Properties

Label 891.2.n.f.433.2
Level $891$
Weight $2$
Character 891.433
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 433.2
Character \(\chi\) \(=\) 891.433
Dual form 891.2.n.f.784.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0378659 + 0.360270i) q^{2} +(1.82793 + 0.388540i) q^{4} +(0.280735 + 2.67101i) q^{5} +(-1.66890 + 1.85350i) q^{7} +(-0.433081 + 1.33288i) q^{8} -0.972914 q^{10} +(3.26867 - 0.561950i) q^{11} +(3.48756 - 1.55276i) q^{13} +(-0.604567 - 0.671439i) q^{14} +(2.95062 + 1.31370i) q^{16} +(-0.909782 + 0.660995i) q^{17} +(2.09612 - 6.45120i) q^{19} +(-0.524629 + 4.99151i) q^{20} +(0.0786824 + 1.19888i) q^{22} +(-3.37470 + 5.84515i) q^{23} +(-2.16475 + 0.460133i) q^{25} +(0.427353 + 1.31526i) q^{26} +(-3.77080 + 2.73965i) q^{28} +(-4.96799 + 5.51751i) q^{29} +(-6.12482 + 2.72695i) q^{31} +(-1.98649 + 3.44070i) q^{32} +(-0.203687 - 0.352796i) q^{34} +(-5.41925 - 3.93732i) q^{35} +(-0.0589927 - 0.181561i) q^{37} +(2.24480 + 0.999449i) q^{38} +(-3.68173 - 0.782576i) q^{40} +(0.425779 + 0.472875i) q^{41} +(-2.36375 - 4.09413i) q^{43} +(6.19326 + 0.242800i) q^{44} +(-1.97805 - 1.43713i) q^{46} +(11.0461 - 2.34792i) q^{47} +(0.0814578 + 0.775019i) q^{49} +(-0.0838015 - 0.797318i) q^{50} +(6.97834 - 1.48329i) q^{52} +(-4.45732 - 3.23843i) q^{53} +(2.41860 + 8.57290i) q^{55} +(-1.74774 - 3.02717i) q^{56} +(-1.79967 - 1.99874i) q^{58} +(-8.24507 - 1.75254i) q^{59} +(1.57297 + 0.700331i) q^{61} +(-0.750514 - 2.30984i) q^{62} +(4.06165 + 2.95096i) q^{64} +(5.12652 + 8.87939i) q^{65} +(-2.25335 + 3.90292i) q^{67} +(-1.91984 + 0.854770i) q^{68} +(1.62370 - 1.80330i) q^{70} +(9.95124 - 7.23000i) q^{71} +(-0.658284 - 2.02599i) q^{73} +(0.0676446 - 0.0143783i) q^{74} +(6.33812 - 10.9779i) q^{76} +(-4.41352 + 6.99633i) q^{77} +(1.21066 - 11.5186i) q^{79} +(-2.68057 + 8.24994i) q^{80} +(-0.186485 + 0.135489i) q^{82} +(-0.747666 - 0.332882i) q^{83} +(-2.02093 - 2.24447i) q^{85} +(1.56449 - 0.696558i) q^{86} +(-0.666583 + 4.60013i) q^{88} -1.42041 q^{89} +(-2.94234 + 9.05560i) q^{91} +(-8.43981 + 9.37336i) q^{92} +(0.427615 + 4.06848i) q^{94} +(17.8197 + 3.78769i) q^{95} +(-1.05273 + 10.0160i) q^{97} -0.282300 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{2} + 4 q^{4} - q^{5} + 2 q^{7} + 12 q^{10} - 13 q^{11} + 2 q^{13} + 22 q^{14} + 24 q^{16} - 4 q^{17} - 4 q^{19} - 15 q^{22} - 14 q^{23} + 19 q^{25} + 42 q^{26} + 30 q^{28} - q^{29} - 14 q^{31}+ \cdots + 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0378659 + 0.360270i −0.0267752 + 0.254749i 0.972944 + 0.231042i \(0.0742135\pi\)
−0.999719 + 0.0237069i \(0.992453\pi\)
\(3\) 0 0
\(4\) 1.82793 + 0.388540i 0.913967 + 0.194270i
\(5\) 0.280735 + 2.67101i 0.125548 + 1.19451i 0.857984 + 0.513676i \(0.171717\pi\)
−0.732436 + 0.680836i \(0.761616\pi\)
\(6\) 0 0
\(7\) −1.66890 + 1.85350i −0.630786 + 0.700559i −0.970808 0.239859i \(-0.922899\pi\)
0.340022 + 0.940417i \(0.389565\pi\)
\(8\) −0.433081 + 1.33288i −0.153117 + 0.471246i
\(9\) 0 0
\(10\) −0.972914 −0.307663
\(11\) 3.26867 0.561950i 0.985541 0.169434i
\(12\) 0 0
\(13\) 3.48756 1.55276i 0.967274 0.430658i 0.138575 0.990352i \(-0.455748\pi\)
0.828700 + 0.559694i \(0.189081\pi\)
\(14\) −0.604567 0.671439i −0.161577 0.179450i
\(15\) 0 0
\(16\) 2.95062 + 1.31370i 0.737654 + 0.328425i
\(17\) −0.909782 + 0.660995i −0.220654 + 0.160315i −0.692621 0.721301i \(-0.743544\pi\)
0.471967 + 0.881616i \(0.343544\pi\)
\(18\) 0 0
\(19\) 2.09612 6.45120i 0.480883 1.48001i −0.356973 0.934115i \(-0.616191\pi\)
0.837856 0.545891i \(-0.183809\pi\)
\(20\) −0.524629 + 4.99151i −0.117311 + 1.11614i
\(21\) 0 0
\(22\) 0.0786824 + 1.19888i 0.0167751 + 0.255602i
\(23\) −3.37470 + 5.84515i −0.703674 + 1.21880i 0.263494 + 0.964661i \(0.415125\pi\)
−0.967168 + 0.254138i \(0.918208\pi\)
\(24\) 0 0
\(25\) −2.16475 + 0.460133i −0.432951 + 0.0920266i
\(26\) 0.427353 + 1.31526i 0.0838108 + 0.257943i
\(27\) 0 0
\(28\) −3.77080 + 2.73965i −0.712615 + 0.517745i
\(29\) −4.96799 + 5.51751i −0.922532 + 1.02458i 0.0770882 + 0.997024i \(0.475438\pi\)
−0.999620 + 0.0275515i \(0.991229\pi\)
\(30\) 0 0
\(31\) −6.12482 + 2.72695i −1.10005 + 0.489774i −0.874779 0.484522i \(-0.838994\pi\)
−0.225271 + 0.974296i \(0.572327\pi\)
\(32\) −1.98649 + 3.44070i −0.351165 + 0.608236i
\(33\) 0 0
\(34\) −0.203687 0.352796i −0.0349320 0.0605040i
\(35\) −5.41925 3.93732i −0.916020 0.665528i
\(36\) 0 0
\(37\) −0.0589927 0.181561i −0.00969834 0.0298484i 0.946090 0.323903i \(-0.104995\pi\)
−0.955789 + 0.294055i \(0.904995\pi\)
\(38\) 2.24480 + 0.999449i 0.364154 + 0.162132i
\(39\) 0 0
\(40\) −3.68173 0.782576i −0.582133 0.123736i
\(41\) 0.425779 + 0.472875i 0.0664954 + 0.0738507i 0.775475 0.631379i \(-0.217511\pi\)
−0.708979 + 0.705229i \(0.750844\pi\)
\(42\) 0 0
\(43\) −2.36375 4.09413i −0.360468 0.624349i 0.627570 0.778560i \(-0.284050\pi\)
−0.988038 + 0.154212i \(0.950716\pi\)
\(44\) 6.19326 + 0.242800i 0.933669 + 0.0366035i
\(45\) 0 0
\(46\) −1.97805 1.43713i −0.291647 0.211894i
\(47\) 11.0461 2.34792i 1.61124 0.342480i 0.687704 0.725991i \(-0.258619\pi\)
0.923536 + 0.383512i \(0.125285\pi\)
\(48\) 0 0
\(49\) 0.0814578 + 0.775019i 0.0116368 + 0.110717i
\(50\) −0.0838015 0.797318i −0.0118513 0.112758i
\(51\) 0 0
\(52\) 6.97834 1.48329i 0.967721 0.205695i
\(53\) −4.45732 3.23843i −0.612259 0.444833i 0.237950 0.971277i \(-0.423525\pi\)
−0.850209 + 0.526445i \(0.823525\pi\)
\(54\) 0 0
\(55\) 2.41860 + 8.57290i 0.326125 + 1.15597i
\(56\) −1.74774 3.02717i −0.233551 0.404523i
\(57\) 0 0
\(58\) −1.79967 1.99874i −0.236309 0.262447i
\(59\) −8.24507 1.75254i −1.07342 0.228162i −0.362890 0.931832i \(-0.618210\pi\)
−0.710527 + 0.703670i \(0.751543\pi\)
\(60\) 0 0
\(61\) 1.57297 + 0.700331i 0.201398 + 0.0896682i 0.504957 0.863144i \(-0.331508\pi\)
−0.303559 + 0.952813i \(0.598175\pi\)
\(62\) −0.750514 2.30984i −0.0953154 0.293351i
\(63\) 0 0
\(64\) 4.06165 + 2.95096i 0.507706 + 0.368870i
\(65\) 5.12652 + 8.87939i 0.635866 + 1.10135i
\(66\) 0 0
\(67\) −2.25335 + 3.90292i −0.275291 + 0.476817i −0.970208 0.242272i \(-0.922107\pi\)
0.694918 + 0.719089i \(0.255441\pi\)
\(68\) −1.91984 + 0.854770i −0.232815 + 0.103656i
\(69\) 0 0
\(70\) 1.62370 1.80330i 0.194069 0.215536i
\(71\) 9.95124 7.23000i 1.18099 0.858043i 0.188711 0.982033i \(-0.439569\pi\)
0.992284 + 0.123990i \(0.0395689\pi\)
\(72\) 0 0
\(73\) −0.658284 2.02599i −0.0770463 0.237124i 0.905114 0.425168i \(-0.139785\pi\)
−0.982161 + 0.188044i \(0.939785\pi\)
\(74\) 0.0676446 0.0143783i 0.00786353 0.00167144i
\(75\) 0 0
\(76\) 6.33812 10.9779i 0.727032 1.25926i
\(77\) −4.41352 + 6.99633i −0.502967 + 0.797306i
\(78\) 0 0
\(79\) 1.21066 11.5186i 0.136210 1.29595i −0.686351 0.727270i \(-0.740789\pi\)
0.822561 0.568677i \(-0.192545\pi\)
\(80\) −2.68057 + 8.24994i −0.299696 + 0.922371i
\(81\) 0 0
\(82\) −0.186485 + 0.135489i −0.0205938 + 0.0149623i
\(83\) −0.747666 0.332882i −0.0820670 0.0365386i 0.365293 0.930893i \(-0.380969\pi\)
−0.447360 + 0.894354i \(0.647636\pi\)
\(84\) 0 0
\(85\) −2.02093 2.24447i −0.219201 0.243447i
\(86\) 1.56449 0.696558i 0.168704 0.0751118i
\(87\) 0 0
\(88\) −0.666583 + 4.60013i −0.0710580 + 0.490376i
\(89\) −1.42041 −0.150564 −0.0752818 0.997162i \(-0.523986\pi\)
−0.0752818 + 0.997162i \(0.523986\pi\)
\(90\) 0 0
\(91\) −2.94234 + 9.05560i −0.308441 + 0.949285i
\(92\) −8.43981 + 9.37336i −0.879911 + 0.977240i
\(93\) 0 0
\(94\) 0.427615 + 4.06848i 0.0441051 + 0.419632i
\(95\) 17.8197 + 3.78769i 1.82826 + 0.388609i
\(96\) 0 0
\(97\) −1.05273 + 10.0160i −0.106888 + 1.01697i 0.801257 + 0.598320i \(0.204165\pi\)
−0.908146 + 0.418654i \(0.862502\pi\)
\(98\) −0.282300 −0.0285166
\(99\) 0 0
\(100\) −4.13581 −0.413581
\(101\) 2.00110 19.0392i 0.199117 1.89447i −0.203464 0.979082i \(-0.565220\pi\)
0.402580 0.915385i \(-0.368113\pi\)
\(102\) 0 0
\(103\) 3.03862 + 0.645879i 0.299404 + 0.0636404i 0.355164 0.934804i \(-0.384425\pi\)
−0.0557601 + 0.998444i \(0.517758\pi\)
\(104\) 0.559258 + 5.32098i 0.0548397 + 0.521765i
\(105\) 0 0
\(106\) 1.33549 1.48321i 0.129714 0.144062i
\(107\) −3.05389 + 9.39890i −0.295231 + 0.908626i 0.687913 + 0.725793i \(0.258527\pi\)
−0.983144 + 0.182833i \(0.941473\pi\)
\(108\) 0 0
\(109\) 18.0851 1.73224 0.866121 0.499834i \(-0.166606\pi\)
0.866121 + 0.499834i \(0.166606\pi\)
\(110\) −3.18014 + 0.546729i −0.303214 + 0.0521286i
\(111\) 0 0
\(112\) −7.35924 + 3.27654i −0.695383 + 0.309604i
\(113\) −3.39913 3.77511i −0.319763 0.355133i 0.561738 0.827315i \(-0.310133\pi\)
−0.881501 + 0.472183i \(0.843466\pi\)
\(114\) 0 0
\(115\) −16.5599 7.37293i −1.54422 0.687529i
\(116\) −11.2249 + 8.15539i −1.04221 + 0.757209i
\(117\) 0 0
\(118\) 0.943595 2.90409i 0.0868650 0.267343i
\(119\) 0.293180 2.78942i 0.0268758 0.255706i
\(120\) 0 0
\(121\) 10.3684 3.67366i 0.942584 0.333969i
\(122\) −0.311870 + 0.540174i −0.0282354 + 0.0489051i
\(123\) 0 0
\(124\) −12.2553 + 2.60494i −1.10056 + 0.233931i
\(125\) 2.31293 + 7.11847i 0.206875 + 0.636695i
\(126\) 0 0
\(127\) −0.674959 + 0.490387i −0.0598930 + 0.0435148i −0.617329 0.786705i \(-0.711785\pi\)
0.557436 + 0.830220i \(0.311785\pi\)
\(128\) −6.53383 + 7.25655i −0.577514 + 0.641395i
\(129\) 0 0
\(130\) −3.39309 + 1.51070i −0.297594 + 0.132497i
\(131\) 9.87633 17.1063i 0.862899 1.49459i −0.00621860 0.999981i \(-0.501979\pi\)
0.869118 0.494605i \(-0.164687\pi\)
\(132\) 0 0
\(133\) 8.45910 + 14.6516i 0.733497 + 1.27045i
\(134\) −1.32078 0.959601i −0.114098 0.0828969i
\(135\) 0 0
\(136\) −0.487022 1.49890i −0.0417618 0.128529i
\(137\) −3.62037 1.61189i −0.309309 0.137713i 0.246211 0.969216i \(-0.420814\pi\)
−0.555520 + 0.831503i \(0.687481\pi\)
\(138\) 0 0
\(139\) 3.33035 + 0.707887i 0.282476 + 0.0600422i 0.346971 0.937876i \(-0.387210\pi\)
−0.0644947 + 0.997918i \(0.520544\pi\)
\(140\) −8.37623 9.30275i −0.707921 0.786226i
\(141\) 0 0
\(142\) 2.22794 + 3.85890i 0.186964 + 0.323832i
\(143\) 10.5271 7.03530i 0.880321 0.588321i
\(144\) 0 0
\(145\) −16.1320 11.7206i −1.33969 0.973343i
\(146\) 0.754828 0.160444i 0.0624700 0.0132784i
\(147\) 0 0
\(148\) −0.0372912 0.354802i −0.00306532 0.0291646i
\(149\) −0.538739 5.12576i −0.0441352 0.419918i −0.994174 0.107787i \(-0.965624\pi\)
0.950039 0.312132i \(-0.101043\pi\)
\(150\) 0 0
\(151\) 13.4449 2.85780i 1.09413 0.232564i 0.374710 0.927142i \(-0.377742\pi\)
0.719418 + 0.694578i \(0.244409\pi\)
\(152\) 7.69091 + 5.58778i 0.623816 + 0.453229i
\(153\) 0 0
\(154\) −2.35344 1.85498i −0.189646 0.149478i
\(155\) −9.00316 15.5939i −0.723151 1.25253i
\(156\) 0 0
\(157\) 11.1305 + 12.3617i 0.888311 + 0.986569i 0.999974 0.00717663i \(-0.00228441\pi\)
−0.111663 + 0.993746i \(0.535618\pi\)
\(158\) 4.10397 + 0.872326i 0.326494 + 0.0693985i
\(159\) 0 0
\(160\) −9.74784 4.34002i −0.770634 0.343109i
\(161\) −5.20197 16.0100i −0.409973 1.26177i
\(162\) 0 0
\(163\) −18.4445 13.4007i −1.44469 1.04963i −0.987037 0.160492i \(-0.948692\pi\)
−0.457648 0.889134i \(-0.651308\pi\)
\(164\) 0.594565 + 1.02982i 0.0464277 + 0.0804152i
\(165\) 0 0
\(166\) 0.148238 0.256756i 0.0115055 0.0199282i
\(167\) 11.5103 5.12470i 0.890691 0.396561i 0.0902121 0.995923i \(-0.471245\pi\)
0.800478 + 0.599362i \(0.204579\pi\)
\(168\) 0 0
\(169\) 1.05329 1.16980i 0.0810222 0.0899843i
\(170\) 0.885140 0.643092i 0.0678871 0.0493229i
\(171\) 0 0
\(172\) −2.73004 8.40221i −0.208164 0.640662i
\(173\) 7.02306 1.49280i 0.533954 0.113495i 0.0669594 0.997756i \(-0.478670\pi\)
0.466994 + 0.884260i \(0.345337\pi\)
\(174\) 0 0
\(175\) 2.75991 4.78030i 0.208629 0.361357i
\(176\) 10.3828 + 2.63595i 0.782635 + 0.198692i
\(177\) 0 0
\(178\) 0.0537852 0.511732i 0.00403137 0.0383559i
\(179\) 2.78001 8.55598i 0.207788 0.639504i −0.791800 0.610781i \(-0.790856\pi\)
0.999587 0.0287236i \(-0.00914427\pi\)
\(180\) 0 0
\(181\) −1.51882 + 1.10349i −0.112893 + 0.0820215i −0.642799 0.766035i \(-0.722227\pi\)
0.529906 + 0.848056i \(0.322227\pi\)
\(182\) −3.15104 1.40294i −0.233571 0.103992i
\(183\) 0 0
\(184\) −6.32940 7.02951i −0.466610 0.518222i
\(185\) 0.468390 0.208541i 0.0344367 0.0153322i
\(186\) 0 0
\(187\) −2.60233 + 2.67183i −0.190301 + 0.195383i
\(188\) 21.1038 1.53915
\(189\) 0 0
\(190\) −2.03935 + 6.27646i −0.147950 + 0.455343i
\(191\) 4.28583 4.75989i 0.310111 0.344414i −0.567861 0.823124i \(-0.692229\pi\)
0.877973 + 0.478711i \(0.158896\pi\)
\(192\) 0 0
\(193\) −0.294602 2.80295i −0.0212059 0.201761i 0.978789 0.204870i \(-0.0656771\pi\)
−0.999995 + 0.00310888i \(0.999010\pi\)
\(194\) −3.56861 0.758531i −0.256211 0.0544594i
\(195\) 0 0
\(196\) −0.152226 + 1.44833i −0.0108733 + 0.103452i
\(197\) −25.7193 −1.83243 −0.916213 0.400692i \(-0.868770\pi\)
−0.916213 + 0.400692i \(0.868770\pi\)
\(198\) 0 0
\(199\) 13.3474 0.946174 0.473087 0.881016i \(-0.343140\pi\)
0.473087 + 0.881016i \(0.343140\pi\)
\(200\) 0.324209 3.08464i 0.0229250 0.218117i
\(201\) 0 0
\(202\) 6.78346 + 1.44187i 0.477282 + 0.101449i
\(203\) −1.93564 18.4164i −0.135855 1.29258i
\(204\) 0 0
\(205\) −1.14352 + 1.27001i −0.0798672 + 0.0887015i
\(206\) −0.347751 + 1.07027i −0.0242289 + 0.0745690i
\(207\) 0 0
\(208\) 12.3303 0.854953
\(209\) 3.22628 22.2648i 0.223167 1.54009i
\(210\) 0 0
\(211\) −14.3717 + 6.39869i −0.989388 + 0.440504i −0.836635 0.547761i \(-0.815480\pi\)
−0.152753 + 0.988264i \(0.548814\pi\)
\(212\) −6.88943 7.65148i −0.473168 0.525506i
\(213\) 0 0
\(214\) −3.27050 1.45612i −0.223567 0.0995384i
\(215\) 10.2719 7.46296i 0.700536 0.508969i
\(216\) 0 0
\(217\) 5.16732 15.9034i 0.350781 1.07959i
\(218\) −0.684809 + 6.51553i −0.0463811 + 0.441287i
\(219\) 0 0
\(220\) 1.09014 + 16.6104i 0.0734972 + 1.11987i
\(221\) −2.14655 + 3.71793i −0.144392 + 0.250095i
\(222\) 0 0
\(223\) 18.4700 3.92592i 1.23684 0.262899i 0.457337 0.889293i \(-0.348803\pi\)
0.779506 + 0.626394i \(0.215470\pi\)
\(224\) −3.06210 9.42417i −0.204595 0.629679i
\(225\) 0 0
\(226\) 1.48877 1.08165i 0.0990314 0.0719505i
\(227\) 0.722287 0.802181i 0.0479399 0.0532426i −0.718698 0.695322i \(-0.755262\pi\)
0.766638 + 0.642080i \(0.221928\pi\)
\(228\) 0 0
\(229\) −11.2023 + 4.98760i −0.740272 + 0.329590i −0.741992 0.670408i \(-0.766119\pi\)
0.00172076 + 0.999999i \(0.499452\pi\)
\(230\) 3.28330 5.68684i 0.216494 0.374979i
\(231\) 0 0
\(232\) −5.20267 9.01128i −0.341572 0.591620i
\(233\) 12.1863 + 8.85388i 0.798353 + 0.580037i 0.910430 0.413662i \(-0.135751\pi\)
−0.112078 + 0.993699i \(0.535751\pi\)
\(234\) 0 0
\(235\) 9.37235 + 28.8451i 0.611385 + 1.88165i
\(236\) −14.3905 6.40707i −0.936743 0.417065i
\(237\) 0 0
\(238\) 0.993842 + 0.211248i 0.0644212 + 0.0136931i
\(239\) −9.63117 10.6965i −0.622988 0.691899i 0.346216 0.938155i \(-0.387466\pi\)
−0.969205 + 0.246256i \(0.920800\pi\)
\(240\) 0 0
\(241\) 6.01413 + 10.4168i 0.387404 + 0.671004i 0.992100 0.125453i \(-0.0400384\pi\)
−0.604695 + 0.796457i \(0.706705\pi\)
\(242\) 0.930898 + 3.87453i 0.0598404 + 0.249064i
\(243\) 0 0
\(244\) 2.60318 + 1.89132i 0.166651 + 0.121079i
\(245\) −2.04722 + 0.435150i −0.130792 + 0.0278007i
\(246\) 0 0
\(247\) −2.70682 25.7537i −0.172231 1.63867i
\(248\) −0.982164 9.34467i −0.0623675 0.593387i
\(249\) 0 0
\(250\) −2.65215 + 0.563732i −0.167737 + 0.0356535i
\(251\) −11.5075 8.36069i −0.726347 0.527722i 0.162058 0.986781i \(-0.448187\pi\)
−0.888406 + 0.459059i \(0.848187\pi\)
\(252\) 0 0
\(253\) −7.74611 + 21.0023i −0.486994 + 1.32040i
\(254\) −0.151113 0.261736i −0.00948170 0.0164228i
\(255\) 0 0
\(256\) 4.35180 + 4.83317i 0.271988 + 0.302073i
\(257\) 10.6299 + 2.25945i 0.663073 + 0.140941i 0.527141 0.849778i \(-0.323264\pi\)
0.135932 + 0.990718i \(0.456597\pi\)
\(258\) 0 0
\(259\) 0.434977 + 0.193664i 0.0270281 + 0.0120337i
\(260\) 5.92095 + 18.2228i 0.367202 + 1.13013i
\(261\) 0 0
\(262\) 5.78891 + 4.20589i 0.357640 + 0.259841i
\(263\) 1.29031 + 2.23489i 0.0795640 + 0.137809i 0.903062 0.429510i \(-0.141314\pi\)
−0.823498 + 0.567319i \(0.807981\pi\)
\(264\) 0 0
\(265\) 7.39856 12.8147i 0.454490 0.787200i
\(266\) −5.59883 + 2.49276i −0.343286 + 0.152841i
\(267\) 0 0
\(268\) −5.63542 + 6.25876i −0.344238 + 0.382315i
\(269\) 4.58187 3.32892i 0.279361 0.202968i −0.439277 0.898351i \(-0.644765\pi\)
0.718639 + 0.695383i \(0.244765\pi\)
\(270\) 0 0
\(271\) 0.742616 + 2.28554i 0.0451107 + 0.138836i 0.971075 0.238775i \(-0.0767457\pi\)
−0.925964 + 0.377611i \(0.876746\pi\)
\(272\) −3.55277 + 0.755164i −0.215418 + 0.0457885i
\(273\) 0 0
\(274\) 0.717804 1.24327i 0.0433641 0.0751088i
\(275\) −6.81730 + 2.72051i −0.411099 + 0.164053i
\(276\) 0 0
\(277\) −0.272826 + 2.59577i −0.0163925 + 0.155965i −0.999656 0.0262243i \(-0.991652\pi\)
0.983264 + 0.182189i \(0.0583183\pi\)
\(278\) −0.381136 + 1.17302i −0.0228590 + 0.0703529i
\(279\) 0 0
\(280\) 7.59496 5.51806i 0.453886 0.329767i
\(281\) −8.09216 3.60286i −0.482738 0.214929i 0.150914 0.988547i \(-0.451778\pi\)
−0.633652 + 0.773618i \(0.718445\pi\)
\(282\) 0 0
\(283\) −9.04049 10.0405i −0.537401 0.596845i 0.411893 0.911232i \(-0.364868\pi\)
−0.949295 + 0.314387i \(0.898201\pi\)
\(284\) 20.9994 9.34952i 1.24608 0.554792i
\(285\) 0 0
\(286\) 2.13598 + 4.05899i 0.126303 + 0.240013i
\(287\) −1.58706 −0.0936811
\(288\) 0 0
\(289\) −4.86250 + 14.9652i −0.286029 + 0.880308i
\(290\) 4.83343 5.36806i 0.283829 0.315224i
\(291\) 0 0
\(292\) −0.416123 3.95914i −0.0243517 0.231691i
\(293\) 17.3312 + 3.68386i 1.01250 + 0.215213i 0.684149 0.729342i \(-0.260174\pi\)
0.328351 + 0.944556i \(0.393507\pi\)
\(294\) 0 0
\(295\) 2.36639 22.5147i 0.137776 1.31086i
\(296\) 0.267548 0.0155509
\(297\) 0 0
\(298\) 1.86705 0.108156
\(299\) −2.69334 + 25.6254i −0.155760 + 1.48196i
\(300\) 0 0
\(301\) 11.5333 + 2.45149i 0.664771 + 0.141301i
\(302\) 0.520475 + 4.95199i 0.0299500 + 0.284955i
\(303\) 0 0
\(304\) 14.6598 16.2813i 0.840797 0.933799i
\(305\) −1.42901 + 4.39803i −0.0818246 + 0.251830i
\(306\) 0 0
\(307\) 11.3039 0.645145 0.322573 0.946545i \(-0.395452\pi\)
0.322573 + 0.946545i \(0.395452\pi\)
\(308\) −10.7860 + 11.0740i −0.614588 + 0.631001i
\(309\) 0 0
\(310\) 5.95893 2.65309i 0.338444 0.150685i
\(311\) 4.41971 + 4.90859i 0.250619 + 0.278340i 0.855307 0.518122i \(-0.173369\pi\)
−0.604688 + 0.796463i \(0.706702\pi\)
\(312\) 0 0
\(313\) 28.5934 + 12.7306i 1.61619 + 0.719576i 0.997800 0.0662913i \(-0.0211167\pi\)
0.618395 + 0.785868i \(0.287783\pi\)
\(314\) −4.87500 + 3.54190i −0.275112 + 0.199881i
\(315\) 0 0
\(316\) 6.68845 20.5849i 0.376254 1.15799i
\(317\) 1.34281 12.7759i 0.0754195 0.717569i −0.889839 0.456274i \(-0.849184\pi\)
0.965259 0.261295i \(-0.0841495\pi\)
\(318\) 0 0
\(319\) −13.1382 + 20.8267i −0.735595 + 1.16607i
\(320\) −6.74181 + 11.6772i −0.376879 + 0.652773i
\(321\) 0 0
\(322\) 5.96490 1.26788i 0.332411 0.0706561i
\(323\) 2.35720 + 7.25471i 0.131158 + 0.403663i
\(324\) 0 0
\(325\) −6.83523 + 4.96608i −0.379150 + 0.275469i
\(326\) 5.52629 6.13756i 0.306073 0.339928i
\(327\) 0 0
\(328\) −0.814684 + 0.362721i −0.0449834 + 0.0200279i
\(329\) −14.0830 + 24.3924i −0.776420 + 1.34480i
\(330\) 0 0
\(331\) −9.58347 16.5991i −0.526755 0.912367i −0.999514 0.0311751i \(-0.990075\pi\)
0.472759 0.881192i \(-0.343258\pi\)
\(332\) −1.23735 0.898985i −0.0679082 0.0493382i
\(333\) 0 0
\(334\) 1.41043 + 4.34085i 0.0771751 + 0.237521i
\(335\) −11.0573 4.92304i −0.604127 0.268975i
\(336\) 0 0
\(337\) −31.9855 6.79873i −1.74236 0.370350i −0.776643 0.629941i \(-0.783079\pi\)
−0.965719 + 0.259591i \(0.916412\pi\)
\(338\) 0.381558 + 0.423763i 0.0207540 + 0.0230497i
\(339\) 0 0
\(340\) −2.82207 4.88796i −0.153048 0.265087i
\(341\) −18.4876 + 12.3553i −1.00116 + 0.669079i
\(342\) 0 0
\(343\) −15.6970 11.4046i −0.847560 0.615788i
\(344\) 6.48069 1.37751i 0.349416 0.0742706i
\(345\) 0 0
\(346\) 0.271875 + 2.58672i 0.0146161 + 0.139063i
\(347\) 1.14779 + 10.9205i 0.0616165 + 0.586242i 0.981152 + 0.193236i \(0.0618982\pi\)
−0.919536 + 0.393006i \(0.871435\pi\)
\(348\) 0 0
\(349\) −23.1824 + 4.92757i −1.24093 + 0.263767i −0.781192 0.624290i \(-0.785388\pi\)
−0.459733 + 0.888057i \(0.652055\pi\)
\(350\) 1.61769 + 1.17532i 0.0864691 + 0.0628235i
\(351\) 0 0
\(352\) −4.55968 + 12.3628i −0.243032 + 0.658942i
\(353\) 14.7938 + 25.6236i 0.787394 + 1.36381i 0.927559 + 0.373678i \(0.121903\pi\)
−0.140165 + 0.990128i \(0.544763\pi\)
\(354\) 0 0
\(355\) 22.1051 + 24.5502i 1.17322 + 1.30299i
\(356\) −2.59642 0.551887i −0.137610 0.0292499i
\(357\) 0 0
\(358\) 2.97719 + 1.32553i 0.157350 + 0.0700565i
\(359\) −8.83869 27.2027i −0.466488 1.43570i −0.857102 0.515148i \(-0.827737\pi\)
0.390614 0.920555i \(-0.372263\pi\)
\(360\) 0 0
\(361\) −21.8529 15.8771i −1.15015 0.835635i
\(362\) −0.340041 0.588968i −0.0178722 0.0309555i
\(363\) 0 0
\(364\) −8.89687 + 15.4098i −0.466323 + 0.807695i
\(365\) 5.22664 2.32705i 0.273575 0.121803i
\(366\) 0 0
\(367\) −2.39541 + 2.66037i −0.125039 + 0.138870i −0.802414 0.596768i \(-0.796451\pi\)
0.677374 + 0.735639i \(0.263118\pi\)
\(368\) −17.6362 + 12.8135i −0.919352 + 0.667948i
\(369\) 0 0
\(370\) 0.0573948 + 0.176643i 0.00298382 + 0.00918324i
\(371\) 13.4413 2.85703i 0.697836 0.148330i
\(372\) 0 0
\(373\) 18.4968 32.0373i 0.957726 1.65883i 0.229722 0.973256i \(-0.426218\pi\)
0.728004 0.685573i \(-0.240448\pi\)
\(374\) −0.864039 1.03871i −0.0446784 0.0537105i
\(375\) 0 0
\(376\) −1.65434 + 15.7400i −0.0853162 + 0.811730i
\(377\) −8.75877 + 26.9567i −0.451100 + 1.38834i
\(378\) 0 0
\(379\) 19.4747 14.1492i 1.00035 0.726796i 0.0381863 0.999271i \(-0.487842\pi\)
0.962163 + 0.272474i \(0.0878420\pi\)
\(380\) 31.1015 + 13.8473i 1.59548 + 0.710352i
\(381\) 0 0
\(382\) 1.55256 + 1.72429i 0.0794357 + 0.0882223i
\(383\) −31.9916 + 14.2436i −1.63469 + 0.727812i −0.999025 0.0441515i \(-0.985942\pi\)
−0.635667 + 0.771963i \(0.719275\pi\)
\(384\) 0 0
\(385\) −19.9263 9.82444i −1.01554 0.500700i
\(386\) 1.02097 0.0519662
\(387\) 0 0
\(388\) −5.81594 + 17.8996i −0.295260 + 0.908716i
\(389\) 2.74982 3.05399i 0.139422 0.154843i −0.669390 0.742911i \(-0.733444\pi\)
0.808812 + 0.588068i \(0.200111\pi\)
\(390\) 0 0
\(391\) −0.793377 7.54848i −0.0401228 0.381743i
\(392\) −1.06829 0.227072i −0.0539568 0.0114689i
\(393\) 0 0
\(394\) 0.973884 9.26589i 0.0490636 0.466809i
\(395\) 31.1063 1.56513
\(396\) 0 0
\(397\) −23.0629 −1.15749 −0.578747 0.815507i \(-0.696458\pi\)
−0.578747 + 0.815507i \(0.696458\pi\)
\(398\) −0.505412 + 4.80867i −0.0253340 + 0.241037i
\(399\) 0 0
\(400\) −6.99184 1.48616i −0.349592 0.0743081i
\(401\) 0.392024 + 3.72986i 0.0195768 + 0.186260i 0.999940 0.0109389i \(-0.00348203\pi\)
−0.980363 + 0.197199i \(0.936815\pi\)
\(402\) 0 0
\(403\) −17.1264 + 19.0208i −0.853125 + 0.947492i
\(404\) 11.0553 34.0248i 0.550024 1.69280i
\(405\) 0 0
\(406\) 6.70815 0.332920
\(407\) −0.294856 0.560312i −0.0146155 0.0277736i
\(408\) 0 0
\(409\) −25.0719 + 11.1627i −1.23972 + 0.551960i −0.918642 0.395091i \(-0.870713\pi\)
−0.321081 + 0.947052i \(0.604046\pi\)
\(410\) −0.414246 0.460067i −0.0204582 0.0227211i
\(411\) 0 0
\(412\) 5.30345 + 2.36125i 0.261282 + 0.116330i
\(413\) 17.0086 12.3574i 0.836937 0.608070i
\(414\) 0 0
\(415\) 0.679237 2.09048i 0.0333424 0.102617i
\(416\) −1.58541 + 15.0842i −0.0777313 + 0.739564i
\(417\) 0 0
\(418\) 7.89915 + 2.00540i 0.386360 + 0.0980876i
\(419\) 10.7023 18.5369i 0.522840 0.905586i −0.476806 0.879008i \(-0.658206\pi\)
0.999647 0.0265777i \(-0.00846093\pi\)
\(420\) 0 0
\(421\) −10.6840 + 2.27096i −0.520708 + 0.110680i −0.460765 0.887522i \(-0.652425\pi\)
−0.0599425 + 0.998202i \(0.519092\pi\)
\(422\) −1.76106 5.41997i −0.0857269 0.263840i
\(423\) 0 0
\(424\) 6.24683 4.53859i 0.303373 0.220413i
\(425\) 1.66531 1.84951i 0.0807793 0.0897145i
\(426\) 0 0
\(427\) −3.92320 + 1.74672i −0.189857 + 0.0845297i
\(428\) −9.23416 + 15.9940i −0.446350 + 0.773101i
\(429\) 0 0
\(430\) 2.29972 + 3.98324i 0.110902 + 0.192089i
\(431\) 9.56381 + 6.94852i 0.460673 + 0.334698i 0.793795 0.608185i \(-0.208102\pi\)
−0.333122 + 0.942884i \(0.608102\pi\)
\(432\) 0 0
\(433\) −7.50566 23.1000i −0.360699 1.11012i −0.952631 0.304129i \(-0.901635\pi\)
0.591932 0.805988i \(-0.298365\pi\)
\(434\) 5.53384 + 2.46382i 0.265633 + 0.118267i
\(435\) 0 0
\(436\) 33.0585 + 7.02679i 1.58321 + 0.336522i
\(437\) 30.6345 + 34.0230i 1.46545 + 1.62754i
\(438\) 0 0
\(439\) 9.28957 + 16.0900i 0.443367 + 0.767934i 0.997937 0.0642030i \(-0.0204505\pi\)
−0.554570 + 0.832137i \(0.687117\pi\)
\(440\) −12.4741 0.489035i −0.594681 0.0233139i
\(441\) 0 0
\(442\) −1.25818 0.914119i −0.0598453 0.0434802i
\(443\) −19.3148 + 4.10548i −0.917672 + 0.195057i −0.642454 0.766325i \(-0.722083\pi\)
−0.275218 + 0.961382i \(0.588750\pi\)
\(444\) 0 0
\(445\) −0.398759 3.79394i −0.0189030 0.179850i
\(446\) 0.715007 + 6.80284i 0.0338566 + 0.322124i
\(447\) 0 0
\(448\) −12.2481 + 2.60342i −0.578669 + 0.123000i
\(449\) −1.68475 1.22404i −0.0795083 0.0577662i 0.547321 0.836923i \(-0.315648\pi\)
−0.626829 + 0.779157i \(0.715648\pi\)
\(450\) 0 0
\(451\) 1.65746 + 1.30641i 0.0780468 + 0.0615163i
\(452\) −4.74660 8.22135i −0.223261 0.386700i
\(453\) 0 0
\(454\) 0.261651 + 0.290593i 0.0122799 + 0.0136382i
\(455\) −25.0136 5.31681i −1.17266 0.249256i
\(456\) 0 0
\(457\) −7.57135 3.37098i −0.354173 0.157688i 0.221935 0.975061i \(-0.428763\pi\)
−0.576108 + 0.817373i \(0.695429\pi\)
\(458\) −1.37270 4.22472i −0.0641418 0.197408i
\(459\) 0 0
\(460\) −27.4057 19.9114i −1.27780 0.928374i
\(461\) 3.27711 + 5.67613i 0.152630 + 0.264364i 0.932194 0.361960i \(-0.117892\pi\)
−0.779563 + 0.626324i \(0.784559\pi\)
\(462\) 0 0
\(463\) −0.136703 + 0.236776i −0.00635310 + 0.0110039i −0.869184 0.494488i \(-0.835356\pi\)
0.862831 + 0.505492i \(0.168689\pi\)
\(464\) −21.9070 + 9.75362i −1.01701 + 0.452800i
\(465\) 0 0
\(466\) −3.65123 + 4.05510i −0.169140 + 0.187849i
\(467\) −6.19971 + 4.50435i −0.286888 + 0.208437i −0.721916 0.691980i \(-0.756738\pi\)
0.435028 + 0.900417i \(0.356738\pi\)
\(468\) 0 0
\(469\) −3.47345 10.6902i −0.160389 0.493627i
\(470\) −10.7469 + 2.28433i −0.495718 + 0.105368i
\(471\) 0 0
\(472\) 5.90672 10.2307i 0.271879 0.470908i
\(473\) −10.0270 12.0541i −0.461042 0.554246i
\(474\) 0 0
\(475\) −1.56918 + 14.9298i −0.0719989 + 0.685024i
\(476\) 1.61971 4.98497i 0.0742395 0.228486i
\(477\) 0 0
\(478\) 4.21831 3.06478i 0.192941 0.140180i
\(479\) 21.2009 + 9.43926i 0.968695 + 0.431291i 0.829212 0.558934i \(-0.188789\pi\)
0.139482 + 0.990225i \(0.455456\pi\)
\(480\) 0 0
\(481\) −0.487661 0.541602i −0.0222354 0.0246949i
\(482\) −3.98058 + 1.77227i −0.181310 + 0.0807246i
\(483\) 0 0
\(484\) 20.3802 2.68667i 0.926371 0.122121i
\(485\) −27.0485 −1.22821
\(486\) 0 0
\(487\) −7.44592 + 22.9162i −0.337407 + 1.03843i 0.628117 + 0.778119i \(0.283826\pi\)
−0.965524 + 0.260313i \(0.916174\pi\)
\(488\) −1.61468 + 1.79329i −0.0730932 + 0.0811783i
\(489\) 0 0
\(490\) −0.0792515 0.754028i −0.00358022 0.0340635i
\(491\) −34.3994 7.31181i −1.55242 0.329977i −0.649696 0.760194i \(-0.725104\pi\)
−0.902725 + 0.430217i \(0.858437\pi\)
\(492\) 0 0
\(493\) 0.872738 8.30354i 0.0393061 0.373973i
\(494\) 9.38077 0.422061
\(495\) 0 0
\(496\) −21.6544 −0.972311
\(497\) −3.20682 + 30.5108i −0.143845 + 1.36860i
\(498\) 0 0
\(499\) 22.2539 + 4.73022i 0.996222 + 0.211754i 0.677045 0.735941i \(-0.263260\pi\)
0.319177 + 0.947695i \(0.396593\pi\)
\(500\) 1.46208 + 13.9108i 0.0653862 + 0.622108i
\(501\) 0 0
\(502\) 3.44784 3.82922i 0.153885 0.170906i
\(503\) 1.55585 4.78840i 0.0693718 0.213504i −0.910360 0.413816i \(-0.864196\pi\)
0.979732 + 0.200312i \(0.0641956\pi\)
\(504\) 0 0
\(505\) 51.4156 2.28796
\(506\) −7.27318 3.58596i −0.323332 0.159415i
\(507\) 0 0
\(508\) −1.42432 + 0.634146i −0.0631938 + 0.0281357i
\(509\) −6.22700 6.91578i −0.276007 0.306537i 0.589164 0.808013i \(-0.299457\pi\)
−0.865171 + 0.501476i \(0.832790\pi\)
\(510\) 0 0
\(511\) 4.85379 + 2.16105i 0.214719 + 0.0955990i
\(512\) −17.7056 + 12.8639i −0.782483 + 0.568507i
\(513\) 0 0
\(514\) −1.21652 + 3.74406i −0.0536584 + 0.165144i
\(515\) −0.872104 + 8.29752i −0.0384295 + 0.365632i
\(516\) 0 0
\(517\) 34.7867 13.8819i 1.52992 0.610527i
\(518\) −0.0862420 + 0.149376i −0.00378926 + 0.00656319i
\(519\) 0 0
\(520\) −14.0554 + 2.98757i −0.616370 + 0.131014i
\(521\) −3.41257 10.5028i −0.149507 0.460136i 0.848056 0.529907i \(-0.177773\pi\)
−0.997563 + 0.0697708i \(0.977773\pi\)
\(522\) 0 0
\(523\) 15.7075 11.4122i 0.686841 0.499019i −0.188779 0.982020i \(-0.560453\pi\)
0.875620 + 0.483001i \(0.160453\pi\)
\(524\) 24.6998 27.4319i 1.07901 1.19837i
\(525\) 0 0
\(526\) −0.854020 + 0.380234i −0.0372370 + 0.0165790i
\(527\) 3.76975 6.52940i 0.164213 0.284425i
\(528\) 0 0
\(529\) −11.2772 19.5327i −0.490314 0.849249i
\(530\) 4.33659 + 3.15071i 0.188369 + 0.136858i
\(531\) 0 0
\(532\) 9.76996 + 30.0688i 0.423581 + 1.30365i
\(533\) 2.21919 + 0.988046i 0.0961237 + 0.0427970i
\(534\) 0 0
\(535\) −25.9619 5.51838i −1.12243 0.238580i
\(536\) −4.22626 4.69374i −0.182547 0.202738i
\(537\) 0 0
\(538\) 1.02581 + 1.77676i 0.0442259 + 0.0766016i
\(539\) 0.701781 + 2.48751i 0.0302278 + 0.107145i
\(540\) 0 0
\(541\) 17.0772 + 12.4073i 0.734205 + 0.533431i 0.890891 0.454217i \(-0.150081\pi\)
−0.156686 + 0.987649i \(0.550081\pi\)
\(542\) −0.851529 + 0.180998i −0.0365763 + 0.00777453i
\(543\) 0 0
\(544\) −0.467015 4.44335i −0.0200231 0.190507i
\(545\) 5.07713 + 48.3056i 0.217480 + 2.06919i
\(546\) 0 0
\(547\) 13.7372 2.91993i 0.587360 0.124847i 0.0953606 0.995443i \(-0.469600\pi\)
0.491999 + 0.870596i \(0.336266\pi\)
\(548\) −5.99151 4.35309i −0.255945 0.185955i
\(549\) 0 0
\(550\) −0.721973 2.55908i −0.0307850 0.109120i
\(551\) 25.1810 + 43.6148i 1.07275 + 1.85805i
\(552\) 0 0
\(553\) 19.3294 + 21.4674i 0.821968 + 0.912888i
\(554\) −0.924846 0.196582i −0.0392929 0.00835197i
\(555\) 0 0
\(556\) 5.81261 + 2.58794i 0.246510 + 0.109753i
\(557\) 12.8094 + 39.4233i 0.542752 + 1.67042i 0.726276 + 0.687403i \(0.241249\pi\)
−0.183524 + 0.983015i \(0.558751\pi\)
\(558\) 0 0
\(559\) −14.6009 10.6082i −0.617552 0.448678i
\(560\) −10.8177 18.7368i −0.457131 0.791773i
\(561\) 0 0
\(562\) 1.60442 2.77893i 0.0676783 0.117222i
\(563\) 6.80544 3.02998i 0.286815 0.127698i −0.258286 0.966068i \(-0.583158\pi\)
0.545101 + 0.838370i \(0.316491\pi\)
\(564\) 0 0
\(565\) 9.12911 10.1389i 0.384065 0.426547i
\(566\) 3.95961 2.87682i 0.166435 0.120922i
\(567\) 0 0
\(568\) 5.32707 + 16.3950i 0.223519 + 0.687920i
\(569\) −23.8888 + 5.07772i −1.00147 + 0.212869i −0.679338 0.733825i \(-0.737733\pi\)
−0.322133 + 0.946694i \(0.604400\pi\)
\(570\) 0 0
\(571\) 6.40805 11.0991i 0.268169 0.464482i −0.700220 0.713927i \(-0.746915\pi\)
0.968389 + 0.249445i \(0.0802482\pi\)
\(572\) 21.9763 8.76987i 0.918877 0.366687i
\(573\) 0 0
\(574\) 0.0600953 0.571769i 0.00250833 0.0238652i
\(575\) 4.61585 14.2061i 0.192494 0.592437i
\(576\) 0 0
\(577\) 11.7428 8.53166i 0.488860 0.355178i −0.315886 0.948797i \(-0.602302\pi\)
0.804746 + 0.593620i \(0.202302\pi\)
\(578\) −5.20740 2.31848i −0.216599 0.0964362i
\(579\) 0 0
\(580\) −24.9344 27.6924i −1.03534 1.14987i
\(581\) 1.86478 0.830253i 0.0773641 0.0344447i
\(582\) 0 0
\(583\) −16.3893 8.08057i −0.678777 0.334663i
\(584\) 2.98550 0.123541
\(585\) 0 0
\(586\) −1.98344 + 6.10441i −0.0819353 + 0.252171i
\(587\) 14.9988 16.6579i 0.619069 0.687545i −0.349317 0.937005i \(-0.613586\pi\)
0.968385 + 0.249459i \(0.0802529\pi\)
\(588\) 0 0
\(589\) 4.75370 + 45.2284i 0.195873 + 1.86361i
\(590\) 8.02175 + 1.70508i 0.330250 + 0.0701969i
\(591\) 0 0
\(592\) 0.0644515 0.613215i 0.00264894 0.0252030i
\(593\) −18.2533 −0.749572 −0.374786 0.927111i \(-0.622284\pi\)
−0.374786 + 0.927111i \(0.622284\pi\)
\(594\) 0 0
\(595\) 7.53288 0.308818
\(596\) 1.00678 9.57887i 0.0412393 0.392366i
\(597\) 0 0
\(598\) −9.13007 1.94066i −0.373356 0.0793593i
\(599\) −2.76195 26.2782i −0.112850 1.07370i −0.893603 0.448859i \(-0.851831\pi\)
0.780753 0.624840i \(-0.214836\pi\)
\(600\) 0 0
\(601\) 9.25098 10.2743i 0.377355 0.419096i −0.524312 0.851526i \(-0.675677\pi\)
0.901667 + 0.432431i \(0.142344\pi\)
\(602\) −1.31992 + 4.06228i −0.0537958 + 0.165566i
\(603\) 0 0
\(604\) 25.6867 1.04518
\(605\) 12.7232 + 26.6629i 0.517270 + 1.08400i
\(606\) 0 0
\(607\) −13.3213 + 5.93104i −0.540696 + 0.240733i −0.658866 0.752260i \(-0.728964\pi\)
0.118170 + 0.992993i \(0.462297\pi\)
\(608\) 18.0327 + 20.0274i 0.731324 + 0.812218i
\(609\) 0 0
\(610\) −1.53036 0.681362i −0.0619626 0.0275875i
\(611\) 34.8782 25.3405i 1.41102 1.02517i
\(612\) 0 0
\(613\) −9.31252 + 28.6610i −0.376129 + 1.15761i 0.566585 + 0.824004i \(0.308264\pi\)
−0.942714 + 0.333603i \(0.891736\pi\)
\(614\) −0.428030 + 4.07244i −0.0172739 + 0.164350i
\(615\) 0 0
\(616\) −7.41390 8.91269i −0.298715 0.359102i
\(617\) −9.84784 + 17.0570i −0.396459 + 0.686687i −0.993286 0.115683i \(-0.963094\pi\)
0.596827 + 0.802370i \(0.296428\pi\)
\(618\) 0 0
\(619\) −1.26485 + 0.268852i −0.0508387 + 0.0108061i −0.233261 0.972414i \(-0.574940\pi\)
0.182422 + 0.983220i \(0.441606\pi\)
\(620\) −10.3983 32.0028i −0.417607 1.28526i
\(621\) 0 0
\(622\) −1.93577 + 1.40642i −0.0776173 + 0.0563923i
\(623\) 2.37053 2.63274i 0.0949733 0.105479i
\(624\) 0 0
\(625\) −28.4731 + 12.6770i −1.13892 + 0.507082i
\(626\) −5.66916 + 9.81928i −0.226585 + 0.392457i
\(627\) 0 0
\(628\) 15.5428 + 26.9210i 0.620227 + 1.07426i
\(629\) 0.173681 + 0.126187i 0.00692513 + 0.00503140i
\(630\) 0 0
\(631\) 13.6277 + 41.9417i 0.542509 + 1.66967i 0.726839 + 0.686808i \(0.240988\pi\)
−0.184330 + 0.982864i \(0.559012\pi\)
\(632\) 14.8287 + 6.60216i 0.589854 + 0.262620i
\(633\) 0 0
\(634\) 4.55194 + 0.967544i 0.180781 + 0.0384261i
\(635\) −1.49931 1.66516i −0.0594984 0.0660797i
\(636\) 0 0
\(637\) 1.48751 + 2.57644i 0.0589372 + 0.102082i
\(638\) −7.00573 5.52190i −0.277360 0.218614i
\(639\) 0 0
\(640\) −21.2166 15.4148i −0.838660 0.609322i
\(641\) −26.4042 + 5.61239i −1.04290 + 0.221676i −0.697356 0.716725i \(-0.745640\pi\)
−0.345548 + 0.938401i \(0.612307\pi\)
\(642\) 0 0
\(643\) 1.06164 + 10.1009i 0.0418671 + 0.398339i 0.995308 + 0.0967587i \(0.0308475\pi\)
−0.953441 + 0.301580i \(0.902486\pi\)
\(644\) −3.28834 31.2864i −0.129579 1.23286i
\(645\) 0 0
\(646\) −2.70291 + 0.574521i −0.106344 + 0.0226042i
\(647\) 27.2093 + 19.7687i 1.06971 + 0.777189i 0.975860 0.218397i \(-0.0700828\pi\)
0.0938493 + 0.995586i \(0.470083\pi\)
\(648\) 0 0
\(649\) −27.9353 1.09517i −1.09656 0.0429893i
\(650\) −1.53031 2.65057i −0.0600236 0.103964i
\(651\) 0 0
\(652\) −28.5086 31.6621i −1.11648 1.23998i
\(653\) 11.0802 + 2.35516i 0.433600 + 0.0921645i 0.419540 0.907737i \(-0.362191\pi\)
0.0140596 + 0.999901i \(0.495525\pi\)
\(654\) 0 0
\(655\) 48.4638 + 21.5775i 1.89364 + 0.843102i
\(656\) 0.635094 + 1.95462i 0.0247963 + 0.0763150i
\(657\) 0 0
\(658\) −8.25459 5.99731i −0.321797 0.233800i
\(659\) −16.1903 28.0424i −0.630684 1.09238i −0.987412 0.158168i \(-0.949441\pi\)
0.356729 0.934208i \(-0.383892\pi\)
\(660\) 0 0
\(661\) −1.57119 + 2.72139i −0.0611123 + 0.105850i −0.894963 0.446141i \(-0.852798\pi\)
0.833851 + 0.551990i \(0.186131\pi\)
\(662\) 6.34302 2.82410i 0.246529 0.109762i
\(663\) 0 0
\(664\) 0.767493 0.852388i 0.0297845 0.0330791i
\(665\) −36.7598 + 26.7076i −1.42548 + 1.03567i
\(666\) 0 0
\(667\) −15.4852 47.6586i −0.599590 1.84535i
\(668\) 23.0312 4.89542i 0.891102 0.189410i
\(669\) 0 0
\(670\) 2.19232 3.79721i 0.0846966 0.146699i
\(671\) 5.53507 + 1.40522i 0.213679 + 0.0542480i
\(672\) 0 0
\(673\) 4.04197 38.4567i 0.155806 1.48240i −0.585194 0.810894i \(-0.698982\pi\)
0.741000 0.671505i \(-0.234352\pi\)
\(674\) 3.66053 11.2660i 0.140998 0.433949i
\(675\) 0 0
\(676\) 2.37986 1.72907i 0.0915329 0.0665025i
\(677\) −41.7683 18.5964i −1.60528 0.714719i −0.608403 0.793628i \(-0.708190\pi\)
−0.996882 + 0.0789093i \(0.974856\pi\)
\(678\) 0 0
\(679\) −16.8079 18.6670i −0.645027 0.716375i
\(680\) 3.86685 1.72163i 0.148287 0.0660216i
\(681\) 0 0
\(682\) −3.75120 7.12837i −0.143641 0.272959i
\(683\) −11.3550 −0.434485 −0.217243 0.976118i \(-0.569706\pi\)
−0.217243 + 0.976118i \(0.569706\pi\)
\(684\) 0 0
\(685\) 3.28902 10.1226i 0.125667 0.386763i
\(686\) 4.70310 5.22332i 0.179565 0.199427i
\(687\) 0 0
\(688\) −1.59606 15.1855i −0.0608491 0.578940i
\(689\) −20.5736 4.37306i −0.783793 0.166600i
\(690\) 0 0
\(691\) −0.911473 + 8.67209i −0.0346741 + 0.329902i 0.963410 + 0.268032i \(0.0863731\pi\)
−0.998084 + 0.0618702i \(0.980294\pi\)
\(692\) 13.4177 0.510065
\(693\) 0 0
\(694\) −3.97778 −0.150994
\(695\) −0.955831 + 9.09412i −0.0362567 + 0.344960i
\(696\) 0 0
\(697\) −0.699934 0.148775i −0.0265119 0.00563527i
\(698\) −0.897432 8.53850i −0.0339683 0.323187i
\(699\) 0 0
\(700\) 6.90226 7.66574i 0.260881 0.289738i
\(701\) −12.5650 + 38.6712i −0.474575 + 1.46059i 0.371954 + 0.928251i \(0.378688\pi\)
−0.846530 + 0.532342i \(0.821312\pi\)
\(702\) 0 0
\(703\) −1.29494 −0.0488396
\(704\) 14.9345 + 7.36328i 0.562865 + 0.277514i
\(705\) 0 0
\(706\) −9.79158 + 4.35949i −0.368511 + 0.164072i
\(707\) 31.9495 + 35.4835i 1.20159 + 1.33450i
\(708\) 0 0
\(709\) −15.2948 6.80970i −0.574410 0.255744i 0.0989083 0.995097i \(-0.468465\pi\)
−0.673318 + 0.739353i \(0.735132\pi\)
\(710\) −9.68171 + 7.03417i −0.363348 + 0.263988i
\(711\) 0 0
\(712\) 0.615154 1.89325i 0.0230539 0.0709525i
\(713\) 4.73002 45.0032i 0.177141 1.68538i
\(714\) 0 0
\(715\) 21.7467 + 26.1430i 0.813280 + 0.977691i
\(716\) 8.40601 14.5596i 0.314147 0.544119i
\(717\) 0 0
\(718\) 10.1350 2.15426i 0.378234 0.0803961i
\(719\) 5.99373 + 18.4468i 0.223528 + 0.687949i 0.998438 + 0.0558770i \(0.0177955\pi\)
−0.774909 + 0.632072i \(0.782205\pi\)
\(720\) 0 0
\(721\) −6.26830 + 4.55419i −0.233444 + 0.169607i
\(722\) 6.54750 7.27174i 0.243673 0.270626i
\(723\) 0 0
\(724\) −3.20505 + 1.42698i −0.119115 + 0.0530333i
\(725\) 8.21569 14.2300i 0.305123 0.528488i
\(726\) 0 0
\(727\) −2.89216 5.00937i −0.107264 0.185787i 0.807397 0.590009i \(-0.200876\pi\)
−0.914661 + 0.404222i \(0.867542\pi\)
\(728\) −10.7958 7.84361i −0.400119 0.290704i
\(729\) 0 0
\(730\) 0.640454 + 1.97111i 0.0237043 + 0.0729542i
\(731\) 4.85669 + 2.16234i 0.179631 + 0.0799770i
\(732\) 0 0
\(733\) −22.2159 4.72214i −0.820563 0.174416i −0.221544 0.975150i \(-0.571109\pi\)
−0.599020 + 0.800734i \(0.704443\pi\)
\(734\) −0.867748 0.963731i −0.0320291 0.0355720i
\(735\) 0 0
\(736\) −13.4076 23.2227i −0.494212 0.856000i
\(737\) −5.17222 + 14.0236i −0.190521 + 0.516567i
\(738\) 0 0
\(739\) 9.31755 + 6.76960i 0.342752 + 0.249024i 0.745822 0.666145i \(-0.232057\pi\)
−0.403070 + 0.915169i \(0.632057\pi\)
\(740\) 0.937212 0.199211i 0.0344526 0.00732313i
\(741\) 0 0
\(742\) 0.520336 + 4.95066i 0.0191021 + 0.181745i
\(743\) −4.49533 42.7703i −0.164918 1.56909i −0.693658 0.720305i \(-0.744002\pi\)
0.528740 0.848784i \(-0.322665\pi\)
\(744\) 0 0
\(745\) 13.5397 2.87796i 0.496057 0.105440i
\(746\) 10.8417 + 7.87694i 0.396942 + 0.288395i
\(747\) 0 0
\(748\) −5.79500 + 3.87282i −0.211886 + 0.141604i
\(749\) −12.3243 21.3462i −0.450319 0.779975i
\(750\) 0 0
\(751\) 2.40813 + 2.67449i 0.0878738 + 0.0975937i 0.785478 0.618890i \(-0.212417\pi\)
−0.697604 + 0.716483i \(0.745751\pi\)
\(752\) 35.6773 + 7.58344i 1.30102 + 0.276540i
\(753\) 0 0
\(754\) −9.38003 4.17626i −0.341600 0.152090i
\(755\) 11.4076 + 35.1091i 0.415167 + 1.27775i
\(756\) 0 0
\(757\) 12.2911 + 8.93000i 0.446727 + 0.324566i 0.788302 0.615288i \(-0.210960\pi\)
−0.341575 + 0.939855i \(0.610960\pi\)
\(758\) 4.36010 + 7.55192i 0.158366 + 0.274298i
\(759\) 0 0
\(760\) −12.7659 + 22.1112i −0.463068 + 0.802058i
\(761\) −14.9046 + 6.63596i −0.540292 + 0.240553i −0.658692 0.752413i \(-0.728890\pi\)
0.118400 + 0.992966i \(0.462223\pi\)
\(762\) 0 0
\(763\) −30.1823 + 33.5209i −1.09267 + 1.21354i
\(764\) 9.68362 7.03556i 0.350341 0.254538i
\(765\) 0 0
\(766\) −3.92013 12.0649i −0.141640 0.435923i
\(767\) −31.4764 + 6.69052i −1.13655 + 0.241581i
\(768\) 0 0
\(769\) −3.33336 + 5.77355i −0.120204 + 0.208200i −0.919848 0.392275i \(-0.871688\pi\)
0.799644 + 0.600474i \(0.205022\pi\)
\(770\) 4.29397 6.80683i 0.154744 0.245301i
\(771\) 0 0
\(772\) 0.550544 5.23808i 0.0198145 0.188523i
\(773\) 15.7232 48.3910i 0.565524 1.74050i −0.100865 0.994900i \(-0.532161\pi\)
0.666389 0.745604i \(-0.267839\pi\)
\(774\) 0 0
\(775\) 12.0040 8.72140i 0.431196 0.313282i
\(776\) −12.8943 5.74092i −0.462879 0.206087i
\(777\) 0 0
\(778\) 0.996135 + 1.10632i 0.0357132 + 0.0396635i
\(779\) 3.94309 1.75558i 0.141276 0.0629001i
\(780\) 0 0
\(781\) 28.4644 29.2246i 1.01854 1.04574i
\(782\) 2.74953 0.0983229
\(783\) 0 0
\(784\) −0.777792 + 2.39380i −0.0277783 + 0.0854928i
\(785\) −29.8935 + 33.2001i −1.06694 + 1.18496i
\(786\) 0 0
\(787\) 3.17288 + 30.1879i 0.113101 + 1.07608i 0.892963 + 0.450131i \(0.148623\pi\)
−0.779862 + 0.625952i \(0.784711\pi\)
\(788\) −47.0132 9.99297i −1.67478 0.355985i
\(789\) 0 0
\(790\) −1.17787 + 11.2066i −0.0419066 + 0.398714i
\(791\) 12.6700 0.450493
\(792\) 0 0
\(793\) 6.57326 0.233423
\(794\) 0.873297 8.30886i 0.0309921 0.294870i
\(795\) 0 0
\(796\) 24.3982 + 5.18600i 0.864772 + 0.183813i
\(797\) −0.415201 3.95037i −0.0147072 0.139929i 0.984704 0.174234i \(-0.0557450\pi\)
−0.999411 + 0.0343048i \(0.989078\pi\)
\(798\) 0 0
\(799\) −8.49758 + 9.43752i −0.300623 + 0.333875i
\(800\) 2.71709 8.36233i 0.0960635 0.295653i
\(801\) 0 0
\(802\) −1.35860 −0.0479738
\(803\) −3.29022 6.25237i −0.116109 0.220641i
\(804\) 0 0
\(805\) 41.3026 18.3891i 1.45572 0.648130i
\(806\) −6.20410 6.89035i −0.218530 0.242702i
\(807\) 0 0
\(808\) 24.5104 + 10.9127i 0.862272 + 0.383908i
\(809\) 4.26011 3.09515i 0.149778 0.108820i −0.510373 0.859953i \(-0.670493\pi\)
0.660150 + 0.751133i \(0.270493\pi\)
\(810\) 0 0
\(811\) 11.6366 35.8137i 0.408615 1.25759i −0.509223 0.860635i \(-0.670067\pi\)
0.917838 0.396954i \(-0.129933\pi\)
\(812\) 3.61727 34.4160i 0.126941 1.20776i
\(813\) 0 0
\(814\) 0.213028 0.0850109i 0.00746663 0.00297963i
\(815\) 30.6155 53.0275i 1.07241 1.85747i
\(816\) 0 0
\(817\) −31.3667 + 6.66720i −1.09738 + 0.233256i
\(818\) −3.07222 9.45531i −0.107418 0.330597i
\(819\) 0 0
\(820\) −2.58374 + 1.87719i −0.0902280 + 0.0655545i
\(821\) −1.40616 + 1.56170i −0.0490753 + 0.0545037i −0.767183 0.641429i \(-0.778342\pi\)
0.718107 + 0.695932i \(0.245009\pi\)
\(822\) 0 0
\(823\) −6.07498 + 2.70475i −0.211760 + 0.0942818i −0.509876 0.860248i \(-0.670309\pi\)
0.298115 + 0.954530i \(0.403642\pi\)
\(824\) −2.17685 + 3.77042i −0.0758342 + 0.131349i
\(825\) 0 0
\(826\) 3.80797 + 6.59559i 0.132496 + 0.229490i
\(827\) −17.8702 12.9834i −0.621407 0.451479i 0.232006 0.972714i \(-0.425471\pi\)
−0.853413 + 0.521236i \(0.825471\pi\)
\(828\) 0 0
\(829\) 1.19544 + 3.67920i 0.0415195 + 0.127784i 0.969668 0.244427i \(-0.0785998\pi\)
−0.928148 + 0.372211i \(0.878600\pi\)
\(830\) 0.727415 + 0.323866i 0.0252489 + 0.0112416i
\(831\) 0 0
\(832\) 18.7474 + 3.98488i 0.649948 + 0.138151i
\(833\) −0.586393 0.651255i −0.0203173 0.0225647i
\(834\) 0 0
\(835\) 16.9195 + 29.3054i 0.585522 + 1.01415i
\(836\) 14.5482 39.4450i 0.503159 1.36423i
\(837\) 0 0
\(838\) 6.27302 + 4.55762i 0.216698 + 0.157440i
\(839\) −22.9258 + 4.87302i −0.791486 + 0.168235i −0.585878 0.810399i \(-0.699250\pi\)
−0.205607 + 0.978635i \(0.565917\pi\)
\(840\) 0 0
\(841\) −2.73068 25.9807i −0.0941614 0.895886i
\(842\) −0.413598 3.93512i −0.0142535 0.135613i
\(843\) 0 0
\(844\) −28.7567 + 6.11242i −0.989845 + 0.210398i
\(845\) 3.42023 + 2.48494i 0.117660 + 0.0854847i
\(846\) 0 0
\(847\) −10.4947 + 25.3489i −0.360604 + 0.870998i
\(848\) −8.89751 15.4109i −0.305542 0.529214i
\(849\) 0 0
\(850\) 0.603265 + 0.669993i 0.0206918 + 0.0229806i
\(851\) 1.26033 + 0.267892i 0.0432037 + 0.00918323i
\(852\) 0 0
\(853\) −19.1776 8.53842i −0.656629 0.292350i 0.0512479 0.998686i \(-0.483680\pi\)
−0.707877 + 0.706336i \(0.750347\pi\)
\(854\) −0.480735 1.47955i −0.0164504 0.0506291i
\(855\) 0 0
\(856\) −11.2051 8.14097i −0.382982 0.278252i
\(857\) 14.1590 + 24.5241i 0.483662 + 0.837728i 0.999824 0.0187634i \(-0.00597292\pi\)
−0.516162 + 0.856491i \(0.672640\pi\)
\(858\) 0 0
\(859\) 27.8536 48.2438i 0.950351 1.64606i 0.205687 0.978618i \(-0.434057\pi\)
0.744665 0.667439i \(-0.232609\pi\)
\(860\) 21.6760 9.65077i 0.739145 0.329088i
\(861\) 0 0
\(862\) −2.86548 + 3.18244i −0.0975986 + 0.108394i
\(863\) 24.8932 18.0860i 0.847375 0.615654i −0.0770462 0.997028i \(-0.524549\pi\)
0.924421 + 0.381374i \(0.124549\pi\)
\(864\) 0 0
\(865\) 5.95890 + 18.3396i 0.202609 + 0.623565i
\(866\) 8.60645 1.82936i 0.292459 0.0621641i
\(867\) 0 0
\(868\) 15.6246 27.0626i 0.530334 0.918566i
\(869\) −2.51565 38.3309i −0.0853377 1.30029i
\(870\) 0 0
\(871\) −1.79839 + 17.1106i −0.0609362 + 0.579769i
\(872\) −7.83232 + 24.1054i −0.265236 + 0.816312i
\(873\) 0 0
\(874\) −13.4175 + 9.74835i −0.453852 + 0.329743i
\(875\) −17.0542 7.59300i −0.576536 0.256690i
\(876\) 0 0
\(877\) 20.7384 + 23.0323i 0.700286 + 0.777747i 0.983422 0.181333i \(-0.0580413\pi\)
−0.283136 + 0.959080i \(0.591375\pi\)
\(878\) −6.14850 + 2.73749i −0.207502 + 0.0923857i
\(879\) 0 0
\(880\) −4.12584 + 28.4727i −0.139082 + 0.959814i
\(881\) −29.9198 −1.00802 −0.504012 0.863697i \(-0.668143\pi\)
−0.504012 + 0.863697i \(0.668143\pi\)
\(882\) 0 0
\(883\) 4.39514 13.5269i 0.147908 0.455215i −0.849465 0.527645i \(-0.823075\pi\)
0.997374 + 0.0724296i \(0.0230753\pi\)
\(884\) −5.36831 + 5.96212i −0.180556 + 0.200528i
\(885\) 0 0
\(886\) −0.747709 7.11398i −0.0251198 0.238999i
\(887\) −2.57329 0.546971i −0.0864028 0.0183655i 0.164507 0.986376i \(-0.447397\pi\)
−0.250910 + 0.968010i \(0.580730\pi\)
\(888\) 0 0
\(889\) 0.217508 2.06945i 0.00729497 0.0694070i
\(890\) 1.38194 0.0463228
\(891\) 0 0
\(892\) 35.2874 1.18151
\(893\) 8.00706 76.1821i 0.267946 2.54934i
\(894\) 0 0
\(895\) 23.6336 + 5.02347i 0.789983 + 0.167916i
\(896\) −2.54572 24.2210i −0.0850467 0.809165i
\(897\) 0 0
\(898\) 0.504780 0.560615i 0.0168447 0.0187080i
\(899\) 15.3821 47.3412i 0.513021 1.57892i
\(900\) 0 0
\(901\) 6.19577 0.206411
\(902\) −0.533420 + 0.547665i −0.0177609 + 0.0182352i
\(903\) 0 0
\(904\) 6.50388 2.89572i 0.216316 0.0963101i
\(905\) −3.37381 3.74700i −0.112149 0.124554i
\(906\) 0 0
\(907\) −9.28389 4.13345i −0.308266 0.137249i 0.246772 0.969073i \(-0.420630\pi\)
−0.555039 + 0.831824i \(0.687297\pi\)
\(908\) 1.63197 1.18570i 0.0541589 0.0393488i
\(909\) 0 0
\(910\) 2.86265 8.81033i 0.0948959 0.292060i
\(911\) −0.615910 + 5.85999i −0.0204060 + 0.194150i −0.999976 0.00695428i \(-0.997786\pi\)
0.979570 + 0.201104i \(0.0644530\pi\)
\(912\) 0 0
\(913\) −2.63094 0.667932i −0.0870713 0.0221053i
\(914\) 1.50116 2.60008i 0.0496539 0.0860031i
\(915\) 0 0
\(916\) −22.4150 + 4.76446i −0.740613 + 0.157422i
\(917\) 15.2240 + 46.8546i 0.502740 + 1.54727i
\(918\) 0 0
\(919\) −26.1285 + 18.9835i −0.861899 + 0.626206i −0.928401 0.371580i \(-0.878816\pi\)
0.0665018 + 0.997786i \(0.478816\pi\)
\(920\) 16.9990 18.8793i 0.560441 0.622433i
\(921\) 0 0
\(922\) −2.16903 + 0.965713i −0.0714331 + 0.0318041i
\(923\) 23.4791 40.6669i 0.772823 1.33857i
\(924\) 0 0
\(925\) 0.211247 + 0.365890i 0.00694575 + 0.0120304i
\(926\) −0.0801267 0.0582155i −0.00263313 0.00191308i
\(927\) 0 0
\(928\) −9.11525 28.0539i −0.299223 0.920913i
\(929\) 44.6570 + 19.8826i 1.46515 + 0.652327i 0.975581 0.219639i \(-0.0704878\pi\)
0.489568 + 0.871965i \(0.337154\pi\)
\(930\) 0 0
\(931\) 5.17055 + 1.09903i 0.169458 + 0.0360194i
\(932\) 18.8357 + 20.9192i 0.616985 + 0.685231i
\(933\) 0 0
\(934\) −1.38802 2.40413i −0.0454175 0.0786655i
\(935\) −7.86705 6.20078i −0.257280 0.202787i
\(936\) 0 0
\(937\) −36.4628 26.4917i −1.19119 0.865447i −0.197797 0.980243i \(-0.563379\pi\)
−0.993389 + 0.114796i \(0.963379\pi\)
\(938\) 3.98287 0.846586i 0.130045 0.0276420i
\(939\) 0 0
\(940\) 5.92457 + 56.3686i 0.193238 + 1.83854i
\(941\) 1.71991 + 16.3639i 0.0560675 + 0.533447i 0.986122 + 0.166024i \(0.0530930\pi\)
−0.930054 + 0.367423i \(0.880240\pi\)
\(942\) 0 0
\(943\) −4.20090 + 0.892929i −0.136800 + 0.0290778i
\(944\) −22.0257 16.0026i −0.716877 0.520841i
\(945\) 0 0
\(946\) 4.72239 3.15599i 0.153538 0.102610i
\(947\) 3.50636 + 6.07320i 0.113942 + 0.197352i 0.917356 0.398067i \(-0.130319\pi\)
−0.803415 + 0.595420i \(0.796986\pi\)
\(948\) 0 0
\(949\) −5.44168 6.04359i −0.176644 0.196183i
\(950\) −5.31932 1.13066i −0.172581 0.0366833i
\(951\) 0 0
\(952\) 3.59101 + 1.59882i 0.116385 + 0.0518180i
\(953\) 3.34588 + 10.2976i 0.108384 + 0.333571i 0.990510 0.137443i \(-0.0438883\pi\)
−0.882126 + 0.471014i \(0.843888\pi\)
\(954\) 0 0
\(955\) 13.9169 + 10.1112i 0.450341 + 0.327192i
\(956\) −13.4491 23.2946i −0.434976 0.753401i
\(957\) 0 0
\(958\) −4.20347 + 7.28062i −0.135808 + 0.235226i
\(959\) 9.02969 4.02028i 0.291584 0.129821i
\(960\) 0 0
\(961\) 9.33416 10.3666i 0.301102 0.334407i
\(962\) 0.213588 0.155181i 0.00688637 0.00500324i
\(963\) 0 0
\(964\) 6.94611 + 21.3779i 0.223719 + 0.688537i
\(965\) 7.40401 1.57377i 0.238344 0.0506615i
\(966\) 0 0
\(967\) −2.94103 + 5.09401i −0.0945771 + 0.163812i −0.909432 0.415853i \(-0.863483\pi\)
0.814855 + 0.579665i \(0.196817\pi\)
\(968\) 0.406202 + 15.4109i 0.0130558 + 0.495325i
\(969\) 0 0
\(970\) 1.02421 9.74475i 0.0328855 0.312885i
\(971\) 5.64280 17.3667i 0.181086 0.557325i −0.818773 0.574117i \(-0.805345\pi\)
0.999859 + 0.0167920i \(0.00534530\pi\)
\(972\) 0 0
\(973\) −6.87009 + 4.99141i −0.220245 + 0.160017i
\(974\) −7.97406 3.55028i −0.255505 0.113758i
\(975\) 0 0
\(976\) 3.72120 + 4.13282i 0.119113 + 0.132288i
\(977\) −1.53328 + 0.682658i −0.0490538 + 0.0218402i −0.431117 0.902296i \(-0.641880\pi\)
0.382063 + 0.924136i \(0.375214\pi\)
\(978\) 0 0
\(979\) −4.64287 + 0.798201i −0.148387 + 0.0255106i
\(980\) −3.91125 −0.124940
\(981\) 0 0
\(982\) 3.93678 12.1162i 0.125628 0.386643i
\(983\) 7.50703 8.33740i 0.239437 0.265922i −0.611435 0.791295i \(-0.709407\pi\)
0.850872 + 0.525373i \(0.176074\pi\)
\(984\) 0 0
\(985\) −7.22030 68.6966i −0.230058 2.18886i
\(986\) 2.95847 + 0.628842i 0.0942168 + 0.0200264i
\(987\) 0 0
\(988\) 5.05843 48.1278i 0.160930 1.53115i
\(989\) 31.9077 1.01461
\(990\) 0 0
\(991\) −7.78978 −0.247451 −0.123725 0.992317i \(-0.539484\pi\)
−0.123725 + 0.992317i \(0.539484\pi\)
\(992\) 2.78429 26.4908i 0.0884013 0.841082i
\(993\) 0 0
\(994\) −10.8707 2.31064i −0.344797 0.0732890i
\(995\) 3.74709 + 35.6511i 0.118791 + 1.13022i
\(996\) 0 0
\(997\) −28.9889 + 32.1954i −0.918088 + 1.01964i 0.0816479 + 0.996661i \(0.473982\pi\)
−0.999736 + 0.0229789i \(0.992685\pi\)
\(998\) −2.54682 + 7.83830i −0.0806181 + 0.248117i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.f.433.2 32
3.2 odd 2 891.2.n.i.433.3 32
9.2 odd 6 891.2.n.i.136.2 32
9.4 even 3 297.2.f.d.136.2 yes 16
9.5 odd 6 297.2.f.a.136.3 16
9.7 even 3 inner 891.2.n.f.136.3 32
11.3 even 5 inner 891.2.n.f.190.3 32
33.14 odd 10 891.2.n.i.190.2 32
99.5 odd 30 3267.2.a.bm.1.3 8
99.14 odd 30 297.2.f.a.190.3 yes 16
99.25 even 15 inner 891.2.n.f.784.2 32
99.47 odd 30 891.2.n.i.784.3 32
99.49 even 15 3267.2.a.be.1.6 8
99.50 even 30 3267.2.a.bf.1.6 8
99.58 even 15 297.2.f.d.190.2 yes 16
99.94 odd 30 3267.2.a.bl.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.a.136.3 16 9.5 odd 6
297.2.f.a.190.3 yes 16 99.14 odd 30
297.2.f.d.136.2 yes 16 9.4 even 3
297.2.f.d.190.2 yes 16 99.58 even 15
891.2.n.f.136.3 32 9.7 even 3 inner
891.2.n.f.190.3 32 11.3 even 5 inner
891.2.n.f.433.2 32 1.1 even 1 trivial
891.2.n.f.784.2 32 99.25 even 15 inner
891.2.n.i.136.2 32 9.2 odd 6
891.2.n.i.190.2 32 33.14 odd 10
891.2.n.i.433.3 32 3.2 odd 2
891.2.n.i.784.3 32 99.47 odd 30
3267.2.a.be.1.6 8 99.49 even 15
3267.2.a.bf.1.6 8 99.50 even 30
3267.2.a.bl.1.3 8 99.94 odd 30
3267.2.a.bm.1.3 8 99.5 odd 30