Properties

Label 891.2.n.f.784.2
Level $891$
Weight $2$
Character 891.784
Analytic conductor $7.115$
Analytic rank $0$
Dimension $32$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [891,2,Mod(136,891)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(891, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([20, 6]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("891.136");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 891 = 3^{4} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 891.n (of order \(15\), degree \(8\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(7.11467082010\)
Analytic rank: \(0\)
Dimension: \(32\)
Relative dimension: \(4\) over \(\Q(\zeta_{15})\)
Twist minimal: no (minimal twist has level 297)
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 784.2
Character \(\chi\) \(=\) 891.784
Dual form 891.2.n.f.433.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0378659 - 0.360270i) q^{2} +(1.82793 - 0.388540i) q^{4} +(0.280735 - 2.67101i) q^{5} +(-1.66890 - 1.85350i) q^{7} +(-0.433081 - 1.33288i) q^{8} -0.972914 q^{10} +(3.26867 + 0.561950i) q^{11} +(3.48756 + 1.55276i) q^{13} +(-0.604567 + 0.671439i) q^{14} +(2.95062 - 1.31370i) q^{16} +(-0.909782 - 0.660995i) q^{17} +(2.09612 + 6.45120i) q^{19} +(-0.524629 - 4.99151i) q^{20} +(0.0786824 - 1.19888i) q^{22} +(-3.37470 - 5.84515i) q^{23} +(-2.16475 - 0.460133i) q^{25} +(0.427353 - 1.31526i) q^{26} +(-3.77080 - 2.73965i) q^{28} +(-4.96799 - 5.51751i) q^{29} +(-6.12482 - 2.72695i) q^{31} +(-1.98649 - 3.44070i) q^{32} +(-0.203687 + 0.352796i) q^{34} +(-5.41925 + 3.93732i) q^{35} +(-0.0589927 + 0.181561i) q^{37} +(2.24480 - 0.999449i) q^{38} +(-3.68173 + 0.782576i) q^{40} +(0.425779 - 0.472875i) q^{41} +(-2.36375 + 4.09413i) q^{43} +(6.19326 - 0.242800i) q^{44} +(-1.97805 + 1.43713i) q^{46} +(11.0461 + 2.34792i) q^{47} +(0.0814578 - 0.775019i) q^{49} +(-0.0838015 + 0.797318i) q^{50} +(6.97834 + 1.48329i) q^{52} +(-4.45732 + 3.23843i) q^{53} +(2.41860 - 8.57290i) q^{55} +(-1.74774 + 3.02717i) q^{56} +(-1.79967 + 1.99874i) q^{58} +(-8.24507 + 1.75254i) q^{59} +(1.57297 - 0.700331i) q^{61} +(-0.750514 + 2.30984i) q^{62} +(4.06165 - 2.95096i) q^{64} +(5.12652 - 8.87939i) q^{65} +(-2.25335 - 3.90292i) q^{67} +(-1.91984 - 0.854770i) q^{68} +(1.62370 + 1.80330i) q^{70} +(9.95124 + 7.23000i) q^{71} +(-0.658284 + 2.02599i) q^{73} +(0.0676446 + 0.0143783i) q^{74} +(6.33812 + 10.9779i) q^{76} +(-4.41352 - 6.99633i) q^{77} +(1.21066 + 11.5186i) q^{79} +(-2.68057 - 8.24994i) q^{80} +(-0.186485 - 0.135489i) q^{82} +(-0.747666 + 0.332882i) q^{83} +(-2.02093 + 2.24447i) q^{85} +(1.56449 + 0.696558i) q^{86} +(-0.666583 - 4.60013i) q^{88} -1.42041 q^{89} +(-2.94234 - 9.05560i) q^{91} +(-8.43981 - 9.37336i) q^{92} +(0.427615 - 4.06848i) q^{94} +(17.8197 - 3.78769i) q^{95} +(-1.05273 - 10.0160i) q^{97} -0.282300 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 32 q - 2 q^{2} + 4 q^{4} - q^{5} + 2 q^{7} + 12 q^{10} - 13 q^{11} + 2 q^{13} + 22 q^{14} + 24 q^{16} - 4 q^{17} - 4 q^{19} - 15 q^{22} - 14 q^{23} + 19 q^{25} + 42 q^{26} + 30 q^{28} - q^{29} - 14 q^{31}+ \cdots + 52 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/891\mathbb{Z}\right)^\times\).

\(n\) \(244\) \(650\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0378659 0.360270i −0.0267752 0.254749i −0.999719 0.0237069i \(-0.992453\pi\)
0.972944 0.231042i \(-0.0742135\pi\)
\(3\) 0 0
\(4\) 1.82793 0.388540i 0.913967 0.194270i
\(5\) 0.280735 2.67101i 0.125548 1.19451i −0.732436 0.680836i \(-0.761616\pi\)
0.857984 0.513676i \(-0.171717\pi\)
\(6\) 0 0
\(7\) −1.66890 1.85350i −0.630786 0.700559i 0.340022 0.940417i \(-0.389565\pi\)
−0.970808 + 0.239859i \(0.922899\pi\)
\(8\) −0.433081 1.33288i −0.153117 0.471246i
\(9\) 0 0
\(10\) −0.972914 −0.307663
\(11\) 3.26867 + 0.561950i 0.985541 + 0.169434i
\(12\) 0 0
\(13\) 3.48756 + 1.55276i 0.967274 + 0.430658i 0.828700 0.559694i \(-0.189081\pi\)
0.138575 + 0.990352i \(0.455748\pi\)
\(14\) −0.604567 + 0.671439i −0.161577 + 0.179450i
\(15\) 0 0
\(16\) 2.95062 1.31370i 0.737654 0.328425i
\(17\) −0.909782 0.660995i −0.220654 0.160315i 0.471967 0.881616i \(-0.343544\pi\)
−0.692621 + 0.721301i \(0.743544\pi\)
\(18\) 0 0
\(19\) 2.09612 + 6.45120i 0.480883 + 1.48001i 0.837856 + 0.545891i \(0.183809\pi\)
−0.356973 + 0.934115i \(0.616191\pi\)
\(20\) −0.524629 4.99151i −0.117311 1.11614i
\(21\) 0 0
\(22\) 0.0786824 1.19888i 0.0167751 0.255602i
\(23\) −3.37470 5.84515i −0.703674 1.21880i −0.967168 0.254138i \(-0.918208\pi\)
0.263494 0.964661i \(-0.415125\pi\)
\(24\) 0 0
\(25\) −2.16475 0.460133i −0.432951 0.0920266i
\(26\) 0.427353 1.31526i 0.0838108 0.257943i
\(27\) 0 0
\(28\) −3.77080 2.73965i −0.712615 0.517745i
\(29\) −4.96799 5.51751i −0.922532 1.02458i −0.999620 0.0275515i \(-0.991229\pi\)
0.0770882 0.997024i \(-0.475438\pi\)
\(30\) 0 0
\(31\) −6.12482 2.72695i −1.10005 0.489774i −0.225271 0.974296i \(-0.572327\pi\)
−0.874779 + 0.484522i \(0.838994\pi\)
\(32\) −1.98649 3.44070i −0.351165 0.608236i
\(33\) 0 0
\(34\) −0.203687 + 0.352796i −0.0349320 + 0.0605040i
\(35\) −5.41925 + 3.93732i −0.916020 + 0.665528i
\(36\) 0 0
\(37\) −0.0589927 + 0.181561i −0.00969834 + 0.0298484i −0.955789 0.294055i \(-0.904995\pi\)
0.946090 + 0.323903i \(0.104995\pi\)
\(38\) 2.24480 0.999449i 0.364154 0.162132i
\(39\) 0 0
\(40\) −3.68173 + 0.782576i −0.582133 + 0.123736i
\(41\) 0.425779 0.472875i 0.0664954 0.0738507i −0.708979 0.705229i \(-0.750844\pi\)
0.775475 + 0.631379i \(0.217511\pi\)
\(42\) 0 0
\(43\) −2.36375 + 4.09413i −0.360468 + 0.624349i −0.988038 0.154212i \(-0.950716\pi\)
0.627570 + 0.778560i \(0.284050\pi\)
\(44\) 6.19326 0.242800i 0.933669 0.0366035i
\(45\) 0 0
\(46\) −1.97805 + 1.43713i −0.291647 + 0.211894i
\(47\) 11.0461 + 2.34792i 1.61124 + 0.342480i 0.923536 0.383512i \(-0.125285\pi\)
0.687704 + 0.725991i \(0.258619\pi\)
\(48\) 0 0
\(49\) 0.0814578 0.775019i 0.0116368 0.110717i
\(50\) −0.0838015 + 0.797318i −0.0118513 + 0.112758i
\(51\) 0 0
\(52\) 6.97834 + 1.48329i 0.967721 + 0.205695i
\(53\) −4.45732 + 3.23843i −0.612259 + 0.444833i −0.850209 0.526445i \(-0.823525\pi\)
0.237950 + 0.971277i \(0.423525\pi\)
\(54\) 0 0
\(55\) 2.41860 8.57290i 0.326125 1.15597i
\(56\) −1.74774 + 3.02717i −0.233551 + 0.404523i
\(57\) 0 0
\(58\) −1.79967 + 1.99874i −0.236309 + 0.262447i
\(59\) −8.24507 + 1.75254i −1.07342 + 0.228162i −0.710527 0.703670i \(-0.751543\pi\)
−0.362890 + 0.931832i \(0.618210\pi\)
\(60\) 0 0
\(61\) 1.57297 0.700331i 0.201398 0.0896682i −0.303559 0.952813i \(-0.598175\pi\)
0.504957 + 0.863144i \(0.331508\pi\)
\(62\) −0.750514 + 2.30984i −0.0953154 + 0.293351i
\(63\) 0 0
\(64\) 4.06165 2.95096i 0.507706 0.368870i
\(65\) 5.12652 8.87939i 0.635866 1.10135i
\(66\) 0 0
\(67\) −2.25335 3.90292i −0.275291 0.476817i 0.694918 0.719089i \(-0.255441\pi\)
−0.970208 + 0.242272i \(0.922107\pi\)
\(68\) −1.91984 0.854770i −0.232815 0.103656i
\(69\) 0 0
\(70\) 1.62370 + 1.80330i 0.194069 + 0.215536i
\(71\) 9.95124 + 7.23000i 1.18099 + 0.858043i 0.992284 0.123990i \(-0.0395689\pi\)
0.188711 + 0.982033i \(0.439569\pi\)
\(72\) 0 0
\(73\) −0.658284 + 2.02599i −0.0770463 + 0.237124i −0.982161 0.188044i \(-0.939785\pi\)
0.905114 + 0.425168i \(0.139785\pi\)
\(74\) 0.0676446 + 0.0143783i 0.00786353 + 0.00167144i
\(75\) 0 0
\(76\) 6.33812 + 10.9779i 0.727032 + 1.25926i
\(77\) −4.41352 6.99633i −0.502967 0.797306i
\(78\) 0 0
\(79\) 1.21066 + 11.5186i 0.136210 + 1.29595i 0.822561 + 0.568677i \(0.192545\pi\)
−0.686351 + 0.727270i \(0.740789\pi\)
\(80\) −2.68057 8.24994i −0.299696 0.922371i
\(81\) 0 0
\(82\) −0.186485 0.135489i −0.0205938 0.0149623i
\(83\) −0.747666 + 0.332882i −0.0820670 + 0.0365386i −0.447360 0.894354i \(-0.647636\pi\)
0.365293 + 0.930893i \(0.380969\pi\)
\(84\) 0 0
\(85\) −2.02093 + 2.24447i −0.219201 + 0.243447i
\(86\) 1.56449 + 0.696558i 0.168704 + 0.0751118i
\(87\) 0 0
\(88\) −0.666583 4.60013i −0.0710580 0.490376i
\(89\) −1.42041 −0.150564 −0.0752818 0.997162i \(-0.523986\pi\)
−0.0752818 + 0.997162i \(0.523986\pi\)
\(90\) 0 0
\(91\) −2.94234 9.05560i −0.308441 0.949285i
\(92\) −8.43981 9.37336i −0.879911 0.977240i
\(93\) 0 0
\(94\) 0.427615 4.06848i 0.0441051 0.419632i
\(95\) 17.8197 3.78769i 1.82826 0.388609i
\(96\) 0 0
\(97\) −1.05273 10.0160i −0.106888 1.01697i −0.908146 0.418654i \(-0.862502\pi\)
0.801257 0.598320i \(-0.204165\pi\)
\(98\) −0.282300 −0.0285166
\(99\) 0 0
\(100\) −4.13581 −0.413581
\(101\) 2.00110 + 19.0392i 0.199117 + 1.89447i 0.402580 + 0.915385i \(0.368113\pi\)
−0.203464 + 0.979082i \(0.565220\pi\)
\(102\) 0 0
\(103\) 3.03862 0.645879i 0.299404 0.0636404i −0.0557601 0.998444i \(-0.517758\pi\)
0.355164 + 0.934804i \(0.384425\pi\)
\(104\) 0.559258 5.32098i 0.0548397 0.521765i
\(105\) 0 0
\(106\) 1.33549 + 1.48321i 0.129714 + 0.144062i
\(107\) −3.05389 9.39890i −0.295231 0.908626i −0.983144 0.182833i \(-0.941473\pi\)
0.687913 0.725793i \(-0.258527\pi\)
\(108\) 0 0
\(109\) 18.0851 1.73224 0.866121 0.499834i \(-0.166606\pi\)
0.866121 + 0.499834i \(0.166606\pi\)
\(110\) −3.18014 0.546729i −0.303214 0.0521286i
\(111\) 0 0
\(112\) −7.35924 3.27654i −0.695383 0.309604i
\(113\) −3.39913 + 3.77511i −0.319763 + 0.355133i −0.881501 0.472183i \(-0.843466\pi\)
0.561738 + 0.827315i \(0.310133\pi\)
\(114\) 0 0
\(115\) −16.5599 + 7.37293i −1.54422 + 0.687529i
\(116\) −11.2249 8.15539i −1.04221 0.757209i
\(117\) 0 0
\(118\) 0.943595 + 2.90409i 0.0868650 + 0.267343i
\(119\) 0.293180 + 2.78942i 0.0268758 + 0.255706i
\(120\) 0 0
\(121\) 10.3684 + 3.67366i 0.942584 + 0.333969i
\(122\) −0.311870 0.540174i −0.0282354 0.0489051i
\(123\) 0 0
\(124\) −12.2553 2.60494i −1.10056 0.233931i
\(125\) 2.31293 7.11847i 0.206875 0.636695i
\(126\) 0 0
\(127\) −0.674959 0.490387i −0.0598930 0.0435148i 0.557436 0.830220i \(-0.311785\pi\)
−0.617329 + 0.786705i \(0.711785\pi\)
\(128\) −6.53383 7.25655i −0.577514 0.641395i
\(129\) 0 0
\(130\) −3.39309 1.51070i −0.297594 0.132497i
\(131\) 9.87633 + 17.1063i 0.862899 + 1.49459i 0.869118 + 0.494605i \(0.164687\pi\)
−0.00621860 + 0.999981i \(0.501979\pi\)
\(132\) 0 0
\(133\) 8.45910 14.6516i 0.733497 1.27045i
\(134\) −1.32078 + 0.959601i −0.114098 + 0.0828969i
\(135\) 0 0
\(136\) −0.487022 + 1.49890i −0.0417618 + 0.128529i
\(137\) −3.62037 + 1.61189i −0.309309 + 0.137713i −0.555520 0.831503i \(-0.687481\pi\)
0.246211 + 0.969216i \(0.420814\pi\)
\(138\) 0 0
\(139\) 3.33035 0.707887i 0.282476 0.0600422i −0.0644947 0.997918i \(-0.520544\pi\)
0.346971 + 0.937876i \(0.387210\pi\)
\(140\) −8.37623 + 9.30275i −0.707921 + 0.786226i
\(141\) 0 0
\(142\) 2.22794 3.85890i 0.186964 0.323832i
\(143\) 10.5271 + 7.03530i 0.880321 + 0.588321i
\(144\) 0 0
\(145\) −16.1320 + 11.7206i −1.33969 + 0.973343i
\(146\) 0.754828 + 0.160444i 0.0624700 + 0.0132784i
\(147\) 0 0
\(148\) −0.0372912 + 0.354802i −0.00306532 + 0.0291646i
\(149\) −0.538739 + 5.12576i −0.0441352 + 0.419918i 0.950039 + 0.312132i \(0.101043\pi\)
−0.994174 + 0.107787i \(0.965624\pi\)
\(150\) 0 0
\(151\) 13.4449 + 2.85780i 1.09413 + 0.232564i 0.719418 0.694578i \(-0.244409\pi\)
0.374710 + 0.927142i \(0.377742\pi\)
\(152\) 7.69091 5.58778i 0.623816 0.453229i
\(153\) 0 0
\(154\) −2.35344 + 1.85498i −0.189646 + 0.149478i
\(155\) −9.00316 + 15.5939i −0.723151 + 1.25253i
\(156\) 0 0
\(157\) 11.1305 12.3617i 0.888311 0.986569i −0.111663 0.993746i \(-0.535618\pi\)
0.999974 + 0.00717663i \(0.00228441\pi\)
\(158\) 4.10397 0.872326i 0.326494 0.0693985i
\(159\) 0 0
\(160\) −9.74784 + 4.34002i −0.770634 + 0.343109i
\(161\) −5.20197 + 16.0100i −0.409973 + 1.26177i
\(162\) 0 0
\(163\) −18.4445 + 13.4007i −1.44469 + 1.04963i −0.457648 + 0.889134i \(0.651308\pi\)
−0.987037 + 0.160492i \(0.948692\pi\)
\(164\) 0.594565 1.02982i 0.0464277 0.0804152i
\(165\) 0 0
\(166\) 0.148238 + 0.256756i 0.0115055 + 0.0199282i
\(167\) 11.5103 + 5.12470i 0.890691 + 0.396561i 0.800478 0.599362i \(-0.204579\pi\)
0.0902121 + 0.995923i \(0.471245\pi\)
\(168\) 0 0
\(169\) 1.05329 + 1.16980i 0.0810222 + 0.0899843i
\(170\) 0.885140 + 0.643092i 0.0678871 + 0.0493229i
\(171\) 0 0
\(172\) −2.73004 + 8.40221i −0.208164 + 0.640662i
\(173\) 7.02306 + 1.49280i 0.533954 + 0.113495i 0.466994 0.884260i \(-0.345337\pi\)
0.0669594 + 0.997756i \(0.478670\pi\)
\(174\) 0 0
\(175\) 2.75991 + 4.78030i 0.208629 + 0.361357i
\(176\) 10.3828 2.63595i 0.782635 0.198692i
\(177\) 0 0
\(178\) 0.0537852 + 0.511732i 0.00403137 + 0.0383559i
\(179\) 2.78001 + 8.55598i 0.207788 + 0.639504i 0.999587 + 0.0287236i \(0.00914427\pi\)
−0.791800 + 0.610781i \(0.790856\pi\)
\(180\) 0 0
\(181\) −1.51882 1.10349i −0.112893 0.0820215i 0.529906 0.848056i \(-0.322227\pi\)
−0.642799 + 0.766035i \(0.722227\pi\)
\(182\) −3.15104 + 1.40294i −0.233571 + 0.103992i
\(183\) 0 0
\(184\) −6.32940 + 7.02951i −0.466610 + 0.518222i
\(185\) 0.468390 + 0.208541i 0.0344367 + 0.0153322i
\(186\) 0 0
\(187\) −2.60233 2.67183i −0.190301 0.195383i
\(188\) 21.1038 1.53915
\(189\) 0 0
\(190\) −2.03935 6.27646i −0.147950 0.455343i
\(191\) 4.28583 + 4.75989i 0.310111 + 0.344414i 0.877973 0.478711i \(-0.158896\pi\)
−0.567861 + 0.823124i \(0.692229\pi\)
\(192\) 0 0
\(193\) −0.294602 + 2.80295i −0.0212059 + 0.201761i −0.999995 0.00310888i \(-0.999010\pi\)
0.978789 + 0.204870i \(0.0656771\pi\)
\(194\) −3.56861 + 0.758531i −0.256211 + 0.0544594i
\(195\) 0 0
\(196\) −0.152226 1.44833i −0.0108733 0.103452i
\(197\) −25.7193 −1.83243 −0.916213 0.400692i \(-0.868770\pi\)
−0.916213 + 0.400692i \(0.868770\pi\)
\(198\) 0 0
\(199\) 13.3474 0.946174 0.473087 0.881016i \(-0.343140\pi\)
0.473087 + 0.881016i \(0.343140\pi\)
\(200\) 0.324209 + 3.08464i 0.0229250 + 0.218117i
\(201\) 0 0
\(202\) 6.78346 1.44187i 0.477282 0.101449i
\(203\) −1.93564 + 18.4164i −0.135855 + 1.29258i
\(204\) 0 0
\(205\) −1.14352 1.27001i −0.0798672 0.0887015i
\(206\) −0.347751 1.07027i −0.0242289 0.0745690i
\(207\) 0 0
\(208\) 12.3303 0.854953
\(209\) 3.22628 + 22.2648i 0.223167 + 1.54009i
\(210\) 0 0
\(211\) −14.3717 6.39869i −0.989388 0.440504i −0.152753 0.988264i \(-0.548814\pi\)
−0.836635 + 0.547761i \(0.815480\pi\)
\(212\) −6.88943 + 7.65148i −0.473168 + 0.525506i
\(213\) 0 0
\(214\) −3.27050 + 1.45612i −0.223567 + 0.0995384i
\(215\) 10.2719 + 7.46296i 0.700536 + 0.508969i
\(216\) 0 0
\(217\) 5.16732 + 15.9034i 0.350781 + 1.07959i
\(218\) −0.684809 6.51553i −0.0463811 0.441287i
\(219\) 0 0
\(220\) 1.09014 16.6104i 0.0734972 1.11987i
\(221\) −2.14655 3.71793i −0.144392 0.250095i
\(222\) 0 0
\(223\) 18.4700 + 3.92592i 1.23684 + 0.262899i 0.779506 0.626394i \(-0.215470\pi\)
0.457337 + 0.889293i \(0.348803\pi\)
\(224\) −3.06210 + 9.42417i −0.204595 + 0.629679i
\(225\) 0 0
\(226\) 1.48877 + 1.08165i 0.0990314 + 0.0719505i
\(227\) 0.722287 + 0.802181i 0.0479399 + 0.0532426i 0.766638 0.642080i \(-0.221928\pi\)
−0.718698 + 0.695322i \(0.755262\pi\)
\(228\) 0 0
\(229\) −11.2023 4.98760i −0.740272 0.329590i 0.00172076 0.999999i \(-0.499452\pi\)
−0.741992 + 0.670408i \(0.766119\pi\)
\(230\) 3.28330 + 5.68684i 0.216494 + 0.374979i
\(231\) 0 0
\(232\) −5.20267 + 9.01128i −0.341572 + 0.591620i
\(233\) 12.1863 8.85388i 0.798353 0.580037i −0.112078 0.993699i \(-0.535751\pi\)
0.910430 + 0.413662i \(0.135751\pi\)
\(234\) 0 0
\(235\) 9.37235 28.8451i 0.611385 1.88165i
\(236\) −14.3905 + 6.40707i −0.936743 + 0.417065i
\(237\) 0 0
\(238\) 0.993842 0.211248i 0.0644212 0.0136931i
\(239\) −9.63117 + 10.6965i −0.622988 + 0.691899i −0.969205 0.246256i \(-0.920800\pi\)
0.346216 + 0.938155i \(0.387466\pi\)
\(240\) 0 0
\(241\) 6.01413 10.4168i 0.387404 0.671004i −0.604695 0.796457i \(-0.706705\pi\)
0.992100 + 0.125453i \(0.0400384\pi\)
\(242\) 0.930898 3.87453i 0.0598404 0.249064i
\(243\) 0 0
\(244\) 2.60318 1.89132i 0.166651 0.121079i
\(245\) −2.04722 0.435150i −0.130792 0.0278007i
\(246\) 0 0
\(247\) −2.70682 + 25.7537i −0.172231 + 1.63867i
\(248\) −0.982164 + 9.34467i −0.0623675 + 0.593387i
\(249\) 0 0
\(250\) −2.65215 0.563732i −0.167737 0.0356535i
\(251\) −11.5075 + 8.36069i −0.726347 + 0.527722i −0.888406 0.459059i \(-0.848187\pi\)
0.162058 + 0.986781i \(0.448187\pi\)
\(252\) 0 0
\(253\) −7.74611 21.0023i −0.486994 1.32040i
\(254\) −0.151113 + 0.261736i −0.00948170 + 0.0164228i
\(255\) 0 0
\(256\) 4.35180 4.83317i 0.271988 0.302073i
\(257\) 10.6299 2.25945i 0.663073 0.140941i 0.135932 0.990718i \(-0.456597\pi\)
0.527141 + 0.849778i \(0.323264\pi\)
\(258\) 0 0
\(259\) 0.434977 0.193664i 0.0270281 0.0120337i
\(260\) 5.92095 18.2228i 0.367202 1.13013i
\(261\) 0 0
\(262\) 5.78891 4.20589i 0.357640 0.259841i
\(263\) 1.29031 2.23489i 0.0795640 0.137809i −0.823498 0.567319i \(-0.807981\pi\)
0.903062 + 0.429510i \(0.141314\pi\)
\(264\) 0 0
\(265\) 7.39856 + 12.8147i 0.454490 + 0.787200i
\(266\) −5.59883 2.49276i −0.343286 0.152841i
\(267\) 0 0
\(268\) −5.63542 6.25876i −0.344238 0.382315i
\(269\) 4.58187 + 3.32892i 0.279361 + 0.202968i 0.718639 0.695383i \(-0.244765\pi\)
−0.439277 + 0.898351i \(0.644765\pi\)
\(270\) 0 0
\(271\) 0.742616 2.28554i 0.0451107 0.138836i −0.925964 0.377611i \(-0.876746\pi\)
0.971075 + 0.238775i \(0.0767457\pi\)
\(272\) −3.55277 0.755164i −0.215418 0.0457885i
\(273\) 0 0
\(274\) 0.717804 + 1.24327i 0.0433641 + 0.0751088i
\(275\) −6.81730 2.72051i −0.411099 0.164053i
\(276\) 0 0
\(277\) −0.272826 2.59577i −0.0163925 0.155965i 0.983264 0.182189i \(-0.0583183\pi\)
−0.999656 + 0.0262243i \(0.991652\pi\)
\(278\) −0.381136 1.17302i −0.0228590 0.0703529i
\(279\) 0 0
\(280\) 7.59496 + 5.51806i 0.453886 + 0.329767i
\(281\) −8.09216 + 3.60286i −0.482738 + 0.214929i −0.633652 0.773618i \(-0.718445\pi\)
0.150914 + 0.988547i \(0.451778\pi\)
\(282\) 0 0
\(283\) −9.04049 + 10.0405i −0.537401 + 0.596845i −0.949295 0.314387i \(-0.898201\pi\)
0.411893 + 0.911232i \(0.364868\pi\)
\(284\) 20.9994 + 9.34952i 1.24608 + 0.554792i
\(285\) 0 0
\(286\) 2.13598 4.05899i 0.126303 0.240013i
\(287\) −1.58706 −0.0936811
\(288\) 0 0
\(289\) −4.86250 14.9652i −0.286029 0.880308i
\(290\) 4.83343 + 5.36806i 0.283829 + 0.315224i
\(291\) 0 0
\(292\) −0.416123 + 3.95914i −0.0243517 + 0.231691i
\(293\) 17.3312 3.68386i 1.01250 0.215213i 0.328351 0.944556i \(-0.393507\pi\)
0.684149 + 0.729342i \(0.260174\pi\)
\(294\) 0 0
\(295\) 2.36639 + 22.5147i 0.137776 + 1.31086i
\(296\) 0.267548 0.0155509
\(297\) 0 0
\(298\) 1.86705 0.108156
\(299\) −2.69334 25.6254i −0.155760 1.48196i
\(300\) 0 0
\(301\) 11.5333 2.45149i 0.664771 0.141301i
\(302\) 0.520475 4.95199i 0.0299500 0.284955i
\(303\) 0 0
\(304\) 14.6598 + 16.2813i 0.840797 + 0.933799i
\(305\) −1.42901 4.39803i −0.0818246 0.251830i
\(306\) 0 0
\(307\) 11.3039 0.645145 0.322573 0.946545i \(-0.395452\pi\)
0.322573 + 0.946545i \(0.395452\pi\)
\(308\) −10.7860 11.0740i −0.614588 0.631001i
\(309\) 0 0
\(310\) 5.95893 + 2.65309i 0.338444 + 0.150685i
\(311\) 4.41971 4.90859i 0.250619 0.278340i −0.604688 0.796463i \(-0.706702\pi\)
0.855307 + 0.518122i \(0.173369\pi\)
\(312\) 0 0
\(313\) 28.5934 12.7306i 1.61619 0.719576i 0.618395 0.785868i \(-0.287783\pi\)
0.997800 + 0.0662913i \(0.0211167\pi\)
\(314\) −4.87500 3.54190i −0.275112 0.199881i
\(315\) 0 0
\(316\) 6.68845 + 20.5849i 0.376254 + 1.15799i
\(317\) 1.34281 + 12.7759i 0.0754195 + 0.717569i 0.965259 + 0.261295i \(0.0841495\pi\)
−0.889839 + 0.456274i \(0.849184\pi\)
\(318\) 0 0
\(319\) −13.1382 20.8267i −0.735595 1.16607i
\(320\) −6.74181 11.6772i −0.376879 0.652773i
\(321\) 0 0
\(322\) 5.96490 + 1.26788i 0.332411 + 0.0706561i
\(323\) 2.35720 7.25471i 0.131158 0.403663i
\(324\) 0 0
\(325\) −6.83523 4.96608i −0.379150 0.275469i
\(326\) 5.52629 + 6.13756i 0.306073 + 0.339928i
\(327\) 0 0
\(328\) −0.814684 0.362721i −0.0449834 0.0200279i
\(329\) −14.0830 24.3924i −0.776420 1.34480i
\(330\) 0 0
\(331\) −9.58347 + 16.5991i −0.526755 + 0.912367i 0.472759 + 0.881192i \(0.343258\pi\)
−0.999514 + 0.0311751i \(0.990075\pi\)
\(332\) −1.23735 + 0.898985i −0.0679082 + 0.0493382i
\(333\) 0 0
\(334\) 1.41043 4.34085i 0.0771751 0.237521i
\(335\) −11.0573 + 4.92304i −0.604127 + 0.268975i
\(336\) 0 0
\(337\) −31.9855 + 6.79873i −1.74236 + 0.370350i −0.965719 0.259591i \(-0.916412\pi\)
−0.776643 + 0.629941i \(0.783079\pi\)
\(338\) 0.381558 0.423763i 0.0207540 0.0230497i
\(339\) 0 0
\(340\) −2.82207 + 4.88796i −0.153048 + 0.265087i
\(341\) −18.4876 12.3553i −1.00116 0.669079i
\(342\) 0 0
\(343\) −15.6970 + 11.4046i −0.847560 + 0.615788i
\(344\) 6.48069 + 1.37751i 0.349416 + 0.0742706i
\(345\) 0 0
\(346\) 0.271875 2.58672i 0.0146161 0.139063i
\(347\) 1.14779 10.9205i 0.0616165 0.586242i −0.919536 0.393006i \(-0.871435\pi\)
0.981152 0.193236i \(-0.0618982\pi\)
\(348\) 0 0
\(349\) −23.1824 4.92757i −1.24093 0.263767i −0.459733 0.888057i \(-0.652055\pi\)
−0.781192 + 0.624290i \(0.785388\pi\)
\(350\) 1.61769 1.17532i 0.0864691 0.0628235i
\(351\) 0 0
\(352\) −4.55968 12.3628i −0.243032 0.658942i
\(353\) 14.7938 25.6236i 0.787394 1.36381i −0.140165 0.990128i \(-0.544763\pi\)
0.927559 0.373678i \(-0.121903\pi\)
\(354\) 0 0
\(355\) 22.1051 24.5502i 1.17322 1.30299i
\(356\) −2.59642 + 0.551887i −0.137610 + 0.0292499i
\(357\) 0 0
\(358\) 2.97719 1.32553i 0.157350 0.0700565i
\(359\) −8.83869 + 27.2027i −0.466488 + 1.43570i 0.390614 + 0.920555i \(0.372263\pi\)
−0.857102 + 0.515148i \(0.827737\pi\)
\(360\) 0 0
\(361\) −21.8529 + 15.8771i −1.15015 + 0.835635i
\(362\) −0.340041 + 0.588968i −0.0178722 + 0.0309555i
\(363\) 0 0
\(364\) −8.89687 15.4098i −0.466323 0.807695i
\(365\) 5.22664 + 2.32705i 0.273575 + 0.121803i
\(366\) 0 0
\(367\) −2.39541 2.66037i −0.125039 0.138870i 0.677374 0.735639i \(-0.263118\pi\)
−0.802414 + 0.596768i \(0.796451\pi\)
\(368\) −17.6362 12.8135i −0.919352 0.667948i
\(369\) 0 0
\(370\) 0.0573948 0.176643i 0.00298382 0.00918324i
\(371\) 13.4413 + 2.85703i 0.697836 + 0.148330i
\(372\) 0 0
\(373\) 18.4968 + 32.0373i 0.957726 + 1.65883i 0.728004 + 0.685573i \(0.240448\pi\)
0.229722 + 0.973256i \(0.426218\pi\)
\(374\) −0.864039 + 1.03871i −0.0446784 + 0.0537105i
\(375\) 0 0
\(376\) −1.65434 15.7400i −0.0853162 0.811730i
\(377\) −8.75877 26.9567i −0.451100 1.38834i
\(378\) 0 0
\(379\) 19.4747 + 14.1492i 1.00035 + 0.726796i 0.962163 0.272474i \(-0.0878420\pi\)
0.0381863 + 0.999271i \(0.487842\pi\)
\(380\) 31.1015 13.8473i 1.59548 0.710352i
\(381\) 0 0
\(382\) 1.55256 1.72429i 0.0794357 0.0882223i
\(383\) −31.9916 14.2436i −1.63469 0.727812i −0.635667 0.771963i \(-0.719275\pi\)
−0.999025 + 0.0441515i \(0.985942\pi\)
\(384\) 0 0
\(385\) −19.9263 + 9.82444i −1.01554 + 0.500700i
\(386\) 1.02097 0.0519662
\(387\) 0 0
\(388\) −5.81594 17.8996i −0.295260 0.908716i
\(389\) 2.74982 + 3.05399i 0.139422 + 0.154843i 0.808812 0.588068i \(-0.200111\pi\)
−0.669390 + 0.742911i \(0.733444\pi\)
\(390\) 0 0
\(391\) −0.793377 + 7.54848i −0.0401228 + 0.381743i
\(392\) −1.06829 + 0.227072i −0.0539568 + 0.0114689i
\(393\) 0 0
\(394\) 0.973884 + 9.26589i 0.0490636 + 0.466809i
\(395\) 31.1063 1.56513
\(396\) 0 0
\(397\) −23.0629 −1.15749 −0.578747 0.815507i \(-0.696458\pi\)
−0.578747 + 0.815507i \(0.696458\pi\)
\(398\) −0.505412 4.80867i −0.0253340 0.241037i
\(399\) 0 0
\(400\) −6.99184 + 1.48616i −0.349592 + 0.0743081i
\(401\) 0.392024 3.72986i 0.0195768 0.186260i −0.980363 0.197199i \(-0.936815\pi\)
0.999940 + 0.0109389i \(0.00348203\pi\)
\(402\) 0 0
\(403\) −17.1264 19.0208i −0.853125 0.947492i
\(404\) 11.0553 + 34.0248i 0.550024 + 1.69280i
\(405\) 0 0
\(406\) 6.70815 0.332920
\(407\) −0.294856 + 0.560312i −0.0146155 + 0.0277736i
\(408\) 0 0
\(409\) −25.0719 11.1627i −1.23972 0.551960i −0.321081 0.947052i \(-0.604046\pi\)
−0.918642 + 0.395091i \(0.870713\pi\)
\(410\) −0.414246 + 0.460067i −0.0204582 + 0.0227211i
\(411\) 0 0
\(412\) 5.30345 2.36125i 0.261282 0.116330i
\(413\) 17.0086 + 12.3574i 0.836937 + 0.608070i
\(414\) 0 0
\(415\) 0.679237 + 2.09048i 0.0333424 + 0.102617i
\(416\) −1.58541 15.0842i −0.0777313 0.739564i
\(417\) 0 0
\(418\) 7.89915 2.00540i 0.386360 0.0980876i
\(419\) 10.7023 + 18.5369i 0.522840 + 0.905586i 0.999647 + 0.0265777i \(0.00846093\pi\)
−0.476806 + 0.879008i \(0.658206\pi\)
\(420\) 0 0
\(421\) −10.6840 2.27096i −0.520708 0.110680i −0.0599425 0.998202i \(-0.519092\pi\)
−0.460765 + 0.887522i \(0.652425\pi\)
\(422\) −1.76106 + 5.41997i −0.0857269 + 0.263840i
\(423\) 0 0
\(424\) 6.24683 + 4.53859i 0.303373 + 0.220413i
\(425\) 1.66531 + 1.84951i 0.0807793 + 0.0897145i
\(426\) 0 0
\(427\) −3.92320 1.74672i −0.189857 0.0845297i
\(428\) −9.23416 15.9940i −0.446350 0.773101i
\(429\) 0 0
\(430\) 2.29972 3.98324i 0.110902 0.192089i
\(431\) 9.56381 6.94852i 0.460673 0.334698i −0.333122 0.942884i \(-0.608102\pi\)
0.793795 + 0.608185i \(0.208102\pi\)
\(432\) 0 0
\(433\) −7.50566 + 23.1000i −0.360699 + 1.11012i 0.591932 + 0.805988i \(0.298365\pi\)
−0.952631 + 0.304129i \(0.901635\pi\)
\(434\) 5.53384 2.46382i 0.265633 0.118267i
\(435\) 0 0
\(436\) 33.0585 7.02679i 1.58321 0.336522i
\(437\) 30.6345 34.0230i 1.46545 1.62754i
\(438\) 0 0
\(439\) 9.28957 16.0900i 0.443367 0.767934i −0.554570 0.832137i \(-0.687117\pi\)
0.997937 + 0.0642030i \(0.0204505\pi\)
\(440\) −12.4741 + 0.489035i −0.594681 + 0.0233139i
\(441\) 0 0
\(442\) −1.25818 + 0.914119i −0.0598453 + 0.0434802i
\(443\) −19.3148 4.10548i −0.917672 0.195057i −0.275218 0.961382i \(-0.588750\pi\)
−0.642454 + 0.766325i \(0.722083\pi\)
\(444\) 0 0
\(445\) −0.398759 + 3.79394i −0.0189030 + 0.179850i
\(446\) 0.715007 6.80284i 0.0338566 0.322124i
\(447\) 0 0
\(448\) −12.2481 2.60342i −0.578669 0.123000i
\(449\) −1.68475 + 1.22404i −0.0795083 + 0.0577662i −0.626829 0.779157i \(-0.715648\pi\)
0.547321 + 0.836923i \(0.315648\pi\)
\(450\) 0 0
\(451\) 1.65746 1.30641i 0.0780468 0.0615163i
\(452\) −4.74660 + 8.22135i −0.223261 + 0.386700i
\(453\) 0 0
\(454\) 0.261651 0.290593i 0.0122799 0.0136382i
\(455\) −25.0136 + 5.31681i −1.17266 + 0.249256i
\(456\) 0 0
\(457\) −7.57135 + 3.37098i −0.354173 + 0.157688i −0.576108 0.817373i \(-0.695429\pi\)
0.221935 + 0.975061i \(0.428763\pi\)
\(458\) −1.37270 + 4.22472i −0.0641418 + 0.197408i
\(459\) 0 0
\(460\) −27.4057 + 19.9114i −1.27780 + 0.928374i
\(461\) 3.27711 5.67613i 0.152630 0.264364i −0.779563 0.626324i \(-0.784559\pi\)
0.932194 + 0.361960i \(0.117892\pi\)
\(462\) 0 0
\(463\) −0.136703 0.236776i −0.00635310 0.0110039i 0.862831 0.505492i \(-0.168689\pi\)
−0.869184 + 0.494488i \(0.835356\pi\)
\(464\) −21.9070 9.75362i −1.01701 0.452800i
\(465\) 0 0
\(466\) −3.65123 4.05510i −0.169140 0.187849i
\(467\) −6.19971 4.50435i −0.286888 0.208437i 0.435028 0.900417i \(-0.356738\pi\)
−0.721916 + 0.691980i \(0.756738\pi\)
\(468\) 0 0
\(469\) −3.47345 + 10.6902i −0.160389 + 0.493627i
\(470\) −10.7469 2.28433i −0.495718 0.105368i
\(471\) 0 0
\(472\) 5.90672 + 10.2307i 0.271879 + 0.470908i
\(473\) −10.0270 + 12.0541i −0.461042 + 0.554246i
\(474\) 0 0
\(475\) −1.56918 14.9298i −0.0719989 0.685024i
\(476\) 1.61971 + 4.98497i 0.0742395 + 0.228486i
\(477\) 0 0
\(478\) 4.21831 + 3.06478i 0.192941 + 0.140180i
\(479\) 21.2009 9.43926i 0.968695 0.431291i 0.139482 0.990225i \(-0.455456\pi\)
0.829212 + 0.558934i \(0.188789\pi\)
\(480\) 0 0
\(481\) −0.487661 + 0.541602i −0.0222354 + 0.0246949i
\(482\) −3.98058 1.77227i −0.181310 0.0807246i
\(483\) 0 0
\(484\) 20.3802 + 2.68667i 0.926371 + 0.122121i
\(485\) −27.0485 −1.22821
\(486\) 0 0
\(487\) −7.44592 22.9162i −0.337407 1.03843i −0.965524 0.260313i \(-0.916174\pi\)
0.628117 0.778119i \(-0.283826\pi\)
\(488\) −1.61468 1.79329i −0.0730932 0.0811783i
\(489\) 0 0
\(490\) −0.0792515 + 0.754028i −0.00358022 + 0.0340635i
\(491\) −34.3994 + 7.31181i −1.55242 + 0.329977i −0.902725 0.430217i \(-0.858437\pi\)
−0.649696 + 0.760194i \(0.725104\pi\)
\(492\) 0 0
\(493\) 0.872738 + 8.30354i 0.0393061 + 0.373973i
\(494\) 9.38077 0.422061
\(495\) 0 0
\(496\) −21.6544 −0.972311
\(497\) −3.20682 30.5108i −0.143845 1.36860i
\(498\) 0 0
\(499\) 22.2539 4.73022i 0.996222 0.211754i 0.319177 0.947695i \(-0.396593\pi\)
0.677045 + 0.735941i \(0.263260\pi\)
\(500\) 1.46208 13.9108i 0.0653862 0.622108i
\(501\) 0 0
\(502\) 3.44784 + 3.82922i 0.153885 + 0.170906i
\(503\) 1.55585 + 4.78840i 0.0693718 + 0.213504i 0.979732 0.200312i \(-0.0641956\pi\)
−0.910360 + 0.413816i \(0.864196\pi\)
\(504\) 0 0
\(505\) 51.4156 2.28796
\(506\) −7.27318 + 3.58596i −0.323332 + 0.159415i
\(507\) 0 0
\(508\) −1.42432 0.634146i −0.0631938 0.0281357i
\(509\) −6.22700 + 6.91578i −0.276007 + 0.306537i −0.865171 0.501476i \(-0.832790\pi\)
0.589164 + 0.808013i \(0.299457\pi\)
\(510\) 0 0
\(511\) 4.85379 2.16105i 0.214719 0.0955990i
\(512\) −17.7056 12.8639i −0.782483 0.568507i
\(513\) 0 0
\(514\) −1.21652 3.74406i −0.0536584 0.165144i
\(515\) −0.872104 8.29752i −0.0384295 0.365632i
\(516\) 0 0
\(517\) 34.7867 + 13.8819i 1.52992 + 0.610527i
\(518\) −0.0862420 0.149376i −0.00378926 0.00656319i
\(519\) 0 0
\(520\) −14.0554 2.98757i −0.616370 0.131014i
\(521\) −3.41257 + 10.5028i −0.149507 + 0.460136i −0.997563 0.0697708i \(-0.977773\pi\)
0.848056 + 0.529907i \(0.177773\pi\)
\(522\) 0 0
\(523\) 15.7075 + 11.4122i 0.686841 + 0.499019i 0.875620 0.483001i \(-0.160453\pi\)
−0.188779 + 0.982020i \(0.560453\pi\)
\(524\) 24.6998 + 27.4319i 1.07901 + 1.19837i
\(525\) 0 0
\(526\) −0.854020 0.380234i −0.0372370 0.0165790i
\(527\) 3.76975 + 6.52940i 0.164213 + 0.284425i
\(528\) 0 0
\(529\) −11.2772 + 19.5327i −0.490314 + 0.849249i
\(530\) 4.33659 3.15071i 0.188369 0.136858i
\(531\) 0 0
\(532\) 9.76996 30.0688i 0.423581 1.30365i
\(533\) 2.21919 0.988046i 0.0961237 0.0427970i
\(534\) 0 0
\(535\) −25.9619 + 5.51838i −1.12243 + 0.238580i
\(536\) −4.22626 + 4.69374i −0.182547 + 0.202738i
\(537\) 0 0
\(538\) 1.02581 1.77676i 0.0442259 0.0766016i
\(539\) 0.701781 2.48751i 0.0302278 0.107145i
\(540\) 0 0
\(541\) 17.0772 12.4073i 0.734205 0.533431i −0.156686 0.987649i \(-0.550081\pi\)
0.890891 + 0.454217i \(0.150081\pi\)
\(542\) −0.851529 0.180998i −0.0365763 0.00777453i
\(543\) 0 0
\(544\) −0.467015 + 4.44335i −0.0200231 + 0.190507i
\(545\) 5.07713 48.3056i 0.217480 2.06919i
\(546\) 0 0
\(547\) 13.7372 + 2.91993i 0.587360 + 0.124847i 0.491999 0.870596i \(-0.336266\pi\)
0.0953606 + 0.995443i \(0.469600\pi\)
\(548\) −5.99151 + 4.35309i −0.255945 + 0.185955i
\(549\) 0 0
\(550\) −0.721973 + 2.55908i −0.0307850 + 0.109120i
\(551\) 25.1810 43.6148i 1.07275 1.85805i
\(552\) 0 0
\(553\) 19.3294 21.4674i 0.821968 0.912888i
\(554\) −0.924846 + 0.196582i −0.0392929 + 0.00835197i
\(555\) 0 0
\(556\) 5.81261 2.58794i 0.246510 0.109753i
\(557\) 12.8094 39.4233i 0.542752 1.67042i −0.183524 0.983015i \(-0.558751\pi\)
0.726276 0.687403i \(-0.241249\pi\)
\(558\) 0 0
\(559\) −14.6009 + 10.6082i −0.617552 + 0.448678i
\(560\) −10.8177 + 18.7368i −0.457131 + 0.791773i
\(561\) 0 0
\(562\) 1.60442 + 2.77893i 0.0676783 + 0.117222i
\(563\) 6.80544 + 3.02998i 0.286815 + 0.127698i 0.545101 0.838370i \(-0.316491\pi\)
−0.258286 + 0.966068i \(0.583158\pi\)
\(564\) 0 0
\(565\) 9.12911 + 10.1389i 0.384065 + 0.426547i
\(566\) 3.95961 + 2.87682i 0.166435 + 0.120922i
\(567\) 0 0
\(568\) 5.32707 16.3950i 0.223519 0.687920i
\(569\) −23.8888 5.07772i −1.00147 0.212869i −0.322133 0.946694i \(-0.604400\pi\)
−0.679338 + 0.733825i \(0.737733\pi\)
\(570\) 0 0
\(571\) 6.40805 + 11.0991i 0.268169 + 0.464482i 0.968389 0.249445i \(-0.0802482\pi\)
−0.700220 + 0.713927i \(0.746915\pi\)
\(572\) 21.9763 + 8.76987i 0.918877 + 0.366687i
\(573\) 0 0
\(574\) 0.0600953 + 0.571769i 0.00250833 + 0.0238652i
\(575\) 4.61585 + 14.2061i 0.192494 + 0.592437i
\(576\) 0 0
\(577\) 11.7428 + 8.53166i 0.488860 + 0.355178i 0.804746 0.593620i \(-0.202302\pi\)
−0.315886 + 0.948797i \(0.602302\pi\)
\(578\) −5.20740 + 2.31848i −0.216599 + 0.0964362i
\(579\) 0 0
\(580\) −24.9344 + 27.6924i −1.03534 + 1.14987i
\(581\) 1.86478 + 0.830253i 0.0773641 + 0.0344447i
\(582\) 0 0
\(583\) −16.3893 + 8.08057i −0.678777 + 0.334663i
\(584\) 2.98550 0.123541
\(585\) 0 0
\(586\) −1.98344 6.10441i −0.0819353 0.252171i
\(587\) 14.9988 + 16.6579i 0.619069 + 0.687545i 0.968385 0.249459i \(-0.0802529\pi\)
−0.349317 + 0.937005i \(0.613586\pi\)
\(588\) 0 0
\(589\) 4.75370 45.2284i 0.195873 1.86361i
\(590\) 8.02175 1.70508i 0.330250 0.0701969i
\(591\) 0 0
\(592\) 0.0644515 + 0.613215i 0.00264894 + 0.0252030i
\(593\) −18.2533 −0.749572 −0.374786 0.927111i \(-0.622284\pi\)
−0.374786 + 0.927111i \(0.622284\pi\)
\(594\) 0 0
\(595\) 7.53288 0.308818
\(596\) 1.00678 + 9.57887i 0.0412393 + 0.392366i
\(597\) 0 0
\(598\) −9.13007 + 1.94066i −0.373356 + 0.0793593i
\(599\) −2.76195 + 26.2782i −0.112850 + 1.07370i 0.780753 + 0.624840i \(0.214836\pi\)
−0.893603 + 0.448859i \(0.851831\pi\)
\(600\) 0 0
\(601\) 9.25098 + 10.2743i 0.377355 + 0.419096i 0.901667 0.432431i \(-0.142344\pi\)
−0.524312 + 0.851526i \(0.675677\pi\)
\(602\) −1.31992 4.06228i −0.0537958 0.165566i
\(603\) 0 0
\(604\) 25.6867 1.04518
\(605\) 12.7232 26.6629i 0.517270 1.08400i
\(606\) 0 0
\(607\) −13.3213 5.93104i −0.540696 0.240733i 0.118170 0.992993i \(-0.462297\pi\)
−0.658866 + 0.752260i \(0.728964\pi\)
\(608\) 18.0327 20.0274i 0.731324 0.812218i
\(609\) 0 0
\(610\) −1.53036 + 0.681362i −0.0619626 + 0.0275875i
\(611\) 34.8782 + 25.3405i 1.41102 + 1.02517i
\(612\) 0 0
\(613\) −9.31252 28.6610i −0.376129 1.15761i −0.942714 0.333603i \(-0.891736\pi\)
0.566585 0.824004i \(-0.308264\pi\)
\(614\) −0.428030 4.07244i −0.0172739 0.164350i
\(615\) 0 0
\(616\) −7.41390 + 8.91269i −0.298715 + 0.359102i
\(617\) −9.84784 17.0570i −0.396459 0.686687i 0.596827 0.802370i \(-0.296428\pi\)
−0.993286 + 0.115683i \(0.963094\pi\)
\(618\) 0 0
\(619\) −1.26485 0.268852i −0.0508387 0.0108061i 0.182422 0.983220i \(-0.441606\pi\)
−0.233261 + 0.972414i \(0.574940\pi\)
\(620\) −10.3983 + 32.0028i −0.417607 + 1.28526i
\(621\) 0 0
\(622\) −1.93577 1.40642i −0.0776173 0.0563923i
\(623\) 2.37053 + 2.63274i 0.0949733 + 0.105479i
\(624\) 0 0
\(625\) −28.4731 12.6770i −1.13892 0.507082i
\(626\) −5.66916 9.81928i −0.226585 0.392457i
\(627\) 0 0
\(628\) 15.5428 26.9210i 0.620227 1.07426i
\(629\) 0.173681 0.126187i 0.00692513 0.00503140i
\(630\) 0 0
\(631\) 13.6277 41.9417i 0.542509 1.66967i −0.184330 0.982864i \(-0.559012\pi\)
0.726839 0.686808i \(-0.240988\pi\)
\(632\) 14.8287 6.60216i 0.589854 0.262620i
\(633\) 0 0
\(634\) 4.55194 0.967544i 0.180781 0.0384261i
\(635\) −1.49931 + 1.66516i −0.0594984 + 0.0660797i
\(636\) 0 0
\(637\) 1.48751 2.57644i 0.0589372 0.102082i
\(638\) −7.00573 + 5.52190i −0.277360 + 0.218614i
\(639\) 0 0
\(640\) −21.2166 + 15.4148i −0.838660 + 0.609322i
\(641\) −26.4042 5.61239i −1.04290 0.221676i −0.345548 0.938401i \(-0.612307\pi\)
−0.697356 + 0.716725i \(0.745640\pi\)
\(642\) 0 0
\(643\) 1.06164 10.1009i 0.0418671 0.398339i −0.953441 0.301580i \(-0.902486\pi\)
0.995308 0.0967587i \(-0.0308475\pi\)
\(644\) −3.28834 + 31.2864i −0.129579 + 1.23286i
\(645\) 0 0
\(646\) −2.70291 0.574521i −0.106344 0.0226042i
\(647\) 27.2093 19.7687i 1.06971 0.777189i 0.0938493 0.995586i \(-0.470083\pi\)
0.975860 + 0.218397i \(0.0700828\pi\)
\(648\) 0 0
\(649\) −27.9353 + 1.09517i −1.09656 + 0.0429893i
\(650\) −1.53031 + 2.65057i −0.0600236 + 0.103964i
\(651\) 0 0
\(652\) −28.5086 + 31.6621i −1.11648 + 1.23998i
\(653\) 11.0802 2.35516i 0.433600 0.0921645i 0.0140596 0.999901i \(-0.495525\pi\)
0.419540 + 0.907737i \(0.362191\pi\)
\(654\) 0 0
\(655\) 48.4638 21.5775i 1.89364 0.843102i
\(656\) 0.635094 1.95462i 0.0247963 0.0763150i
\(657\) 0 0
\(658\) −8.25459 + 5.99731i −0.321797 + 0.233800i
\(659\) −16.1903 + 28.0424i −0.630684 + 1.09238i 0.356729 + 0.934208i \(0.383892\pi\)
−0.987412 + 0.158168i \(0.949441\pi\)
\(660\) 0 0
\(661\) −1.57119 2.72139i −0.0611123 0.105850i 0.833851 0.551990i \(-0.186131\pi\)
−0.894963 + 0.446141i \(0.852798\pi\)
\(662\) 6.34302 + 2.82410i 0.246529 + 0.109762i
\(663\) 0 0
\(664\) 0.767493 + 0.852388i 0.0297845 + 0.0330791i
\(665\) −36.7598 26.7076i −1.42548 1.03567i
\(666\) 0 0
\(667\) −15.4852 + 47.6586i −0.599590 + 1.84535i
\(668\) 23.0312 + 4.89542i 0.891102 + 0.189410i
\(669\) 0 0
\(670\) 2.19232 + 3.79721i 0.0846966 + 0.146699i
\(671\) 5.53507 1.40522i 0.213679 0.0542480i
\(672\) 0 0
\(673\) 4.04197 + 38.4567i 0.155806 + 1.48240i 0.741000 + 0.671505i \(0.234352\pi\)
−0.585194 + 0.810894i \(0.698982\pi\)
\(674\) 3.66053 + 11.2660i 0.140998 + 0.433949i
\(675\) 0 0
\(676\) 2.37986 + 1.72907i 0.0915329 + 0.0665025i
\(677\) −41.7683 + 18.5964i −1.60528 + 0.714719i −0.996882 0.0789093i \(-0.974856\pi\)
−0.608403 + 0.793628i \(0.708190\pi\)
\(678\) 0 0
\(679\) −16.8079 + 18.6670i −0.645027 + 0.716375i
\(680\) 3.86685 + 1.72163i 0.148287 + 0.0660216i
\(681\) 0 0
\(682\) −3.75120 + 7.12837i −0.143641 + 0.272959i
\(683\) −11.3550 −0.434485 −0.217243 0.976118i \(-0.569706\pi\)
−0.217243 + 0.976118i \(0.569706\pi\)
\(684\) 0 0
\(685\) 3.28902 + 10.1226i 0.125667 + 0.386763i
\(686\) 4.70310 + 5.22332i 0.179565 + 0.199427i
\(687\) 0 0
\(688\) −1.59606 + 15.1855i −0.0608491 + 0.578940i
\(689\) −20.5736 + 4.37306i −0.783793 + 0.166600i
\(690\) 0 0
\(691\) −0.911473 8.67209i −0.0346741 0.329902i −0.998084 0.0618702i \(-0.980294\pi\)
0.963410 0.268032i \(-0.0863731\pi\)
\(692\) 13.4177 0.510065
\(693\) 0 0
\(694\) −3.97778 −0.150994
\(695\) −0.955831 9.09412i −0.0362567 0.344960i
\(696\) 0 0
\(697\) −0.699934 + 0.148775i −0.0265119 + 0.00563527i
\(698\) −0.897432 + 8.53850i −0.0339683 + 0.323187i
\(699\) 0 0
\(700\) 6.90226 + 7.66574i 0.260881 + 0.289738i
\(701\) −12.5650 38.6712i −0.474575 1.46059i −0.846530 0.532342i \(-0.821312\pi\)
0.371954 0.928251i \(-0.378688\pi\)
\(702\) 0 0
\(703\) −1.29494 −0.0488396
\(704\) 14.9345 7.36328i 0.562865 0.277514i
\(705\) 0 0
\(706\) −9.79158 4.35949i −0.368511 0.164072i
\(707\) 31.9495 35.4835i 1.20159 1.33450i
\(708\) 0 0
\(709\) −15.2948 + 6.80970i −0.574410 + 0.255744i −0.673318 0.739353i \(-0.735132\pi\)
0.0989083 + 0.995097i \(0.468465\pi\)
\(710\) −9.68171 7.03417i −0.363348 0.263988i
\(711\) 0 0
\(712\) 0.615154 + 1.89325i 0.0230539 + 0.0709525i
\(713\) 4.73002 + 45.0032i 0.177141 + 1.68538i
\(714\) 0 0
\(715\) 21.7467 26.1430i 0.813280 0.977691i
\(716\) 8.40601 + 14.5596i 0.314147 + 0.544119i
\(717\) 0 0
\(718\) 10.1350 + 2.15426i 0.378234 + 0.0803961i
\(719\) 5.99373 18.4468i 0.223528 0.687949i −0.774909 0.632072i \(-0.782205\pi\)
0.998438 0.0558770i \(-0.0177955\pi\)
\(720\) 0 0
\(721\) −6.26830 4.55419i −0.233444 0.169607i
\(722\) 6.54750 + 7.27174i 0.243673 + 0.270626i
\(723\) 0 0
\(724\) −3.20505 1.42698i −0.119115 0.0530333i
\(725\) 8.21569 + 14.2300i 0.305123 + 0.528488i
\(726\) 0 0
\(727\) −2.89216 + 5.00937i −0.107264 + 0.185787i −0.914661 0.404222i \(-0.867542\pi\)
0.807397 + 0.590009i \(0.200876\pi\)
\(728\) −10.7958 + 7.84361i −0.400119 + 0.290704i
\(729\) 0 0
\(730\) 0.640454 1.97111i 0.0237043 0.0729542i
\(731\) 4.85669 2.16234i 0.179631 0.0799770i
\(732\) 0 0
\(733\) −22.2159 + 4.72214i −0.820563 + 0.174416i −0.599020 0.800734i \(-0.704443\pi\)
−0.221544 + 0.975150i \(0.571109\pi\)
\(734\) −0.867748 + 0.963731i −0.0320291 + 0.0355720i
\(735\) 0 0
\(736\) −13.4076 + 23.2227i −0.494212 + 0.856000i
\(737\) −5.17222 14.0236i −0.190521 0.516567i
\(738\) 0 0
\(739\) 9.31755 6.76960i 0.342752 0.249024i −0.403070 0.915169i \(-0.632057\pi\)
0.745822 + 0.666145i \(0.232057\pi\)
\(740\) 0.937212 + 0.199211i 0.0344526 + 0.00732313i
\(741\) 0 0
\(742\) 0.520336 4.95066i 0.0191021 0.181745i
\(743\) −4.49533 + 42.7703i −0.164918 + 1.56909i 0.528740 + 0.848784i \(0.322665\pi\)
−0.693658 + 0.720305i \(0.744002\pi\)
\(744\) 0 0
\(745\) 13.5397 + 2.87796i 0.496057 + 0.105440i
\(746\) 10.8417 7.87694i 0.396942 0.288395i
\(747\) 0 0
\(748\) −5.79500 3.87282i −0.211886 0.141604i
\(749\) −12.3243 + 21.3462i −0.450319 + 0.779975i
\(750\) 0 0
\(751\) 2.40813 2.67449i 0.0878738 0.0975937i −0.697604 0.716483i \(-0.745751\pi\)
0.785478 + 0.618890i \(0.212417\pi\)
\(752\) 35.6773 7.58344i 1.30102 0.276540i
\(753\) 0 0
\(754\) −9.38003 + 4.17626i −0.341600 + 0.152090i
\(755\) 11.4076 35.1091i 0.415167 1.27775i
\(756\) 0 0
\(757\) 12.2911 8.93000i 0.446727 0.324566i −0.341575 0.939855i \(-0.610960\pi\)
0.788302 + 0.615288i \(0.210960\pi\)
\(758\) 4.36010 7.55192i 0.158366 0.274298i
\(759\) 0 0
\(760\) −12.7659 22.1112i −0.463068 0.802058i
\(761\) −14.9046 6.63596i −0.540292 0.240553i 0.118400 0.992966i \(-0.462223\pi\)
−0.658692 + 0.752413i \(0.728890\pi\)
\(762\) 0 0
\(763\) −30.1823 33.5209i −1.09267 1.21354i
\(764\) 9.68362 + 7.03556i 0.350341 + 0.254538i
\(765\) 0 0
\(766\) −3.92013 + 12.0649i −0.141640 + 0.435923i
\(767\) −31.4764 6.69052i −1.13655 0.241581i
\(768\) 0 0
\(769\) −3.33336 5.77355i −0.120204 0.208200i 0.799644 0.600474i \(-0.205022\pi\)
−0.919848 + 0.392275i \(0.871688\pi\)
\(770\) 4.29397 + 6.80683i 0.154744 + 0.245301i
\(771\) 0 0
\(772\) 0.550544 + 5.23808i 0.0198145 + 0.188523i
\(773\) 15.7232 + 48.3910i 0.565524 + 1.74050i 0.666389 + 0.745604i \(0.267839\pi\)
−0.100865 + 0.994900i \(0.532161\pi\)
\(774\) 0 0
\(775\) 12.0040 + 8.72140i 0.431196 + 0.313282i
\(776\) −12.8943 + 5.74092i −0.462879 + 0.206087i
\(777\) 0 0
\(778\) 0.996135 1.10632i 0.0357132 0.0396635i
\(779\) 3.94309 + 1.75558i 0.141276 + 0.0629001i
\(780\) 0 0
\(781\) 28.4644 + 29.2246i 1.01854 + 1.04574i
\(782\) 2.74953 0.0983229
\(783\) 0 0
\(784\) −0.777792 2.39380i −0.0277783 0.0854928i
\(785\) −29.8935 33.2001i −1.06694 1.18496i
\(786\) 0 0
\(787\) 3.17288 30.1879i 0.113101 1.07608i −0.779862 0.625952i \(-0.784711\pi\)
0.892963 0.450131i \(-0.148623\pi\)
\(788\) −47.0132 + 9.99297i −1.67478 + 0.355985i
\(789\) 0 0
\(790\) −1.17787 11.2066i −0.0419066 0.398714i
\(791\) 12.6700 0.450493
\(792\) 0 0
\(793\) 6.57326 0.233423
\(794\) 0.873297 + 8.30886i 0.0309921 + 0.294870i
\(795\) 0 0
\(796\) 24.3982 5.18600i 0.864772 0.183813i
\(797\) −0.415201 + 3.95037i −0.0147072 + 0.139929i −0.999411 0.0343048i \(-0.989078\pi\)
0.984704 + 0.174234i \(0.0557450\pi\)
\(798\) 0 0
\(799\) −8.49758 9.43752i −0.300623 0.333875i
\(800\) 2.71709 + 8.36233i 0.0960635 + 0.295653i
\(801\) 0 0
\(802\) −1.35860 −0.0479738
\(803\) −3.29022 + 6.25237i −0.116109 + 0.220641i
\(804\) 0 0
\(805\) 41.3026 + 18.3891i 1.45572 + 0.648130i
\(806\) −6.20410 + 6.89035i −0.218530 + 0.242702i
\(807\) 0 0
\(808\) 24.5104 10.9127i 0.862272 0.383908i
\(809\) 4.26011 + 3.09515i 0.149778 + 0.108820i 0.660150 0.751133i \(-0.270493\pi\)
−0.510373 + 0.859953i \(0.670493\pi\)
\(810\) 0 0
\(811\) 11.6366 + 35.8137i 0.408615 + 1.25759i 0.917838 + 0.396954i \(0.129933\pi\)
−0.509223 + 0.860635i \(0.670067\pi\)
\(812\) 3.61727 + 34.4160i 0.126941 + 1.20776i
\(813\) 0 0
\(814\) 0.213028 + 0.0850109i 0.00746663 + 0.00297963i
\(815\) 30.6155 + 53.0275i 1.07241 + 1.85747i
\(816\) 0 0
\(817\) −31.3667 6.66720i −1.09738 0.233256i
\(818\) −3.07222 + 9.45531i −0.107418 + 0.330597i
\(819\) 0 0
\(820\) −2.58374 1.87719i −0.0902280 0.0655545i
\(821\) −1.40616 1.56170i −0.0490753 0.0545037i 0.718107 0.695932i \(-0.245009\pi\)
−0.767183 + 0.641429i \(0.778342\pi\)
\(822\) 0 0
\(823\) −6.07498 2.70475i −0.211760 0.0942818i 0.298115 0.954530i \(-0.403642\pi\)
−0.509876 + 0.860248i \(0.670309\pi\)
\(824\) −2.17685 3.77042i −0.0758342 0.131349i
\(825\) 0 0
\(826\) 3.80797 6.59559i 0.132496 0.229490i
\(827\) −17.8702 + 12.9834i −0.621407 + 0.451479i −0.853413 0.521236i \(-0.825471\pi\)
0.232006 + 0.972714i \(0.425471\pi\)
\(828\) 0 0
\(829\) 1.19544 3.67920i 0.0415195 0.127784i −0.928148 0.372211i \(-0.878600\pi\)
0.969668 + 0.244427i \(0.0785998\pi\)
\(830\) 0.727415 0.323866i 0.0252489 0.0112416i
\(831\) 0 0
\(832\) 18.7474 3.98488i 0.649948 0.138151i
\(833\) −0.586393 + 0.651255i −0.0203173 + 0.0225647i
\(834\) 0 0
\(835\) 16.9195 29.3054i 0.585522 1.01415i
\(836\) 14.5482 + 39.4450i 0.503159 + 1.36423i
\(837\) 0 0
\(838\) 6.27302 4.55762i 0.216698 0.157440i
\(839\) −22.9258 4.87302i −0.791486 0.168235i −0.205607 0.978635i \(-0.565917\pi\)
−0.585878 + 0.810399i \(0.699250\pi\)
\(840\) 0 0
\(841\) −2.73068 + 25.9807i −0.0941614 + 0.895886i
\(842\) −0.413598 + 3.93512i −0.0142535 + 0.135613i
\(843\) 0 0
\(844\) −28.7567 6.11242i −0.989845 0.210398i
\(845\) 3.42023 2.48494i 0.117660 0.0854847i
\(846\) 0 0
\(847\) −10.4947 25.3489i −0.360604 0.870998i
\(848\) −8.89751 + 15.4109i −0.305542 + 0.529214i
\(849\) 0 0
\(850\) 0.603265 0.669993i 0.0206918 0.0229806i
\(851\) 1.26033 0.267892i 0.0432037 0.00918323i
\(852\) 0 0
\(853\) −19.1776 + 8.53842i −0.656629 + 0.292350i −0.707877 0.706336i \(-0.750347\pi\)
0.0512479 + 0.998686i \(0.483680\pi\)
\(854\) −0.480735 + 1.47955i −0.0164504 + 0.0506291i
\(855\) 0 0
\(856\) −11.2051 + 8.14097i −0.382982 + 0.278252i
\(857\) 14.1590 24.5241i 0.483662 0.837728i −0.516162 0.856491i \(-0.672640\pi\)
0.999824 + 0.0187634i \(0.00597292\pi\)
\(858\) 0 0
\(859\) 27.8536 + 48.2438i 0.950351 + 1.64606i 0.744665 + 0.667439i \(0.232609\pi\)
0.205687 + 0.978618i \(0.434057\pi\)
\(860\) 21.6760 + 9.65077i 0.739145 + 0.329088i
\(861\) 0 0
\(862\) −2.86548 3.18244i −0.0975986 0.108394i
\(863\) 24.8932 + 18.0860i 0.847375 + 0.615654i 0.924421 0.381374i \(-0.124549\pi\)
−0.0770462 + 0.997028i \(0.524549\pi\)
\(864\) 0 0
\(865\) 5.95890 18.3396i 0.202609 0.623565i
\(866\) 8.60645 + 1.82936i 0.292459 + 0.0621641i
\(867\) 0 0
\(868\) 15.6246 + 27.0626i 0.530334 + 0.918566i
\(869\) −2.51565 + 38.3309i −0.0853377 + 1.30029i
\(870\) 0 0
\(871\) −1.79839 17.1106i −0.0609362 0.579769i
\(872\) −7.83232 24.1054i −0.265236 0.816312i
\(873\) 0 0
\(874\) −13.4175 9.74835i −0.453852 0.329743i
\(875\) −17.0542 + 7.59300i −0.576536 + 0.256690i
\(876\) 0 0
\(877\) 20.7384 23.0323i 0.700286 0.777747i −0.283136 0.959080i \(-0.591375\pi\)
0.983422 + 0.181333i \(0.0580413\pi\)
\(878\) −6.14850 2.73749i −0.207502 0.0923857i
\(879\) 0 0
\(880\) −4.12584 28.4727i −0.139082 0.959814i
\(881\) −29.9198 −1.00802 −0.504012 0.863697i \(-0.668143\pi\)
−0.504012 + 0.863697i \(0.668143\pi\)
\(882\) 0 0
\(883\) 4.39514 + 13.5269i 0.147908 + 0.455215i 0.997374 0.0724296i \(-0.0230753\pi\)
−0.849465 + 0.527645i \(0.823075\pi\)
\(884\) −5.36831 5.96212i −0.180556 0.200528i
\(885\) 0 0
\(886\) −0.747709 + 7.11398i −0.0251198 + 0.238999i
\(887\) −2.57329 + 0.546971i −0.0864028 + 0.0183655i −0.250910 0.968010i \(-0.580730\pi\)
0.164507 + 0.986376i \(0.447397\pi\)
\(888\) 0 0
\(889\) 0.217508 + 2.06945i 0.00729497 + 0.0694070i
\(890\) 1.38194 0.0463228
\(891\) 0 0
\(892\) 35.2874 1.18151
\(893\) 8.00706 + 76.1821i 0.267946 + 2.54934i
\(894\) 0 0
\(895\) 23.6336 5.02347i 0.789983 0.167916i
\(896\) −2.54572 + 24.2210i −0.0850467 + 0.809165i
\(897\) 0 0
\(898\) 0.504780 + 0.560615i 0.0168447 + 0.0187080i
\(899\) 15.3821 + 47.3412i 0.513021 + 1.57892i
\(900\) 0 0
\(901\) 6.19577 0.206411
\(902\) −0.533420 0.547665i −0.0177609 0.0182352i
\(903\) 0 0
\(904\) 6.50388 + 2.89572i 0.216316 + 0.0963101i
\(905\) −3.37381 + 3.74700i −0.112149 + 0.124554i
\(906\) 0 0
\(907\) −9.28389 + 4.13345i −0.308266 + 0.137249i −0.555039 0.831824i \(-0.687297\pi\)
0.246772 + 0.969073i \(0.420630\pi\)
\(908\) 1.63197 + 1.18570i 0.0541589 + 0.0393488i
\(909\) 0 0
\(910\) 2.86265 + 8.81033i 0.0948959 + 0.292060i
\(911\) −0.615910 5.85999i −0.0204060 0.194150i 0.979570 0.201104i \(-0.0644530\pi\)
−0.999976 + 0.00695428i \(0.997786\pi\)
\(912\) 0 0
\(913\) −2.63094 + 0.667932i −0.0870713 + 0.0221053i
\(914\) 1.50116 + 2.60008i 0.0496539 + 0.0860031i
\(915\) 0 0
\(916\) −22.4150 4.76446i −0.740613 0.157422i
\(917\) 15.2240 46.8546i 0.502740 1.54727i
\(918\) 0 0
\(919\) −26.1285 18.9835i −0.861899 0.626206i 0.0665018 0.997786i \(-0.478816\pi\)
−0.928401 + 0.371580i \(0.878816\pi\)
\(920\) 16.9990 + 18.8793i 0.560441 + 0.622433i
\(921\) 0 0
\(922\) −2.16903 0.965713i −0.0714331 0.0318041i
\(923\) 23.4791 + 40.6669i 0.772823 + 1.33857i
\(924\) 0 0
\(925\) 0.211247 0.365890i 0.00694575 0.0120304i
\(926\) −0.0801267 + 0.0582155i −0.00263313 + 0.00191308i
\(927\) 0 0
\(928\) −9.11525 + 28.0539i −0.299223 + 0.920913i
\(929\) 44.6570 19.8826i 1.46515 0.652327i 0.489568 0.871965i \(-0.337154\pi\)
0.975581 + 0.219639i \(0.0704878\pi\)
\(930\) 0 0
\(931\) 5.17055 1.09903i 0.169458 0.0360194i
\(932\) 18.8357 20.9192i 0.616985 0.685231i
\(933\) 0 0
\(934\) −1.38802 + 2.40413i −0.0454175 + 0.0786655i
\(935\) −7.86705 + 6.20078i −0.257280 + 0.202787i
\(936\) 0 0
\(937\) −36.4628 + 26.4917i −1.19119 + 0.865447i −0.993389 0.114796i \(-0.963379\pi\)
−0.197797 + 0.980243i \(0.563379\pi\)
\(938\) 3.98287 + 0.846586i 0.130045 + 0.0276420i
\(939\) 0 0
\(940\) 5.92457 56.3686i 0.193238 1.83854i
\(941\) 1.71991 16.3639i 0.0560675 0.533447i −0.930054 0.367423i \(-0.880240\pi\)
0.986122 0.166024i \(-0.0530930\pi\)
\(942\) 0 0
\(943\) −4.20090 0.892929i −0.136800 0.0290778i
\(944\) −22.0257 + 16.0026i −0.716877 + 0.520841i
\(945\) 0 0
\(946\) 4.72239 + 3.15599i 0.153538 + 0.102610i
\(947\) 3.50636 6.07320i 0.113942 0.197352i −0.803415 0.595420i \(-0.796986\pi\)
0.917356 + 0.398067i \(0.130319\pi\)
\(948\) 0 0
\(949\) −5.44168 + 6.04359i −0.176644 + 0.196183i
\(950\) −5.31932 + 1.13066i −0.172581 + 0.0366833i
\(951\) 0 0
\(952\) 3.59101 1.59882i 0.116385 0.0518180i
\(953\) 3.34588 10.2976i 0.108384 0.333571i −0.882126 0.471014i \(-0.843888\pi\)
0.990510 + 0.137443i \(0.0438883\pi\)
\(954\) 0 0
\(955\) 13.9169 10.1112i 0.450341 0.327192i
\(956\) −13.4491 + 23.2946i −0.434976 + 0.753401i
\(957\) 0 0
\(958\) −4.20347 7.28062i −0.135808 0.235226i
\(959\) 9.02969 + 4.02028i 0.291584 + 0.129821i
\(960\) 0 0
\(961\) 9.33416 + 10.3666i 0.301102 + 0.334407i
\(962\) 0.213588 + 0.155181i 0.00688637 + 0.00500324i
\(963\) 0 0
\(964\) 6.94611 21.3779i 0.223719 0.688537i
\(965\) 7.40401 + 1.57377i 0.238344 + 0.0506615i
\(966\) 0 0
\(967\) −2.94103 5.09401i −0.0945771 0.163812i 0.814855 0.579665i \(-0.196817\pi\)
−0.909432 + 0.415853i \(0.863483\pi\)
\(968\) 0.406202 15.4109i 0.0130558 0.495325i
\(969\) 0 0
\(970\) 1.02421 + 9.74475i 0.0328855 + 0.312885i
\(971\) 5.64280 + 17.3667i 0.181086 + 0.557325i 0.999859 0.0167920i \(-0.00534530\pi\)
−0.818773 + 0.574117i \(0.805345\pi\)
\(972\) 0 0
\(973\) −6.87009 4.99141i −0.220245 0.160017i
\(974\) −7.97406 + 3.55028i −0.255505 + 0.113758i
\(975\) 0 0
\(976\) 3.72120 4.13282i 0.119113 0.132288i
\(977\) −1.53328 0.682658i −0.0490538 0.0218402i 0.382063 0.924136i \(-0.375214\pi\)
−0.431117 + 0.902296i \(0.641880\pi\)
\(978\) 0 0
\(979\) −4.64287 0.798201i −0.148387 0.0255106i
\(980\) −3.91125 −0.124940
\(981\) 0 0
\(982\) 3.93678 + 12.1162i 0.125628 + 0.386643i
\(983\) 7.50703 + 8.33740i 0.239437 + 0.265922i 0.850872 0.525373i \(-0.176074\pi\)
−0.611435 + 0.791295i \(0.709407\pi\)
\(984\) 0 0
\(985\) −7.22030 + 68.6966i −0.230058 + 2.18886i
\(986\) 2.95847 0.628842i 0.0942168 0.0200264i
\(987\) 0 0
\(988\) 5.05843 + 48.1278i 0.160930 + 1.53115i
\(989\) 31.9077 1.01461
\(990\) 0 0
\(991\) −7.78978 −0.247451 −0.123725 0.992317i \(-0.539484\pi\)
−0.123725 + 0.992317i \(0.539484\pi\)
\(992\) 2.78429 + 26.4908i 0.0884013 + 0.841082i
\(993\) 0 0
\(994\) −10.8707 + 2.31064i −0.344797 + 0.0732890i
\(995\) 3.74709 35.6511i 0.118791 1.13022i
\(996\) 0 0
\(997\) −28.9889 32.1954i −0.918088 1.01964i −0.999736 0.0229789i \(-0.992685\pi\)
0.0816479 0.996661i \(-0.473982\pi\)
\(998\) −2.54682 7.83830i −0.0806181 0.248117i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 891.2.n.f.784.2 32
3.2 odd 2 891.2.n.i.784.3 32
9.2 odd 6 297.2.f.a.190.3 yes 16
9.4 even 3 inner 891.2.n.f.190.3 32
9.5 odd 6 891.2.n.i.190.2 32
9.7 even 3 297.2.f.d.190.2 yes 16
11.4 even 5 inner 891.2.n.f.136.3 32
33.26 odd 10 891.2.n.i.136.2 32
99.2 even 30 3267.2.a.bf.1.6 8
99.4 even 15 inner 891.2.n.f.433.2 32
99.20 odd 30 3267.2.a.bm.1.3 8
99.59 odd 30 891.2.n.i.433.3 32
99.70 even 15 297.2.f.d.136.2 yes 16
99.79 odd 30 3267.2.a.bl.1.3 8
99.92 odd 30 297.2.f.a.136.3 16
99.97 even 15 3267.2.a.be.1.6 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
297.2.f.a.136.3 16 99.92 odd 30
297.2.f.a.190.3 yes 16 9.2 odd 6
297.2.f.d.136.2 yes 16 99.70 even 15
297.2.f.d.190.2 yes 16 9.7 even 3
891.2.n.f.136.3 32 11.4 even 5 inner
891.2.n.f.190.3 32 9.4 even 3 inner
891.2.n.f.433.2 32 99.4 even 15 inner
891.2.n.f.784.2 32 1.1 even 1 trivial
891.2.n.i.136.2 32 33.26 odd 10
891.2.n.i.190.2 32 9.5 odd 6
891.2.n.i.433.3 32 99.59 odd 30
891.2.n.i.784.3 32 3.2 odd 2
3267.2.a.be.1.6 8 99.97 even 15
3267.2.a.bf.1.6 8 99.2 even 30
3267.2.a.bl.1.3 8 99.79 odd 30
3267.2.a.bm.1.3 8 99.20 odd 30