Properties

Label 3024.2.r.j.1009.1
Level $3024$
Weight $2$
Character 3024.1009
Analytic conductor $24.147$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(1009,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.1009");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.r (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1009.1
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 3024.1009
Dual form 3024.2.r.j.2017.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.849814 + 1.47192i) q^{5} +(-0.500000 - 0.866025i) q^{7} +O(q^{10})\) \(q+(-0.849814 + 1.47192i) q^{5} +(-0.500000 - 0.866025i) q^{7} +(-1.23855 - 2.14523i) q^{11} +(-0.388736 + 0.673310i) q^{13} -2.81089 q^{17} +4.98762 q^{19} +(-0.356004 + 0.616617i) q^{23} +(1.05563 + 1.82841i) q^{25} +(2.25526 + 3.90623i) q^{29} +(2.54944 - 4.41576i) q^{31} +1.69963 q^{35} -6.87636 q^{37} +(-2.93818 + 5.08907i) q^{41} +(-2.32691 - 4.03033i) q^{43} +(-6.49381 - 11.2476i) q^{47} +(-0.500000 + 0.866025i) q^{49} -1.88874 q^{53} +4.21015 q^{55} +(-7.14400 + 12.3738i) q^{59} +(-7.15452 - 12.3920i) q^{61} +(-0.660706 - 1.14438i) q^{65} +(3.99381 - 6.91748i) q^{67} -10.2632 q^{71} +4.98762 q^{73} +(-1.23855 + 2.14523i) q^{77} +(-4.60507 - 7.97622i) q^{79} +(-4.40545 - 7.63046i) q^{83} +(2.38874 - 4.13741i) q^{85} -9.65383 q^{89} +0.777472 q^{91} +(-4.23855 + 7.34138i) q^{95} +(-4.32072 - 7.48371i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q + q^{5} - 3 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 6 q + q^{5} - 3 q^{7} - 2 q^{11} - 3 q^{13} - 4 q^{17} - 6 q^{19} - 14 q^{23} + 6 q^{25} + q^{29} - 3 q^{31} - 2 q^{35} - 6 q^{37} + 3 q^{43} - 21 q^{47} - 3 q^{49} - 12 q^{53} - 12 q^{55} - 31 q^{59} - 6 q^{61} + 15 q^{65} + 6 q^{67} + 34 q^{71} - 6 q^{73} - 2 q^{77} - 9 q^{79} - 20 q^{83} + 15 q^{85} - 24 q^{89} + 6 q^{91} - 20 q^{95} + 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −0.849814 + 1.47192i −0.380048 + 0.658263i −0.991069 0.133352i \(-0.957426\pi\)
0.611020 + 0.791615i \(0.290759\pi\)
\(6\) 0 0
\(7\) −0.500000 0.866025i −0.188982 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −1.23855 2.14523i −0.373437 0.646812i 0.616655 0.787234i \(-0.288487\pi\)
−0.990092 + 0.140422i \(0.955154\pi\)
\(12\) 0 0
\(13\) −0.388736 + 0.673310i −0.107816 + 0.186743i −0.914885 0.403714i \(-0.867719\pi\)
0.807069 + 0.590457i \(0.201052\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −2.81089 −0.681742 −0.340871 0.940110i \(-0.610722\pi\)
−0.340871 + 0.940110i \(0.610722\pi\)
\(18\) 0 0
\(19\) 4.98762 1.14424 0.572119 0.820170i \(-0.306121\pi\)
0.572119 + 0.820170i \(0.306121\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.356004 + 0.616617i −0.0742320 + 0.128574i −0.900752 0.434334i \(-0.856984\pi\)
0.826520 + 0.562907i \(0.190317\pi\)
\(24\) 0 0
\(25\) 1.05563 + 1.82841i 0.211126 + 0.365682i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.25526 + 3.90623i 0.418791 + 0.725368i 0.995818 0.0913573i \(-0.0291205\pi\)
−0.577027 + 0.816725i \(0.695787\pi\)
\(30\) 0 0
\(31\) 2.54944 4.41576i 0.457893 0.793095i −0.540956 0.841051i \(-0.681937\pi\)
0.998849 + 0.0479563i \(0.0152708\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 1.69963 0.287290
\(36\) 0 0
\(37\) −6.87636 −1.13047 −0.565233 0.824931i \(-0.691214\pi\)
−0.565233 + 0.824931i \(0.691214\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.93818 + 5.08907i −0.458866 + 0.794780i −0.998901 0.0468628i \(-0.985078\pi\)
0.540035 + 0.841643i \(0.318411\pi\)
\(42\) 0 0
\(43\) −2.32691 4.03033i −0.354851 0.614620i 0.632241 0.774771i \(-0.282135\pi\)
−0.987092 + 0.160151i \(0.948802\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.49381 11.2476i −0.947220 1.64063i −0.751245 0.660023i \(-0.770546\pi\)
−0.195975 0.980609i \(-0.562787\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −1.88874 −0.259438 −0.129719 0.991551i \(-0.541407\pi\)
−0.129719 + 0.991551i \(0.541407\pi\)
\(54\) 0 0
\(55\) 4.21015 0.567696
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −7.14400 + 12.3738i −0.930069 + 1.61093i −0.146870 + 0.989156i \(0.546920\pi\)
−0.783199 + 0.621771i \(0.786413\pi\)
\(60\) 0 0
\(61\) −7.15452 12.3920i −0.916042 1.58663i −0.805369 0.592774i \(-0.798033\pi\)
−0.110673 0.993857i \(-0.535301\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −0.660706 1.14438i −0.0819505 0.141942i
\(66\) 0 0
\(67\) 3.99381 6.91748i 0.487922 0.845105i −0.511982 0.858996i \(-0.671089\pi\)
0.999904 + 0.0138913i \(0.00442187\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −10.2632 −1.21802 −0.609011 0.793162i \(-0.708433\pi\)
−0.609011 + 0.793162i \(0.708433\pi\)
\(72\) 0 0
\(73\) 4.98762 0.583757 0.291878 0.956455i \(-0.405720\pi\)
0.291878 + 0.956455i \(0.405720\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −1.23855 + 2.14523i −0.141146 + 0.244472i
\(78\) 0 0
\(79\) −4.60507 7.97622i −0.518111 0.897395i −0.999779 0.0210410i \(-0.993302\pi\)
0.481667 0.876354i \(-0.340031\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.40545 7.63046i −0.483561 0.837551i 0.516261 0.856431i \(-0.327323\pi\)
−0.999822 + 0.0188798i \(0.993990\pi\)
\(84\) 0 0
\(85\) 2.38874 4.13741i 0.259095 0.448765i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −9.65383 −1.02330 −0.511652 0.859193i \(-0.670966\pi\)
−0.511652 + 0.859193i \(0.670966\pi\)
\(90\) 0 0
\(91\) 0.777472 0.0815012
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −4.23855 + 7.34138i −0.434866 + 0.753210i
\(96\) 0 0
\(97\) −4.32072 7.48371i −0.438703 0.759856i 0.558887 0.829244i \(-0.311229\pi\)
−0.997590 + 0.0693880i \(0.977895\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 1.20582 + 2.08854i 0.119983 + 0.207817i 0.919761 0.392479i \(-0.128383\pi\)
−0.799777 + 0.600297i \(0.795049\pi\)
\(102\) 0 0
\(103\) −2.16690 + 3.75317i −0.213511 + 0.369811i −0.952811 0.303565i \(-0.901823\pi\)
0.739300 + 0.673376i \(0.235156\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 19.1978 1.85592 0.927959 0.372682i \(-0.121562\pi\)
0.927959 + 0.372682i \(0.121562\pi\)
\(108\) 0 0
\(109\) 18.9629 1.81631 0.908156 0.418631i \(-0.137490\pi\)
0.908156 + 0.418631i \(0.137490\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.46472 11.1972i 0.608150 1.05335i −0.383395 0.923584i \(-0.625245\pi\)
0.991545 0.129762i \(-0.0414213\pi\)
\(114\) 0 0
\(115\) −0.605074 1.04802i −0.0564235 0.0977283i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 1.40545 + 2.43430i 0.128837 + 0.223152i
\(120\) 0 0
\(121\) 2.43199 4.21233i 0.221090 0.382939i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −12.0865 −1.08105
\(126\) 0 0
\(127\) −17.6291 −1.56433 −0.782163 0.623073i \(-0.785884\pi\)
−0.782163 + 0.623073i \(0.785884\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.84362 4.92530i 0.248449 0.430326i −0.714647 0.699485i \(-0.753413\pi\)
0.963096 + 0.269160i \(0.0867460\pi\)
\(132\) 0 0
\(133\) −2.49381 4.31941i −0.216241 0.374540i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.72617 16.8462i −0.830963 1.43927i −0.897276 0.441471i \(-0.854457\pi\)
0.0663128 0.997799i \(-0.478876\pi\)
\(138\) 0 0
\(139\) −1.49381 + 2.58736i −0.126703 + 0.219457i −0.922397 0.386242i \(-0.873773\pi\)
0.795694 + 0.605699i \(0.207106\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 1.92587 0.161050
\(144\) 0 0
\(145\) −7.66621 −0.636644
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.04944 7.01384i 0.331743 0.574596i −0.651111 0.758983i \(-0.725697\pi\)
0.982854 + 0.184387i \(0.0590299\pi\)
\(150\) 0 0
\(151\) −4.43199 7.67643i −0.360670 0.624699i 0.627401 0.778696i \(-0.284119\pi\)
−0.988071 + 0.153997i \(0.950785\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 4.33310 + 7.50516i 0.348043 + 0.602829i
\(156\) 0 0
\(157\) 4.38255 7.59079i 0.349765 0.605811i −0.636442 0.771324i \(-0.719595\pi\)
0.986208 + 0.165513i \(0.0529280\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.712008 0.0561141
\(162\) 0 0
\(163\) 1.98762 0.155682 0.0778412 0.996966i \(-0.475197\pi\)
0.0778412 + 0.996966i \(0.475197\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.31089 + 2.27053i −0.101440 + 0.175699i −0.912278 0.409571i \(-0.865678\pi\)
0.810838 + 0.585270i \(0.199012\pi\)
\(168\) 0 0
\(169\) 6.19777 + 10.7349i 0.476751 + 0.825758i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.61491 4.52915i −0.198808 0.344345i 0.749334 0.662192i \(-0.230374\pi\)
−0.948142 + 0.317847i \(0.897040\pi\)
\(174\) 0 0
\(175\) 1.05563 1.82841i 0.0797983 0.138215i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −4.76509 −0.356160 −0.178080 0.984016i \(-0.556989\pi\)
−0.178080 + 0.984016i \(0.556989\pi\)
\(180\) 0 0
\(181\) −10.4313 −0.775352 −0.387676 0.921796i \(-0.626722\pi\)
−0.387676 + 0.921796i \(0.626722\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 5.84362 10.1215i 0.429632 0.744144i
\(186\) 0 0
\(187\) 3.48143 + 6.03001i 0.254587 + 0.440958i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −6.66071 11.5367i −0.481952 0.834765i 0.517834 0.855481i \(-0.326739\pi\)
−0.999785 + 0.0207164i \(0.993405\pi\)
\(192\) 0 0
\(193\) 7.32072 12.6799i 0.526957 0.912717i −0.472549 0.881304i \(-0.656666\pi\)
0.999507 0.0314125i \(-0.0100005\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.4858 1.31706 0.658528 0.752556i \(-0.271179\pi\)
0.658528 + 0.752556i \(0.271179\pi\)
\(198\) 0 0
\(199\) −23.6167 −1.67414 −0.837071 0.547094i \(-0.815734\pi\)
−0.837071 + 0.547094i \(0.815734\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 2.25526 3.90623i 0.158288 0.274163i
\(204\) 0 0
\(205\) −4.99381 8.64953i −0.348783 0.604110i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −6.17742 10.6996i −0.427301 0.740107i
\(210\) 0 0
\(211\) −7.27747 + 12.6050i −0.501002 + 0.867761i 0.498998 + 0.866603i \(0.333702\pi\)
−0.999999 + 0.00115718i \(0.999632\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.90978 0.539442
\(216\) 0 0
\(217\) −5.09888 −0.346135
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 1.09269 1.89260i 0.0735026 0.127310i
\(222\) 0 0
\(223\) 4.72253 + 8.17966i 0.316244 + 0.547750i 0.979701 0.200464i \(-0.0642449\pi\)
−0.663457 + 0.748214i \(0.730912\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.55563 16.5508i −0.634230 1.09852i −0.986678 0.162687i \(-0.947984\pi\)
0.352448 0.935831i \(-0.385349\pi\)
\(228\) 0 0
\(229\) −5.72253 + 9.91171i −0.378155 + 0.654984i −0.990794 0.135379i \(-0.956775\pi\)
0.612639 + 0.790363i \(0.290108\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 1.19049 0.0779913 0.0389956 0.999239i \(-0.487584\pi\)
0.0389956 + 0.999239i \(0.487584\pi\)
\(234\) 0 0
\(235\) 22.0741 1.43996
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −12.1414 + 21.0296i −0.785365 + 1.36029i 0.143416 + 0.989663i \(0.454191\pi\)
−0.928781 + 0.370630i \(0.879142\pi\)
\(240\) 0 0
\(241\) 10.7095 + 18.5493i 0.689857 + 1.19487i 0.971884 + 0.235461i \(0.0756599\pi\)
−0.282027 + 0.959406i \(0.591007\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −0.849814 1.47192i −0.0542926 0.0940376i
\(246\) 0 0
\(247\) −1.93887 + 3.35822i −0.123367 + 0.213678i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.67996 −0.169158 −0.0845789 0.996417i \(-0.526955\pi\)
−0.0845789 + 0.996417i \(0.526955\pi\)
\(252\) 0 0
\(253\) 1.76371 0.110884
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.54256 + 9.60000i −0.345736 + 0.598832i −0.985487 0.169750i \(-0.945704\pi\)
0.639752 + 0.768582i \(0.279037\pi\)
\(258\) 0 0
\(259\) 3.43818 + 5.95510i 0.213638 + 0.370032i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −6.70396 11.6116i −0.413384 0.716002i 0.581873 0.813279i \(-0.302320\pi\)
−0.995257 + 0.0972776i \(0.968987\pi\)
\(264\) 0 0
\(265\) 1.60507 2.78007i 0.0985989 0.170778i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −4.09022 −0.249385 −0.124693 0.992195i \(-0.539794\pi\)
−0.124693 + 0.992195i \(0.539794\pi\)
\(270\) 0 0
\(271\) −6.12364 −0.371985 −0.185992 0.982551i \(-0.559550\pi\)
−0.185992 + 0.982551i \(0.559550\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 2.61491 4.52915i 0.157685 0.273118i
\(276\) 0 0
\(277\) −7.88255 13.6530i −0.473616 0.820327i 0.525928 0.850529i \(-0.323718\pi\)
−0.999544 + 0.0302019i \(0.990385\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.5946 18.3503i −0.632018 1.09469i −0.987139 0.159867i \(-0.948893\pi\)
0.355120 0.934821i \(-0.384440\pi\)
\(282\) 0 0
\(283\) 3.43818 5.95510i 0.204378 0.353994i −0.745556 0.666443i \(-0.767816\pi\)
0.949935 + 0.312449i \(0.101149\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.87636 0.346870
\(288\) 0 0
\(289\) −9.09888 −0.535228
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −13.7534 + 23.8216i −0.803482 + 1.39167i 0.113829 + 0.993500i \(0.463689\pi\)
−0.917311 + 0.398172i \(0.869645\pi\)
\(294\) 0 0
\(295\) −12.1421 21.0308i −0.706943 1.22446i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −0.276783 0.479402i −0.0160068 0.0277245i
\(300\) 0 0
\(301\) −2.32691 + 4.03033i −0.134121 + 0.232305i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 24.3200 1.39256
\(306\) 0 0
\(307\) 21.5178 1.22809 0.614043 0.789273i \(-0.289542\pi\)
0.614043 + 0.789273i \(0.289542\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −9.19275 + 15.9223i −0.521273 + 0.902871i 0.478421 + 0.878131i \(0.341209\pi\)
−0.999694 + 0.0247407i \(0.992124\pi\)
\(312\) 0 0
\(313\) 0.000688709 0.00119288i 3.89281e−5 6.74255e-5i 0.866045 0.499966i \(-0.166654\pi\)
−0.866006 + 0.500034i \(0.833321\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 7.04944 + 12.2100i 0.395936 + 0.685781i 0.993220 0.116248i \(-0.0370868\pi\)
−0.597284 + 0.802030i \(0.703753\pi\)
\(318\) 0 0
\(319\) 5.58650 9.67611i 0.312784 0.541758i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −14.0197 −0.780075
\(324\) 0 0
\(325\) −1.64145 −0.0910512
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) −6.49381 + 11.2476i −0.358015 + 0.620101i
\(330\) 0 0
\(331\) 6.98143 + 12.0922i 0.383734 + 0.664647i 0.991593 0.129398i \(-0.0413046\pi\)
−0.607859 + 0.794045i \(0.707971\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.78799 + 11.7571i 0.370868 + 0.642362i
\(336\) 0 0
\(337\) −12.0982 + 20.9547i −0.659031 + 1.14147i 0.321836 + 0.946795i \(0.395700\pi\)
−0.980867 + 0.194679i \(0.937633\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −12.6304 −0.683977
\(342\) 0 0
\(343\) 1.00000 0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.3578 28.3325i 0.878132 1.52097i 0.0247435 0.999694i \(-0.492123\pi\)
0.853389 0.521275i \(-0.174544\pi\)
\(348\) 0 0
\(349\) 11.8887 + 20.5919i 0.636389 + 1.10226i 0.986219 + 0.165445i \(0.0529062\pi\)
−0.349830 + 0.936813i \(0.613760\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 10.0309 + 17.3740i 0.533889 + 0.924724i 0.999216 + 0.0395847i \(0.0126035\pi\)
−0.465327 + 0.885139i \(0.654063\pi\)
\(354\) 0 0
\(355\) 8.72184 15.1067i 0.462907 0.801779i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 8.30175 0.438150 0.219075 0.975708i \(-0.429696\pi\)
0.219075 + 0.975708i \(0.429696\pi\)
\(360\) 0 0
\(361\) 5.87636 0.309282
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.23855 + 7.34138i −0.221856 + 0.384266i
\(366\) 0 0
\(367\) 5.77197 + 9.99735i 0.301294 + 0.521857i 0.976429 0.215837i \(-0.0692480\pi\)
−0.675135 + 0.737694i \(0.735915\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0.944368 + 1.63569i 0.0490291 + 0.0849210i
\(372\) 0 0
\(373\) −1.42580 + 2.46956i −0.0738250 + 0.127869i −0.900575 0.434701i \(-0.856854\pi\)
0.826750 + 0.562570i \(0.190187\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −3.50680 −0.180609
\(378\) 0 0
\(379\) −35.9519 −1.84672 −0.923361 0.383932i \(-0.874570\pi\)
−0.923361 + 0.383932i \(0.874570\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.915278 1.58531i 0.0467685 0.0810054i −0.841694 0.539956i \(-0.818441\pi\)
0.888462 + 0.458950i \(0.151774\pi\)
\(384\) 0 0
\(385\) −2.10507 3.64610i −0.107285 0.185822i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.69530 9.86454i −0.288763 0.500152i 0.684752 0.728776i \(-0.259911\pi\)
−0.973515 + 0.228624i \(0.926577\pi\)
\(390\) 0 0
\(391\) 1.00069 1.73324i 0.0506070 0.0876539i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 15.6538 0.787630
\(396\) 0 0
\(397\) −10.4313 −0.523532 −0.261766 0.965131i \(-0.584305\pi\)
−0.261766 + 0.965131i \(0.584305\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.0371 + 29.5091i −0.850790 + 1.47361i 0.0297058 + 0.999559i \(0.490543\pi\)
−0.880496 + 0.474053i \(0.842790\pi\)
\(402\) 0 0
\(403\) 1.98212 + 3.43313i 0.0987364 + 0.171016i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 8.51671 + 14.7514i 0.422158 + 0.731199i
\(408\) 0 0
\(409\) −1.98762 + 3.44266i −0.0982815 + 0.170229i −0.910973 0.412465i \(-0.864668\pi\)
0.812692 + 0.582694i \(0.198001\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 14.2880 0.703066
\(414\) 0 0
\(415\) 14.9752 0.735106
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.72184 8.17847i 0.230677 0.399544i −0.727331 0.686287i \(-0.759239\pi\)
0.958008 + 0.286743i \(0.0925726\pi\)
\(420\) 0 0
\(421\) 3.16002 + 5.47331i 0.154010 + 0.266753i 0.932698 0.360658i \(-0.117448\pi\)
−0.778688 + 0.627411i \(0.784115\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −2.96727 5.13946i −0.143934 0.249300i
\(426\) 0 0
\(427\) −7.15452 + 12.3920i −0.346231 + 0.599690i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −27.7541 −1.33687 −0.668434 0.743772i \(-0.733035\pi\)
−0.668434 + 0.743772i \(0.733035\pi\)
\(432\) 0 0
\(433\) 11.2473 0.540510 0.270255 0.962789i \(-0.412892\pi\)
0.270255 + 0.962789i \(0.412892\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −1.77561 + 3.07545i −0.0849391 + 0.147119i
\(438\) 0 0
\(439\) −7.54325 13.0653i −0.360020 0.623573i 0.627944 0.778259i \(-0.283897\pi\)
−0.987964 + 0.154686i \(0.950563\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −3.96658 6.87032i −0.188458 0.326419i 0.756278 0.654250i \(-0.227016\pi\)
−0.944736 + 0.327831i \(0.893682\pi\)
\(444\) 0 0
\(445\) 8.20396 14.2097i 0.388905 0.673603i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.5636 1.53677 0.768386 0.639987i \(-0.221060\pi\)
0.768386 + 0.639987i \(0.221060\pi\)
\(450\) 0 0
\(451\) 14.5563 0.685430
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −0.660706 + 1.14438i −0.0309744 + 0.0536492i
\(456\) 0 0
\(457\) −5.70396 9.87955i −0.266820 0.462146i 0.701219 0.712946i \(-0.252640\pi\)
−0.968039 + 0.250800i \(0.919306\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.45853 + 4.25830i 0.114505 + 0.198329i 0.917582 0.397547i \(-0.130138\pi\)
−0.803077 + 0.595876i \(0.796805\pi\)
\(462\) 0 0
\(463\) 7.59957 13.1628i 0.353182 0.611729i −0.633623 0.773642i \(-0.718433\pi\)
0.986805 + 0.161913i \(0.0517663\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 23.7810 1.10046 0.550228 0.835015i \(-0.314541\pi\)
0.550228 + 0.835015i \(0.314541\pi\)
\(468\) 0 0
\(469\) −7.98762 −0.368834
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −5.76400 + 9.98354i −0.265029 + 0.459044i
\(474\) 0 0
\(475\) 5.26509 + 9.11941i 0.241579 + 0.418427i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.02909 5.24654i −0.138403 0.239720i 0.788489 0.615048i \(-0.210863\pi\)
−0.926892 + 0.375328i \(0.877530\pi\)
\(480\) 0 0
\(481\) 2.67309 4.62992i 0.121882 0.211106i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 14.6872 0.666914
\(486\) 0 0
\(487\) −1.13602 −0.0514781 −0.0257391 0.999669i \(-0.508194\pi\)
−0.0257391 + 0.999669i \(0.508194\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 16.4382 28.4718i 0.741845 1.28491i −0.209810 0.977742i \(-0.567285\pi\)
0.951655 0.307170i \(-0.0993821\pi\)
\(492\) 0 0
\(493\) −6.33929 10.9800i −0.285507 0.494513i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.13162 + 8.88822i 0.230184 + 0.398691i
\(498\) 0 0
\(499\) 13.0989 22.6879i 0.586387 1.01565i −0.408314 0.912841i \(-0.633883\pi\)
0.994701 0.102810i \(-0.0327834\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −25.8516 −1.15267 −0.576333 0.817215i \(-0.695517\pi\)
−0.576333 + 0.817215i \(0.695517\pi\)
\(504\) 0 0
\(505\) −4.09888 −0.182398
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.5858 30.4595i 0.779478 1.35009i −0.152766 0.988262i \(-0.548818\pi\)
0.932243 0.361832i \(-0.117849\pi\)
\(510\) 0 0
\(511\) −2.49381 4.31941i −0.110320 0.191079i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −3.68292 6.37900i −0.162289 0.281092i
\(516\) 0 0
\(517\) −16.0858 + 27.8615i −0.707453 + 1.22535i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 17.8626 0.782575 0.391287 0.920269i \(-0.372030\pi\)
0.391287 + 0.920269i \(0.372030\pi\)
\(522\) 0 0
\(523\) 22.8640 0.999772 0.499886 0.866091i \(-0.333375\pi\)
0.499886 + 0.866091i \(0.333375\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.16621 + 12.4122i −0.312165 + 0.540685i
\(528\) 0 0
\(529\) 11.2465 + 19.4795i 0.488979 + 0.846937i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.28435 3.95661i −0.0989462 0.171380i
\(534\) 0 0
\(535\) −16.3145 + 28.2576i −0.705339 + 1.22168i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 2.47710 0.106696
\(540\) 0 0
\(541\) 22.3077 0.959081 0.479541 0.877520i \(-0.340803\pi\)
0.479541 + 0.877520i \(0.340803\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −16.1149 + 27.9118i −0.690287 + 1.19561i
\(546\) 0 0
\(547\) 10.8083 + 18.7206i 0.462131 + 0.800435i 0.999067 0.0431882i \(-0.0137515\pi\)
−0.536936 + 0.843623i \(0.680418\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 11.2484 + 19.4828i 0.479197 + 0.829994i
\(552\) 0 0
\(553\) −4.60507 + 7.97622i −0.195828 + 0.339183i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −3.17535 −0.134544 −0.0672720 0.997735i \(-0.521430\pi\)
−0.0672720 + 0.997735i \(0.521430\pi\)
\(558\) 0 0
\(559\) 3.61822 0.153034
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.8814 + 37.8997i −0.922190 + 1.59728i −0.126171 + 0.992009i \(0.540269\pi\)
−0.796019 + 0.605271i \(0.793065\pi\)
\(564\) 0 0
\(565\) 10.9876 + 19.0311i 0.462253 + 0.800645i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −11.9313 20.6656i −0.500186 0.866348i −1.00000 0.000214897i \(-0.999932\pi\)
0.499814 0.866133i \(-0.333402\pi\)
\(570\) 0 0
\(571\) 5.11058 8.85178i 0.213871 0.370435i −0.739052 0.673649i \(-0.764726\pi\)
0.952923 + 0.303213i \(0.0980595\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −1.50324 −0.0626893
\(576\) 0 0
\(577\) −36.0370 −1.50024 −0.750120 0.661302i \(-0.770004\pi\)
−0.750120 + 0.661302i \(0.770004\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −4.40545 + 7.63046i −0.182769 + 0.316565i
\(582\) 0 0
\(583\) 2.33929 + 4.05178i 0.0968836 + 0.167807i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.5142 + 18.2111i 0.433966 + 0.751651i 0.997211 0.0746391i \(-0.0237805\pi\)
−0.563245 + 0.826290i \(0.690447\pi\)
\(588\) 0 0
\(589\) 12.7156 22.0242i 0.523939 0.907489i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 25.1606 1.03322 0.516612 0.856220i \(-0.327193\pi\)
0.516612 + 0.856220i \(0.327193\pi\)
\(594\) 0 0
\(595\) −4.77747 −0.195857
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 1.11126 1.92477i 0.0454050 0.0786438i −0.842430 0.538806i \(-0.818875\pi\)
0.887835 + 0.460162i \(0.152209\pi\)
\(600\) 0 0
\(601\) −14.0494 24.3343i −0.573089 0.992619i −0.996246 0.0865627i \(-0.972412\pi\)
0.423158 0.906056i \(-0.360922\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 4.13348 + 7.15939i 0.168050 + 0.291071i
\(606\) 0 0
\(607\) −3.26509 + 5.65531i −0.132526 + 0.229542i −0.924650 0.380819i \(-0.875642\pi\)
0.792124 + 0.610361i \(0.208975\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 10.0975 0.408501
\(612\) 0 0
\(613\) 10.7280 0.433298 0.216649 0.976250i \(-0.430487\pi\)
0.216649 + 0.976250i \(0.430487\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.5265 + 26.8928i −0.625075 + 1.08266i 0.363451 + 0.931613i \(0.381598\pi\)
−0.988526 + 0.151049i \(0.951735\pi\)
\(618\) 0 0
\(619\) −0.723217 1.25265i −0.0290685 0.0503482i 0.851125 0.524963i \(-0.175921\pi\)
−0.880194 + 0.474615i \(0.842587\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 4.82691 + 8.36046i 0.193386 + 0.334955i
\(624\) 0 0
\(625\) 4.99312 8.64834i 0.199725 0.345934i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 19.3287 0.770686
\(630\) 0 0
\(631\) −0.0741250 −0.00295087 −0.00147544 0.999999i \(-0.500470\pi\)
−0.00147544 + 0.999999i \(0.500470\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.9814 25.9486i 0.594520 1.02974i
\(636\) 0 0
\(637\) −0.388736 0.673310i −0.0154023 0.0266775i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23.5204 40.7384i −0.928998 1.60907i −0.785002 0.619494i \(-0.787338\pi\)
−0.143996 0.989578i \(-0.545995\pi\)
\(642\) 0 0
\(643\) −16.8647 + 29.2105i −0.665077 + 1.15195i 0.314187 + 0.949361i \(0.398268\pi\)
−0.979264 + 0.202587i \(0.935065\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 44.9629 1.76767 0.883836 0.467796i \(-0.154952\pi\)
0.883836 + 0.467796i \(0.154952\pi\)
\(648\) 0 0
\(649\) 35.3928 1.38929
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.8578 36.1267i 0.816228 1.41375i −0.0922143 0.995739i \(-0.529394\pi\)
0.908443 0.418010i \(-0.137272\pi\)
\(654\) 0 0
\(655\) 4.83310 + 8.37118i 0.188845 + 0.327089i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 10.5259 + 18.2313i 0.410029 + 0.710191i 0.994892 0.100941i \(-0.0321852\pi\)
−0.584863 + 0.811132i \(0.698852\pi\)
\(660\) 0 0
\(661\) −11.2218 + 19.4368i −0.436479 + 0.756004i −0.997415 0.0718553i \(-0.977108\pi\)
0.560936 + 0.827859i \(0.310441\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 8.47710 0.328728
\(666\) 0 0
\(667\) −3.21153 −0.124351
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.7225 + 30.6962i −0.684168 + 1.18501i
\(672\) 0 0
\(673\) 5.83929 + 10.1140i 0.225088 + 0.389864i 0.956346 0.292237i \(-0.0943996\pi\)
−0.731258 + 0.682101i \(0.761066\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 5.23422 + 9.06593i 0.201167 + 0.348432i 0.948905 0.315562i \(-0.102193\pi\)
−0.747737 + 0.663995i \(0.768860\pi\)
\(678\) 0 0
\(679\) −4.32072 + 7.48371i −0.165814 + 0.287199i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 32.8158 1.25566 0.627832 0.778349i \(-0.283943\pi\)
0.627832 + 0.778349i \(0.283943\pi\)
\(684\) 0 0
\(685\) 33.0617 1.26322
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 0.734219 1.27171i 0.0279715 0.0484481i
\(690\) 0 0
\(691\) 2.95056 + 5.11052i 0.112245 + 0.194413i 0.916675 0.399634i \(-0.130863\pi\)
−0.804430 + 0.594047i \(0.797529\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −2.53892 4.39754i −0.0963068 0.166808i
\(696\) 0 0
\(697\) 8.25890 14.3048i 0.312828 0.541834i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.3782 0.467519 0.233759 0.972294i \(-0.424897\pi\)
0.233759 + 0.972294i \(0.424897\pi\)
\(702\) 0 0
\(703\) −34.2967 −1.29352
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.20582 2.08854i 0.0453495 0.0785476i
\(708\) 0 0
\(709\) 6.64145 + 11.5033i 0.249425 + 0.432016i 0.963366 0.268189i \(-0.0864251\pi\)
−0.713942 + 0.700205i \(0.753092\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 1.81522 + 3.14406i 0.0679806 + 0.117746i
\(714\) 0 0
\(715\) −1.63664 + 2.83474i −0.0612067 + 0.106013i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −24.3694 −0.908825 −0.454413 0.890791i \(-0.650151\pi\)
−0.454413 + 0.890791i \(0.650151\pi\)
\(720\) 0 0
\(721\) 4.33379 0.161399
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −4.76145 + 8.24707i −0.176836 + 0.306289i
\(726\) 0 0
\(727\) −7.99450 13.8469i −0.296500 0.513552i 0.678833 0.734293i \(-0.262486\pi\)
−0.975333 + 0.220740i \(0.929153\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.54070 + 11.3288i 0.241917 + 0.419012i
\(732\) 0 0
\(733\) 21.1414 36.6181i 0.780877 1.35252i −0.150554 0.988602i \(-0.548106\pi\)
0.931431 0.363917i \(-0.118561\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −19.7861 −0.728832
\(738\) 0 0
\(739\) 3.08650 0.113539 0.0567695 0.998387i \(-0.481920\pi\)
0.0567695 + 0.998387i \(0.481920\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −3.31522 + 5.74213i −0.121624 + 0.210658i −0.920408 0.390959i \(-0.872143\pi\)
0.798784 + 0.601617i \(0.205477\pi\)
\(744\) 0 0
\(745\) 6.88255 + 11.9209i 0.252157 + 0.436749i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −9.59888 16.6258i −0.350736 0.607492i
\(750\) 0 0
\(751\) −21.3702 + 37.0142i −0.779808 + 1.35067i 0.152243 + 0.988343i \(0.451350\pi\)
−0.932052 + 0.362325i \(0.881983\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.0655 0.548288
\(756\) 0 0
\(757\) −31.0232 −1.12756 −0.563779 0.825926i \(-0.690653\pi\)
−0.563779 + 0.825926i \(0.690653\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 11.8182 20.4697i 0.428409 0.742025i −0.568323 0.822805i \(-0.692408\pi\)
0.996732 + 0.0807799i \(0.0257411\pi\)
\(762\) 0 0
\(763\) −9.48143 16.4223i −0.343251 0.594528i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −5.55425 9.62025i −0.200553 0.347367i
\(768\) 0 0
\(769\) 1.73422 3.00376i 0.0625375 0.108318i −0.833061 0.553180i \(-0.813414\pi\)
0.895599 + 0.444862i \(0.146747\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −34.5970 −1.24437 −0.622184 0.782871i \(-0.713755\pi\)
−0.622184 + 0.782871i \(0.713755\pi\)
\(774\) 0 0
\(775\) 10.7651 0.386694
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −14.6545 + 25.3824i −0.525053 + 0.909418i
\(780\) 0 0
\(781\) 12.7115 + 22.0170i 0.454854 + 0.787831i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.44870 + 12.9015i 0.265855 + 0.460475i
\(786\) 0 0
\(787\) −6.07963 + 10.5302i −0.216715 + 0.375362i −0.953802 0.300437i \(-0.902868\pi\)
0.737087 + 0.675798i \(0.236201\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −12.9294 −0.459718
\(792\) 0 0
\(793\) 11.1249 0.395056
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 2.89493 5.01416i 0.102544 0.177611i −0.810188 0.586170i \(-0.800635\pi\)
0.912732 + 0.408559i \(0.133969\pi\)
\(798\) 0 0
\(799\) 18.2534 + 31.6158i 0.645759 + 1.11849i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −6.17742 10.6996i −0.217996 0.377581i
\(804\) 0 0
\(805\) −0.605074 + 1.04802i −0.0213261 + 0.0369378i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 49.1817 1.72914 0.864568 0.502516i \(-0.167592\pi\)
0.864568 + 0.502516i \(0.167592\pi\)
\(810\) 0 0
\(811\) −40.7266 −1.43010 −0.715052 0.699072i \(-0.753597\pi\)
−0.715052 + 0.699072i \(0.753597\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −1.68911 + 2.92562i −0.0591669 + 0.102480i
\(816\) 0 0
\(817\) −11.6058 20.1018i −0.406034 0.703272i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 7.54689 + 13.0716i 0.263388 + 0.456202i 0.967140 0.254244i \(-0.0818266\pi\)
−0.703752 + 0.710446i \(0.748493\pi\)
\(822\) 0 0
\(823\) 8.00000 13.8564i 0.278862 0.483004i −0.692240 0.721668i \(-0.743376\pi\)
0.971102 + 0.238664i \(0.0767093\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 35.2348 1.22523 0.612616 0.790381i \(-0.290117\pi\)
0.612616 + 0.790381i \(0.290117\pi\)
\(828\) 0 0
\(829\) −3.23491 −0.112353 −0.0561765 0.998421i \(-0.517891\pi\)
−0.0561765 + 0.998421i \(0.517891\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 1.40545 2.43430i 0.0486958 0.0843436i
\(834\) 0 0
\(835\) −2.22803 3.85906i −0.0771041 0.133548i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.5197 + 26.8808i 0.535798 + 0.928030i 0.999124 + 0.0418419i \(0.0133226\pi\)
−0.463326 + 0.886188i \(0.653344\pi\)
\(840\) 0 0
\(841\) 4.32760 7.49563i 0.149228 0.258470i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −21.0678 −0.724755
\(846\) 0 0
\(847\) −4.86398 −0.167128
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2.44801 4.24008i 0.0839167 0.145348i
\(852\) 0 0
\(853\) 8.03637 + 13.9194i 0.275160 + 0.476591i 0.970176 0.242403i \(-0.0779358\pi\)
−0.695015 + 0.718995i \(0.744602\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 9.61058 + 16.6460i 0.328291 + 0.568617i 0.982173 0.187980i \(-0.0601940\pi\)
−0.653882 + 0.756597i \(0.726861\pi\)
\(858\) 0 0
\(859\) −7.40112 + 12.8191i −0.252523 + 0.437382i −0.964220 0.265104i \(-0.914594\pi\)
0.711697 + 0.702487i \(0.247927\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 14.7688 0.502736 0.251368 0.967892i \(-0.419120\pi\)
0.251368 + 0.967892i \(0.419120\pi\)
\(864\) 0 0
\(865\) 8.88874 0.302226
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.4072 + 19.7579i −0.386964 + 0.670241i
\(870\) 0 0
\(871\) 3.10507 + 5.37815i 0.105211 + 0.182232i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 6.04325 + 10.4672i 0.204299 + 0.353857i
\(876\) 0 0
\(877\) −26.1916 + 45.3651i −0.884427 + 1.53187i −0.0380575 + 0.999276i \(0.512117\pi\)
−0.846369 + 0.532597i \(0.821216\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 31.3214 1.05525 0.527623 0.849479i \(-0.323084\pi\)
0.527623 + 0.849479i \(0.323084\pi\)
\(882\) 0 0
\(883\) 43.0494 1.44873 0.724363 0.689419i \(-0.242134\pi\)
0.724363 + 0.689419i \(0.242134\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.48831 12.9701i 0.251433 0.435494i −0.712488 0.701685i \(-0.752432\pi\)
0.963921 + 0.266190i \(0.0857649\pi\)
\(888\) 0 0
\(889\) 8.81453 + 15.2672i 0.295630 + 0.512046i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.3887 56.0988i −1.08385 1.87727i
\(894\) 0 0
\(895\) 4.04944 7.01384i 0.135358 0.234447i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 22.9986 0.767047
\(900\) 0 0
\(901\) 5.30903 0.176870
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.86467 15.3541i 0.294671 0.510386i
\(906\) 0 0
\(907\) 15.2280 + 26.3756i 0.505636 + 0.875787i 0.999979 + 0.00652002i \(0.00207540\pi\)
−0.494343 + 0.869267i \(0.664591\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 9.97593 + 17.2788i 0.330517 + 0.572473i 0.982613 0.185664i \(-0.0594435\pi\)
−0.652096 + 0.758136i \(0.726110\pi\)
\(912\) 0 0
\(913\) −10.9127 + 18.9014i −0.361159 + 0.625545i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −5.68725 −0.187809
\(918\) 0 0
\(919\) −45.6291 −1.50516 −0.752582 0.658498i \(-0.771192\pi\)
−0.752582 + 0.658498i \(0.771192\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.98969 6.91034i 0.131322 0.227457i
\(924\) 0 0
\(925\) −7.25890 12.5728i −0.238671 0.413391i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 28.1861 + 48.8197i 0.924755 + 1.60172i 0.791954 + 0.610580i \(0.209064\pi\)
0.132801 + 0.991143i \(0.457603\pi\)
\(930\) 0 0
\(931\) −2.49381 + 4.31941i −0.0817313 + 0.141563i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −11.8343 −0.387022
\(936\) 0 0
\(937\) −36.8530 −1.20393 −0.601967 0.798521i \(-0.705616\pi\)
−0.601967 + 0.798521i \(0.705616\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −4.38000 + 7.58638i −0.142784 + 0.247309i −0.928544 0.371223i \(-0.878939\pi\)
0.785760 + 0.618531i \(0.212272\pi\)
\(942\) 0 0
\(943\) −2.09201 3.62346i −0.0681251 0.117996i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −13.3226 23.0754i −0.432926 0.749849i 0.564198 0.825640i \(-0.309185\pi\)
−0.997124 + 0.0757901i \(0.975852\pi\)
\(948\) 0 0
\(949\) −1.93887 + 3.35822i −0.0629383 + 0.109012i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24.3039 −0.787282 −0.393641 0.919264i \(-0.628785\pi\)
−0.393641 + 0.919264i \(0.628785\pi\)
\(954\) 0 0
\(955\) 22.6414 0.732660
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −9.72617 + 16.8462i −0.314074 + 0.543993i
\(960\) 0 0
\(961\) 2.50069 + 4.33132i 0.0806674 + 0.139720i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 12.4425 + 21.5511i 0.400539 + 0.693753i
\(966\) 0 0
\(967\) −5.22872 + 9.05641i −0.168144 + 0.291234i −0.937767 0.347264i \(-0.887111\pi\)
0.769623 + 0.638498i \(0.220444\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −41.7156 −1.33872 −0.669358 0.742940i \(-0.733431\pi\)
−0.669358 + 0.742940i \(0.733431\pi\)
\(972\) 0 0
\(973\) 2.98762 0.0957787
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.94506 5.10099i 0.0942207 0.163195i −0.815062 0.579373i \(-0.803297\pi\)
0.909283 + 0.416178i \(0.136631\pi\)
\(978\) 0 0
\(979\) 11.9567 + 20.7097i 0.382139 + 0.661885i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.9196 36.2338i −0.667232 1.15568i −0.978675 0.205415i \(-0.934146\pi\)
0.311443 0.950265i \(-0.399188\pi\)
\(984\) 0 0
\(985\) −15.7095 + 27.2096i −0.500545 + 0.866969i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3.31356 0.105365
\(990\) 0 0
\(991\) 54.7156 1.73810 0.869049 0.494726i \(-0.164732\pi\)
0.869049 + 0.494726i \(0.164732\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 20.0698 34.7619i 0.636255 1.10203i
\(996\) 0 0
\(997\) 9.02476 + 15.6313i 0.285817 + 0.495050i 0.972807 0.231617i \(-0.0744017\pi\)
−0.686990 + 0.726667i \(0.741068\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.r.j.1009.1 6
3.2 odd 2 1008.2.r.j.337.1 6
4.3 odd 2 756.2.j.b.253.1 6
9.2 odd 6 1008.2.r.j.673.1 6
9.4 even 3 9072.2.a.bv.1.3 3
9.5 odd 6 9072.2.a.by.1.1 3
9.7 even 3 inner 3024.2.r.j.2017.1 6
12.11 even 2 252.2.j.a.85.3 6
28.3 even 6 5292.2.i.e.1549.3 6
28.11 odd 6 5292.2.i.f.1549.1 6
28.19 even 6 5292.2.l.f.361.1 6
28.23 odd 6 5292.2.l.e.361.3 6
28.27 even 2 5292.2.j.d.1765.3 6
36.7 odd 6 756.2.j.b.505.1 6
36.11 even 6 252.2.j.a.169.3 yes 6
36.23 even 6 2268.2.a.i.1.1 3
36.31 odd 6 2268.2.a.h.1.3 3
84.11 even 6 1764.2.i.g.373.1 6
84.23 even 6 1764.2.l.e.949.1 6
84.47 odd 6 1764.2.l.f.949.3 6
84.59 odd 6 1764.2.i.d.373.3 6
84.83 odd 2 1764.2.j.e.589.1 6
252.11 even 6 1764.2.l.e.961.1 6
252.47 odd 6 1764.2.i.d.1537.3 6
252.79 odd 6 5292.2.i.f.2125.1 6
252.83 odd 6 1764.2.j.e.1177.1 6
252.115 even 6 5292.2.l.f.3313.1 6
252.151 odd 6 5292.2.l.e.3313.3 6
252.187 even 6 5292.2.i.e.2125.3 6
252.191 even 6 1764.2.i.g.1537.1 6
252.223 even 6 5292.2.j.d.3529.3 6
252.227 odd 6 1764.2.l.f.961.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.3 6 12.11 even 2
252.2.j.a.169.3 yes 6 36.11 even 6
756.2.j.b.253.1 6 4.3 odd 2
756.2.j.b.505.1 6 36.7 odd 6
1008.2.r.j.337.1 6 3.2 odd 2
1008.2.r.j.673.1 6 9.2 odd 6
1764.2.i.d.373.3 6 84.59 odd 6
1764.2.i.d.1537.3 6 252.47 odd 6
1764.2.i.g.373.1 6 84.11 even 6
1764.2.i.g.1537.1 6 252.191 even 6
1764.2.j.e.589.1 6 84.83 odd 2
1764.2.j.e.1177.1 6 252.83 odd 6
1764.2.l.e.949.1 6 84.23 even 6
1764.2.l.e.961.1 6 252.11 even 6
1764.2.l.f.949.3 6 84.47 odd 6
1764.2.l.f.961.3 6 252.227 odd 6
2268.2.a.h.1.3 3 36.31 odd 6
2268.2.a.i.1.1 3 36.23 even 6
3024.2.r.j.1009.1 6 1.1 even 1 trivial
3024.2.r.j.2017.1 6 9.7 even 3 inner
5292.2.i.e.1549.3 6 28.3 even 6
5292.2.i.e.2125.3 6 252.187 even 6
5292.2.i.f.1549.1 6 28.11 odd 6
5292.2.i.f.2125.1 6 252.79 odd 6
5292.2.j.d.1765.3 6 28.27 even 2
5292.2.j.d.3529.3 6 252.223 even 6
5292.2.l.e.361.3 6 28.23 odd 6
5292.2.l.e.3313.3 6 252.151 odd 6
5292.2.l.f.361.1 6 28.19 even 6
5292.2.l.f.3313.1 6 252.115 even 6
9072.2.a.bv.1.3 3 9.4 even 3
9072.2.a.by.1.1 3 9.5 odd 6