Properties

Label 297.2.f.d.190.2
Level $297$
Weight $2$
Character 297.190
Analytic conductor $2.372$
Analytic rank $0$
Dimension $16$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [297,2,Mod(82,297)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(297, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("297.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 297 = 3^{3} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 297.f (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.37155694003\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{5})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 2 x^{15} + 8 x^{14} - 22 x^{13} + 62 x^{12} - 24 x^{11} + 152 x^{10} - 161 x^{9} + 552 x^{8} + \cdots + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 190.2
Root \(1.10209 + 0.800713i\) of defining polynomial
Character \(\chi\) \(=\) 297.190
Dual form 297.2.f.d.136.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.293070 + 0.212928i) q^{2} +(-0.577482 + 1.77731i) q^{4} +(2.17280 + 1.57863i) q^{5} +(-0.770730 + 2.37206i) q^{7} +(-0.433081 - 1.33288i) q^{8} -0.972914 q^{10} +(-1.14767 - 3.11173i) q^{11} +(-3.08851 + 2.24393i) q^{13} +(-0.279200 - 0.859290i) q^{14} +(-2.61301 - 1.89846i) q^{16} +(-0.909782 - 0.660995i) q^{17} +(2.09612 + 6.45120i) q^{19} +(-4.06046 + 2.95010i) q^{20} +(0.998921 + 0.667582i) q^{22} +6.74940 q^{23} +(0.683891 + 2.10480i) q^{25} +(0.427353 - 1.31526i) q^{26} +(-3.77080 - 2.73965i) q^{28} +(-2.29431 + 7.06116i) q^{29} +(5.42402 - 3.94078i) q^{31} +3.97298 q^{32} +0.407373 q^{34} +(-5.41925 + 3.93732i) q^{35} +(-0.0589927 + 0.181561i) q^{37} +(-1.98795 - 1.44433i) q^{38} +(1.16314 - 3.57976i) q^{40} +(0.196632 + 0.605172i) q^{41} +4.72749 q^{43} +(6.19326 - 0.242800i) q^{44} +(-1.97805 + 1.43713i) q^{46} +(-3.48969 - 10.7402i) q^{47} +(0.630458 + 0.458054i) q^{49} +(-0.648597 - 0.471233i) q^{50} +(-2.20460 - 6.78506i) q^{52} +(-4.45732 + 3.23843i) q^{53} +(2.41860 - 8.57290i) q^{55} +3.49548 q^{56} +(-0.831123 - 2.55793i) q^{58} +(2.60479 - 8.01671i) q^{59} +(-1.39299 - 1.01207i) q^{61} +(-0.750514 + 2.30984i) q^{62} +(4.06165 - 2.95096i) q^{64} -10.2530 q^{65} +4.50670 q^{67} +(1.70017 - 1.23525i) q^{68} +(0.749855 - 2.30782i) q^{70} +(9.95124 + 7.23000i) q^{71} +(-0.658284 + 2.02599i) q^{73} +(-0.0213703 - 0.0657711i) q^{74} -12.6762 q^{76} +(8.26576 - 0.324050i) q^{77} +(9.37010 - 6.80777i) q^{79} +(-2.68057 - 8.24994i) q^{80} +(-0.186485 - 0.135489i) q^{82} +(0.662117 + 0.481056i) q^{83} +(-0.933305 - 2.87242i) q^{85} +(-1.38548 + 1.00661i) q^{86} +(-3.65054 + 2.87734i) q^{88} -1.42041 q^{89} +(-2.94234 - 9.05560i) q^{91} +(-3.89766 + 11.9958i) q^{92} +(3.30960 + 2.40457i) q^{94} +(-5.62960 + 17.3261i) q^{95} +(-8.14778 + 5.91971i) q^{97} -0.282300 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 2 q^{2} - 4 q^{4} + q^{5} - 2 q^{7} + 6 q^{10} + 13 q^{11} - 2 q^{13} - 22 q^{14} - 24 q^{16} - 2 q^{17} - 2 q^{19} + 15 q^{22} + 14 q^{23} - 19 q^{25} + 21 q^{26} + 15 q^{28} + q^{29} + 14 q^{31}+ \cdots + 26 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/297\mathbb{Z}\right)^\times\).

\(n\) \(56\) \(244\)
\(\chi(n)\) \(1\) \(e\left(\frac{4}{5}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.293070 + 0.212928i −0.207232 + 0.150563i −0.686560 0.727073i \(-0.740880\pi\)
0.479329 + 0.877635i \(0.340880\pi\)
\(3\) 0 0
\(4\) −0.577482 + 1.77731i −0.288741 + 0.888654i
\(5\) 2.17280 + 1.57863i 0.971704 + 0.705984i 0.955839 0.293890i \(-0.0949498\pi\)
0.0158649 + 0.999874i \(0.494950\pi\)
\(6\) 0 0
\(7\) −0.770730 + 2.37206i −0.291309 + 0.896556i 0.693128 + 0.720815i \(0.256232\pi\)
−0.984436 + 0.175741i \(0.943768\pi\)
\(8\) −0.433081 1.33288i −0.153117 0.471246i
\(9\) 0 0
\(10\) −0.972914 −0.307663
\(11\) −1.14767 3.11173i −0.346036 0.938221i
\(12\) 0 0
\(13\) −3.08851 + 2.24393i −0.856598 + 0.622355i −0.926957 0.375167i \(-0.877585\pi\)
0.0703593 + 0.997522i \(0.477585\pi\)
\(14\) −0.279200 0.859290i −0.0746194 0.229655i
\(15\) 0 0
\(16\) −2.61301 1.89846i −0.653252 0.474615i
\(17\) −0.909782 0.660995i −0.220654 0.160315i 0.471967 0.881616i \(-0.343544\pi\)
−0.692621 + 0.721301i \(0.743544\pi\)
\(18\) 0 0
\(19\) 2.09612 + 6.45120i 0.480883 + 1.48001i 0.837856 + 0.545891i \(0.183809\pi\)
−0.356973 + 0.934115i \(0.616191\pi\)
\(20\) −4.06046 + 2.95010i −0.907947 + 0.659662i
\(21\) 0 0
\(22\) 0.998921 + 0.667582i 0.212971 + 0.142329i
\(23\) 6.74940 1.40735 0.703674 0.710523i \(-0.251542\pi\)
0.703674 + 0.710523i \(0.251542\pi\)
\(24\) 0 0
\(25\) 0.683891 + 2.10480i 0.136778 + 0.420960i
\(26\) 0.427353 1.31526i 0.0838108 0.257943i
\(27\) 0 0
\(28\) −3.77080 2.73965i −0.712615 0.517745i
\(29\) −2.29431 + 7.06116i −0.426043 + 1.31122i 0.475950 + 0.879472i \(0.342104\pi\)
−0.901992 + 0.431752i \(0.857896\pi\)
\(30\) 0 0
\(31\) 5.42402 3.94078i 0.974182 0.707785i 0.0177811 0.999842i \(-0.494340\pi\)
0.956401 + 0.292057i \(0.0943398\pi\)
\(32\) 3.97298 0.702331
\(33\) 0 0
\(34\) 0.407373 0.0698640
\(35\) −5.41925 + 3.93732i −0.916020 + 0.665528i
\(36\) 0 0
\(37\) −0.0589927 + 0.181561i −0.00969834 + 0.0298484i −0.955789 0.294055i \(-0.904995\pi\)
0.946090 + 0.323903i \(0.104995\pi\)
\(38\) −1.98795 1.44433i −0.322488 0.234301i
\(39\) 0 0
\(40\) 1.16314 3.57976i 0.183908 0.566010i
\(41\) 0.196632 + 0.605172i 0.0307088 + 0.0945121i 0.965236 0.261379i \(-0.0841773\pi\)
−0.934527 + 0.355891i \(0.884177\pi\)
\(42\) 0 0
\(43\) 4.72749 0.720936 0.360468 0.932772i \(-0.382617\pi\)
0.360468 + 0.932772i \(0.382617\pi\)
\(44\) 6.19326 0.242800i 0.933669 0.0366035i
\(45\) 0 0
\(46\) −1.97805 + 1.43713i −0.291647 + 0.211894i
\(47\) −3.48969 10.7402i −0.509024 1.56661i −0.793899 0.608050i \(-0.791952\pi\)
0.284875 0.958565i \(-0.408048\pi\)
\(48\) 0 0
\(49\) 0.630458 + 0.458054i 0.0900654 + 0.0654363i
\(50\) −0.648597 0.471233i −0.0917255 0.0666425i
\(51\) 0 0
\(52\) −2.20460 6.78506i −0.305723 0.940919i
\(53\) −4.45732 + 3.23843i −0.612259 + 0.444833i −0.850209 0.526445i \(-0.823525\pi\)
0.237950 + 0.971277i \(0.423525\pi\)
\(54\) 0 0
\(55\) 2.41860 8.57290i 0.326125 1.15597i
\(56\) 3.49548 0.467103
\(57\) 0 0
\(58\) −0.831123 2.55793i −0.109132 0.335873i
\(59\) 2.60479 8.01671i 0.339115 1.04369i −0.625545 0.780188i \(-0.715123\pi\)
0.964660 0.263499i \(-0.0848767\pi\)
\(60\) 0 0
\(61\) −1.39299 1.01207i −0.178354 0.129582i 0.495026 0.868878i \(-0.335158\pi\)
−0.673380 + 0.739296i \(0.735158\pi\)
\(62\) −0.750514 + 2.30984i −0.0953154 + 0.293351i
\(63\) 0 0
\(64\) 4.06165 2.95096i 0.507706 0.368870i
\(65\) −10.2530 −1.27173
\(66\) 0 0
\(67\) 4.50670 0.550581 0.275291 0.961361i \(-0.411226\pi\)
0.275291 + 0.961361i \(0.411226\pi\)
\(68\) 1.70017 1.23525i 0.206176 0.149796i
\(69\) 0 0
\(70\) 0.749855 2.30782i 0.0896248 0.275837i
\(71\) 9.95124 + 7.23000i 1.18099 + 0.858043i 0.992284 0.123990i \(-0.0395689\pi\)
0.188711 + 0.982033i \(0.439569\pi\)
\(72\) 0 0
\(73\) −0.658284 + 2.02599i −0.0770463 + 0.237124i −0.982161 0.188044i \(-0.939785\pi\)
0.905114 + 0.425168i \(0.139785\pi\)
\(74\) −0.0213703 0.0657711i −0.00248425 0.00764574i
\(75\) 0 0
\(76\) −12.6762 −1.45406
\(77\) 8.26576 0.324050i 0.941971 0.0369290i
\(78\) 0 0
\(79\) 9.37010 6.80777i 1.05422 0.765935i 0.0812083 0.996697i \(-0.474122\pi\)
0.973010 + 0.230763i \(0.0741221\pi\)
\(80\) −2.68057 8.24994i −0.299696 0.922371i
\(81\) 0 0
\(82\) −0.186485 0.135489i −0.0205938 0.0149623i
\(83\) 0.662117 + 0.481056i 0.0726768 + 0.0528028i 0.623530 0.781799i \(-0.285698\pi\)
−0.550854 + 0.834602i \(0.685698\pi\)
\(84\) 0 0
\(85\) −0.933305 2.87242i −0.101231 0.311557i
\(86\) −1.38548 + 1.00661i −0.149401 + 0.108546i
\(87\) 0 0
\(88\) −3.65054 + 2.87734i −0.389149 + 0.306726i
\(89\) −1.42041 −0.150564 −0.0752818 0.997162i \(-0.523986\pi\)
−0.0752818 + 0.997162i \(0.523986\pi\)
\(90\) 0 0
\(91\) −2.94234 9.05560i −0.308441 0.949285i
\(92\) −3.89766 + 11.9958i −0.406359 + 1.25065i
\(93\) 0 0
\(94\) 3.30960 + 2.40457i 0.341359 + 0.248012i
\(95\) −5.62960 + 17.3261i −0.577585 + 1.77762i
\(96\) 0 0
\(97\) −8.14778 + 5.91971i −0.827281 + 0.601055i −0.918789 0.394749i \(-0.870831\pi\)
0.0915074 + 0.995804i \(0.470831\pi\)
\(98\) −0.282300 −0.0285166
\(99\) 0 0
\(100\) −4.13581 −0.413581
\(101\) 15.4878 11.2526i 1.54110 1.11967i 0.591456 0.806337i \(-0.298553\pi\)
0.949642 0.313337i \(-0.101447\pi\)
\(102\) 0 0
\(103\) −0.959963 + 2.95446i −0.0945880 + 0.291112i −0.987146 0.159820i \(-0.948908\pi\)
0.892558 + 0.450932i \(0.148908\pi\)
\(104\) 4.32848 + 3.14482i 0.424442 + 0.308375i
\(105\) 0 0
\(106\) 0.616753 1.89817i 0.0599044 0.184367i
\(107\) −3.05389 9.39890i −0.295231 0.908626i −0.983144 0.182833i \(-0.941473\pi\)
0.687913 0.725793i \(-0.258527\pi\)
\(108\) 0 0
\(109\) 18.0851 1.73224 0.866121 0.499834i \(-0.166606\pi\)
0.866121 + 0.499834i \(0.166606\pi\)
\(110\) 1.11659 + 3.02744i 0.106462 + 0.288656i
\(111\) 0 0
\(112\) 6.51719 4.73502i 0.615817 0.447417i
\(113\) −1.56978 4.83128i −0.147672 0.454489i 0.849673 0.527311i \(-0.176800\pi\)
−0.997345 + 0.0728217i \(0.976800\pi\)
\(114\) 0 0
\(115\) 14.6651 + 10.6548i 1.36753 + 0.993566i
\(116\) −11.2249 8.15539i −1.04221 0.757209i
\(117\) 0 0
\(118\) 0.943595 + 2.90409i 0.0868650 + 0.267343i
\(119\) 2.26912 1.64861i 0.208010 0.151128i
\(120\) 0 0
\(121\) −8.36569 + 7.14249i −0.760518 + 0.649317i
\(122\) 0.623739 0.0564707
\(123\) 0 0
\(124\) 3.87170 + 11.9159i 0.347689 + 1.07008i
\(125\) 2.31293 7.11847i 0.206875 0.636695i
\(126\) 0 0
\(127\) −0.674959 0.490387i −0.0598930 0.0435148i 0.557436 0.830220i \(-0.311785\pi\)
−0.617329 + 0.786705i \(0.711785\pi\)
\(128\) −3.01744 + 9.28674i −0.266707 + 0.820839i
\(129\) 0 0
\(130\) 3.00485 2.18315i 0.263543 0.191475i
\(131\) −19.7527 −1.72580 −0.862899 0.505376i \(-0.831354\pi\)
−0.862899 + 0.505376i \(0.831354\pi\)
\(132\) 0 0
\(133\) −16.9182 −1.46699
\(134\) −1.32078 + 0.959601i −0.114098 + 0.0828969i
\(135\) 0 0
\(136\) −0.487022 + 1.49890i −0.0417618 + 0.128529i
\(137\) 3.20612 + 2.32938i 0.273918 + 0.199013i 0.716260 0.697833i \(-0.245852\pi\)
−0.442343 + 0.896846i \(0.645852\pi\)
\(138\) 0 0
\(139\) −1.05212 + 3.23811i −0.0892401 + 0.274653i −0.985710 0.168452i \(-0.946123\pi\)
0.896470 + 0.443105i \(0.146123\pi\)
\(140\) −3.86830 11.9054i −0.326931 1.00619i
\(141\) 0 0
\(142\) −4.45587 −0.373929
\(143\) 10.5271 + 7.03530i 0.880321 + 0.588321i
\(144\) 0 0
\(145\) −16.1320 + 11.7206i −1.33969 + 0.973343i
\(146\) −0.238466 0.733922i −0.0197356 0.0607399i
\(147\) 0 0
\(148\) −0.288622 0.209696i −0.0237246 0.0172369i
\(149\) −4.16967 3.02944i −0.341592 0.248181i 0.403741 0.914873i \(-0.367710\pi\)
−0.745333 + 0.666692i \(0.767710\pi\)
\(150\) 0 0
\(151\) −4.24751 13.0725i −0.345658 1.06382i −0.961231 0.275745i \(-0.911075\pi\)
0.615573 0.788080i \(-0.288925\pi\)
\(152\) 7.69091 5.58778i 0.623816 0.453229i
\(153\) 0 0
\(154\) −2.35344 + 1.85498i −0.189646 + 0.149478i
\(155\) 18.0063 1.44630
\(156\) 0 0
\(157\) 5.14028 + 15.8201i 0.410239 + 1.26258i 0.916441 + 0.400170i \(0.131049\pi\)
−0.506202 + 0.862415i \(0.668951\pi\)
\(158\) −1.29653 + 3.99030i −0.103146 + 0.317452i
\(159\) 0 0
\(160\) 8.63249 + 6.27187i 0.682458 + 0.495835i
\(161\) −5.20197 + 16.0100i −0.409973 + 1.26177i
\(162\) 0 0
\(163\) −18.4445 + 13.4007i −1.44469 + 1.04963i −0.457648 + 0.889134i \(0.651308\pi\)
−0.987037 + 0.160492i \(0.948692\pi\)
\(164\) −1.18913 −0.0928554
\(165\) 0 0
\(166\) −0.296477 −0.0230111
\(167\) −10.1932 + 7.40583i −0.788777 + 0.573080i −0.907600 0.419835i \(-0.862088\pi\)
0.118823 + 0.992915i \(0.462088\pi\)
\(168\) 0 0
\(169\) 0.486428 1.49707i 0.0374176 0.115159i
\(170\) 0.885140 + 0.643092i 0.0678871 + 0.0493229i
\(171\) 0 0
\(172\) −2.73004 + 8.40221i −0.208164 + 0.640662i
\(173\) −2.21873 6.82855i −0.168687 0.519165i 0.830602 0.556866i \(-0.187996\pi\)
−0.999289 + 0.0377013i \(0.987996\pi\)
\(174\) 0 0
\(175\) −5.51981 −0.417259
\(176\) −2.90861 + 10.3098i −0.219245 + 0.777128i
\(177\) 0 0
\(178\) 0.416280 0.302445i 0.0312015 0.0226692i
\(179\) 2.78001 + 8.55598i 0.207788 + 0.639504i 0.999587 + 0.0287236i \(0.00914427\pi\)
−0.791800 + 0.610781i \(0.790856\pi\)
\(180\) 0 0
\(181\) −1.51882 1.10349i −0.112893 0.0820215i 0.529906 0.848056i \(-0.322227\pi\)
−0.642799 + 0.766035i \(0.722227\pi\)
\(182\) 2.79050 + 2.02742i 0.206846 + 0.150282i
\(183\) 0 0
\(184\) −2.92304 8.99618i −0.215489 0.663207i
\(185\) −0.414796 + 0.301367i −0.0304964 + 0.0221570i
\(186\) 0 0
\(187\) −1.01270 + 3.58960i −0.0740563 + 0.262497i
\(188\) 21.1038 1.53915
\(189\) 0 0
\(190\) −2.03935 6.27646i −0.147950 0.455343i
\(191\) 1.97927 6.09158i 0.143215 0.440771i −0.853562 0.520991i \(-0.825562\pi\)
0.996777 + 0.0802202i \(0.0255623\pi\)
\(192\) 0 0
\(193\) −2.28013 1.65661i −0.164127 0.119245i 0.502690 0.864467i \(-0.332344\pi\)
−0.666817 + 0.745221i \(0.732344\pi\)
\(194\) 1.12740 3.46977i 0.0809424 0.249115i
\(195\) 0 0
\(196\) −1.17818 + 0.855999i −0.0841558 + 0.0611428i
\(197\) −25.7193 −1.83243 −0.916213 0.400692i \(-0.868770\pi\)
−0.916213 + 0.400692i \(0.868770\pi\)
\(198\) 0 0
\(199\) 13.3474 0.946174 0.473087 0.881016i \(-0.343140\pi\)
0.473087 + 0.881016i \(0.343140\pi\)
\(200\) 2.50927 1.82309i 0.177433 0.128912i
\(201\) 0 0
\(202\) −2.14303 + 6.59558i −0.150783 + 0.464063i
\(203\) −14.9812 10.8845i −1.05148 0.763942i
\(204\) 0 0
\(205\) −0.528101 + 1.62533i −0.0368841 + 0.113518i
\(206\) −0.347751 1.07027i −0.0242289 0.0745690i
\(207\) 0 0
\(208\) 12.3303 0.854953
\(209\) 17.6687 13.9264i 1.22217 0.963311i
\(210\) 0 0
\(211\) 12.7273 9.24690i 0.876181 0.636583i −0.0560570 0.998428i \(-0.517853\pi\)
0.932238 + 0.361844i \(0.117853\pi\)
\(212\) −3.18167 9.79216i −0.218518 0.672528i
\(213\) 0 0
\(214\) 2.89629 + 2.10428i 0.197986 + 0.143845i
\(215\) 10.2719 + 7.46296i 0.700536 + 0.508969i
\(216\) 0 0
\(217\) 5.16732 + 15.9034i 0.350781 + 1.07959i
\(218\) −5.30021 + 3.85083i −0.358975 + 0.260811i
\(219\) 0 0
\(220\) 13.8400 + 9.24930i 0.933091 + 0.623588i
\(221\) 4.29310 0.288785
\(222\) 0 0
\(223\) −5.83506 17.9585i −0.390744 1.20259i −0.932227 0.361875i \(-0.882137\pi\)
0.541482 0.840712i \(-0.317863\pi\)
\(224\) −3.06210 + 9.42417i −0.204595 + 0.629679i
\(225\) 0 0
\(226\) 1.48877 + 1.08165i 0.0990314 + 0.0719505i
\(227\) 0.333566 1.02661i 0.0221395 0.0681385i −0.939376 0.342888i \(-0.888595\pi\)
0.961516 + 0.274749i \(0.0885949\pi\)
\(228\) 0 0
\(229\) 9.92056 7.20771i 0.655569 0.476299i −0.209595 0.977788i \(-0.567214\pi\)
0.865164 + 0.501489i \(0.167214\pi\)
\(230\) −6.56659 −0.432988
\(231\) 0 0
\(232\) 10.4053 0.683143
\(233\) 12.1863 8.85388i 0.798353 0.580037i −0.112078 0.993699i \(-0.535751\pi\)
0.910430 + 0.413662i \(0.135751\pi\)
\(234\) 0 0
\(235\) 9.37235 28.8451i 0.611385 1.88165i
\(236\) 12.7440 + 9.25902i 0.829560 + 0.602711i
\(237\) 0 0
\(238\) −0.313975 + 0.966316i −0.0203520 + 0.0626370i
\(239\) −4.44785 13.6891i −0.287708 0.885473i −0.985574 0.169245i \(-0.945867\pi\)
0.697866 0.716228i \(-0.254133\pi\)
\(240\) 0 0
\(241\) −12.0283 −0.774809 −0.387404 0.921910i \(-0.626628\pi\)
−0.387404 + 0.921910i \(0.626628\pi\)
\(242\) 0.930898 3.87453i 0.0598404 0.249064i
\(243\) 0 0
\(244\) 2.60318 1.89132i 0.166651 0.121079i
\(245\) 0.646758 + 1.99052i 0.0413199 + 0.127170i
\(246\) 0 0
\(247\) −20.9499 15.2210i −1.33301 0.968490i
\(248\) −7.60164 5.52291i −0.482705 0.350705i
\(249\) 0 0
\(250\) 0.837868 + 2.57869i 0.0529915 + 0.163091i
\(251\) −11.5075 + 8.36069i −0.726347 + 0.527722i −0.888406 0.459059i \(-0.848187\pi\)
0.162058 + 0.986781i \(0.448187\pi\)
\(252\) 0 0
\(253\) −7.74611 21.0023i −0.486994 1.32040i
\(254\) 0.302227 0.0189634
\(255\) 0 0
\(256\) 2.00974 + 6.18536i 0.125609 + 0.386585i
\(257\) −3.35820 + 10.3355i −0.209479 + 0.644709i 0.790021 + 0.613080i \(0.210069\pi\)
−0.999500 + 0.0316290i \(0.989931\pi\)
\(258\) 0 0
\(259\) −0.385206 0.279869i −0.0239356 0.0173902i
\(260\) 5.92095 18.2228i 0.367202 1.13013i
\(261\) 0 0
\(262\) 5.78891 4.20589i 0.357640 0.259841i
\(263\) −2.58062 −0.159128 −0.0795640 0.996830i \(-0.525353\pi\)
−0.0795640 + 0.996830i \(0.525353\pi\)
\(264\) 0 0
\(265\) −14.7971 −0.908980
\(266\) 4.95821 3.60235i 0.304007 0.220874i
\(267\) 0 0
\(268\) −2.60254 + 8.00980i −0.158975 + 0.489276i
\(269\) 4.58187 + 3.32892i 0.279361 + 0.202968i 0.718639 0.695383i \(-0.244765\pi\)
−0.439277 + 0.898351i \(0.644765\pi\)
\(270\) 0 0
\(271\) 0.742616 2.28554i 0.0451107 0.138836i −0.925964 0.377611i \(-0.876746\pi\)
0.971075 + 0.238775i \(0.0767457\pi\)
\(272\) 1.12239 + 3.45437i 0.0680550 + 0.209452i
\(273\) 0 0
\(274\) −1.43561 −0.0867282
\(275\) 5.76468 4.54370i 0.347623 0.273995i
\(276\) 0 0
\(277\) −2.11159 + 1.53416i −0.126873 + 0.0921787i −0.649412 0.760437i \(-0.724985\pi\)
0.522539 + 0.852615i \(0.324985\pi\)
\(278\) −0.381136 1.17302i −0.0228590 0.0703529i
\(279\) 0 0
\(280\) 7.59496 + 5.51806i 0.453886 + 0.329767i
\(281\) 7.16625 + 5.20659i 0.427503 + 0.310599i 0.780650 0.624969i \(-0.214888\pi\)
−0.353147 + 0.935568i \(0.614888\pi\)
\(282\) 0 0
\(283\) −4.17507 12.8495i −0.248182 0.763826i −0.995097 0.0989059i \(-0.968466\pi\)
0.746915 0.664920i \(-0.231534\pi\)
\(284\) −18.5966 + 13.5112i −1.10351 + 0.801743i
\(285\) 0 0
\(286\) −4.58318 + 0.179679i −0.271009 + 0.0106246i
\(287\) −1.58706 −0.0936811
\(288\) 0 0
\(289\) −4.86250 14.9652i −0.286029 0.880308i
\(290\) 2.23217 6.86990i 0.131077 0.403415i
\(291\) 0 0
\(292\) −3.22066 2.33995i −0.188475 0.136935i
\(293\) −5.47529 + 16.8512i −0.319870 + 0.984457i 0.653834 + 0.756638i \(0.273160\pi\)
−0.973703 + 0.227819i \(0.926840\pi\)
\(294\) 0 0
\(295\) 18.3151 13.3067i 1.06635 0.774746i
\(296\) 0.267548 0.0155509
\(297\) 0 0
\(298\) 1.86705 0.108156
\(299\) −20.8456 + 15.1452i −1.20553 + 0.875870i
\(300\) 0 0
\(301\) −3.64362 + 11.2139i −0.210015 + 0.646359i
\(302\) 4.02831 + 2.92674i 0.231803 + 0.168415i
\(303\) 0 0
\(304\) 6.77016 20.8364i 0.388296 1.19505i
\(305\) −1.42901 4.39803i −0.0818246 0.251830i
\(306\) 0 0
\(307\) 11.3039 0.645145 0.322573 0.946545i \(-0.395452\pi\)
0.322573 + 0.946545i \(0.395452\pi\)
\(308\) −4.19739 + 14.8779i −0.239169 + 0.847749i
\(309\) 0 0
\(310\) −5.27710 + 3.83404i −0.299719 + 0.217759i
\(311\) 2.04111 + 6.28188i 0.115740 + 0.356213i 0.992101 0.125444i \(-0.0400354\pi\)
−0.876360 + 0.481656i \(0.840035\pi\)
\(312\) 0 0
\(313\) −25.3217 18.3973i −1.43127 1.03988i −0.989779 0.142612i \(-0.954450\pi\)
−0.441490 0.897266i \(-0.645550\pi\)
\(314\) −4.87500 3.54190i −0.275112 0.199881i
\(315\) 0 0
\(316\) 6.68845 + 20.5849i 0.376254 + 1.15799i
\(317\) 10.3929 7.55088i 0.583723 0.424100i −0.256341 0.966586i \(-0.582517\pi\)
0.840064 + 0.542487i \(0.182517\pi\)
\(318\) 0 0
\(319\) 24.6055 0.964633i 1.37764 0.0540091i
\(320\) 13.4836 0.753757
\(321\) 0 0
\(322\) −1.88443 5.79969i −0.105015 0.323204i
\(323\) 2.35720 7.25471i 0.131158 0.403663i
\(324\) 0 0
\(325\) −6.83523 4.96608i −0.379150 0.275469i
\(326\) 2.55214 7.85469i 0.141350 0.435031i
\(327\) 0 0
\(328\) 0.721468 0.524177i 0.0398364 0.0289428i
\(329\) 28.1660 1.55284
\(330\) 0 0
\(331\) 19.1669 1.05351 0.526755 0.850017i \(-0.323408\pi\)
0.526755 + 0.850017i \(0.323408\pi\)
\(332\) −1.23735 + 0.898985i −0.0679082 + 0.0493382i
\(333\) 0 0
\(334\) 1.41043 4.34085i 0.0771751 0.237521i
\(335\) 9.79215 + 7.11441i 0.535002 + 0.388702i
\(336\) 0 0
\(337\) 10.1049 31.0996i 0.550448 1.69410i −0.157224 0.987563i \(-0.550254\pi\)
0.707672 0.706542i \(-0.249746\pi\)
\(338\) 0.176211 + 0.542321i 0.00958459 + 0.0294984i
\(339\) 0 0
\(340\) 5.64413 0.306096
\(341\) −18.4876 12.3553i −1.00116 0.669079i
\(342\) 0 0
\(343\) −15.6970 + 11.4046i −0.847560 + 0.615788i
\(344\) −2.04738 6.30120i −0.110388 0.339738i
\(345\) 0 0
\(346\) 2.10423 + 1.52881i 0.113124 + 0.0821894i
\(347\) 8.88351 + 6.45425i 0.476892 + 0.346482i 0.800121 0.599838i \(-0.204768\pi\)
−0.323229 + 0.946321i \(0.604768\pi\)
\(348\) 0 0
\(349\) 7.32380 + 22.5403i 0.392034 + 1.20656i 0.931247 + 0.364387i \(0.118722\pi\)
−0.539214 + 0.842169i \(0.681278\pi\)
\(350\) 1.61769 1.17532i 0.0864691 0.0628235i
\(351\) 0 0
\(352\) −4.55968 12.3628i −0.243032 0.658942i
\(353\) −29.5876 −1.57479 −0.787394 0.616450i \(-0.788570\pi\)
−0.787394 + 0.616450i \(0.788570\pi\)
\(354\) 0 0
\(355\) 10.2085 + 31.4186i 0.541813 + 1.66753i
\(356\) 0.820264 2.52451i 0.0434739 0.133799i
\(357\) 0 0
\(358\) −2.63654 1.91556i −0.139345 0.101240i
\(359\) −8.83869 + 27.2027i −0.466488 + 1.43570i 0.390614 + 0.920555i \(0.372263\pi\)
−0.857102 + 0.515148i \(0.827737\pi\)
\(360\) 0 0
\(361\) −21.8529 + 15.8771i −1.15015 + 0.835635i
\(362\) 0.680082 0.0357443
\(363\) 0 0
\(364\) 17.7937 0.932646
\(365\) −4.62860 + 3.36288i −0.242272 + 0.176021i
\(366\) 0 0
\(367\) −1.10625 + 3.40467i −0.0577456 + 0.177723i −0.975769 0.218804i \(-0.929785\pi\)
0.918023 + 0.396526i \(0.129785\pi\)
\(368\) −17.6362 12.8135i −0.919352 0.667948i
\(369\) 0 0
\(370\) 0.0573948 0.176643i 0.00298382 0.00918324i
\(371\) −4.24637 13.0690i −0.220461 0.678508i
\(372\) 0 0
\(373\) −36.9935 −1.91545 −0.957726 0.287683i \(-0.907115\pi\)
−0.957726 + 0.287683i \(0.907115\pi\)
\(374\) −0.467531 1.26764i −0.0241755 0.0655479i
\(375\) 0 0
\(376\) −12.8041 + 9.30272i −0.660320 + 0.479751i
\(377\) −8.75877 26.9567i −0.451100 1.38834i
\(378\) 0 0
\(379\) 19.4747 + 14.1492i 1.00035 + 0.726796i 0.962163 0.272474i \(-0.0878420\pi\)
0.0381863 + 0.999271i \(0.487842\pi\)
\(380\) −27.5429 20.0111i −1.41292 1.02655i
\(381\) 0 0
\(382\) 0.717000 + 2.20670i 0.0366849 + 0.112905i
\(383\) 28.3311 20.5837i 1.44765 1.05178i 0.461276 0.887257i \(-0.347392\pi\)
0.986373 0.164522i \(-0.0526082\pi\)
\(384\) 0 0
\(385\) 18.4714 + 12.3445i 0.941389 + 0.629133i
\(386\) 1.02097 0.0519662
\(387\) 0 0
\(388\) −5.81594 17.8996i −0.295260 0.908716i
\(389\) 1.26992 3.90841i 0.0643875 0.198164i −0.913687 0.406418i \(-0.866778\pi\)
0.978075 + 0.208253i \(0.0667778\pi\)
\(390\) 0 0
\(391\) −6.14048 4.46132i −0.310538 0.225619i
\(392\) 0.337495 1.03870i 0.0170461 0.0524624i
\(393\) 0 0
\(394\) 7.53755 5.47635i 0.379736 0.275895i
\(395\) 31.1063 1.56513
\(396\) 0 0
\(397\) −23.0629 −1.15749 −0.578747 0.815507i \(-0.696458\pi\)
−0.578747 + 0.815507i \(0.696458\pi\)
\(398\) −3.91173 + 2.84203i −0.196077 + 0.142458i
\(399\) 0 0
\(400\) 2.20887 6.79819i 0.110443 0.339910i
\(401\) 3.03414 + 2.20443i 0.151518 + 0.110084i 0.660961 0.750420i \(-0.270149\pi\)
−0.509443 + 0.860504i \(0.670149\pi\)
\(402\) 0 0
\(403\) −7.90928 + 24.3423i −0.393989 + 1.21257i
\(404\) 11.0553 + 34.0248i 0.550024 + 1.69280i
\(405\) 0 0
\(406\) 6.70815 0.332920
\(407\) 0.632672 0.0248032i 0.0313604 0.00122945i
\(408\) 0 0
\(409\) 22.2031 16.1315i 1.09787 0.797652i 0.117162 0.993113i \(-0.462620\pi\)
0.980711 + 0.195461i \(0.0626204\pi\)
\(410\) −0.191307 0.588781i −0.00944796 0.0290778i
\(411\) 0 0
\(412\) −4.69663 3.41230i −0.231386 0.168112i
\(413\) 17.0086 + 12.3574i 0.836937 + 0.608070i
\(414\) 0 0
\(415\) 0.679237 + 2.09048i 0.0333424 + 0.102617i
\(416\) −12.2706 + 8.91511i −0.601615 + 0.437099i
\(417\) 0 0
\(418\) −2.21284 + 7.84357i −0.108234 + 0.383641i
\(419\) −21.4045 −1.04568 −0.522840 0.852431i \(-0.675128\pi\)
−0.522840 + 0.852431i \(0.675128\pi\)
\(420\) 0 0
\(421\) 3.37531 + 10.3881i 0.164502 + 0.506286i 0.998999 0.0447264i \(-0.0142416\pi\)
−0.834497 + 0.551013i \(0.814242\pi\)
\(422\) −1.76106 + 5.41997i −0.0857269 + 0.263840i
\(423\) 0 0
\(424\) 6.24683 + 4.53859i 0.303373 + 0.220413i
\(425\) 0.769071 2.36696i 0.0373054 0.114814i
\(426\) 0 0
\(427\) 3.47430 2.52423i 0.168133 0.122156i
\(428\) 18.4683 0.892700
\(429\) 0 0
\(430\) −4.59944 −0.221805
\(431\) 9.56381 6.94852i 0.460673 0.334698i −0.333122 0.942884i \(-0.608102\pi\)
0.793795 + 0.608185i \(0.208102\pi\)
\(432\) 0 0
\(433\) −7.50566 + 23.1000i −0.360699 + 1.11012i 0.591932 + 0.805988i \(0.298365\pi\)
−0.952631 + 0.304129i \(0.901635\pi\)
\(434\) −4.90066 3.56053i −0.235239 0.170911i
\(435\) 0 0
\(436\) −10.4439 + 32.1429i −0.500170 + 1.53936i
\(437\) 14.1476 + 43.5417i 0.676770 + 2.08288i
\(438\) 0 0
\(439\) −18.5791 −0.886734 −0.443367 0.896340i \(-0.646216\pi\)
−0.443367 + 0.896340i \(0.646216\pi\)
\(440\) −12.4741 + 0.489035i −0.594681 + 0.0233139i
\(441\) 0 0
\(442\) −1.25818 + 0.914119i −0.0598453 + 0.0434802i
\(443\) 6.10193 + 18.7798i 0.289912 + 0.892256i 0.984883 + 0.173219i \(0.0554168\pi\)
−0.694972 + 0.719037i \(0.744583\pi\)
\(444\) 0 0
\(445\) −3.08627 2.24231i −0.146303 0.106296i
\(446\) 5.53393 + 4.02063i 0.262039 + 0.190383i
\(447\) 0 0
\(448\) 3.86943 + 11.9089i 0.182814 + 0.562642i
\(449\) −1.68475 + 1.22404i −0.0795083 + 0.0577662i −0.626829 0.779157i \(-0.715648\pi\)
0.547321 + 0.836923i \(0.315648\pi\)
\(450\) 0 0
\(451\) 1.65746 1.30641i 0.0780468 0.0615163i
\(452\) 9.49320 0.446523
\(453\) 0 0
\(454\) 0.120836 + 0.371894i 0.00567109 + 0.0174538i
\(455\) 7.90233 24.3209i 0.370467 1.14018i
\(456\) 0 0
\(457\) 6.70503 + 4.87149i 0.313648 + 0.227879i 0.733460 0.679732i \(-0.237904\pi\)
−0.419812 + 0.907611i \(0.637904\pi\)
\(458\) −1.37270 + 4.22472i −0.0641418 + 0.197408i
\(459\) 0 0
\(460\) −27.4057 + 19.9114i −1.27780 + 0.928374i
\(461\) −6.55423 −0.305261 −0.152630 0.988283i \(-0.548774\pi\)
−0.152630 + 0.988283i \(0.548774\pi\)
\(462\) 0 0
\(463\) 0.273405 0.0127062 0.00635310 0.999980i \(-0.497978\pi\)
0.00635310 + 0.999980i \(0.497978\pi\)
\(464\) 19.4004 14.0952i 0.900640 0.654353i
\(465\) 0 0
\(466\) −1.68621 + 5.18961i −0.0781120 + 0.240404i
\(467\) −6.19971 4.50435i −0.286888 0.208437i 0.435028 0.900417i \(-0.356738\pi\)
−0.721916 + 0.691980i \(0.756738\pi\)
\(468\) 0 0
\(469\) −3.47345 + 10.6902i −0.160389 + 0.493627i
\(470\) 3.39517 + 10.4493i 0.156608 + 0.481989i
\(471\) 0 0
\(472\) −11.8134 −0.543758
\(473\) −5.42561 14.7107i −0.249470 0.676397i
\(474\) 0 0
\(475\) −12.1450 + 8.82383i −0.557249 + 0.404865i
\(476\) 1.61971 + 4.98497i 0.0742395 + 0.228486i
\(477\) 0 0
\(478\) 4.21831 + 3.06478i 0.192941 + 0.140180i
\(479\) −18.7751 13.6409i −0.857856 0.623269i 0.0694449 0.997586i \(-0.477877\pi\)
−0.927301 + 0.374317i \(0.877877\pi\)
\(480\) 0 0
\(481\) −0.225211 0.693128i −0.0102687 0.0316039i
\(482\) 3.52512 2.56115i 0.160565 0.116657i
\(483\) 0 0
\(484\) −7.86336 18.9931i −0.357426 0.863322i
\(485\) −27.0485 −1.22821
\(486\) 0 0
\(487\) −7.44592 22.9162i −0.337407 1.03843i −0.965524 0.260313i \(-0.916174\pi\)
0.628117 0.778119i \(-0.283826\pi\)
\(488\) −0.745690 + 2.29500i −0.0337558 + 0.103890i
\(489\) 0 0
\(490\) −0.613381 0.445648i −0.0277097 0.0201323i
\(491\) 10.8675 33.4466i 0.490442 1.50942i −0.333500 0.942750i \(-0.608230\pi\)
0.823942 0.566675i \(-0.191770\pi\)
\(492\) 0 0
\(493\) 6.75471 4.90759i 0.304217 0.221027i
\(494\) 9.38077 0.422061
\(495\) 0 0
\(496\) −21.6544 −0.972311
\(497\) −24.8197 + 18.0326i −1.11332 + 0.808873i
\(498\) 0 0
\(499\) −7.03047 + 21.6376i −0.314727 + 0.968631i 0.661139 + 0.750263i \(0.270073\pi\)
−0.975867 + 0.218368i \(0.929927\pi\)
\(500\) 11.3160 + 8.22158i 0.506068 + 0.367680i
\(501\) 0 0
\(502\) 1.59228 4.90053i 0.0710669 0.218721i
\(503\) 1.55585 + 4.78840i 0.0693718 + 0.213504i 0.979732 0.200312i \(-0.0641956\pi\)
−0.910360 + 0.413816i \(0.864196\pi\)
\(504\) 0 0
\(505\) 51.4156 2.28796
\(506\) 6.74212 + 4.50578i 0.299724 + 0.200306i
\(507\) 0 0
\(508\) 1.26135 0.916421i 0.0559631 0.0406596i
\(509\) −2.87574 8.85063i −0.127465 0.392297i 0.866877 0.498522i \(-0.166124\pi\)
−0.994342 + 0.106225i \(0.966124\pi\)
\(510\) 0 0
\(511\) −4.29842 3.12298i −0.190151 0.138153i
\(512\) −17.7056 12.8639i −0.782483 0.568507i
\(513\) 0 0
\(514\) −1.21652 3.74406i −0.0536584 0.165144i
\(515\) −6.74981 + 4.90402i −0.297432 + 0.216097i
\(516\) 0 0
\(517\) −29.4154 + 23.1852i −1.29369 + 1.01968i
\(518\) 0.172484 0.00757852
\(519\) 0 0
\(520\) 4.44039 + 13.6661i 0.194724 + 0.599299i
\(521\) −3.41257 + 10.5028i −0.149507 + 0.460136i −0.997563 0.0697708i \(-0.977773\pi\)
0.848056 + 0.529907i \(0.177773\pi\)
\(522\) 0 0
\(523\) 15.7075 + 11.4122i 0.686841 + 0.499019i 0.875620 0.483001i \(-0.160453\pi\)
−0.188779 + 0.982020i \(0.560453\pi\)
\(524\) 11.4068 35.1066i 0.498309 1.53364i
\(525\) 0 0
\(526\) 0.756302 0.549486i 0.0329764 0.0239587i
\(527\) −7.53951 −0.328426
\(528\) 0 0
\(529\) 22.5544 0.980628
\(530\) 4.33659 3.15071i 0.188369 0.136858i
\(531\) 0 0
\(532\) 9.76996 30.0688i 0.423581 1.30365i
\(533\) −1.96527 1.42785i −0.0851252 0.0618471i
\(534\) 0 0
\(535\) 8.20190 25.2429i 0.354599 1.09134i
\(536\) −1.95176 6.00691i −0.0843034 0.259459i
\(537\) 0 0
\(538\) −2.05163 −0.0884519
\(539\) 0.701781 2.48751i 0.0302278 0.107145i
\(540\) 0 0
\(541\) 17.0772 12.4073i 0.734205 0.533431i −0.156686 0.987649i \(-0.550081\pi\)
0.890891 + 0.454217i \(0.150081\pi\)
\(542\) 0.269015 + 0.827944i 0.0115552 + 0.0355633i
\(543\) 0 0
\(544\) −3.61455 2.62612i −0.154972 0.112594i
\(545\) 39.2953 + 28.5497i 1.68323 + 1.22294i
\(546\) 0 0
\(547\) −4.33986 13.3567i −0.185559 0.571092i 0.814398 0.580306i \(-0.197067\pi\)
−0.999958 + 0.00921392i \(0.997067\pi\)
\(548\) −5.99151 + 4.35309i −0.255945 + 0.185955i
\(549\) 0 0
\(550\) −0.721973 + 2.55908i −0.0307850 + 0.109120i
\(551\) −50.3621 −2.14550
\(552\) 0 0
\(553\) 8.92666 + 27.4734i 0.379600 + 1.16829i
\(554\) 0.292178 0.899231i 0.0124134 0.0382047i
\(555\) 0 0
\(556\) −5.14753 3.73990i −0.218304 0.158607i
\(557\) 12.8094 39.4233i 0.542752 1.67042i −0.183524 0.983015i \(-0.558751\pi\)
0.726276 0.687403i \(-0.241249\pi\)
\(558\) 0 0
\(559\) −14.6009 + 10.6082i −0.617552 + 0.448678i
\(560\) 21.6354 0.914261
\(561\) 0 0
\(562\) −3.20884 −0.135357
\(563\) −6.02675 + 4.37869i −0.253997 + 0.184540i −0.707497 0.706717i \(-0.750176\pi\)
0.453499 + 0.891257i \(0.350176\pi\)
\(564\) 0 0
\(565\) 4.21600 12.9755i 0.177368 0.545883i
\(566\) 3.95961 + 2.87682i 0.166435 + 0.120922i
\(567\) 0 0
\(568\) 5.32707 16.3950i 0.223519 0.687920i
\(569\) 7.54697 + 23.2272i 0.316385 + 0.973734i 0.975180 + 0.221412i \(0.0710664\pi\)
−0.658795 + 0.752322i \(0.728934\pi\)
\(570\) 0 0
\(571\) −12.8161 −0.536337 −0.268169 0.963372i \(-0.586418\pi\)
−0.268169 + 0.963372i \(0.586418\pi\)
\(572\) −18.5831 + 14.6471i −0.776998 + 0.612428i
\(573\) 0 0
\(574\) 0.465119 0.337928i 0.0194137 0.0141049i
\(575\) 4.61585 + 14.2061i 0.192494 + 0.592437i
\(576\) 0 0
\(577\) 11.7428 + 8.53166i 0.488860 + 0.355178i 0.804746 0.593620i \(-0.202302\pi\)
−0.315886 + 0.948797i \(0.602302\pi\)
\(578\) 4.61156 + 3.35050i 0.191816 + 0.139362i
\(579\) 0 0
\(580\) −11.5152 35.4400i −0.478141 1.47157i
\(581\) −1.65141 + 1.19982i −0.0685120 + 0.0497769i
\(582\) 0 0
\(583\) 15.1926 + 10.1533i 0.629215 + 0.420507i
\(584\) 2.98550 0.123541
\(585\) 0 0
\(586\) −1.98344 6.10441i −0.0819353 0.252171i
\(587\) 6.92675 21.3183i 0.285897 0.879902i −0.700231 0.713917i \(-0.746920\pi\)
0.986128 0.165985i \(-0.0530805\pi\)
\(588\) 0 0
\(589\) 36.7921 + 26.7311i 1.51599 + 1.10143i
\(590\) −2.53424 + 7.79958i −0.104333 + 0.321104i
\(591\) 0 0
\(592\) 0.498834 0.362424i 0.0205020 0.0148955i
\(593\) −18.2533 −0.749572 −0.374786 0.927111i \(-0.622284\pi\)
−0.374786 + 0.927111i \(0.622284\pi\)
\(594\) 0 0
\(595\) 7.53288 0.308818
\(596\) 7.79216 5.66133i 0.319179 0.231897i
\(597\) 0 0
\(598\) 2.88438 8.87720i 0.117951 0.363016i
\(599\) −21.3766 15.5310i −0.873425 0.634581i 0.0580785 0.998312i \(-0.481503\pi\)
−0.931504 + 0.363731i \(0.881503\pi\)
\(600\) 0 0
\(601\) 4.27228 13.1487i 0.174270 0.536347i −0.825330 0.564651i \(-0.809011\pi\)
0.999599 + 0.0283041i \(0.00901067\pi\)
\(602\) −1.31992 4.06228i −0.0537958 0.165566i
\(603\) 0 0
\(604\) 25.6867 1.04518
\(605\) −29.4523 + 2.31285i −1.19741 + 0.0940306i
\(606\) 0 0
\(607\) 11.7971 8.57109i 0.478829 0.347890i −0.322043 0.946725i \(-0.604370\pi\)
0.800872 + 0.598835i \(0.204370\pi\)
\(608\) 8.32786 + 25.6305i 0.337739 + 1.03945i
\(609\) 0 0
\(610\) 1.35526 + 0.984653i 0.0548728 + 0.0398674i
\(611\) 34.8782 + 25.3405i 1.41102 + 1.02517i
\(612\) 0 0
\(613\) −9.31252 28.6610i −0.376129 1.15761i −0.942714 0.333603i \(-0.891736\pi\)
0.566585 0.824004i \(-0.308264\pi\)
\(614\) −3.31282 + 2.40690i −0.133694 + 0.0971347i
\(615\) 0 0
\(616\) −4.01166 10.8770i −0.161634 0.438246i
\(617\) 19.6957 0.792918 0.396459 0.918052i \(-0.370239\pi\)
0.396459 + 0.918052i \(0.370239\pi\)
\(618\) 0 0
\(619\) 0.399593 + 1.22982i 0.0160610 + 0.0494306i 0.958766 0.284197i \(-0.0917271\pi\)
−0.942705 + 0.333628i \(0.891727\pi\)
\(620\) −10.3983 + 32.0028i −0.417607 + 1.28526i
\(621\) 0 0
\(622\) −1.93577 1.40642i −0.0776173 0.0563923i
\(623\) 1.09476 3.36931i 0.0438605 0.134989i
\(624\) 0 0
\(625\) 25.2152 18.3199i 1.00861 0.732797i
\(626\) 11.3383 0.453171
\(627\) 0 0
\(628\) −31.0857 −1.24045
\(629\) 0.173681 0.126187i 0.00692513 0.00503140i
\(630\) 0 0
\(631\) 13.6277 41.9417i 0.542509 1.66967i −0.184330 0.982864i \(-0.559012\pi\)
0.726839 0.686808i \(-0.240988\pi\)
\(632\) −13.1320 9.54095i −0.522362 0.379519i
\(633\) 0 0
\(634\) −1.43805 + 4.42587i −0.0571123 + 0.175774i
\(635\) −0.692411 2.13102i −0.0274775 0.0845670i
\(636\) 0 0
\(637\) −2.97502 −0.117874
\(638\) −7.00573 + 5.52190i −0.277360 + 0.218614i
\(639\) 0 0
\(640\) −21.2166 + 15.4148i −0.838660 + 0.609322i
\(641\) 8.34164 + 25.6729i 0.329475 + 1.01402i 0.969380 + 0.245566i \(0.0789737\pi\)
−0.639905 + 0.768454i \(0.721026\pi\)
\(642\) 0 0
\(643\) 8.21678 + 5.96984i 0.324038 + 0.235428i 0.737897 0.674914i \(-0.235819\pi\)
−0.413858 + 0.910341i \(0.635819\pi\)
\(644\) −25.4507 18.4910i −1.00290 0.728648i
\(645\) 0 0
\(646\) 0.853904 + 2.62805i 0.0335964 + 0.103399i
\(647\) 27.2093 19.7687i 1.06971 0.777189i 0.0938493 0.995586i \(-0.470083\pi\)
0.975860 + 0.218397i \(0.0700828\pi\)
\(648\) 0 0
\(649\) −27.9353 + 1.09517i −1.09656 + 0.0429893i
\(650\) 3.06061 0.120047
\(651\) 0 0
\(652\) −13.1658 40.5202i −0.515613 1.58690i
\(653\) −3.50045 + 10.7733i −0.136983 + 0.421591i −0.995893 0.0905356i \(-0.971142\pi\)
0.858910 + 0.512127i \(0.171142\pi\)
\(654\) 0 0
\(655\) −42.9185 31.1821i −1.67697 1.21839i
\(656\) 0.635094 1.95462i 0.0247963 0.0763150i
\(657\) 0 0
\(658\) −8.25459 + 5.99731i −0.321797 + 0.233800i
\(659\) 32.3806 1.26137 0.630684 0.776040i \(-0.282775\pi\)
0.630684 + 0.776040i \(0.282775\pi\)
\(660\) 0 0
\(661\) 3.14238 0.122225 0.0611123 0.998131i \(-0.480535\pi\)
0.0611123 + 0.998131i \(0.480535\pi\)
\(662\) −5.61725 + 4.08117i −0.218321 + 0.158619i
\(663\) 0 0
\(664\) 0.354443 1.09086i 0.0137550 0.0423337i
\(665\) −36.7598 26.7076i −1.42548 1.03567i
\(666\) 0 0
\(667\) −15.4852 + 47.6586i −0.599590 + 1.84535i
\(668\) −7.27602 22.3933i −0.281517 0.866422i
\(669\) 0 0
\(670\) −4.38464 −0.169393
\(671\) −1.55058 + 5.49612i −0.0598594 + 0.212175i
\(672\) 0 0
\(673\) 31.2835 22.7288i 1.20589 0.876132i 0.211040 0.977477i \(-0.432315\pi\)
0.994851 + 0.101346i \(0.0323149\pi\)
\(674\) 3.66053 + 11.2660i 0.140998 + 0.433949i
\(675\) 0 0
\(676\) 2.37986 + 1.72907i 0.0915329 + 0.0665025i
\(677\) 36.9891 + 26.8742i 1.42161 + 1.03286i 0.991504 + 0.130078i \(0.0415229\pi\)
0.430103 + 0.902780i \(0.358477\pi\)
\(678\) 0 0
\(679\) −7.76218 23.8895i −0.297885 0.916797i
\(680\) −3.42440 + 2.48798i −0.131320 + 0.0954095i
\(681\) 0 0
\(682\) 8.04895 0.315551i 0.308210 0.0120831i
\(683\) −11.3550 −0.434485 −0.217243 0.976118i \(-0.569706\pi\)
−0.217243 + 0.976118i \(0.569706\pi\)
\(684\) 0 0
\(685\) 3.28902 + 10.1226i 0.125667 + 0.386763i
\(686\) 2.17198 6.68466i 0.0829265 0.255222i
\(687\) 0 0
\(688\) −12.3530 8.97495i −0.470952 0.342167i
\(689\) 6.49964 20.0038i 0.247617 0.762085i
\(690\) 0 0
\(691\) −7.05451 + 5.12540i −0.268366 + 0.194979i −0.713827 0.700322i \(-0.753040\pi\)
0.445461 + 0.895301i \(0.353040\pi\)
\(692\) 13.4177 0.510065
\(693\) 0 0
\(694\) −3.97778 −0.150994
\(695\) −7.39782 + 5.37483i −0.280615 + 0.203879i
\(696\) 0 0
\(697\) 0.221123 0.680548i 0.00837565 0.0257776i
\(698\) −6.94584 5.04645i −0.262904 0.191011i
\(699\) 0 0
\(700\) 3.18759 9.81040i 0.120480 0.370798i
\(701\) −12.5650 38.6712i −0.474575 1.46059i −0.846530 0.532342i \(-0.821312\pi\)
0.371954 0.928251i \(-0.378688\pi\)
\(702\) 0 0
\(703\) −1.29494 −0.0488396
\(704\) −13.8440 9.25201i −0.521767 0.348698i
\(705\) 0 0
\(706\) 8.67122 6.30001i 0.326346 0.237104i
\(707\) 14.7549 + 45.4109i 0.554915 + 1.70785i
\(708\) 0 0
\(709\) 13.5448 + 9.84087i 0.508686 + 0.369582i 0.812325 0.583205i \(-0.198202\pi\)
−0.303639 + 0.952787i \(0.598202\pi\)
\(710\) −9.68171 7.03417i −0.363348 0.263988i
\(711\) 0 0
\(712\) 0.615154 + 1.89325i 0.0230539 + 0.0709525i
\(713\) 36.6089 26.5979i 1.37101 0.996099i
\(714\) 0 0
\(715\) 11.7671 + 31.9047i 0.440066 + 1.19317i
\(716\) −16.8120 −0.628295
\(717\) 0 0
\(718\) −3.20185 9.85428i −0.119492 0.367758i
\(719\) 5.99373 18.4468i 0.223528 0.687949i −0.774909 0.632072i \(-0.782205\pi\)
0.998438 0.0558770i \(-0.0177955\pi\)
\(720\) 0 0
\(721\) −6.26830 4.55419i −0.233444 0.169607i
\(722\) 3.02376 9.30617i 0.112533 0.346340i
\(723\) 0 0
\(724\) 2.83833 2.06216i 0.105486 0.0766397i
\(725\) −16.4314 −0.610246
\(726\) 0 0
\(727\) 5.78433 0.214529 0.107264 0.994231i \(-0.465791\pi\)
0.107264 + 0.994231i \(0.465791\pi\)
\(728\) −10.7958 + 7.84361i −0.400119 + 0.290704i
\(729\) 0 0
\(730\) 0.640454 1.97111i 0.0237043 0.0729542i
\(731\) −4.30099 3.12485i −0.159078 0.115577i
\(732\) 0 0
\(733\) 7.01846 21.6006i 0.259233 0.797837i −0.733733 0.679438i \(-0.762224\pi\)
0.992966 0.118399i \(-0.0377762\pi\)
\(734\) −0.400742 1.23336i −0.0147917 0.0455240i
\(735\) 0 0
\(736\) 26.8153 0.988424
\(737\) −5.17222 14.0236i −0.190521 0.516567i
\(738\) 0 0
\(739\) 9.31755 6.76960i 0.342752 0.249024i −0.403070 0.915169i \(-0.632057\pi\)
0.745822 + 0.666145i \(0.232057\pi\)
\(740\) −0.296085 0.911255i −0.0108843 0.0334984i
\(741\) 0 0
\(742\) 4.02723 + 2.92596i 0.147844 + 0.107415i
\(743\) −34.7925 25.2782i −1.27641 0.927367i −0.276973 0.960878i \(-0.589331\pi\)
−0.999438 + 0.0335104i \(0.989331\pi\)
\(744\) 0 0
\(745\) −4.27747 13.1647i −0.156715 0.482318i
\(746\) 10.8417 7.87694i 0.396942 0.288395i
\(747\) 0 0
\(748\) −5.79500 3.87282i −0.211886 0.141604i
\(749\) 24.6485 0.900637
\(750\) 0 0
\(751\) 1.11212 + 3.42275i 0.0405817 + 0.124898i 0.969295 0.245901i \(-0.0790839\pi\)
−0.928713 + 0.370799i \(0.879084\pi\)
\(752\) −11.2712 + 34.6892i −0.411018 + 1.26498i
\(753\) 0 0
\(754\) 8.30676 + 6.03521i 0.302514 + 0.219789i
\(755\) 11.4076 35.1091i 0.415167 1.27775i
\(756\) 0 0
\(757\) 12.2911 8.93000i 0.446727 0.324566i −0.341575 0.939855i \(-0.610960\pi\)
0.788302 + 0.615288i \(0.210960\pi\)
\(758\) −8.72021 −0.316732
\(759\) 0 0
\(760\) 25.5318 0.926137
\(761\) 13.1992 9.58979i 0.478471 0.347630i −0.322262 0.946650i \(-0.604443\pi\)
0.800733 + 0.599021i \(0.204443\pi\)
\(762\) 0 0
\(763\) −13.9388 + 42.8991i −0.504617 + 1.55305i
\(764\) 9.68362 + 7.03556i 0.350341 + 0.254538i
\(765\) 0 0
\(766\) −3.92013 + 12.0649i −0.141640 + 0.435923i
\(767\) 9.94406 + 30.6047i 0.359059 + 1.10507i
\(768\) 0 0
\(769\) 6.66672 0.240408 0.120204 0.992749i \(-0.461645\pi\)
0.120204 + 0.992749i \(0.461645\pi\)
\(770\) −8.04188 + 0.315273i −0.289809 + 0.0113617i
\(771\) 0 0
\(772\) 4.26104 3.09582i 0.153358 0.111421i
\(773\) 15.7232 + 48.3910i 0.565524 + 1.74050i 0.666389 + 0.745604i \(0.267839\pi\)
−0.100865 + 0.994900i \(0.532161\pi\)
\(774\) 0 0
\(775\) 12.0040 + 8.72140i 0.431196 + 0.313282i
\(776\) 11.4189 + 8.29634i 0.409916 + 0.297821i
\(777\) 0 0
\(778\) 0.460034 + 1.41584i 0.0164930 + 0.0507603i
\(779\) −3.49192 + 2.53703i −0.125111 + 0.0908985i
\(780\) 0 0
\(781\) 11.0770 39.2632i 0.396367 1.40495i
\(782\) 2.74953 0.0983229
\(783\) 0 0
\(784\) −0.777792 2.39380i −0.0277783 0.0854928i
\(785\) −13.8054 + 42.4885i −0.492735 + 1.51648i
\(786\) 0 0
\(787\) 24.5570 + 17.8417i 0.875364 + 0.635989i 0.932021 0.362404i \(-0.118044\pi\)
−0.0566567 + 0.998394i \(0.518044\pi\)
\(788\) 14.8525 45.7111i 0.529097 1.62839i
\(789\) 0 0
\(790\) −9.11630 + 6.62338i −0.324344 + 0.235649i
\(791\) 12.6700 0.450493
\(792\) 0 0
\(793\) 6.57326 0.233423
\(794\) 6.75904 4.91073i 0.239869 0.174275i
\(795\) 0 0
\(796\) −7.70790 + 23.7225i −0.273199 + 0.840821i
\(797\) −3.21352 2.33476i −0.113829 0.0827015i 0.529415 0.848363i \(-0.322412\pi\)
−0.643243 + 0.765662i \(0.722412\pi\)
\(798\) 0 0
\(799\) −3.92434 + 12.0779i −0.138833 + 0.427285i
\(800\) 2.71709 + 8.36233i 0.0960635 + 0.295653i
\(801\) 0 0
\(802\) −1.35860 −0.0479738
\(803\) 7.05982 0.276773i 0.249136 0.00976710i
\(804\) 0 0
\(805\) −36.5767 + 26.5745i −1.28916 + 0.936629i
\(806\) −2.86517 8.81808i −0.100921 0.310604i
\(807\) 0 0
\(808\) −21.7059 15.7702i −0.763610 0.554795i
\(809\) 4.26011 + 3.09515i 0.149778 + 0.108820i 0.660150 0.751133i \(-0.270493\pi\)
−0.510373 + 0.859953i \(0.670493\pi\)
\(810\) 0 0
\(811\) 11.6366 + 35.8137i 0.408615 + 1.25759i 0.917838 + 0.396954i \(0.129933\pi\)
−0.509223 + 0.860635i \(0.670067\pi\)
\(812\) 27.9965 20.3406i 0.982484 0.713817i
\(813\) 0 0
\(814\) −0.180136 + 0.141982i −0.00631375 + 0.00497648i
\(815\) −61.2309 −2.14483
\(816\) 0 0
\(817\) 9.90939 + 30.4980i 0.346686 + 1.06699i
\(818\) −3.07222 + 9.45531i −0.107418 + 0.330597i
\(819\) 0 0
\(820\) −2.58374 1.87719i −0.0902280 0.0655545i
\(821\) −0.649391 + 1.99862i −0.0226639 + 0.0697523i −0.961749 0.273933i \(-0.911675\pi\)
0.939085 + 0.343685i \(0.111675\pi\)
\(822\) 0 0
\(823\) 5.37987 3.90871i 0.187531 0.136249i −0.490059 0.871689i \(-0.663025\pi\)
0.677589 + 0.735440i \(0.263025\pi\)
\(824\) 4.35370 0.151668
\(825\) 0 0
\(826\) −7.61594 −0.264992
\(827\) −17.8702 + 12.9834i −0.621407 + 0.451479i −0.853413 0.521236i \(-0.825471\pi\)
0.232006 + 0.972714i \(0.425471\pi\)
\(828\) 0 0
\(829\) 1.19544 3.67920i 0.0415195 0.127784i −0.928148 0.372211i \(-0.878600\pi\)
0.969668 + 0.244427i \(0.0785998\pi\)
\(830\) −0.644184 0.468027i −0.0223599 0.0162454i
\(831\) 0 0
\(832\) −5.92268 + 18.2281i −0.205332 + 0.631947i
\(833\) −0.270807 0.833459i −0.00938291 0.0288776i
\(834\) 0 0
\(835\) −33.8389 −1.17104
\(836\) 14.5482 + 39.4450i 0.503159 + 1.36423i
\(837\) 0 0
\(838\) 6.27302 4.55762i 0.216698 0.157440i
\(839\) 7.24273 + 22.2908i 0.250047 + 0.769565i 0.994765 + 0.102186i \(0.0325837\pi\)
−0.744719 + 0.667379i \(0.767416\pi\)
\(840\) 0 0
\(841\) −21.1346 15.3552i −0.728779 0.529489i
\(842\) −3.20112 2.32575i −0.110318 0.0801506i
\(843\) 0 0
\(844\) 9.08482 + 27.9602i 0.312712 + 0.962430i
\(845\) 3.42023 2.48494i 0.117660 0.0854847i
\(846\) 0 0
\(847\) −10.4947 25.3489i −0.360604 0.870998i
\(848\) 17.7950 0.611084
\(849\) 0 0
\(850\) 0.278599 + 0.857439i 0.00955586 + 0.0294099i
\(851\) −0.398165 + 1.22543i −0.0136489 + 0.0420071i
\(852\) 0 0
\(853\) 16.9833 + 12.3391i 0.581497 + 0.422482i 0.839263 0.543725i \(-0.182987\pi\)
−0.257766 + 0.966207i \(0.582987\pi\)
\(854\) −0.480735 + 1.47955i −0.0164504 + 0.0506291i
\(855\) 0 0
\(856\) −11.2051 + 8.14097i −0.382982 + 0.278252i
\(857\) −28.3180 −0.967325 −0.483662 0.875255i \(-0.660694\pi\)
−0.483662 + 0.875255i \(0.660694\pi\)
\(858\) 0 0
\(859\) −55.7071 −1.90070 −0.950351 0.311179i \(-0.899276\pi\)
−0.950351 + 0.311179i \(0.899276\pi\)
\(860\) −19.1958 + 13.9466i −0.654571 + 0.475574i
\(861\) 0 0
\(862\) −1.32333 + 4.07280i −0.0450729 + 0.138720i
\(863\) 24.8932 + 18.0860i 0.847375 + 0.615654i 0.924421 0.381374i \(-0.124549\pi\)
−0.0770462 + 0.997028i \(0.524549\pi\)
\(864\) 0 0
\(865\) 5.95890 18.3396i 0.202609 0.623565i
\(866\) −2.71895 8.36808i −0.0923938 0.284359i
\(867\) 0 0
\(868\) −31.2493 −1.06067
\(869\) −31.9377 21.3441i −1.08341 0.724049i
\(870\) 0 0
\(871\) −13.9190 + 10.1127i −0.471627 + 0.342657i
\(872\) −7.83232 24.1054i −0.265236 0.816312i
\(873\) 0 0
\(874\) −13.4175 9.74835i −0.453852 0.329743i
\(875\) 15.1028 + 10.9728i 0.510568 + 0.370950i
\(876\) 0 0
\(877\) 9.57738 + 29.4762i 0.323405 + 0.995339i 0.972155 + 0.234337i \(0.0752920\pi\)
−0.648750 + 0.761002i \(0.724708\pi\)
\(878\) 5.44498 3.95601i 0.183759 0.133509i
\(879\) 0 0
\(880\) −22.5951 + 17.8094i −0.761682 + 0.600355i
\(881\) −29.9198 −1.00802 −0.504012 0.863697i \(-0.668143\pi\)
−0.504012 + 0.863697i \(0.668143\pi\)
\(882\) 0 0
\(883\) 4.39514 + 13.5269i 0.147908 + 0.455215i 0.997374 0.0724296i \(-0.0230753\pi\)
−0.849465 + 0.527645i \(0.823075\pi\)
\(884\) −2.47919 + 7.63015i −0.0833841 + 0.256630i
\(885\) 0 0
\(886\) −5.78703 4.20452i −0.194419 0.141254i
\(887\) 0.812957 2.50202i 0.0272964 0.0840097i −0.936480 0.350720i \(-0.885937\pi\)
0.963777 + 0.266711i \(0.0859368\pi\)
\(888\) 0 0
\(889\) 1.68344 1.22309i 0.0564608 0.0410211i
\(890\) 1.38194 0.0463228
\(891\) 0 0
\(892\) 35.2874 1.18151
\(893\) 61.9721 45.0254i 2.07382 1.50672i
\(894\) 0 0
\(895\) −7.46633 + 22.9790i −0.249572 + 0.768104i
\(896\) −19.7031 14.3151i −0.658234 0.478235i
\(897\) 0 0
\(898\) 0.233117 0.717460i 0.00777921 0.0239419i
\(899\) 15.3821 + 47.3412i 0.513021 + 1.57892i
\(900\) 0 0
\(901\) 6.19577 0.206411
\(902\) −0.207582 + 0.735787i −0.00691172 + 0.0244990i
\(903\) 0 0
\(904\) −5.75971 + 4.18467i −0.191565 + 0.139180i
\(905\) −1.55809 4.79530i −0.0517926 0.159401i
\(906\) 0 0
\(907\) 8.22162 + 5.97336i 0.272994 + 0.198342i 0.715856 0.698248i \(-0.246037\pi\)
−0.442862 + 0.896590i \(0.646037\pi\)
\(908\) 1.63197 + 1.18570i 0.0541589 + 0.0393488i
\(909\) 0 0
\(910\) 2.86265 + 8.81033i 0.0948959 + 0.292060i
\(911\) −4.76694 + 3.46339i −0.157936 + 0.114747i −0.663946 0.747780i \(-0.731120\pi\)
0.506010 + 0.862527i \(0.331120\pi\)
\(912\) 0 0
\(913\) 0.737022 2.61242i 0.0243919 0.0864586i
\(914\) −3.00232 −0.0993078
\(915\) 0 0
\(916\) 7.08137 + 21.7942i 0.233975 + 0.720101i
\(917\) 15.2240 46.8546i 0.502740 1.54727i
\(918\) 0 0
\(919\) −26.1285 18.9835i −0.861899 0.626206i 0.0665018 0.997786i \(-0.478816\pi\)
−0.928401 + 0.371580i \(0.878816\pi\)
\(920\) 7.85047 24.1613i 0.258822 0.796573i
\(921\) 0 0
\(922\) 1.92085 1.39558i 0.0632597 0.0459609i
\(923\) −46.9581 −1.54565
\(924\) 0 0
\(925\) −0.422494 −0.0138915
\(926\) −0.0801267 + 0.0582155i −0.00263313 + 0.00191308i
\(927\) 0 0
\(928\) −9.11525 + 28.0539i −0.299223 + 0.920913i
\(929\) −39.5473 28.7328i −1.29751 0.942693i −0.297578 0.954697i \(-0.596179\pi\)
−0.999928 + 0.0120042i \(0.996179\pi\)
\(930\) 0 0
\(931\) −1.63348 + 5.02734i −0.0535352 + 0.164765i
\(932\) 8.69869 + 26.7718i 0.284935 + 0.876940i
\(933\) 0 0
\(934\) 2.77605 0.0908350
\(935\) −7.86705 + 6.20078i −0.257280 + 0.202787i
\(936\) 0 0
\(937\) −36.4628 + 26.4917i −1.19119 + 0.865447i −0.993389 0.114796i \(-0.963379\pi\)
−0.197797 + 0.980243i \(0.563379\pi\)
\(938\) −1.25827 3.87256i −0.0410840 0.126444i
\(939\) 0 0
\(940\) 45.8543 + 33.3151i 1.49560 + 1.08662i
\(941\) 13.3116 + 9.67142i 0.433945 + 0.315279i 0.783224 0.621739i \(-0.213574\pi\)
−0.349280 + 0.937019i \(0.613574\pi\)
\(942\) 0 0
\(943\) 1.32715 + 4.08455i 0.0432180 + 0.133011i
\(944\) −22.0257 + 16.0026i −0.716877 + 0.520841i
\(945\) 0 0
\(946\) 4.72239 + 3.15599i 0.153538 + 0.102610i
\(947\) −7.01273 −0.227883 −0.113942 0.993487i \(-0.536348\pi\)
−0.113942 + 0.993487i \(0.536348\pi\)
\(948\) 0 0
\(949\) −2.51307 7.73443i −0.0815776 0.251070i
\(950\) 1.68048 5.17199i 0.0545220 0.167802i
\(951\) 0 0
\(952\) −3.18012 2.31049i −0.103068 0.0748835i
\(953\) 3.34588 10.2976i 0.108384 0.333571i −0.882126 0.471014i \(-0.843888\pi\)
0.990510 + 0.137443i \(0.0438883\pi\)
\(954\) 0 0
\(955\) 13.9169 10.1112i 0.450341 0.327192i
\(956\) 26.8983 0.869952
\(957\) 0 0
\(958\) 8.40693 0.271616
\(959\) −7.99650 + 5.80980i −0.258221 + 0.187608i
\(960\) 0 0
\(961\) 4.31069 13.2669i 0.139054 0.427966i
\(962\) 0.213588 + 0.155181i 0.00688637 + 0.00500324i
\(963\) 0 0
\(964\) 6.94611 21.3779i 0.223719 0.688537i
\(965\) −2.33908 7.19895i −0.0752976 0.231742i
\(966\) 0 0
\(967\) 5.88206 0.189154 0.0945771 0.995518i \(-0.469850\pi\)
0.0945771 + 0.995518i \(0.469850\pi\)
\(968\) 13.1431 + 8.05723i 0.422436 + 0.258969i
\(969\) 0 0
\(970\) 7.92709 5.75937i 0.254524 0.184922i
\(971\) 5.64280 + 17.3667i 0.181086 + 0.557325i 0.999859 0.0167920i \(-0.00534530\pi\)
−0.818773 + 0.574117i \(0.805345\pi\)
\(972\) 0 0
\(973\) −6.87009 4.99141i −0.220245 0.160017i
\(974\) 7.06166 + 5.13060i 0.226270 + 0.164395i
\(975\) 0 0
\(976\) 1.71852 + 5.28907i 0.0550085 + 0.169299i
\(977\) 1.35784 0.986527i 0.0434411 0.0315618i −0.565853 0.824506i \(-0.691453\pi\)
0.609294 + 0.792944i \(0.291453\pi\)
\(978\) 0 0
\(979\) 1.63017 + 4.41994i 0.0521005 + 0.141262i
\(980\) −3.91125 −0.124940
\(981\) 0 0
\(982\) 3.93678 + 12.1162i 0.125628 + 0.386643i
\(983\) 3.46689 10.6700i 0.110577 0.340320i −0.880422 0.474191i \(-0.842741\pi\)
0.990999 + 0.133871i \(0.0427408\pi\)
\(984\) 0 0
\(985\) −55.8828 40.6013i −1.78058 1.29366i
\(986\) −0.934641 + 2.87653i −0.0297650 + 0.0916073i
\(987\) 0 0
\(988\) 39.1507 28.4446i 1.24555 0.904944i
\(989\) 31.9077 1.01461
\(990\) 0 0
\(991\) −7.78978 −0.247451 −0.123725 0.992317i \(-0.539484\pi\)
−0.123725 + 0.992317i \(0.539484\pi\)
\(992\) 21.5495 15.6566i 0.684198 0.497099i
\(993\) 0 0
\(994\) 3.43428 10.5696i 0.108929 0.335248i
\(995\) 29.0012 + 21.0706i 0.919401 + 0.667984i
\(996\) 0 0
\(997\) −13.3876 + 41.2029i −0.423990 + 1.30491i 0.479968 + 0.877286i \(0.340648\pi\)
−0.903958 + 0.427622i \(0.859352\pi\)
\(998\) −2.54682 7.83830i −0.0806181 0.248117i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 297.2.f.d.190.2 yes 16
3.2 odd 2 297.2.f.a.190.3 yes 16
9.2 odd 6 891.2.n.i.190.2 32
9.4 even 3 891.2.n.f.784.2 32
9.5 odd 6 891.2.n.i.784.3 32
9.7 even 3 891.2.n.f.190.3 32
11.2 odd 10 3267.2.a.bl.1.3 8
11.4 even 5 inner 297.2.f.d.136.2 yes 16
11.9 even 5 3267.2.a.be.1.6 8
33.2 even 10 3267.2.a.bf.1.6 8
33.20 odd 10 3267.2.a.bm.1.3 8
33.26 odd 10 297.2.f.a.136.3 16
99.4 even 15 891.2.n.f.136.3 32
99.59 odd 30 891.2.n.i.136.2 32
99.70 even 15 891.2.n.f.433.2 32
99.92 odd 30 891.2.n.i.433.3 32
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.a.136.3 16 33.26 odd 10
297.2.f.a.190.3 yes 16 3.2 odd 2
297.2.f.d.136.2 yes 16 11.4 even 5 inner
297.2.f.d.190.2 yes 16 1.1 even 1 trivial
891.2.n.f.136.3 32 99.4 even 15
891.2.n.f.190.3 32 9.7 even 3
891.2.n.f.433.2 32 99.70 even 15
891.2.n.f.784.2 32 9.4 even 3
891.2.n.i.136.2 32 99.59 odd 30
891.2.n.i.190.2 32 9.2 odd 6
891.2.n.i.433.3 32 99.92 odd 30
891.2.n.i.784.3 32 9.5 odd 6
3267.2.a.be.1.6 8 11.9 even 5
3267.2.a.bf.1.6 8 33.2 even 10
3267.2.a.bl.1.3 8 11.2 odd 10
3267.2.a.bm.1.3 8 33.20 odd 10