Properties

Label 30.16.a.f
Level $30$
Weight $16$
Character orbit 30.a
Self dual yes
Analytic conductor $42.808$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,16,Mod(1,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.8080515300\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 128 q^{2} + 2187 q^{3} + 16384 q^{4} + 78125 q^{5} + 279936 q^{6} - 3067456 q^{7} + 2097152 q^{8} + 4782969 q^{9} + 10000000 q^{10} - 41360748 q^{11} + 35831808 q^{12} - 395658562 q^{13} - 392634368 q^{14}+ \cdots - 197827175500812 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
128.000 2187.00 16384.0 78125.0 279936. −3.06746e6 2.09715e6 4.78297e6 1.00000e7
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(5\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 30.16.a.f 1
3.b odd 2 1 90.16.a.a 1
5.b even 2 1 150.16.a.c 1
5.c odd 4 2 150.16.c.f 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
30.16.a.f 1 1.a even 1 1 trivial
90.16.a.a 1 3.b odd 2 1
150.16.a.c 1 5.b even 2 1
150.16.c.f 2 5.c odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7} + 3067456 \) acting on \(S_{16}^{\mathrm{new}}(\Gamma_0(30))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 128 \) Copy content Toggle raw display
$3$ \( T - 2187 \) Copy content Toggle raw display
$5$ \( T - 78125 \) Copy content Toggle raw display
$7$ \( T + 3067456 \) Copy content Toggle raw display
$11$ \( T + 41360748 \) Copy content Toggle raw display
$13$ \( T + 395658562 \) Copy content Toggle raw display
$17$ \( T + 1610570886 \) Copy content Toggle raw display
$19$ \( T - 2285021780 \) Copy content Toggle raw display
$23$ \( T + 11300532672 \) Copy content Toggle raw display
$29$ \( T + 73954639530 \) Copy content Toggle raw display
$31$ \( T - 268626459752 \) Copy content Toggle raw display
$37$ \( T + 1012332655546 \) Copy content Toggle raw display
$41$ \( T - 2158036546602 \) Copy content Toggle raw display
$43$ \( T + 374267777692 \) Copy content Toggle raw display
$47$ \( T + 3231654074376 \) Copy content Toggle raw display
$53$ \( T + 7594347998802 \) Copy content Toggle raw display
$59$ \( T + 27220596777660 \) Copy content Toggle raw display
$61$ \( T - 5269415220902 \) Copy content Toggle raw display
$67$ \( T + 68276399830036 \) Copy content Toggle raw display
$71$ \( T + 81719695973448 \) Copy content Toggle raw display
$73$ \( T - 49561588147178 \) Copy content Toggle raw display
$79$ \( T - 193168663420520 \) Copy content Toggle raw display
$83$ \( T - 187748261995068 \) Copy content Toggle raw display
$89$ \( T - 364870150917210 \) Copy content Toggle raw display
$97$ \( T - 898381749982274 \) Copy content Toggle raw display
show more
show less