −7.04323 12.1992i −0.412174 0.713906i
\(293\) −6.90420 11.9584i −0.403348 0.698619i 0.590780 0.806833i \(-0.298820\pi\)
−0.994128 + 0.108214i \(0.965487\pi\)
\(294\) 0 0
\(295\) 1.05556 1.82828i 0.0614571 0.106447i
\(296\) −4.26083 −0.247656
\(297\) 0 0
\(298\) −1.06324 −0.0615921
\(299\) −1.62701 + 2.81807i −0.0940925 + 0.162973i
\(300\) 0 0
\(301\) 3.27197 + 5.66723i 0.188593 + 0.326653i
\(302\) 3.36912 + 5.83548i 0.193871 + 0.335794i
\(303\) 0 0
\(304\) 6.88578 11.9265i 0.394927 0.684033i
\(305\) 5.56893 0.318876
\(306\) 0 0
\(307\) −0.601319 −0.0343191 −0.0171595 0.999853i \(-0.505462\pi\)
−0.0171595 + 0.999853i \(0.505462\pi\)
\(308\) 0.500000 0.866025i 0.0284901 0.0493464i
\(309\) 0 0
\(310\) 0.245100 + 0.424525i 0.0139207 + 0.0241114i
\(311\) 0.970437 + 1.68085i 0.0550285 + 0.0953121i 0.892227 0.451586i \(-0.149142\pi\)
−0.837199 + 0.546898i \(0.815808\pi\)
\(312\) 0 0
\(313\) −1.00980 + 1.74903i −0.0570773 + 0.0988608i −0.893152 0.449755i \(-0.851511\pi\)
0.836075 + 0.548615i \(0.184845\pi\)
\(314\) 4.41921 0.249391
\(315\) 0 0
\(316\) 9.17024 0.515867
\(317\) 2.92468 5.06569i 0.164266 0.284518i −0.772128 0.635467i \(-0.780808\pi\)
0.936394 + 0.350949i \(0.114141\pi\)
\(318\) 0 0
\(319\) 3.17752 + 5.50362i 0.177907 + 0.308144i
\(320\) −1.71301 2.96702i −0.0957602 0.165862i
\(321\) 0 0
\(322\) −0.130415 + 0.225885i −0.00726774 + 0.0125881i
\(323\) −18.4611 −1.02720
\(324\) 0 0
\(325\) 10.5449 0.584925
\(326\) −2.22075 + 3.84645i −0.122996 + 0.213035i
\(327\) 0 0
\(328\) −6.27379 10.8665i −0.346412 0.600003i
\(329\) −1.02822 1.78093i −0.0566875 0.0981857i
\(330\) 0 0
\(331\) −5.86097 + 10.1515i −0.322148 + 0.557976i −0.980931 0.194356i \(-0.937738\pi\)
0.658783 + 0.752333i \(0.271071\pi\)
\(332\) −8.63816 −0.474080
\(333\) 0 0
\(334\) 7.19759 0.393834
\(335\) 1.61974 2.80547i 0.0884957 0.153279i
\(336\) 0 0
\(337\) −6.29813 10.9087i −0.343081 0.594234i 0.641922 0.766770i \(-0.278137\pi\)
−0.985003 + 0.172536i \(0.944804\pi\)
\(338\) −1.33450 2.31143i −0.0725874 0.125725i
\(339\) 0 0
\(340\) −2.70574 + 4.68647i −0.146739 + 0.254160i
\(341\) −2.16250 −0.117106
\(342\) 0 0
\(343\) −7.29860 −0.394087
\(344\) 8.28493 14.3499i 0.446693 0.773696i
\(345\) 0 0
\(346\) 3.90760 + 6.76817i 0.210074 + 0.363859i
\(347\) −11.9226 20.6506i −0.640040 1.10858i −0.985423 0.170120i \(-0.945585\pi\)
0.345384 0.938462i \(-0.387749\pi\)
\(348\) 0 0
\(349\) 4.24123 7.34603i 0.227028 0.393224i −0.729898 0.683556i \(-0.760433\pi\)
0.956926 + 0.290332i \(0.0937658\pi\)
\(350\) 0.845237 0.0451798
\(351\) 0 0
\(352\) −3.83750 −0.204539
\(353\) 3.72328 6.44891i 0.198170 0.343241i −0.749765 0.661704i \(-0.769833\pi\)
0.947935 + 0.318463i \(0.103167\pi\)
\(354\) 0 0
\(355\) −3.25877 5.64436i −0.172958 0.299571i
\(356\) 15.9290 + 27.5899i 0.844236 + 1.46226i
\(357\) 0 0
\(358\) 1.86184 3.22481i 0.0984015 0.170436i
\(359\) 22.9290 1.21015 0.605074 0.796170i \(-0.293144\pi\)
0.605074 + 0.796170i \(0.293144\pi\)
\(360\) 0 0
\(361\) −1.48751 −0.0782901
\(362\) −0.721934 + 1.25043i −0.0379440 + 0.0657209i
\(363\) 0 0
\(364\) −1.15270 1.99654i −0.0604181 0.104647i
\(365\) −2.44609 4.23675i −0.128034 0.221762i
\(366\) 0 0
\(367\) −7.65317 + 13.2557i −0.399492 + 0.691941i −0.993663 0.112398i \(-0.964147\pi\)
0.594171 + 0.804339i \(0.297480\pi\)
\(368\) −4.64496 −0.242135
\(369\) 0 0
\(370\) −0.716881 −0.0372689
\(371\) 3.35844 5.81699i 0.174362 0.302003i
\(372\) 0 0
\(373\) 13.6951 + 23.7205i 0.709103 + 1.22820i 0.965190 + 0.261549i \(0.0842334\pi\)
−0.256087 + 0.966654i \(0.582433\pi\)
\(374\) 0.766044 + 1.32683i 0.0396112 + 0.0686086i
\(375\) 0 0
\(376\) −2.60354 + 4.50946i −0.134267 + 0.232558i
\(377\) 14.6509 0.754562
\(378\) 0 0
\(379\) 11.2713 0.578966 0.289483 0.957183i \(-0.406517\pi\)
0.289483 + 0.957183i \(0.406517\pi\)
\(380\) 2.56670 4.44566i 0.131669 0.228058i
\(381\) 0 0
\(382\) −0.417404 0.722965i −0.0213562 0.0369901i
\(383\) 16.6814 + 28.8930i 0.852379 + 1.47636i 0.879055 + 0.476720i \(0.158174\pi\)
−0.0266761 + 0.999644i \(0.508492\pi\)
\(384\) 0 0
\(385\) 0.173648 0.300767i 0.00884993 0.0153285i
\(386\) 0.157451 0.00801406
\(387\) 0 0
\(388\) −23.7665 −1.20656
\(389\) 6.12449 10.6079i 0.310524 0.537843i −0.667952 0.744204i \(-0.732829\pi\)
0.978476 + 0.206361i \(0.0661622\pi\)
\(390\) 0 0
\(391\) 3.11334 + 5.39246i 0.157448 + 0.272709i
\(392\) 4.52481 + 7.83721i 0.228538 + 0.395839i
\(393\) 0 0
\(394\) 3.40760 5.90214i 0.171673 0.297346i
\(395\) 3.18479 0.160244
\(396\) 0 0
\(397\) −11.4287 −0.573591 −0.286795 0.957992i \(-0.592590\pi\)
−0.286795 + 0.957992i \(0.592590\pi\)
\(398\) 0.630415 1.09191i 0.0315998 0.0547325i
\(399\) 0 0
\(400\) 7.52616 + 13.0357i 0.376308 + 0.651784i
\(401\) 10.8473 + 18.7881i 0.541688 + 0.938231i 0.998807 + 0.0488259i \(0.0155480\pi\)
−0.457119 + 0.889405i \(0.651119\pi\)
\(402\) 0 0
\(403\) −2.49273 + 4.31753i −0.124172 + 0.215071i
\(404\) 32.1215 1.59811
\(405\) 0 0
\(406\) 1.17436 0.0582827
\(407\) 1.58125 2.73881i 0.0783797 0.135758i
\(408\) 0 0
\(409\) 14.2947 + 24.7592i 0.706829 + 1.22426i 0.966027 + 0.258440i \(0.0832083\pi\)
−0.259199 + 0.965824i \(0.583458\pi\)
\(410\) −1.05556 1.82828i −0.0521304 0.0902925i
\(411\) 0 0
\(412\) 2.68732 4.65457i 0.132395 0.229314i
\(413\) 1.72100 0.0846849
\(414\) 0 0
\(415\) −3.00000 −0.147264
\(416\) −4.42350 + 7.66172i −0.216880 + 0.375647i
\(417\) 0 0
\(418\) −0.726682 1.25865i −0.0355432 0.0615626i
\(419\) −4.30541 7.45718i −0.210333 0.364307i 0.741486 0.670969i \(-0.234121\pi\)
−0.951819 + 0.306661i \(0.900788\pi\)
\(420\) 0 0
\(421\) 17.2160 29.8190i 0.839057 1.45329i −0.0516276 0.998666i \(-0.516441\pi\)
0.890684 0.454622i \(-0.150226\pi\)
\(422\) −7.52704 −0.366410
\(423\) 0 0
\(424\) −17.0077 −0.825969
\(425\) 10.0890 17.4746i 0.489388 0.847645i
\(426\) 0 0
\(427\) 2.26991 + 3.93161i 0.109849 + 0.190264i
\(428\) −9.33022 16.1604i −0.450993 0.781143i
\(429\) 0 0
\(430\) 1.39393 2.41436i 0.0672214 0.116431i
\(431\) −14.2463 −0.686219 −0.343110 0.939295i \(-0.611480\pi\)
−0.343110 + 0.939295i \(0.611480\pi\)
\(432\) 0 0
\(433\) −24.6023 −1.18231 −0.591154 0.806558i \(-0.701328\pi\)
−0.591154 + 0.806558i \(0.701328\pi\)
\(434\) −0.199807 + 0.346076i −0.00959106 + 0.0166122i
\(435\) 0 0
\(436\) 12.9829 + 22.4871i 0.621769 + 1.07694i
\(437\) −2.95336 5.11538i −0.141279 0.244702i
\(438\) 0 0
\(439\) −2.08647 + 3.61387i −0.0995816 + 0.172480i −0.911512 0.411274i \(-0.865084\pi\)
0.811930 + 0.583755i \(0.198417\pi\)
\(440\) −0.879385 −0.0419230
\(441\) 0 0
\(442\) 3.53209 0.168004
\(443\) −14.6322 + 25.3438i −0.695198 + 1.20412i 0.274916 + 0.961468i \(0.411350\pi\)
−0.970114 + 0.242650i \(0.921983\pi\)
\(444\) 0 0
\(445\) 5.53209 + 9.58186i 0.262246 + 0.454224i
\(446\) 3.32295 + 5.75552i 0.157346 + 0.272532i
\(447\) 0 0
\(448\) 1.39646 2.41874i 0.0659765 0.114275i
\(449\) 15.7956 0.745441 0.372720 0.927944i \(-0.378425\pi\)
0.372720 + 0.927944i \(0.378425\pi\)
\(450\) 0 0
\(451\) 9.31315 0.438539
\(452\) −1.65270 + 2.86257i −0.0777366 + 0.134644i
\(453\) 0 0
\(454\) 2.70780 + 4.69004i 0.127083 + 0.220115i
\(455\) −0.400330 0.693392i −0.0187677 0.0325067i
\(456\) 0 0
\(457\) −4.74257 + 8.21438i −0.221848 + 0.384252i −0.955369 0.295414i \(-0.904542\pi\)
0.733521 + 0.679667i \(0.237876\pi\)
\(458\) 5.35235 0.250099
\(459\) 0 0
\(460\) −1.73143 −0.0807283
\(461\) −14.4722 + 25.0667i −0.674040 + 1.16747i 0.302709 + 0.953083i \(0.402109\pi\)
−0.976749 + 0.214388i \(0.931224\pi\)
\(462\) 0 0
\(463\) 11.4402 + 19.8149i 0.531669 + 0.920878i 0.999317 + 0.0369631i \(0.0117684\pi\)
−0.467647 + 0.883915i \(0.654898\pi\)
\(464\) 10.4568 + 18.1117i 0.485443 + 0.840812i
\(465\) 0 0
\(466\) −0.745100 + 1.29055i −0.0345161 + 0.0597836i
\(467\) −10.2412 −0.473908 −0.236954 0.971521i \(-0.576149\pi\)
−0.236954 + 0.971521i \(0.576149\pi\)
\(468\) 0 0
\(469\) 2.64084 0.121943
\(470\) −0.438044 + 0.758714i −0.0202055 + 0.0349969i
\(471\) 0 0
\(472\) −2.17886 3.77390i −0.100290 0.173708i
\(473\) 6.14930 + 10.6509i 0.282745 + 0.489729i
\(474\) 0 0
\(475\) −9.57057 + 16.5767i −0.439128 + 0.760592i
\(476\) −4.41147 −0.202200
\(477\) 0 0
\(478\) −6.99226 −0.319818
\(479\) 9.66550 16.7411i 0.441628 0.764922i −0.556183 0.831060i \(-0.687735\pi\)
0.997810 + 0.0661383i \(0.0210678\pi\)
\(480\) 0 0
\(481\) −3.64543 6.31407i −0.166217 0.287897i
\(482\) −1.29292 2.23940i −0.0588908 0.102002i
\(483\) 0 0
\(484\) 0.939693 1.62760i 0.0427133 0.0739816i
\(485\) −8.25402 −0.374796
\(486\) 0 0
\(487\) 27.2104 1.23302 0.616510 0.787347i \(-0.288546\pi\)
0.616510 + 0.787347i \(0.288546\pi\)
\(488\) 5.74763 9.95518i 0.260183 0.450650i
\(489\) 0 0
\(490\) 0.761297 + 1.31860i 0.0343919 + 0.0595685i
\(491\) −18.0189 31.2096i −0.813181 1.40847i −0.910627 0.413230i \(-0.864401\pi\)
0.0974459 0.995241i \(-0.468933\pi\)
\(492\) 0 0
\(493\) 14.0175 24.2791i 0.631318 1.09348i
\(494\) −3.35059 −0.150750
\(495\) 0 0
\(496\) −7.11650 −0.319540
\(497\) 2.65657 4.60132i 0.119164 0.206397i
\(498\) 0 0
\(499\) 3.94609 + 6.83483i 0.176651 + 0.305969i 0.940731 0.339152i \(-0.110140\pi\)
−0.764080 + 0.645121i \(0.776807\pi\)
\(500\) 5.87211 + 10.1708i 0.262609 + 0.454852i
\(501\) 0 0
\(502\) −2.17412 + 3.76568i −0.0970355 + 0.168070i
\(503\) 37.2550 1.66112 0.830558 0.556932i \(-0.188022\pi\)
0.830558 + 0.556932i \(0.188022\pi\)
\(504\) 0 0
\(505\) 11.1557 0.496422
\(506\) −0.245100 + 0.424525i −0.0108960 + 0.0188725i
\(507\) 0 0
\(508\) 6.48545 + 11.2331i 0.287745 + 0.498390i
\(509\) 2.04458 + 3.54131i 0.0906243 + 0.156966i 0.907774 0.419460i \(-0.137780\pi\)
−0.817150 + 0.576426i \(0.804447\pi\)
\(510\) 0 0
\(511\) 1.99407 3.45383i 0.0882125 0.152788i
\(512\) −21.4962 −0.950006
\(513\) 0 0
\(514\) 2.25166 0.0993164
\(515\) 0.933296 1.61652i 0.0411259 0.0712322i
\(516\) 0 0
\(517\) −1.93242 3.34705i −0.0849877 0.147203i
\(518\) −0.292204 0.506111i −0.0128387 0.0222373i
\(519\) 0 0
\(520\) −1.01367 + 1.75573i −0.0444524 + 0.0769938i
\(521\) −7.29322 −0.319522 −0.159761 0.987156i \(-0.551072\pi\)
−0.159761 + 0.987156i \(0.551072\pi\)
\(522\) 0 0
\(523\) −14.3105 −0.625753 −0.312876 0.949794i \(-0.601293\pi\)
−0.312876 + 0.949794i \(0.601293\pi\)
\(524\) −9.71688 + 16.8301i −0.424484 + 0.735228i
\(525\) 0 0
\(526\) −0.364370 0.631108i −0.0158873 0.0275176i
\(527\) 4.76991 + 8.26173i 0.207781 + 0.359887i
\(528\) 0 0
\(529\) 10.5039 18.1932i 0.456690 0.791010i
\(530\) −2.86154 −0.124297
\(531\) 0 0
\(532\) 4.18479 0.181434
\(533\) 10.7353 18.5941i 0.464997 0.805399i
\(534\) 0 0
\(535\) −3.24035 5.61245i −0.140093 0.242648i
\(536\) −3.34343 5.79098i −0.144414 0.250132i
\(537\) 0 0
\(538\) −5.07903 + 8.79714i −0.218973 + 0.379272i
\(539\) −6.71688 −0.289317
\(540\) 0 0
\(541\) −36.1411 −1.55383 −0.776915 0.629606i \(-0.783216\pi\)
−0.776915 + 0.629606i \(0.783216\pi\)
\(542\) −3.77244 + 6.53406i −0.162040 + 0.280662i
\(543\) 0 0
\(544\) 8.46451 + 14.6610i 0.362913 + 0.628583i
\(545\) 4.50892 + 7.80968i 0.193141 + 0.334530i
\(546\) 0 0
\(547\) 9.39352 16.2701i 0.401638 0.695657i −0.592286 0.805728i \(-0.701774\pi\)
0.993924 + 0.110071i \(0.0351077\pi\)
\(548\) 26.6587 1.13880
\(549\) 0 0
\(550\) 1.58853 0.0677350
\(551\) −13.2973 + 23.0315i −0.566482 + 0.981176i
\(552\) 0 0
\(553\) 1.29813 + 2.24843i 0.0552022 + 0.0956131i
\(554\) −0.773785 1.34024i −0.0328750 0.0569411i
\(555\) 0 0
\(556\) 0.0949225 0.164411i 0.00402561 0.00697256i
\(557\) 3.99319 0.169197 0.0845985 0.996415i \(-0.473039\pi\)
0.0845985 + 0.996415i \(0.473039\pi\)
\(558\) 0 0
\(559\) 28.3533 1.19922
\(560\) 0.571452 0.989783i 0.0241482 0.0418260i
\(561\) 0 0
\(562\) 3.55896 + 6.16431i 0.150126 + 0.260026i
\(563\) −11.3452 19.6505i −0.478145 0.828171i 0.521541 0.853226i \(-0.325357\pi\)
−0.999686 + 0.0250550i \(0.992024\pi\)
\(564\) 0 0
\(565\) −0.573978 + 0.994159i −0.0241474 + 0.0418246i
\(566\) −2.39187 −0.100538
\(567\) 0 0
\(568\) −13.4534 −0.564491
\(569\) 12.6604 21.9285i 0.530753 0.919292i −0.468603 0.883409i \(-0.655242\pi\)
0.999356 0.0358828i \(-0.0114243\pi\)
\(570\) 0 0
\(571\) −16.6570 28.8508i −0.697075 1.20737i −0.969476 0.245186i \(-0.921151\pi\)
0.272401 0.962184i \(-0.412182\pi\)
\(572\) −2.16637 3.75227i −0.0905807 0.156890i
\(573\) 0 0
\(574\) 0.860500 1.49043i 0.0359166 0.0622093i
\(575\) 6.45605 0.269236
\(576\) 0 0
\(577\) −1.18479 −0.0493236 −0.0246618 0.999696i \(-0.507851\pi\)
−0.0246618 + 0.999696i \(0.507851\pi\)
\(578\) 0.427366 0.740220i 0.0177761 0.0307891i
\(579\) 0 0
\(580\) 3.89780 + 6.75119i 0.161847 + 0.280328i
\(581\) −1.22281 2.11797i −0.0507308 0.0878682i
\(582\) 0 0
\(583\) 6.31180 10.9324i 0.261408 0.452772i
\(584\) −10.0983 −0.417872
\(585\) 0 0
\(586\) −4.79561 −0.198105
\(587\) 15.9021 27.5433i 0.656352 1.13683i −0.325202 0.945645i \(-0.605432\pi\)
0.981553 0.191190i \(-0.0612345\pi\)
\(588\) 0 0
\(589\) −4.52481 7.83721i −0.186442 0.322927i
\(590\) −0.366592 0.634956i −0.0150924 0.0261407i
\(591\) 0 0
\(592\) 5.20368 9.01303i 0.213870 0.370433i
\(593\) −26.3381 −1.08158 −0.540789 0.841159i \(-0.681874\pi\)
−0.540789 + 0.841159i \(0.681874\pi\)
\(594\) 0 0
\(595\) −1.53209 −0.0628095
\(596\) 2.87686 4.98287i 0.117841 0.204106i
\(597\) 0 0
\(598\) 0.565055 + 0.978704i 0.0231068 + 0.0400222i
\(599\) 7.63223 + 13.2194i 0.311844 + 0.540130i 0.978762 0.205002i \(-0.0657199\pi\)
−0.666917 + 0.745132i \(0.732387\pi\)
\(600\) 0 0
\(601\) −4.25356 + 7.36737i −0.173506 + 0.300521i −0.939643 0.342156i \(-0.888843\pi\)
0.766137 + 0.642677i \(0.222176\pi\)
\(602\) 2.27269 0.0926279
\(603\) 0 0
\(604\) −36.4638 −1.48369
\(605\) 0.326352 0.565258i 0.0132681 0.0229810i
\(606\) 0 0
\(607\) −6.26011 10.8428i −0.254090 0.440097i 0.710558 0.703639i \(-0.248443\pi\)
−0.964648 + 0.263542i \(0.915109\pi\)
\(608\) −8.02956 13.9076i −0.325642 0.564028i
\(609\) 0 0
\(610\) 0.967034 1.67495i 0.0391541 0.0678168i
\(611\) −8.91002 −0.360461
\(612\) 0 0
\(613\) −8.52259 −0.344224 −0.172112 0.985077i \(-0.555059\pi\)
−0.172112 + 0.985077i \(0.555059\pi\)
\(614\) −0.104418 + 0.180857i −0.00421397 + 0.00729880i
\(615\) 0 0
\(616\) −0.358441 0.620838i −0.0144420 0.0250143i
\(617\) −10.2442 17.7435i −0.412417 0.714327i 0.582737 0.812661i \(-0.301982\pi\)
−0.995153 + 0.0983341i \(0.968649\pi\)
\(618\) 0 0
\(619\) 13.4008 23.2109i 0.538623 0.932923i −0.460355 0.887735i \(-0.652278\pi\)
0.998978 0.0451883i \(-0.0143888\pi\)
\(620\) −2.65270 −0.106535
\(621\) 0 0
\(622\) 0.674059 0.0270273
\(623\) −4.50980 + 7.81120i −0.180681 + 0.312949i
\(624\) 0 0
\(625\) −9.39558 16.2736i −0.375823 0.650945i
\(626\) 0.350700 + 0.607430i 0.0140168 + 0.0242778i
\(627\) 0 0
\(628\) −11.9572 + 20.7105i −0.477146 + 0.826440i
\(629\) −13.9513 −0.556275
\(630\) 0 0
\(631\) 18.9736 0.755327 0.377663 0.925943i \(-0.376728\pi\)
0.377663 + 0.925943i \(0.376728\pi\)
\(632\) 3.28699 5.69323i 0.130749 0.226465i
\(633\) 0 0
\(634\) −1.01573 1.75930i −0.0403398 0.0698706i
\(635\) 2.25237 + 3.90123i 0.0893827 + 0.154815i
\(636\) 0 0
\(637\) −7.74257 + 13.4105i −0.306772 + 0.531345i
\(638\) 2.20708 0.0873792
\(639\) 0 0
\(640\) −6.19934 −0.245050
\(641\) −14.8157 + 25.6615i −0.585184 + 1.01357i 0.409669 + 0.912234i \(0.365644\pi\)
−0.994852 + 0.101334i \(0.967689\pi\)
\(642\) 0 0
\(643\) −21.7886 37.7390i −0.859260 1.48828i −0.872636 0.488371i \(-0.837591\pi\)
0.0133759 0.999911i \(-0.495742\pi\)
\(644\) −0.705737 1.22237i −0.0278099 0.0481682i
\(645\) 0 0
\(646\) −3.20574 + 5.55250i −0.126128 + 0.218460i
\(647\) 21.0583 0.827887 0.413944 0.910302i \(-0.364151\pi\)
0.413944 + 0.910302i \(0.364151\pi\)
\(648\) 0 0
\(649\) 3.23442 0.126962
\(650\) 1.83110 3.17156i 0.0718216 0.124399i
\(651\) 0 0
\(652\) −12.0175 20.8150i −0.470643 0.815178i
\(653\) 0.669778 + 1.16009i 0.0262104 + 0.0453978i 0.878833 0.477129i \(-0.158323\pi\)
−0.852623 + 0.522527i \(0.824989\pi\)
\(654\) 0 0
\(655\) −3.37464 + 5.84504i −0.131858 + 0.228385i
\(656\) 30.6483 1.19661
\(657\) 0 0
\(658\) −0.714193 −0.0278421
\(659\) −9.47296 + 16.4077i −0.369014 + 0.639151i −0.989412 0.145136i \(-0.953638\pi\)
0.620397 + 0.784288i \(0.286971\pi\)
\(660\) 0 0
\(661\) −13.8059 23.9125i −0.536986 0.930087i −0.999064 0.0432483i \(-0.986229\pi\)
0.462078 0.886839i \(-0.347104\pi\)
\(662\) 2.03549 + 3.52558i 0.0791117 + 0.137025i
\(663\) 0 0
\(664\) −3.09627 + 5.36289i −0.120158 + 0.208121i
\(665\) 1.45336 0.0563590
\(666\) 0 0
\(667\) 8.96997 0.347319
\(668\) −19.4748 + 33.7313i −0.753502 + 1.30510i
\(669\) 0 0
\(670\) −0.562529 0.974329i −0.0217324 0.0376416i
\(671\) 4.26604 + 7.38901i 0.164689 + 0.285249i
\(672\) 0 0
\(673\) −10.3712 + 17.9635i −0.399782 + 0.692442i −0.993699 0.112084i \(-0.964247\pi\)
0.593917 + 0.804526i \(0.297581\pi\)
\(674\) −4.37464 −0.168505
\(675\) 0 0
\(676\) 14.4433 0.555510
\(677\) −13.8032 + 23.9078i −0.530500 + 0.918852i 0.468867 + 0.883269i \(0.344662\pi\)
−0.999367 + 0.0355834i \(0.988671\pi\)
\(678\) 0 0
\(679\) −3.36437 5.82726i −0.129113 0.223630i
\(680\) 1.93969 + 3.35965i 0.0743838 + 0.128837i
\(681\) 0 0
\(682\) −0.375515 + 0.650411i −0.0143792 + 0.0249055i
\(683\) −31.4843 −1.20471 −0.602357 0.798227i \(-0.705772\pi\)
−0.602357 + 0.798227i \(0.705772\pi\)
\(684\) 0 0
\(685\) 9.25847 0.353748
\(686\) −1.26739 + 2.19518i −0.0483891 + 0.0838124i
\(687\) 0 0
\(688\) 20.2365 + 35.0506i 0.771509 + 1.33629i
\(689\) −14.5513 25.2036i −0.554360 0.960179i
\(690\) 0 0
\(691\) 11.9440 20.6877i 0.454372 0.786996i −0.544280 0.838904i \(-0.683197\pi\)
0.998652 + 0.0519080i \(0.0165303\pi\)
\(692\) −42.2918 −1.60769
\(693\) 0 0
\(694\) −8.28136 −0.314356
\(695\) 0.0329662 0.0570992i 0.00125048 0.00216590i
\(696\) 0 0
\(697\) −20.5424 35.5804i −0.778097 1.34770i
\(698\) −1.47296 2.55125i −0.0557525 0.0965662i
\(699\) 0 0
\(700\) −2.28699 + 3.96118i −0.0864401 + 0.149719i
\(701\) −7.03684 −0.265778 −0.132889 0.991131i \(-0.542425\pi\)
−0.132889 + 0.991131i \(0.542425\pi\)
\(702\) 0 0
\(703\) 13.2344 0.499146
\(704\) 2.62449 4.54574i 0.0989140 0.171324i
\(705\) 0 0
\(706\) −1.29308 2.23968i −0.0486657 0.0842915i
\(707\) 4.54710 + 7.87581i 0.171011 + 0.296200i
\(708\) 0 0
\(709\) 6.45037 11.1724i 0.242249 0.419587i −0.719106 0.694901i \(-0.755448\pi\)
0.961354 + 0.275314i \(0.0887817\pi\)
\(710\) −2.26352 −0.0849483
\(711\) 0 0
\(712\) 22.8384 0.855906
\(713\) −1.52616 + 2.64339i −0.0571551 + 0.0989956i
\(714\) 0 0
\(715\) −0.752374 1.30315i −0.0281372 0.0487350i
\(716\) 10.0753 + 17.4510i 0.376532 + 0.652173i
\(717\) 0 0
\(718\) 3.98158 6.89630i 0.148591 0.257368i
\(719\) −17.2671 −0.643956 −0.321978 0.946747i \(-0.604348\pi\)
−0.321978 + 0.946747i \(0.604348\pi\)
\(720\) 0 0
\(721\) 1.52166 0.0566696
\(722\) −0.258304 + 0.447395i −0.00961307 + 0.0166503i
\(723\) 0 0
\(724\) −3.90673 6.76665i −0.145192 0.251481i
\(725\) −14.5339 25.1735i −0.539775 0.934919i
\(726\) 0 0
\(727\) −20.3033 + 35.1664i −0.753009 + 1.30425i 0.193348 + 0.981130i \(0.438065\pi\)
−0.946358 + 0.323121i \(0.895268\pi\)
\(728\) −1.65270 −0.0612533
\(729\) 0 0
\(730\) −1.69904 −0.0628841
\(731\) 27.1275 46.9862i 1.00335 1.73785i
\(732\) 0 0
\(733\) 7.87464 + 13.6393i 0.290856 + 0.503778i 0.974012 0.226494i \(-0.0727265\pi\)
−0.683156 + 0.730272i \(0.739393\pi\)
\(734\) 2.65792 + 4.60365i 0.0981056 + 0.169924i
\(735\) 0 0
\(736\) −2.70826 + 4.69085i −0.0998279 + 0.172907i
\(737\) 4.96316 0.182820
\(738\) 0 0
\(739\) 2.27538 0.0837011 0.0418506 0.999124i \(-0.486675\pi\)
0.0418506 + 0.999124i \(0.486675\pi\)
\(740\) 1.93969 3.35965i 0.0713045 0.123503i
\(741\) 0 0
\(742\) −1.16637 2.02022i −0.0428189 0.0741646i
\(743\) −17.5868 30.4612i −0.645196 1.11751i −0.984256 0.176748i \(-0.943442\pi\)
0.339060 0.940765i \(-0.389891\pi\)
\(744\) 0 0
\(745\) 0.999123 1.73053i 0.0366050 0.0634018i
\(746\) 9.51249 0.348277
\(747\) 0 0
\(748\) −8.29086 −0.303144
\(749\) 2.64156 4.57531i 0.0965205 0.167178i
\(750\) 0 0
\(751\) 16.7533 + 29.0176i 0.611337 + 1.05887i 0.991015 + 0.133748i \(0.0427013\pi\)
−0.379678 + 0.925118i \(0.623965\pi\)
\(752\) −6.35932 11.0147i −0.231900 0.401663i
\(753\) 0 0
\(754\) 2.54411 4.40653i 0.0926510 0.160476i
\(755\) −12.6637 −0.460881
\(756\) 0 0
\(757\) 45.4570 1.65216 0.826081 0.563551i \(-0.190565\pi\)
0.826081 + 0.563551i \(0.190565\pi\)
\(758\) 1.95723 3.39003i 0.0710899 0.123131i
\(759\) 0 0
\(760\) −1.84002 3.18701i −0.0667446 0.115605i
\(761\) −14.6370 25.3520i −0.530590 0.919009i −0.999363 0.0356900i \(-0.988637\pi\)
0.468773 0.883319i \(-0.344696\pi\)
\(762\) 0 0
\(763\) −3.67571 + 6.36651i −0.133070 + 0.230483i
\(764\) 4.51754 0.163439
\(765\) 0 0
\(766\) 11.5868 0.418647
\(767\) 3.72833 6.45766i 0.134622 0.233173i
\(768\) 0 0
\(769\) 22.1830 + 38.4221i 0.799941 + 1.38554i 0.919654 + 0.392730i \(0.128469\pi\)
−0.119713 + 0.992809i \(0.538198\pi\)
\(770\) −0.0603074 0.104455i −0.00217333 0.00376431i
\(771\) 0 0
\(772\) −0.426022 + 0.737892i −0.0153329 + 0.0265573i
\(773\) 21.6372 0.778237 0.389118 0.921188i \(-0.372780\pi\)
0.389118 + 0.921188i \(0.372780\pi\)
\(774\) 0 0
\(775\) 9.89124 0.355304
\(776\) −8.51889 + 14.7551i −0.305810 + 0.529679i
\(777\) 0 0
\(778\) −2.12701 3.68409i −0.0762571 0.132081i
\(779\) 19.4868 + 33.7521i 0.698187 + 1.20930i
\(780\) 0 0
\(781\) 4.99273 8.64766i 0.178654 0.309437i
\(782\) 2.16250 0.0773310
\(783\) 0 0
\(784\) −22.1043 −0.789440
\(785\) −4.15270 + 7.19269i −0.148216 + 0.256718i
\(786\) 0 0
\(787\) −9.39171 16.2669i −0.334778 0.579853i 0.648664 0.761075i \(-0.275328\pi\)
−0.983442 + 0.181222i \(0.941995\pi\)
\(788\) 18.4402 + 31.9393i 0.656903 + 1.13779i
\(789\) 0 0
\(790\) 0.553033 0.957882i 0.0196760 0.0340799i
\(791\) −0.935822 −0.0332740
\(792\) 0 0
\(793\) 19.6699 0.698500
\(794\) −1.98457 + 3.43738i −0.0704299 + 0.121988i
\(795\) 0 0
\(796\) 3.41147 + 5.90885i 0.120916 + 0.209434i
\(797\) 13.8601 + 24.0064i 0.490950 + 0.850350i 0.999946 0.0104192i \(-0.00331660\pi\)
−0.508996 + 0.860769i \(0.669983\pi\)
\(798\) 0 0
\(799\) −8.52481 + 14.7654i −0.301586 + 0.522363i
\(800\) 17.5526 0.620579
\(801\) 0 0
\(802\) 7.53445 0.266051
\(803\) 3.74763 6.49108i 0.132251 0.229065i
\(804\) 0 0
\(805\) −0.245100 0.424525i −0.00863864 0.0149626i
\(806\) 0.865715 + 1.49946i 0.0304935 + 0.0528163i
\(807\) 0 0
\(808\) 11.5137 19.9423i 0.405050 0.701566i
\(809\) 5.05737 0.177808 0.0889038 0.996040i \(-0.471664\pi\)
0.0889038 + 0.996040i \(0.471664\pi\)
\(810\) 0 0
\(811\) 25.6709 0.901426 0.450713 0.892669i \(-0.351170\pi\)
0.450713 + 0.892669i \(0.351170\pi\)
\(812\) −3.17752 + 5.50362i −0.111509 + 0.193139i
\(813\) 0 0
\(814\) −0.549163 0.951178i −0.0192482 0.0333388i
\(815\) −4.17365 7.22897i −0.146197 0.253220i
\(816\) 0 0
\(817\) −25.7335 + 44.5718i −0.900303 + 1.55937i
\(818\) 9.92902 0.347160
\(819\) 0 0
\(820\) 11.4243 0.398953
\(821\) 1.93242 3.34705i 0.0674419 0.116813i −0.830333 0.557268i \(-0.811850\pi\)
0.897775 + 0.440455i \(0.145183\pi\)
\(822\) 0 0
\(823\) −13.9179 24.1065i −0.485146 0.840298i 0.514708 0.857366i \(-0.327900\pi\)
−0.999854 + 0.0170673i \(0.994567\pi\)
\(824\) −1.92649 3.33678i −0.0671124 0.116242i
\(825\) 0 0
\(826\) 0.298849 0.517621i 0.0103983 0.0180103i
\(827\) 1.24392 0.0432553 0.0216276 0.999766i \(-0.493115\pi\)
0.0216276 + 0.999766i \(0.493115\pi\)
\(828\) 0 0
\(829\) −31.5794 −1.09680 −0.548398 0.836217i \(-0.684762\pi\)
−0.548398 + 0.836217i \(0.684762\pi\)
\(830\) −0.520945 + 0.902302i −0.0180822 + 0.0313194i
\(831\) 0 0
\(832\) −6.05051 10.4798i −0.209764 0.363321i
\(833\) 14.8157 + 25.6615i 0.513333 + 0.889118i
\(834\) 0 0
\(835\) −6.76352 + 11.7148i −0.234061 + 0.405406i
\(836\) 7.86484 0.272011
\(837\) 0 0
\(838\) −2.99050 −0.103305
\(839\) 4.93360 8.54525i 0.170327 0.295015i −0.768207 0.640201i \(-0.778851\pi\)
0.938534 + 0.345186i \(0.112184\pi\)
\(840\) 0 0
\(841\) −5.69325 9.86100i −0.196319 0.340034i
\(842\) −5.97906 10.3560i −0.206052 0.356892i
\(843\) 0 0
\(844\) 20.3662 35.2753i 0.701033 1.21422i
\(845\) 5.01609 0.172559
\(846\) 0 0
\(847\) 0.532089 0.0182828
\(848\) 20.7713 35.9769i 0.713288 1.23545i
\(849\) 0 0
\(850\) −3.50387 6.06888i −0.120182 0.208161i
\(851\) −2.23190 3.86576i −0.0765084 0.132516i
\(852\) 0 0
\(853\) −28.7683 + 49.8282i −0.985009 + 1.70608i −0.343110 + 0.939295i \(0.611480\pi\)
−0.641898 + 0.766790i \(0.721853\pi\)
\(854\) 1.57667 0.0539524
\(855\) 0 0
\(856\) −13.3773 −0.457228
\(857\) −7.70187 + 13.3400i −0.263091 + 0.455687i −0.967062 0.254542i \(-0.918075\pi\)
0.703971 + 0.710229i \(0.251409\pi\)
\(858\) 0 0
\(859\) 21.2866 + 36.8694i 0.726289 + 1.25797i 0.958441 + 0.285290i \(0.0920898\pi\)
−0.232153 + 0.972679i \(0.574577\pi\)
\(860\) 7.54323 + 13.0653i 0.257222 + 0.445522i
\(861\) 0 0
\(862\) −2.47384 + 4.28482i −0.0842594 + 0.145941i
\(863\) 38.3536 1.30557 0.652786 0.757542i \(-0.273600\pi\)
0.652786 + 0.757542i \(0.273600\pi\)
\(864\) 0 0
\(865\) −14.6878 −0.499400
\(866\) −4.27214 + 7.39956i −0.145173 + 0.251447i
\(867\) 0 0
\(868\) −1.08125 1.87278i −0.0367001 0.0635664i
\(869\) 2.43969 + 4.22567i 0.0827609 + 0.143346i
\(870\) 0 0
\(871\) 5.72106 9.90916i 0.193851 0.335759i
\(872\) 18.6144 0.630364
\(873\) 0 0
\(874\) −2.05138 −0.0693891
\(875\) −1.66250 + 2.87954i −0.0562029 + 0.0973463i
\(876\) 0 0
\(877\) 6.23514 + 10.7996i 0.210546 + 0.364676i 0.951885 0.306454i \(-0.0991426\pi\)
−0.741340 + 0.671130i \(0.765809\pi\)
\(878\) 0.724622 + 1.25508i 0.0244548 + 0.0423570i
\(879\) 0 0
\(880\) 1.07398 1.86018i 0.0362038 0.0627068i
\(881\) 22.9172 0.772099 0.386049 0.922478i \(-0.373839\pi\)
0.386049 + 0.922478i \(0.373839\pi\)
\(882\) 0 0
\(883\) 44.2300 1.48846 0.744229 0.667925i \(-0.232817\pi\)
0.744229 + 0.667925i \(0.232817\pi\)
\(884\) −9.55690 + 16.5530i −0.321433 + 0.556739i
\(885\) 0 0
\(886\) 5.08172 + 8.80180i 0.170724 + 0.295702i
\(887\) 12.3871 + 21.4551i 0.415919 + 0.720393i 0.995524 0.0945044i \(-0.0301267\pi\)
−0.579605 + 0.814897i \(0.696793\pi\)
\(888\) 0 0
\(889\) −1.83615 + 3.18031i −0.0615826 + 0.106664i
\(890\) 3.84255 0.128803
\(891\) 0 0
\(892\) −35.9641 −1.20417
\(893\) 8.08677 14.0067i 0.270613 0.468716i
\(894\) 0 0
\(895\) 3.49912 + 6.06066i 0.116963 + 0.202585i
\(896\) −2.52687 4.37667i −0.0844169 0.146214i
\(897\) 0 0
\(898\) 2.74288 4.75080i 0.0915310 0.158536i
\(899\) 13.7428 0.458348
\(900\) 0 0
\(901\) −55.6887 −1.85526
\(902\) 1.61721 2.80109i 0.0538472 0.0932662i
\(903\) 0 0
\(904\) 1.18479 + 2.05212i 0.0394056 + 0.0682525i
\(905\) −1.35679 2.35003i −0.0451013 0.0781177i
\(906\) 0 0
\(907\) −15.2490 + 26.4120i −0.506334 + 0.876996i 0.493639 + 0.869667i \(0.335666\pi\)
−0.999973 + 0.00732909i \(0.997667\pi\)
\(908\) −29.3063 −0.972565
\(909\) 0 0
\(910\) −0.278066 −0.00921780
\(911\) 26.9413 46.6638i 0.892606 1.54604i 0.0558672 0.998438i \(-0.482208\pi\)
0.836739 0.547602i \(-0.184459\pi\)
\(912\) 0 0
\(913\) −2.29813 3.98048i −0.0760571 0.131735i
\(914\) 1.64708 + 2.85282i 0.0544805 + 0.0943630i
\(915\) 0 0
\(916\) −14.4820 + 25.0836i −0.478500 + 0.828787i
\(917\) −5.50206 −0.181694
\(918\) 0 0
\(919\) 5.19841 0.171480 0.0857398 0.996318i \(-0.472675\pi\)
0.0857398 + 0.996318i \(0.472675\pi\)
\(920\) −0.620615 + 1.07494i −0.0204611 + 0.0354396i
\(921\) 0 0
\(922\) 5.02616 + 8.70556i 0.165528 + 0.286702i
\(923\) −11.5103 19.9364i −0.378865 0.656214i
\(924\) 0 0
\(925\) −7.23261 + 12.5273i −0.237807 + 0.411893i
\(926\) 7.94625 0.261130
\(927\) 0 0
\(928\) 24.3874 0.800557
\(929\) −11.9368 + 20.6751i −0.391632 + 0.678327i −0.992665 0.120897i \(-0.961423\pi\)
0.601033 + 0.799224i \(0.294756\pi\)
\(930\) 0 0
\(931\) −14.0544 24.3429i −0.460614 0.797806i
\(932\) −4.03209 6.98378i −0.132075 0.228761i
\(933\) 0 0
\(934\) −1.77837 + 3.08023i −0.0581901 + 0.100788i
\(935\) −2.87939 −0.0941660
\(936\) 0 0
\(937\) 18.7219 0.611619 0.305809 0.952093i \(-0.401073\pi\)
0.305809 + 0.952093i \(0.401073\pi\)
\(938\) 0.458578 0.794280i 0.0149731 0.0259342i
\(939\) 0 0
\(940\) −2.37046 4.10576i −0.0773160 0.133915i
\(941\) 16.7814 + 29.0662i 0.547057 + 0.947530i 0.998474 + 0.0552174i \(0.0175852\pi\)
−0.451418 + 0.892313i \(0.649081\pi\)
\(942\) 0 0
\(943\) 6.57263 11.3841i 0.214034 0.370718i
\(944\) 10.6440 0.346434
\(945\) 0 0
\(946\) 4.27126 0.138871
\(947\) −21.8380 + 37.8245i −0.709638 + 1.22913i 0.255353 + 0.966848i \(0.417808\pi\)
−0.964991 + 0.262282i \(0.915525\pi\)
\(948\) 0 0
\(949\) −8.63980 14.9646i −0.280460 0.485771i
\(950\) 3.32383 + 5.75703i 0.107839 + 0.186783i
\(951\) 0 0
\(952\) −1.58125 + 2.73881i −0.0512487 + 0.0887653i
\(953\) −39.4397 −1.27758 −0.638789 0.769382i \(-0.720564\pi\)
−0.638789 + 0.769382i \(0.720564\pi\)
\(954\) 0 0
\(955\) 1.56893 0.0507692
\(956\) 18.9192 32.7690i 0.611891 1.05983i
\(957\) 0 0
\(958\) −3.35679 5.81413i −0.108453 0.187846i
\(959\) 3.77379 + 6.53639i 0.121862 + 0.211071i
\(960\) 0 0
\(961\) 13.1618 22.7969i 0.424574 0.735383i
\(962\) −2.53209 −0.0816378
\(963\) 0 0
\(964\) 13.9932 0.450690
\(965\) −0.147956 + 0.256267i −0.00476287 + 0.00824953i
\(966\) 0 0
\(967\) −3.29426 5.70583i −0.105936 0.183487i 0.808184 0.588930i \(-0.200451\pi\)
−0.914120 + 0.405443i \(0.867117\pi\)
\(968\) −0.673648 1.16679i −0.0216519 0.0375021i
\(969\) 0 0
\(970\) −1.43330 + 2.48254i −0.0460204 + 0.0797096i
\(971\) −17.0327 −0.546606 −0.273303 0.961928i \(-0.588116\pi\)
−0.273303 + 0.961928i \(0.588116\pi\)
\(972\) 0 0
\(973\) 0.0537486 0.00172310
\(974\) 4.72503 8.18400i 0.151400 0.262232i
\(975\) 0 0
\(976\) 14.0390 + 24.3162i 0.449376 + 0.778342i
\(977\) 3.77450 + 6.53763i 0.120757 + 0.209157i 0.920066 0.391762i \(-0.128134\pi\)
−0.799309 + 0.600920i \(0.794801\pi\)
\(978\) 0 0
\(979\) −8.47565 + 14.6803i −0.270883 + 0.469183i
\(980\) −8.23947 −0.263200
\(981\) 0 0
\(982\) −12.5158 −0.399395
\(983\) −1.92350 + 3.33159i −0.0613500 + 0.106261i −0.895069 0.445928i \(-0.852874\pi\)
0.833719 + 0.552189i \(0.186207\pi\)
\(984\) 0 0
\(985\) 6.40420 + 11.0924i 0.204055 + 0.353433i
\(986\) −4.86824 8.43204i −0.155036 0.268531i
\(987\) 0 0
\(988\) 9.06583 15.7025i 0.288422 0.499562i
\(989\) 17.3592 0.551989
\(990\) 0 0
\(991\) 40.1121 1.27420 0.637101 0.770781i \(-0.280134\pi\)
0.637101 + 0.770781i \(0.280134\pi\)
\(992\) −4.14930 + 7.18680i −0.131740 + 0.228181i
\(993\) 0 0
\(994\) −0.922618 1.59802i −0.0292637 0.0506862i
\(995\) 1.18479 + 2.05212i 0.0375604 + 0.0650566i
\(996\) 0 0
\(997\) 8.28240 14.3455i 0.262306 0.454328i −0.704548 0.709656i \(-0.748850\pi\)
0.966854 + 0.255328i \(0.0821836\pi\)
\(998\) 2.74092 0.0867625
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.e.d.100.2 6
3.2 odd 2 99.2.e.d.34.2 6
9.2 odd 6 891.2.a.l.1.2 3
9.4 even 3 inner 297.2.e.d.199.2 6
9.5 odd 6 99.2.e.d.67.2 yes 6
9.7 even 3 891.2.a.k.1.2 3
33.32 even 2 1089.2.e.h.727.2 6
99.32 even 6 1089.2.e.h.364.2 6
99.43 odd 6 9801.2.a.bd.1.2 3
99.65 even 6 9801.2.a.be.1.2 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
99.2.e.d.34.2 6 3.2 odd 2
99.2.e.d.67.2 yes 6 9.5 odd 6
297.2.e.d.100.2 6 1.1 even 1 trivial
297.2.e.d.199.2 6 9.4 even 3 inner
891.2.a.k.1.2 3 9.7 even 3
891.2.a.l.1.2 3 9.2 odd 6
1089.2.e.h.364.2 6 99.32 even 6
1089.2.e.h.727.2 6 33.32 even 2
9801.2.a.bd.1.2 3 99.43 odd 6
9801.2.a.be.1.2 3 99.65 even 6