Properties

Label 30.16.a.f.1.1
Level $30$
Weight $16$
Character 30.1
Self dual yes
Analytic conductor $42.808$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [30,16,Mod(1,30)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(30, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 16, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("30.1");
 
S:= CuspForms(chi, 16);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 30 = 2 \cdot 3 \cdot 5 \)
Weight: \( k \) \(=\) \( 16 \)
Character orbit: \([\chi]\) \(=\) 30.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(42.8080515300\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 30.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+128.000 q^{2} +2187.00 q^{3} +16384.0 q^{4} +78125.0 q^{5} +279936. q^{6} -3.06746e6 q^{7} +2.09715e6 q^{8} +4.78297e6 q^{9} +1.00000e7 q^{10} -4.13607e7 q^{11} +3.58318e7 q^{12} -3.95659e8 q^{13} -3.92634e8 q^{14} +1.70859e8 q^{15} +2.68435e8 q^{16} -1.61057e9 q^{17} +6.12220e8 q^{18} +2.28502e9 q^{19} +1.28000e9 q^{20} -6.70853e9 q^{21} -5.29418e9 q^{22} -1.13005e10 q^{23} +4.58647e9 q^{24} +6.10352e9 q^{25} -5.06443e10 q^{26} +1.04604e10 q^{27} -5.02572e10 q^{28} -7.39546e10 q^{29} +2.18700e10 q^{30} +2.68626e11 q^{31} +3.43597e10 q^{32} -9.04560e10 q^{33} -2.06153e11 q^{34} -2.39645e11 q^{35} +7.83642e10 q^{36} -1.01233e12 q^{37} +2.92483e11 q^{38} -8.65305e11 q^{39} +1.63840e11 q^{40} +2.15804e12 q^{41} -8.58691e11 q^{42} -3.74268e11 q^{43} -6.77654e11 q^{44} +3.73669e11 q^{45} -1.44647e12 q^{46} -3.23165e12 q^{47} +5.87068e11 q^{48} +4.66172e12 q^{49} +7.81250e11 q^{50} -3.52232e12 q^{51} -6.48247e12 q^{52} -7.59435e12 q^{53} +1.33893e12 q^{54} -3.23131e12 q^{55} -6.43292e12 q^{56} +4.99734e12 q^{57} -9.46619e12 q^{58} -2.72206e13 q^{59} +2.79936e12 q^{60} +5.26942e12 q^{61} +3.43842e13 q^{62} -1.46715e13 q^{63} +4.39805e12 q^{64} -3.09108e13 q^{65} -1.15784e13 q^{66} -6.82764e13 q^{67} -2.63876e13 q^{68} -2.47143e13 q^{69} -3.06746e13 q^{70} -8.17197e13 q^{71} +1.00306e13 q^{72} +4.95616e13 q^{73} -1.29579e14 q^{74} +1.33484e13 q^{75} +3.74378e13 q^{76} +1.26872e14 q^{77} -1.10759e14 q^{78} +1.93169e14 q^{79} +2.09715e13 q^{80} +2.28768e13 q^{81} +2.76229e14 q^{82} +1.87748e14 q^{83} -1.09912e14 q^{84} -1.25826e14 q^{85} -4.79063e13 q^{86} -1.61739e14 q^{87} -8.67398e13 q^{88} +3.64870e14 q^{89} +4.78297e13 q^{90} +1.21367e15 q^{91} -1.85148e14 q^{92} +5.87486e14 q^{93} -4.13652e14 q^{94} +1.78517e14 q^{95} +7.51447e13 q^{96} +8.98382e14 q^{97} +5.96701e14 q^{98} -1.97827e14 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 128.000 0.707107
\(3\) 2187.00 0.577350
\(4\) 16384.0 0.500000
\(5\) 78125.0 0.447214
\(6\) 279936. 0.408248
\(7\) −3.06746e6 −1.40781 −0.703903 0.710296i \(-0.748561\pi\)
−0.703903 + 0.710296i \(0.748561\pi\)
\(8\) 2.09715e6 0.353553
\(9\) 4.78297e6 0.333333
\(10\) 1.00000e7 0.316228
\(11\) −4.13607e7 −0.639946 −0.319973 0.947427i \(-0.603674\pi\)
−0.319973 + 0.947427i \(0.603674\pi\)
\(12\) 3.58318e7 0.288675
\(13\) −3.95659e8 −1.74882 −0.874411 0.485187i \(-0.838752\pi\)
−0.874411 + 0.485187i \(0.838752\pi\)
\(14\) −3.92634e8 −0.995470
\(15\) 1.70859e8 0.258199
\(16\) 2.68435e8 0.250000
\(17\) −1.61057e9 −0.951947 −0.475974 0.879460i \(-0.657904\pi\)
−0.475974 + 0.879460i \(0.657904\pi\)
\(18\) 6.12220e8 0.235702
\(19\) 2.28502e9 0.586460 0.293230 0.956042i \(-0.405270\pi\)
0.293230 + 0.956042i \(0.405270\pi\)
\(20\) 1.28000e9 0.223607
\(21\) −6.70853e9 −0.812798
\(22\) −5.29418e9 −0.452510
\(23\) −1.13005e10 −0.692054 −0.346027 0.938225i \(-0.612469\pi\)
−0.346027 + 0.938225i \(0.612469\pi\)
\(24\) 4.58647e9 0.204124
\(25\) 6.10352e9 0.200000
\(26\) −5.06443e10 −1.23660
\(27\) 1.04604e10 0.192450
\(28\) −5.02572e10 −0.703903
\(29\) −7.39546e10 −0.796123 −0.398062 0.917359i \(-0.630317\pi\)
−0.398062 + 0.917359i \(0.630317\pi\)
\(30\) 2.18700e10 0.182574
\(31\) 2.68626e11 1.75362 0.876811 0.480835i \(-0.159666\pi\)
0.876811 + 0.480835i \(0.159666\pi\)
\(32\) 3.43597e10 0.176777
\(33\) −9.04560e10 −0.369473
\(34\) −2.06153e11 −0.673128
\(35\) −2.39645e11 −0.629590
\(36\) 7.83642e10 0.166667
\(37\) −1.01233e12 −1.75311 −0.876557 0.481297i \(-0.840166\pi\)
−0.876557 + 0.481297i \(0.840166\pi\)
\(38\) 2.92483e11 0.414690
\(39\) −8.65305e11 −1.00968
\(40\) 1.63840e11 0.158114
\(41\) 2.15804e12 1.73053 0.865266 0.501312i \(-0.167149\pi\)
0.865266 + 0.501312i \(0.167149\pi\)
\(42\) −8.58691e11 −0.574735
\(43\) −3.74268e11 −0.209976 −0.104988 0.994474i \(-0.533480\pi\)
−0.104988 + 0.994474i \(0.533480\pi\)
\(44\) −6.77654e11 −0.319973
\(45\) 3.73669e11 0.149071
\(46\) −1.44647e12 −0.489356
\(47\) −3.23165e12 −0.930445 −0.465223 0.885194i \(-0.654026\pi\)
−0.465223 + 0.885194i \(0.654026\pi\)
\(48\) 5.87068e11 0.144338
\(49\) 4.66172e12 0.981920
\(50\) 7.81250e11 0.141421
\(51\) −3.52232e12 −0.549607
\(52\) −6.48247e12 −0.874411
\(53\) −7.59435e12 −0.888017 −0.444009 0.896022i \(-0.646444\pi\)
−0.444009 + 0.896022i \(0.646444\pi\)
\(54\) 1.33893e12 0.136083
\(55\) −3.23131e12 −0.286192
\(56\) −6.43292e12 −0.497735
\(57\) 4.99734e12 0.338593
\(58\) −9.46619e12 −0.562944
\(59\) −2.72206e13 −1.42399 −0.711996 0.702184i \(-0.752209\pi\)
−0.711996 + 0.702184i \(0.752209\pi\)
\(60\) 2.79936e12 0.129099
\(61\) 5.26942e12 0.214679 0.107339 0.994222i \(-0.465767\pi\)
0.107339 + 0.994222i \(0.465767\pi\)
\(62\) 3.43842e13 1.24000
\(63\) −1.46715e13 −0.469269
\(64\) 4.39805e12 0.125000
\(65\) −3.09108e13 −0.782097
\(66\) −1.15784e13 −0.261257
\(67\) −6.82764e13 −1.37629 −0.688144 0.725574i \(-0.741574\pi\)
−0.688144 + 0.725574i \(0.741574\pi\)
\(68\) −2.63876e13 −0.475974
\(69\) −2.47143e13 −0.399558
\(70\) −3.06746e13 −0.445188
\(71\) −8.17197e13 −1.06632 −0.533162 0.846013i \(-0.678996\pi\)
−0.533162 + 0.846013i \(0.678996\pi\)
\(72\) 1.00306e13 0.117851
\(73\) 4.95616e13 0.525078 0.262539 0.964921i \(-0.415440\pi\)
0.262539 + 0.964921i \(0.415440\pi\)
\(74\) −1.29579e14 −1.23964
\(75\) 1.33484e13 0.115470
\(76\) 3.74378e13 0.293230
\(77\) 1.26872e14 0.900920
\(78\) −1.10759e14 −0.713953
\(79\) 1.93169e14 1.13171 0.565853 0.824506i \(-0.308547\pi\)
0.565853 + 0.824506i \(0.308547\pi\)
\(80\) 2.09715e13 0.111803
\(81\) 2.28768e13 0.111111
\(82\) 2.76229e14 1.22367
\(83\) 1.87748e14 0.759434 0.379717 0.925103i \(-0.376021\pi\)
0.379717 + 0.925103i \(0.376021\pi\)
\(84\) −1.09912e14 −0.406399
\(85\) −1.25826e14 −0.425724
\(86\) −4.79063e13 −0.148475
\(87\) −1.61739e14 −0.459642
\(88\) −8.67398e13 −0.226255
\(89\) 3.64870e14 0.874406 0.437203 0.899363i \(-0.355969\pi\)
0.437203 + 0.899363i \(0.355969\pi\)
\(90\) 4.78297e13 0.105409
\(91\) 1.21367e15 2.46200
\(92\) −1.85148e14 −0.346027
\(93\) 5.87486e14 1.01245
\(94\) −4.13652e14 −0.657924
\(95\) 1.78517e14 0.262273
\(96\) 7.51447e13 0.102062
\(97\) 8.98382e14 1.12895 0.564473 0.825452i \(-0.309080\pi\)
0.564473 + 0.825452i \(0.309080\pi\)
\(98\) 5.96701e14 0.694322
\(99\) −1.97827e14 −0.213315
\(100\) 1.00000e14 0.100000
\(101\) 2.83904e14 0.263488 0.131744 0.991284i \(-0.457942\pi\)
0.131744 + 0.991284i \(0.457942\pi\)
\(102\) −4.50857e14 −0.388631
\(103\) 2.98486e14 0.239136 0.119568 0.992826i \(-0.461849\pi\)
0.119568 + 0.992826i \(0.461849\pi\)
\(104\) −8.29756e14 −0.618302
\(105\) −5.24104e14 −0.363494
\(106\) −9.72077e14 −0.627923
\(107\) 9.17434e14 0.552328 0.276164 0.961111i \(-0.410937\pi\)
0.276164 + 0.961111i \(0.410937\pi\)
\(108\) 1.71382e14 0.0962250
\(109\) −8.23884e14 −0.431685 −0.215843 0.976428i \(-0.569250\pi\)
−0.215843 + 0.976428i \(0.569250\pi\)
\(110\) −4.13607e14 −0.202369
\(111\) −2.21397e15 −1.01216
\(112\) −8.23414e14 −0.351952
\(113\) 2.16477e15 0.865613 0.432807 0.901487i \(-0.357523\pi\)
0.432807 + 0.901487i \(0.357523\pi\)
\(114\) 6.39660e14 0.239421
\(115\) −8.82854e14 −0.309496
\(116\) −1.21167e15 −0.398062
\(117\) −1.89242e15 −0.582940
\(118\) −3.48424e15 −1.00691
\(119\) 4.94036e15 1.34016
\(120\) 3.58318e14 0.0912871
\(121\) −2.46654e15 −0.590469
\(122\) 6.74485e14 0.151801
\(123\) 4.71963e15 0.999124
\(124\) 4.40118e15 0.876811
\(125\) 4.76837e14 0.0894427
\(126\) −1.87796e15 −0.331823
\(127\) 8.80670e15 1.46651 0.733256 0.679953i \(-0.238000\pi\)
0.733256 + 0.679953i \(0.238000\pi\)
\(128\) 5.62950e14 0.0883883
\(129\) −8.18524e14 −0.121230
\(130\) −3.95659e15 −0.553026
\(131\) −9.36793e15 −1.23626 −0.618129 0.786077i \(-0.712109\pi\)
−0.618129 + 0.786077i \(0.712109\pi\)
\(132\) −1.48203e15 −0.184736
\(133\) −7.00920e15 −0.825622
\(134\) −8.73938e15 −0.973183
\(135\) 8.17215e14 0.0860663
\(136\) −3.37761e15 −0.336564
\(137\) 5.82827e15 0.549713 0.274856 0.961485i \(-0.411370\pi\)
0.274856 + 0.961485i \(0.411370\pi\)
\(138\) −3.16343e15 −0.282530
\(139\) −1.09694e16 −0.928052 −0.464026 0.885822i \(-0.653596\pi\)
−0.464026 + 0.885822i \(0.653596\pi\)
\(140\) −3.92634e15 −0.314795
\(141\) −7.06763e15 −0.537193
\(142\) −1.04601e16 −0.754005
\(143\) 1.63647e16 1.11915
\(144\) 1.28392e15 0.0833333
\(145\) −5.77771e15 −0.356037
\(146\) 6.34388e15 0.371286
\(147\) 1.01952e16 0.566912
\(148\) −1.65861e16 −0.876557
\(149\) 1.33354e16 0.670053 0.335026 0.942209i \(-0.391255\pi\)
0.335026 + 0.942209i \(0.391255\pi\)
\(150\) 1.70859e15 0.0816497
\(151\) −1.85052e16 −0.841330 −0.420665 0.907216i \(-0.638203\pi\)
−0.420665 + 0.907216i \(0.638203\pi\)
\(152\) 4.79204e15 0.207345
\(153\) −7.70331e15 −0.317316
\(154\) 1.62397e16 0.637047
\(155\) 2.09864e16 0.784244
\(156\) −1.41772e16 −0.504841
\(157\) −3.14502e16 −1.06752 −0.533760 0.845636i \(-0.679221\pi\)
−0.533760 + 0.845636i \(0.679221\pi\)
\(158\) 2.47256e16 0.800237
\(159\) −1.66088e16 −0.512697
\(160\) 2.68435e15 0.0790569
\(161\) 3.46639e16 0.974279
\(162\) 2.92823e15 0.0785674
\(163\) −5.92873e16 −1.51899 −0.759495 0.650513i \(-0.774554\pi\)
−0.759495 + 0.650513i \(0.774554\pi\)
\(164\) 3.53573e16 0.865266
\(165\) −7.06687e15 −0.165233
\(166\) 2.40318e16 0.537001
\(167\) 3.64336e16 0.778268 0.389134 0.921181i \(-0.372774\pi\)
0.389134 + 0.921181i \(0.372774\pi\)
\(168\) −1.40688e16 −0.287367
\(169\) 1.05360e17 2.05838
\(170\) −1.61057e16 −0.301032
\(171\) 1.09292e16 0.195487
\(172\) −6.13200e15 −0.104988
\(173\) 1.70672e16 0.279780 0.139890 0.990167i \(-0.455325\pi\)
0.139890 + 0.990167i \(0.455325\pi\)
\(174\) −2.07026e16 −0.325016
\(175\) −1.87223e16 −0.281561
\(176\) −1.11027e16 −0.159986
\(177\) −5.95314e16 −0.822142
\(178\) 4.67034e16 0.618299
\(179\) 1.32549e17 1.68260 0.841299 0.540570i \(-0.181792\pi\)
0.841299 + 0.540570i \(0.181792\pi\)
\(180\) 6.12220e15 0.0745356
\(181\) −1.22459e17 −1.43022 −0.715109 0.699013i \(-0.753623\pi\)
−0.715109 + 0.699013i \(0.753623\pi\)
\(182\) 1.55349e17 1.74090
\(183\) 1.15242e16 0.123945
\(184\) −2.36989e16 −0.244678
\(185\) −7.90885e16 −0.784017
\(186\) 7.51982e16 0.715913
\(187\) 6.66144e16 0.609195
\(188\) −5.29474e16 −0.465223
\(189\) −3.20867e16 −0.270933
\(190\) 2.28502e16 0.185455
\(191\) 2.00681e16 0.156587 0.0782934 0.996930i \(-0.475053\pi\)
0.0782934 + 0.996930i \(0.475053\pi\)
\(192\) 9.61853e15 0.0721688
\(193\) 2.39484e17 1.72821 0.864106 0.503311i \(-0.167885\pi\)
0.864106 + 0.503311i \(0.167885\pi\)
\(194\) 1.14993e17 0.798285
\(195\) −6.76020e16 −0.451544
\(196\) 7.63777e16 0.490960
\(197\) −2.86905e17 −1.77518 −0.887588 0.460637i \(-0.847621\pi\)
−0.887588 + 0.460637i \(0.847621\pi\)
\(198\) −2.53219e16 −0.150837
\(199\) −2.14194e17 −1.22860 −0.614299 0.789073i \(-0.710561\pi\)
−0.614299 + 0.789073i \(0.710561\pi\)
\(200\) 1.28000e16 0.0707107
\(201\) −1.49320e17 −0.794601
\(202\) 3.63397e16 0.186314
\(203\) 2.26853e17 1.12079
\(204\) −5.77097e16 −0.274804
\(205\) 1.68597e17 0.773918
\(206\) 3.82063e16 0.169095
\(207\) −5.40501e16 −0.230685
\(208\) −1.06209e17 −0.437205
\(209\) −9.45102e16 −0.375303
\(210\) −6.70853e16 −0.257029
\(211\) −3.49385e17 −1.29177 −0.645887 0.763433i \(-0.723512\pi\)
−0.645887 + 0.763433i \(0.723512\pi\)
\(212\) −1.24426e17 −0.444009
\(213\) −1.78721e17 −0.615642
\(214\) 1.17432e17 0.390555
\(215\) −2.92397e16 −0.0939040
\(216\) 2.19370e16 0.0680414
\(217\) −8.24000e17 −2.46876
\(218\) −1.05457e17 −0.305248
\(219\) 1.08391e17 0.303154
\(220\) −5.29418e16 −0.143096
\(221\) 6.37236e17 1.66479
\(222\) −2.83388e17 −0.715706
\(223\) −3.01392e17 −0.735945 −0.367973 0.929837i \(-0.619948\pi\)
−0.367973 + 0.929837i \(0.619948\pi\)
\(224\) −1.05397e17 −0.248867
\(225\) 2.91929e16 0.0666667
\(226\) 2.77091e17 0.612081
\(227\) −4.80145e17 −1.02607 −0.513036 0.858367i \(-0.671479\pi\)
−0.513036 + 0.858367i \(0.671479\pi\)
\(228\) 8.18765e16 0.169296
\(229\) 4.14103e17 0.828595 0.414298 0.910141i \(-0.364027\pi\)
0.414298 + 0.910141i \(0.364027\pi\)
\(230\) −1.13005e17 −0.218847
\(231\) 2.77470e17 0.520146
\(232\) −1.55094e17 −0.281472
\(233\) 5.46836e17 0.960922 0.480461 0.877016i \(-0.340469\pi\)
0.480461 + 0.877016i \(0.340469\pi\)
\(234\) −2.42230e17 −0.412201
\(235\) −2.52473e17 −0.416108
\(236\) −4.45982e17 −0.711996
\(237\) 4.22460e17 0.653391
\(238\) 6.32365e17 0.947635
\(239\) −1.14592e18 −1.66406 −0.832029 0.554733i \(-0.812821\pi\)
−0.832029 + 0.554733i \(0.812821\pi\)
\(240\) 4.58647e16 0.0645497
\(241\) 2.61779e17 0.357114 0.178557 0.983930i \(-0.442857\pi\)
0.178557 + 0.983930i \(0.442857\pi\)
\(242\) −3.15717e17 −0.417525
\(243\) 5.00315e16 0.0641500
\(244\) 8.63341e16 0.107339
\(245\) 3.64197e17 0.439128
\(246\) 6.04112e17 0.706487
\(247\) −9.04088e17 −1.02561
\(248\) 5.63351e17 0.619999
\(249\) 4.10605e17 0.438460
\(250\) 6.10352e16 0.0632456
\(251\) 1.24850e18 1.25555 0.627775 0.778395i \(-0.283966\pi\)
0.627775 + 0.778395i \(0.283966\pi\)
\(252\) −2.40379e17 −0.234634
\(253\) 4.67398e17 0.442877
\(254\) 1.12726e18 1.03698
\(255\) −2.75181e17 −0.245792
\(256\) 7.20576e16 0.0625000
\(257\) −2.39248e17 −0.201534 −0.100767 0.994910i \(-0.532130\pi\)
−0.100767 + 0.994910i \(0.532130\pi\)
\(258\) −1.04771e17 −0.0857222
\(259\) 3.10529e18 2.46805
\(260\) −5.06443e17 −0.391048
\(261\) −3.53723e17 −0.265374
\(262\) −1.19909e18 −0.874166
\(263\) −6.78661e16 −0.0480823 −0.0240411 0.999711i \(-0.507653\pi\)
−0.0240411 + 0.999711i \(0.507653\pi\)
\(264\) −1.89700e17 −0.130628
\(265\) −5.93308e17 −0.397133
\(266\) −8.97178e17 −0.583803
\(267\) 7.97971e17 0.504839
\(268\) −1.11864e18 −0.688144
\(269\) 2.43188e18 1.45479 0.727395 0.686219i \(-0.240731\pi\)
0.727395 + 0.686219i \(0.240731\pi\)
\(270\) 1.04604e17 0.0608581
\(271\) 1.76910e18 1.00111 0.500557 0.865703i \(-0.333128\pi\)
0.500557 + 0.865703i \(0.333128\pi\)
\(272\) −4.32334e17 −0.237987
\(273\) 2.65429e18 1.42144
\(274\) 7.46019e17 0.388706
\(275\) −2.52446e17 −0.127989
\(276\) −4.04919e17 −0.199779
\(277\) 1.19686e16 0.00574707 0.00287353 0.999996i \(-0.499085\pi\)
0.00287353 + 0.999996i \(0.499085\pi\)
\(278\) −1.40408e18 −0.656232
\(279\) 1.28483e18 0.584541
\(280\) −5.02572e17 −0.222594
\(281\) −2.30835e18 −0.995414 −0.497707 0.867345i \(-0.665824\pi\)
−0.497707 + 0.867345i \(0.665824\pi\)
\(282\) −9.04656e17 −0.379853
\(283\) −2.12642e18 −0.869460 −0.434730 0.900561i \(-0.643156\pi\)
−0.434730 + 0.900561i \(0.643156\pi\)
\(284\) −1.33890e18 −0.533162
\(285\) 3.90417e17 0.151423
\(286\) 2.09469e18 0.791359
\(287\) −6.61968e18 −2.43626
\(288\) 1.64342e17 0.0589256
\(289\) −2.68484e17 −0.0937962
\(290\) −7.39546e17 −0.251756
\(291\) 1.96476e18 0.651797
\(292\) 8.12017e17 0.262539
\(293\) 1.60780e18 0.506669 0.253335 0.967379i \(-0.418473\pi\)
0.253335 + 0.967379i \(0.418473\pi\)
\(294\) 1.30498e18 0.400867
\(295\) −2.12661e18 −0.636829
\(296\) −2.12302e18 −0.619820
\(297\) −4.32648e17 −0.123158
\(298\) 1.70693e18 0.473799
\(299\) 4.47115e18 1.21028
\(300\) 2.18700e17 0.0577350
\(301\) 1.14805e18 0.295605
\(302\) −2.36866e18 −0.594910
\(303\) 6.20897e17 0.152125
\(304\) 6.13381e17 0.146615
\(305\) 4.11673e17 0.0960072
\(306\) −9.86024e17 −0.224376
\(307\) −1.90872e18 −0.423842 −0.211921 0.977287i \(-0.567972\pi\)
−0.211921 + 0.977287i \(0.567972\pi\)
\(308\) 2.07868e18 0.450460
\(309\) 6.52790e17 0.138065
\(310\) 2.68626e18 0.554544
\(311\) −2.59682e18 −0.523286 −0.261643 0.965165i \(-0.584264\pi\)
−0.261643 + 0.965165i \(0.584264\pi\)
\(312\) −1.81468e18 −0.356977
\(313\) −2.45229e18 −0.470965 −0.235483 0.971879i \(-0.575667\pi\)
−0.235483 + 0.971879i \(0.575667\pi\)
\(314\) −4.02563e18 −0.754851
\(315\) −1.14621e18 −0.209863
\(316\) 3.16488e18 0.565853
\(317\) −7.19181e18 −1.25572 −0.627861 0.778325i \(-0.716070\pi\)
−0.627861 + 0.778325i \(0.716070\pi\)
\(318\) −2.12593e18 −0.362532
\(319\) 3.05882e18 0.509476
\(320\) 3.43597e17 0.0559017
\(321\) 2.00643e18 0.318886
\(322\) 4.43698e18 0.688919
\(323\) −3.68019e18 −0.558279
\(324\) 3.74813e17 0.0555556
\(325\) −2.41491e18 −0.349764
\(326\) −7.58878e18 −1.07409
\(327\) −1.80183e18 −0.249234
\(328\) 4.52573e18 0.611836
\(329\) 9.91296e18 1.30989
\(330\) −9.04560e17 −0.116838
\(331\) −7.48745e18 −0.945418 −0.472709 0.881219i \(-0.656724\pi\)
−0.472709 + 0.881219i \(0.656724\pi\)
\(332\) 3.07607e18 0.379717
\(333\) −4.84196e18 −0.584372
\(334\) 4.66351e18 0.550318
\(335\) −5.33409e18 −0.615495
\(336\) −1.80081e18 −0.203199
\(337\) −7.00605e18 −0.773123 −0.386562 0.922264i \(-0.626337\pi\)
−0.386562 + 0.922264i \(0.626337\pi\)
\(338\) 1.34861e19 1.45549
\(339\) 4.73436e18 0.499762
\(340\) −2.06153e18 −0.212862
\(341\) −1.11106e19 −1.12222
\(342\) 1.39894e18 0.138230
\(343\) 2.63300e17 0.0254534
\(344\) −7.84896e17 −0.0742376
\(345\) −1.93080e18 −0.178688
\(346\) 2.18460e18 0.197834
\(347\) −1.08705e18 −0.0963341 −0.0481671 0.998839i \(-0.515338\pi\)
−0.0481671 + 0.998839i \(0.515338\pi\)
\(348\) −2.64993e18 −0.229821
\(349\) −2.86789e18 −0.243429 −0.121714 0.992565i \(-0.538839\pi\)
−0.121714 + 0.992565i \(0.538839\pi\)
\(350\) −2.39645e18 −0.199094
\(351\) −4.13873e18 −0.336561
\(352\) −1.42114e18 −0.113128
\(353\) 1.73775e19 1.35418 0.677092 0.735899i \(-0.263240\pi\)
0.677092 + 0.735899i \(0.263240\pi\)
\(354\) −7.62002e18 −0.581342
\(355\) −6.38435e18 −0.476875
\(356\) 5.97803e18 0.437203
\(357\) 1.08046e19 0.773741
\(358\) 1.69663e19 1.18978
\(359\) −1.19231e19 −0.818802 −0.409401 0.912354i \(-0.634262\pi\)
−0.409401 + 0.912354i \(0.634262\pi\)
\(360\) 7.83642e17 0.0527046
\(361\) −9.95980e18 −0.656065
\(362\) −1.56748e19 −1.01132
\(363\) −5.39432e18 −0.340908
\(364\) 1.98847e19 1.23100
\(365\) 3.87200e18 0.234822
\(366\) 1.47510e18 0.0876422
\(367\) −4.94881e18 −0.288075 −0.144037 0.989572i \(-0.546009\pi\)
−0.144037 + 0.989572i \(0.546009\pi\)
\(368\) −3.03346e18 −0.173014
\(369\) 1.03218e19 0.576844
\(370\) −1.01233e19 −0.554384
\(371\) 2.32953e19 1.25016
\(372\) 9.62537e18 0.506227
\(373\) 2.81093e19 1.44889 0.724444 0.689334i \(-0.242097\pi\)
0.724444 + 0.689334i \(0.242097\pi\)
\(374\) 8.52665e18 0.430766
\(375\) 1.04284e18 0.0516398
\(376\) −6.77727e18 −0.328962
\(377\) 2.92608e19 1.39228
\(378\) −4.10709e18 −0.191578
\(379\) −1.07279e19 −0.490593 −0.245296 0.969448i \(-0.578885\pi\)
−0.245296 + 0.969448i \(0.578885\pi\)
\(380\) 2.92483e18 0.131136
\(381\) 1.92603e19 0.846691
\(382\) 2.56871e18 0.110724
\(383\) −8.51605e18 −0.359954 −0.179977 0.983671i \(-0.557602\pi\)
−0.179977 + 0.983671i \(0.557602\pi\)
\(384\) 1.23117e18 0.0510310
\(385\) 9.91190e18 0.402904
\(386\) 3.06540e19 1.22203
\(387\) −1.79011e18 −0.0699919
\(388\) 1.47191e19 0.564473
\(389\) 4.54565e19 1.70991 0.854956 0.518700i \(-0.173584\pi\)
0.854956 + 0.518700i \(0.173584\pi\)
\(390\) −8.65305e18 −0.319290
\(391\) 1.82003e19 0.658799
\(392\) 9.77635e18 0.347161
\(393\) −2.04877e19 −0.713753
\(394\) −3.67239e19 −1.25524
\(395\) 1.50913e19 0.506114
\(396\) −3.24120e18 −0.106658
\(397\) −3.52266e19 −1.13748 −0.568738 0.822519i \(-0.692568\pi\)
−0.568738 + 0.822519i \(0.692568\pi\)
\(398\) −2.74169e19 −0.868750
\(399\) −1.53291e19 −0.476673
\(400\) 1.63840e18 0.0500000
\(401\) −3.67077e19 −1.09945 −0.549724 0.835347i \(-0.685267\pi\)
−0.549724 + 0.835347i \(0.685267\pi\)
\(402\) −1.91130e19 −0.561868
\(403\) −1.06284e20 −3.06677
\(404\) 4.65148e18 0.131744
\(405\) 1.78725e18 0.0496904
\(406\) 2.90371e19 0.792517
\(407\) 4.18708e19 1.12190
\(408\) −7.38684e18 −0.194315
\(409\) −5.90647e19 −1.52547 −0.762735 0.646712i \(-0.776144\pi\)
−0.762735 + 0.646712i \(0.776144\pi\)
\(410\) 2.15804e19 0.547243
\(411\) 1.27464e19 0.317377
\(412\) 4.89040e18 0.119568
\(413\) 8.34980e19 2.00471
\(414\) −6.91841e18 −0.163119
\(415\) 1.46678e19 0.339629
\(416\) −1.35947e19 −0.309151
\(417\) −2.39901e19 −0.535811
\(418\) −1.20973e19 −0.265379
\(419\) −1.14506e19 −0.246731 −0.123366 0.992361i \(-0.539369\pi\)
−0.123366 + 0.992361i \(0.539369\pi\)
\(420\) −8.58691e18 −0.181747
\(421\) 2.08148e19 0.432769 0.216385 0.976308i \(-0.430573\pi\)
0.216385 + 0.976308i \(0.430573\pi\)
\(422\) −4.47213e19 −0.913421
\(423\) −1.54569e19 −0.310148
\(424\) −1.59265e19 −0.313962
\(425\) −9.83014e18 −0.190389
\(426\) −2.28763e19 −0.435325
\(427\) −1.61637e19 −0.302226
\(428\) 1.50312e19 0.276164
\(429\) 3.57897e19 0.646142
\(430\) −3.74268e18 −0.0664001
\(431\) −3.60393e19 −0.628344 −0.314172 0.949366i \(-0.601727\pi\)
−0.314172 + 0.949366i \(0.601727\pi\)
\(432\) 2.80793e18 0.0481125
\(433\) −4.47025e19 −0.752788 −0.376394 0.926460i \(-0.622836\pi\)
−0.376394 + 0.926460i \(0.622836\pi\)
\(434\) −1.05472e20 −1.74568
\(435\) −1.26358e19 −0.205558
\(436\) −1.34985e19 −0.215843
\(437\) −2.58220e19 −0.405862
\(438\) 1.38741e19 0.214362
\(439\) 1.97921e19 0.300614 0.150307 0.988639i \(-0.451974\pi\)
0.150307 + 0.988639i \(0.451974\pi\)
\(440\) −6.77654e18 −0.101184
\(441\) 2.22969e19 0.327307
\(442\) 8.15662e19 1.17718
\(443\) 2.03806e19 0.289194 0.144597 0.989491i \(-0.453811\pi\)
0.144597 + 0.989491i \(0.453811\pi\)
\(444\) −3.62737e19 −0.506081
\(445\) 2.85055e19 0.391046
\(446\) −3.85782e19 −0.520392
\(447\) 2.91645e19 0.386855
\(448\) −1.34908e19 −0.175976
\(449\) 3.40190e19 0.436389 0.218194 0.975905i \(-0.429983\pi\)
0.218194 + 0.975905i \(0.429983\pi\)
\(450\) 3.73669e18 0.0471405
\(451\) −8.92580e19 −1.10745
\(452\) 3.54676e19 0.432807
\(453\) −4.04708e19 −0.485742
\(454\) −6.14585e19 −0.725543
\(455\) 9.48176e19 1.10104
\(456\) 1.04802e19 0.119711
\(457\) 1.58344e20 1.77922 0.889611 0.456719i \(-0.150975\pi\)
0.889611 + 0.456719i \(0.150975\pi\)
\(458\) 5.30052e19 0.585905
\(459\) −1.68471e19 −0.183202
\(460\) −1.44647e19 −0.154748
\(461\) −4.91040e19 −0.516845 −0.258423 0.966032i \(-0.583203\pi\)
−0.258423 + 0.966032i \(0.583203\pi\)
\(462\) 3.55161e19 0.367799
\(463\) −9.86911e19 −1.00559 −0.502794 0.864406i \(-0.667695\pi\)
−0.502794 + 0.864406i \(0.667695\pi\)
\(464\) −1.98520e19 −0.199031
\(465\) 4.58973e19 0.452783
\(466\) 6.99950e19 0.679474
\(467\) −3.01926e19 −0.288419 −0.144209 0.989547i \(-0.546064\pi\)
−0.144209 + 0.989547i \(0.546064\pi\)
\(468\) −3.10055e19 −0.291470
\(469\) 2.09435e20 1.93755
\(470\) −3.23165e19 −0.294233
\(471\) −6.87816e19 −0.616333
\(472\) −5.70857e19 −0.503457
\(473\) 1.54800e19 0.134373
\(474\) 5.40749e19 0.462017
\(475\) 1.39467e19 0.117292
\(476\) 8.09428e19 0.670079
\(477\) −3.63235e19 −0.296006
\(478\) −1.46677e20 −1.17667
\(479\) −1.11196e20 −0.878157 −0.439078 0.898449i \(-0.644695\pi\)
−0.439078 + 0.898449i \(0.644695\pi\)
\(480\) 5.87068e18 0.0456435
\(481\) 4.00538e20 3.06588
\(482\) 3.35077e19 0.252518
\(483\) 7.58099e19 0.562500
\(484\) −4.04117e19 −0.295235
\(485\) 7.01861e19 0.504880
\(486\) 6.40404e18 0.0453609
\(487\) −5.32893e19 −0.371683 −0.185841 0.982580i \(-0.559501\pi\)
−0.185841 + 0.982580i \(0.559501\pi\)
\(488\) 1.10508e19 0.0759003
\(489\) −1.29661e20 −0.876989
\(490\) 4.66172e19 0.310510
\(491\) −2.71447e20 −1.78063 −0.890314 0.455347i \(-0.849515\pi\)
−0.890314 + 0.455347i \(0.849515\pi\)
\(492\) 7.73264e19 0.499562
\(493\) 1.19109e20 0.757868
\(494\) −1.15723e20 −0.725218
\(495\) −1.54552e19 −0.0953975
\(496\) 7.21089e19 0.438406
\(497\) 2.50672e20 1.50118
\(498\) 5.25575e19 0.310038
\(499\) −8.94331e19 −0.519690 −0.259845 0.965650i \(-0.583671\pi\)
−0.259845 + 0.965650i \(0.583671\pi\)
\(500\) 7.81250e18 0.0447214
\(501\) 7.96804e19 0.449333
\(502\) 1.59807e20 0.887808
\(503\) −1.01357e20 −0.554745 −0.277372 0.960762i \(-0.589464\pi\)
−0.277372 + 0.960762i \(0.589464\pi\)
\(504\) −3.07685e19 −0.165912
\(505\) 2.21800e19 0.117835
\(506\) 5.98270e19 0.313162
\(507\) 2.30422e20 1.18840
\(508\) 1.44289e20 0.733256
\(509\) −8.88667e19 −0.444995 −0.222498 0.974933i \(-0.571421\pi\)
−0.222498 + 0.974933i \(0.571421\pi\)
\(510\) −3.52232e19 −0.173801
\(511\) −1.52028e20 −0.739208
\(512\) 9.22337e18 0.0441942
\(513\) 2.39021e19 0.112864
\(514\) −3.06237e19 −0.142506
\(515\) 2.33193e19 0.106945
\(516\) −1.34107e19 −0.0606148
\(517\) 1.33664e20 0.595435
\(518\) 3.97477e20 1.74517
\(519\) 3.73259e19 0.161531
\(520\) −6.48247e19 −0.276513
\(521\) −7.89026e19 −0.331748 −0.165874 0.986147i \(-0.553044\pi\)
−0.165874 + 0.986147i \(0.553044\pi\)
\(522\) −4.52765e19 −0.187648
\(523\) −1.91914e20 −0.784049 −0.392024 0.919955i \(-0.628225\pi\)
−0.392024 + 0.919955i \(0.628225\pi\)
\(524\) −1.53484e20 −0.618129
\(525\) −4.09456e19 −0.162560
\(526\) −8.68686e18 −0.0339993
\(527\) −4.32642e20 −1.66936
\(528\) −2.42816e19 −0.0923682
\(529\) −1.38933e20 −0.521061
\(530\) −7.59435e19 −0.280816
\(531\) −1.30195e20 −0.474664
\(532\) −1.14839e20 −0.412811
\(533\) −8.53846e20 −3.02639
\(534\) 1.02140e20 0.356975
\(535\) 7.16746e19 0.247008
\(536\) −1.43186e20 −0.486592
\(537\) 2.89886e20 0.971448
\(538\) 3.11281e20 1.02869
\(539\) −1.92812e20 −0.628376
\(540\) 1.33893e19 0.0430331
\(541\) −3.44055e20 −1.09056 −0.545279 0.838255i \(-0.683576\pi\)
−0.545279 + 0.838255i \(0.683576\pi\)
\(542\) 2.26445e20 0.707895
\(543\) −2.67818e20 −0.825737
\(544\) −5.53388e19 −0.168282
\(545\) −6.43659e19 −0.193056
\(546\) 3.39749e20 1.00511
\(547\) 6.22453e20 1.81636 0.908179 0.418582i \(-0.137473\pi\)
0.908179 + 0.418582i \(0.137473\pi\)
\(548\) 9.54905e19 0.274856
\(549\) 2.52034e19 0.0715595
\(550\) −3.23131e19 −0.0905020
\(551\) −1.68988e20 −0.466895
\(552\) −5.18296e19 −0.141265
\(553\) −5.92536e20 −1.59322
\(554\) 1.53199e18 0.00406379
\(555\) −1.72967e20 −0.452652
\(556\) −1.79723e20 −0.464026
\(557\) 5.49947e20 1.40090 0.700450 0.713701i \(-0.252983\pi\)
0.700450 + 0.713701i \(0.252983\pi\)
\(558\) 1.64458e20 0.413333
\(559\) 1.48082e20 0.367210
\(560\) −6.43292e19 −0.157398
\(561\) 1.45686e20 0.351719
\(562\) −2.95468e20 −0.703864
\(563\) 6.60749e20 1.55319 0.776593 0.630002i \(-0.216946\pi\)
0.776593 + 0.630002i \(0.216946\pi\)
\(564\) −1.15796e20 −0.268596
\(565\) 1.69123e20 0.387114
\(566\) −2.72181e20 −0.614801
\(567\) −7.01736e19 −0.156423
\(568\) −1.71379e20 −0.377002
\(569\) 6.41939e20 1.39364 0.696822 0.717244i \(-0.254597\pi\)
0.696822 + 0.717244i \(0.254597\pi\)
\(570\) 4.99734e19 0.107072
\(571\) 3.98576e18 0.00842832 0.00421416 0.999991i \(-0.498659\pi\)
0.00421416 + 0.999991i \(0.498659\pi\)
\(572\) 2.68120e20 0.559575
\(573\) 4.38888e19 0.0904054
\(574\) −8.47319e20 −1.72269
\(575\) −6.89730e19 −0.138411
\(576\) 2.10357e19 0.0416667
\(577\) −5.34283e20 −1.04461 −0.522303 0.852760i \(-0.674927\pi\)
−0.522303 + 0.852760i \(0.674927\pi\)
\(578\) −3.43660e19 −0.0663239
\(579\) 5.23752e20 0.997783
\(580\) −9.46619e19 −0.178019
\(581\) −5.75910e20 −1.06914
\(582\) 2.51489e20 0.460890
\(583\) 3.14108e20 0.568283
\(584\) 1.03938e20 0.185643
\(585\) −1.47846e20 −0.260699
\(586\) 2.05798e20 0.358269
\(587\) −8.47583e20 −1.45679 −0.728395 0.685158i \(-0.759733\pi\)
−0.728395 + 0.685158i \(0.759733\pi\)
\(588\) 1.67038e20 0.283456
\(589\) 6.13817e20 1.02843
\(590\) −2.72206e20 −0.450306
\(591\) −6.27462e20 −1.02490
\(592\) −2.71746e20 −0.438279
\(593\) −3.01600e20 −0.480310 −0.240155 0.970735i \(-0.577198\pi\)
−0.240155 + 0.970735i \(0.577198\pi\)
\(594\) −5.53789e19 −0.0870856
\(595\) 3.85965e20 0.599337
\(596\) 2.18487e20 0.335026
\(597\) −4.68443e20 −0.709331
\(598\) 5.72308e20 0.855797
\(599\) −1.60540e20 −0.237073 −0.118536 0.992950i \(-0.537820\pi\)
−0.118536 + 0.992950i \(0.537820\pi\)
\(600\) 2.79936e19 0.0408248
\(601\) 4.08865e20 0.588872 0.294436 0.955671i \(-0.404868\pi\)
0.294436 + 0.955671i \(0.404868\pi\)
\(602\) 1.46950e20 0.209024
\(603\) −3.26564e20 −0.458763
\(604\) −3.03189e20 −0.420665
\(605\) −1.92698e20 −0.264066
\(606\) 7.94748e19 0.107568
\(607\) −7.91780e20 −1.05850 −0.529248 0.848467i \(-0.677526\pi\)
−0.529248 + 0.848467i \(0.677526\pi\)
\(608\) 7.85128e19 0.103672
\(609\) 4.96127e20 0.647087
\(610\) 5.26942e19 0.0678873
\(611\) 1.27863e21 1.62718
\(612\) −1.26211e20 −0.158658
\(613\) 1.15590e21 1.43537 0.717687 0.696366i \(-0.245201\pi\)
0.717687 + 0.696366i \(0.245201\pi\)
\(614\) −2.44316e20 −0.299702
\(615\) 3.68721e20 0.446822
\(616\) 2.66070e20 0.318523
\(617\) −4.13431e19 −0.0488949 −0.0244475 0.999701i \(-0.507783\pi\)
−0.0244475 + 0.999701i \(0.507783\pi\)
\(618\) 8.35571e19 0.0976270
\(619\) 1.42683e21 1.64700 0.823500 0.567316i \(-0.192018\pi\)
0.823500 + 0.567316i \(0.192018\pi\)
\(620\) 3.43842e20 0.392122
\(621\) −1.18208e20 −0.133186
\(622\) −3.32393e20 −0.370019
\(623\) −1.11922e21 −1.23100
\(624\) −2.32279e20 −0.252421
\(625\) 3.72529e19 0.0400000
\(626\) −3.13893e20 −0.333023
\(627\) −2.06694e20 −0.216681
\(628\) −5.15280e20 −0.533760
\(629\) 1.63043e21 1.66887
\(630\) −1.46715e20 −0.148396
\(631\) 1.24140e21 1.24077 0.620387 0.784296i \(-0.286976\pi\)
0.620387 + 0.784296i \(0.286976\pi\)
\(632\) 4.05104e20 0.400118
\(633\) −7.64106e20 −0.745805
\(634\) −9.20552e20 −0.887930
\(635\) 6.88024e20 0.655844
\(636\) −2.72119e20 −0.256349
\(637\) −1.84445e21 −1.71720
\(638\) 3.91529e20 0.360254
\(639\) −3.90863e20 −0.355441
\(640\) 4.39805e19 0.0395285
\(641\) 9.44072e20 0.838629 0.419315 0.907841i \(-0.362270\pi\)
0.419315 + 0.907841i \(0.362270\pi\)
\(642\) 2.56823e20 0.225487
\(643\) −3.24966e20 −0.282004 −0.141002 0.990009i \(-0.545032\pi\)
−0.141002 + 0.990009i \(0.545032\pi\)
\(644\) 5.67933e20 0.487139
\(645\) −6.39472e19 −0.0542155
\(646\) −4.71064e20 −0.394763
\(647\) 1.59578e21 1.32188 0.660940 0.750439i \(-0.270158\pi\)
0.660940 + 0.750439i \(0.270158\pi\)
\(648\) 4.79761e19 0.0392837
\(649\) 1.12586e21 0.911278
\(650\) −3.09108e20 −0.247321
\(651\) −1.80209e21 −1.42534
\(652\) −9.71364e20 −0.759495
\(653\) 2.21448e21 1.71168 0.855841 0.517238i \(-0.173040\pi\)
0.855841 + 0.517238i \(0.173040\pi\)
\(654\) −2.30635e20 −0.176235
\(655\) −7.31869e20 −0.552871
\(656\) 5.79294e20 0.432633
\(657\) 2.37052e20 0.175026
\(658\) 1.26886e21 0.926230
\(659\) 1.41582e21 1.02180 0.510902 0.859639i \(-0.329312\pi\)
0.510902 + 0.859639i \(0.329312\pi\)
\(660\) −1.15784e20 −0.0826167
\(661\) 1.49880e21 1.05738 0.528692 0.848814i \(-0.322683\pi\)
0.528692 + 0.848814i \(0.322683\pi\)
\(662\) −9.58393e20 −0.668511
\(663\) 1.39364e21 0.961165
\(664\) 3.93737e20 0.268501
\(665\) −5.47594e20 −0.369229
\(666\) −6.19770e20 −0.413213
\(667\) 8.35727e20 0.550961
\(668\) 5.96929e20 0.389134
\(669\) −6.59145e20 −0.424898
\(670\) −6.82764e20 −0.435221
\(671\) −2.17947e20 −0.137383
\(672\) −2.30503e20 −0.143684
\(673\) −1.44986e21 −0.893743 −0.446872 0.894598i \(-0.647462\pi\)
−0.446872 + 0.894598i \(0.647462\pi\)
\(674\) −8.96774e20 −0.546681
\(675\) 6.38449e19 0.0384900
\(676\) 1.72622e21 1.02919
\(677\) −2.97847e21 −1.75622 −0.878108 0.478462i \(-0.841194\pi\)
−0.878108 + 0.478462i \(0.841194\pi\)
\(678\) 6.05998e20 0.353385
\(679\) −2.75575e21 −1.58934
\(680\) −2.63876e20 −0.150516
\(681\) −1.05008e21 −0.592403
\(682\) −1.42216e21 −0.793532
\(683\) −1.67668e21 −0.925325 −0.462663 0.886534i \(-0.653106\pi\)
−0.462663 + 0.886534i \(0.653106\pi\)
\(684\) 1.79064e20 0.0977433
\(685\) 4.55334e20 0.245839
\(686\) 3.37024e19 0.0179983
\(687\) 9.05644e20 0.478390
\(688\) −1.00467e20 −0.0524939
\(689\) 3.00477e21 1.55298
\(690\) −2.47143e20 −0.126351
\(691\) 1.06753e21 0.539879 0.269940 0.962877i \(-0.412996\pi\)
0.269940 + 0.962877i \(0.412996\pi\)
\(692\) 2.79629e20 0.139890
\(693\) 6.06826e20 0.300307
\(694\) −1.39143e20 −0.0681185
\(695\) −8.56985e20 −0.415037
\(696\) −3.39191e20 −0.162508
\(697\) −3.47567e21 −1.64738
\(698\) −3.67090e20 −0.172130
\(699\) 1.19593e21 0.554788
\(700\) −3.06746e20 −0.140781
\(701\) −3.13817e21 −1.42492 −0.712461 0.701712i \(-0.752419\pi\)
−0.712461 + 0.701712i \(0.752419\pi\)
\(702\) −5.29757e20 −0.237984
\(703\) −2.31320e21 −1.02813
\(704\) −1.81906e20 −0.0799932
\(705\) −5.52158e20 −0.240240
\(706\) 2.22432e21 0.957552
\(707\) −8.70862e20 −0.370940
\(708\) −9.75363e20 −0.411071
\(709\) −1.00699e21 −0.419933 −0.209967 0.977709i \(-0.567336\pi\)
−0.209967 + 0.977709i \(0.567336\pi\)
\(710\) −8.17197e20 −0.337201
\(711\) 9.23920e20 0.377235
\(712\) 7.65188e20 0.309149
\(713\) −3.03562e21 −1.21360
\(714\) 1.38298e21 0.547117
\(715\) 1.27849e21 0.500500
\(716\) 2.17169e21 0.841299
\(717\) −2.50612e21 −0.960744
\(718\) −1.52615e21 −0.578981
\(719\) 7.62891e20 0.286415 0.143208 0.989693i \(-0.454258\pi\)
0.143208 + 0.989693i \(0.454258\pi\)
\(720\) 1.00306e20 0.0372678
\(721\) −9.15594e20 −0.336658
\(722\) −1.27485e21 −0.463908
\(723\) 5.72510e20 0.206180
\(724\) −2.00637e21 −0.715109
\(725\) −4.51383e20 −0.159225
\(726\) −6.90472e20 −0.241058
\(727\) −4.41755e21 −1.52642 −0.763208 0.646153i \(-0.776377\pi\)
−0.763208 + 0.646153i \(0.776377\pi\)
\(728\) 2.54524e21 0.870449
\(729\) 1.09419e20 0.0370370
\(730\) 4.95616e20 0.166044
\(731\) 6.02785e20 0.199886
\(732\) 1.88813e20 0.0619724
\(733\) 4.39662e21 1.42837 0.714183 0.699959i \(-0.246798\pi\)
0.714183 + 0.699959i \(0.246798\pi\)
\(734\) −6.33448e20 −0.203700
\(735\) 7.96499e20 0.253531
\(736\) −3.88283e20 −0.122339
\(737\) 2.82396e21 0.880750
\(738\) 1.32119e21 0.407891
\(739\) −9.77741e20 −0.298807 −0.149403 0.988776i \(-0.547735\pi\)
−0.149403 + 0.988776i \(0.547735\pi\)
\(740\) −1.29579e21 −0.392008
\(741\) −1.97724e21 −0.592138
\(742\) 2.98180e21 0.883994
\(743\) 2.77204e21 0.813548 0.406774 0.913529i \(-0.366654\pi\)
0.406774 + 0.913529i \(0.366654\pi\)
\(744\) 1.23205e21 0.357957
\(745\) 1.04183e21 0.299657
\(746\) 3.59800e21 1.02452
\(747\) 8.97994e20 0.253145
\(748\) 1.09141e21 0.304597
\(749\) −2.81419e21 −0.777570
\(750\) 1.33484e20 0.0365148
\(751\) 2.06741e21 0.559922 0.279961 0.960011i \(-0.409678\pi\)
0.279961 + 0.960011i \(0.409678\pi\)
\(752\) −8.67491e20 −0.232611
\(753\) 2.73046e21 0.724892
\(754\) 3.74538e21 0.984489
\(755\) −1.44572e21 −0.376254
\(756\) −5.25708e20 −0.135466
\(757\) −5.23990e21 −1.33691 −0.668457 0.743751i \(-0.733045\pi\)
−0.668457 + 0.743751i \(0.733045\pi\)
\(758\) −1.37317e21 −0.346902
\(759\) 1.02220e21 0.255695
\(760\) 3.74378e20 0.0927275
\(761\) −2.45142e21 −0.601219 −0.300610 0.953747i \(-0.597190\pi\)
−0.300610 + 0.953747i \(0.597190\pi\)
\(762\) 2.46531e21 0.598701
\(763\) 2.52723e21 0.607729
\(764\) 3.28795e20 0.0782934
\(765\) −6.01821e20 −0.141908
\(766\) −1.09005e21 −0.254526
\(767\) 1.07701e22 2.49031
\(768\) 1.57590e20 0.0360844
\(769\) −3.17813e21 −0.720650 −0.360325 0.932827i \(-0.617334\pi\)
−0.360325 + 0.932827i \(0.617334\pi\)
\(770\) 1.26872e21 0.284896
\(771\) −5.23235e20 −0.116356
\(772\) 3.92371e21 0.864106
\(773\) −2.81548e21 −0.614054 −0.307027 0.951701i \(-0.599334\pi\)
−0.307027 + 0.951701i \(0.599334\pi\)
\(774\) −2.29134e20 −0.0494917
\(775\) 1.63957e21 0.350724
\(776\) 1.88404e21 0.399142
\(777\) 6.79126e21 1.42493
\(778\) 5.81843e21 1.20909
\(779\) 4.93116e21 1.01489
\(780\) −1.10759e21 −0.225772
\(781\) 3.37999e21 0.682390
\(782\) 2.32964e21 0.465841
\(783\) −7.73592e20 −0.153214
\(784\) 1.25137e21 0.245480
\(785\) −2.45705e21 −0.477410
\(786\) −2.62242e21 −0.504700
\(787\) −3.49874e21 −0.666961 −0.333481 0.942757i \(-0.608223\pi\)
−0.333481 + 0.942757i \(0.608223\pi\)
\(788\) −4.70065e21 −0.887588
\(789\) −1.48423e20 −0.0277603
\(790\) 1.93169e21 0.357877
\(791\) −6.64034e21 −1.21862
\(792\) −4.14874e20 −0.0754183
\(793\) −2.08489e21 −0.375434
\(794\) −4.50901e21 −0.804317
\(795\) −1.29757e21 −0.229285
\(796\) −3.50936e21 −0.614299
\(797\) −7.13892e20 −0.123793 −0.0618964 0.998083i \(-0.519715\pi\)
−0.0618964 + 0.998083i \(0.519715\pi\)
\(798\) −1.96213e21 −0.337059
\(799\) 5.20481e21 0.885735
\(800\) 2.09715e20 0.0353553
\(801\) 1.74516e21 0.291469
\(802\) −4.69859e21 −0.777427
\(803\) −2.04990e21 −0.336021
\(804\) −2.44647e21 −0.397300
\(805\) 2.70812e21 0.435711
\(806\) −1.36044e22 −2.16854
\(807\) 5.31852e21 0.839923
\(808\) 5.95389e20 0.0931570
\(809\) 2.23280e21 0.346128 0.173064 0.984911i \(-0.444633\pi\)
0.173064 + 0.984911i \(0.444633\pi\)
\(810\) 2.28768e20 0.0351364
\(811\) −7.62184e20 −0.115985 −0.0579927 0.998317i \(-0.518470\pi\)
−0.0579927 + 0.998317i \(0.518470\pi\)
\(812\) 3.71675e21 0.560394
\(813\) 3.86903e21 0.577994
\(814\) 5.35947e21 0.793302
\(815\) −4.63182e21 −0.679313
\(816\) −9.45515e20 −0.137402
\(817\) −8.55210e20 −0.123142
\(818\) −7.56029e21 −1.07867
\(819\) 5.80492e21 0.820667
\(820\) 2.76229e21 0.386959
\(821\) −9.57602e21 −1.32926 −0.664632 0.747171i \(-0.731412\pi\)
−0.664632 + 0.747171i \(0.731412\pi\)
\(822\) 1.63154e21 0.224419
\(823\) −3.94115e21 −0.537186 −0.268593 0.963254i \(-0.586559\pi\)
−0.268593 + 0.963254i \(0.586559\pi\)
\(824\) 6.25971e20 0.0845474
\(825\) −5.52099e20 −0.0738946
\(826\) 1.06877e22 1.41754
\(827\) 9.68795e21 1.27333 0.636664 0.771141i \(-0.280314\pi\)
0.636664 + 0.771141i \(0.280314\pi\)
\(828\) −8.85557e20 −0.115342
\(829\) −2.44796e21 −0.315969 −0.157985 0.987442i \(-0.550500\pi\)
−0.157985 + 0.987442i \(0.550500\pi\)
\(830\) 1.87748e21 0.240154
\(831\) 2.61754e19 0.00331807
\(832\) −1.74012e21 −0.218603
\(833\) −7.50804e21 −0.934736
\(834\) −3.07073e21 −0.378876
\(835\) 2.84638e21 0.348052
\(836\) −1.54846e21 −0.187651
\(837\) 2.80993e21 0.337485
\(838\) −1.46568e21 −0.174465
\(839\) −1.40532e22 −1.65791 −0.828954 0.559318i \(-0.811063\pi\)
−0.828954 + 0.559318i \(0.811063\pi\)
\(840\) −1.09912e21 −0.128515
\(841\) −3.15990e21 −0.366187
\(842\) 2.66429e21 0.306014
\(843\) −5.04835e21 −0.574702
\(844\) −5.72433e21 −0.645887
\(845\) 8.23123e21 0.920534
\(846\) −1.97848e21 −0.219308
\(847\) 7.56599e21 0.831267
\(848\) −2.03859e21 −0.222004
\(849\) −4.65047e21 −0.501983
\(850\) −1.25826e21 −0.134626
\(851\) 1.14399e22 1.21325
\(852\) −2.92816e21 −0.307821
\(853\) 5.24040e21 0.546068 0.273034 0.962004i \(-0.411973\pi\)
0.273034 + 0.962004i \(0.411973\pi\)
\(854\) −2.06895e21 −0.213706
\(855\) 8.53843e20 0.0874243
\(856\) 1.92400e21 0.195277
\(857\) −1.62073e22 −1.63063 −0.815313 0.579020i \(-0.803435\pi\)
−0.815313 + 0.579020i \(0.803435\pi\)
\(858\) 4.58108e21 0.456891
\(859\) −9.40358e21 −0.929703 −0.464852 0.885389i \(-0.653892\pi\)
−0.464852 + 0.885389i \(0.653892\pi\)
\(860\) −4.79063e20 −0.0469520
\(861\) −1.44772e22 −1.40657
\(862\) −4.61303e21 −0.444306
\(863\) 1.45952e22 1.39357 0.696786 0.717279i \(-0.254613\pi\)
0.696786 + 0.717279i \(0.254613\pi\)
\(864\) 3.59415e20 0.0340207
\(865\) 1.33337e21 0.125121
\(866\) −5.72192e21 −0.532301
\(867\) −5.87176e20 −0.0541533
\(868\) −1.35004e22 −1.23438
\(869\) −7.98960e21 −0.724230
\(870\) −1.61739e21 −0.145352
\(871\) 2.70141e22 2.40688
\(872\) −1.72781e21 −0.152624
\(873\) 4.29693e21 0.376315
\(874\) −3.30521e21 −0.286988
\(875\) −1.46268e21 −0.125918
\(876\) 1.77588e21 0.151577
\(877\) 6.38272e21 0.540143 0.270071 0.962840i \(-0.412953\pi\)
0.270071 + 0.962840i \(0.412953\pi\)
\(878\) 2.53339e21 0.212566
\(879\) 3.51626e21 0.292526
\(880\) −8.67398e20 −0.0715481
\(881\) 1.76031e22 1.43969 0.719845 0.694135i \(-0.244213\pi\)
0.719845 + 0.694135i \(0.244213\pi\)
\(882\) 2.85400e21 0.231441
\(883\) −2.08324e22 −1.67508 −0.837539 0.546378i \(-0.816006\pi\)
−0.837539 + 0.546378i \(0.816006\pi\)
\(884\) 1.04405e22 0.832393
\(885\) −4.65089e21 −0.367673
\(886\) 2.60872e21 0.204491
\(887\) 2.12463e22 1.65141 0.825706 0.564101i \(-0.190777\pi\)
0.825706 + 0.564101i \(0.190777\pi\)
\(888\) −4.64303e21 −0.357853
\(889\) −2.70142e22 −2.06456
\(890\) 3.64870e21 0.276512
\(891\) −9.46201e20 −0.0711051
\(892\) −4.93801e21 −0.367973
\(893\) −7.38440e21 −0.545669
\(894\) 3.73306e21 0.273548
\(895\) 1.03554e22 0.752481
\(896\) −1.72682e21 −0.124434
\(897\) 9.77841e21 0.698755
\(898\) 4.35443e21 0.308573
\(899\) −1.98662e22 −1.39610
\(900\) 4.78297e20 0.0333333
\(901\) 1.22312e22 0.845346
\(902\) −1.14250e22 −0.783084
\(903\) 2.51079e21 0.170668
\(904\) 4.53986e21 0.306040
\(905\) −9.56713e21 −0.639613
\(906\) −5.18027e21 −0.343471
\(907\) −5.60947e21 −0.368865 −0.184432 0.982845i \(-0.559045\pi\)
−0.184432 + 0.982845i \(0.559045\pi\)
\(908\) −7.86669e21 −0.513036
\(909\) 1.35790e21 0.0878293
\(910\) 1.21367e22 0.778554
\(911\) −1.72156e22 −1.09530 −0.547651 0.836707i \(-0.684478\pi\)
−0.547651 + 0.836707i \(0.684478\pi\)
\(912\) 1.34146e21 0.0846482
\(913\) −7.76541e21 −0.485997
\(914\) 2.02680e22 1.25810
\(915\) 9.00329e20 0.0554298
\(916\) 6.78467e21 0.414298
\(917\) 2.87357e22 1.74041
\(918\) −2.15643e21 −0.129544
\(919\) −2.17178e22 −1.29404 −0.647021 0.762472i \(-0.723986\pi\)
−0.647021 + 0.762472i \(0.723986\pi\)
\(920\) −1.85148e21 −0.109423
\(921\) −4.17437e21 −0.244705
\(922\) −6.28532e21 −0.365465
\(923\) 3.23331e22 1.86481
\(924\) 4.54606e21 0.260073
\(925\) −6.17879e21 −0.350623
\(926\) −1.26325e22 −0.711059
\(927\) 1.42765e21 0.0797121
\(928\) −2.54106e21 −0.140736
\(929\) 3.18113e22 1.74769 0.873844 0.486206i \(-0.161619\pi\)
0.873844 + 0.486206i \(0.161619\pi\)
\(930\) 5.87486e21 0.320166
\(931\) 1.06521e22 0.575857
\(932\) 8.95937e21 0.480461
\(933\) −5.67925e21 −0.302119
\(934\) −3.86465e21 −0.203943
\(935\) 5.20425e21 0.272440
\(936\) −3.96870e21 −0.206101
\(937\) 3.20402e21 0.165063 0.0825313 0.996588i \(-0.473700\pi\)
0.0825313 + 0.996588i \(0.473700\pi\)
\(938\) 2.68077e22 1.37005
\(939\) −5.36315e21 −0.271912
\(940\) −4.13652e21 −0.208054
\(941\) 2.01668e22 1.00627 0.503134 0.864208i \(-0.332180\pi\)
0.503134 + 0.864208i \(0.332180\pi\)
\(942\) −8.80404e21 −0.435813
\(943\) −2.43870e22 −1.19762
\(944\) −7.30697e21 −0.355998
\(945\) −2.50677e21 −0.121165
\(946\) 1.98144e21 0.0950161
\(947\) 3.06292e21 0.145717 0.0728586 0.997342i \(-0.476788\pi\)
0.0728586 + 0.997342i \(0.476788\pi\)
\(948\) 6.92158e21 0.326695
\(949\) −1.96095e22 −0.918267
\(950\) 1.78517e21 0.0829380
\(951\) −1.57285e22 −0.724992
\(952\) 1.03607e22 0.473817
\(953\) 3.11794e22 1.41472 0.707360 0.706853i \(-0.249886\pi\)
0.707360 + 0.706853i \(0.249886\pi\)
\(954\) −4.64941e21 −0.209308
\(955\) 1.56782e21 0.0700277
\(956\) −1.87747e22 −0.832029
\(957\) 6.68964e21 0.294146
\(958\) −1.42331e22 −0.620950
\(959\) −1.78780e22 −0.773889
\(960\) 7.51447e20 0.0322749
\(961\) 4.86949e22 2.07519
\(962\) 5.12689e22 2.16791
\(963\) 4.38806e21 0.184109
\(964\) 4.28898e21 0.178557
\(965\) 1.87097e22 0.772880
\(966\) 9.70367e21 0.397748
\(967\) −2.87477e22 −1.16924 −0.584620 0.811307i \(-0.698756\pi\)
−0.584620 + 0.811307i \(0.698756\pi\)
\(968\) −5.17270e21 −0.208762
\(969\) −8.04857e21 −0.322323
\(970\) 8.98382e21 0.357004
\(971\) −2.32350e22 −0.916216 −0.458108 0.888897i \(-0.651473\pi\)
−0.458108 + 0.888897i \(0.651473\pi\)
\(972\) 8.19717e20 0.0320750
\(973\) 3.36482e22 1.30652
\(974\) −6.82103e21 −0.262819
\(975\) −5.28140e21 −0.201936
\(976\) 1.41450e21 0.0536696
\(977\) −5.23387e22 −1.97067 −0.985334 0.170637i \(-0.945417\pi\)
−0.985334 + 0.170637i \(0.945417\pi\)
\(978\) −1.65967e22 −0.620125
\(979\) −1.50913e22 −0.559573
\(980\) 5.96701e21 0.219564
\(981\) −3.94061e21 −0.143895
\(982\) −3.47452e22 −1.25909
\(983\) 2.71260e22 0.975515 0.487757 0.872979i \(-0.337815\pi\)
0.487757 + 0.872979i \(0.337815\pi\)
\(984\) 9.89777e21 0.353244
\(985\) −2.24145e22 −0.793883
\(986\) 1.52460e22 0.535893
\(987\) 2.16796e22 0.756264
\(988\) −1.48126e22 −0.512807
\(989\) 4.22943e21 0.145315
\(990\) −1.97827e21 −0.0674562
\(991\) −4.42394e21 −0.149712 −0.0748560 0.997194i \(-0.523850\pi\)
−0.0748560 + 0.997194i \(0.523850\pi\)
\(992\) 9.22993e21 0.310000
\(993\) −1.63750e22 −0.545837
\(994\) 3.20860e22 1.06149
\(995\) −1.67339e22 −0.549446
\(996\) 6.72736e21 0.219230
\(997\) −3.88665e22 −1.25708 −0.628538 0.777779i \(-0.716347\pi\)
−0.628538 + 0.777779i \(0.716347\pi\)
\(998\) −1.14474e22 −0.367476
\(999\) −1.05894e22 −0.337387
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 30.16.a.f.1.1 1
3.2 odd 2 90.16.a.a.1.1 1
5.2 odd 4 150.16.c.f.49.2 2
5.3 odd 4 150.16.c.f.49.1 2
5.4 even 2 150.16.a.c.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
30.16.a.f.1.1 1 1.1 even 1 trivial
90.16.a.a.1.1 1 3.2 odd 2
150.16.a.c.1.1 1 5.4 even 2
150.16.c.f.49.1 2 5.3 odd 4
150.16.c.f.49.2 2 5.2 odd 4