Properties

Label 252.2.j.a.85.3
Level $252$
Weight $2$
Character 252.85
Analytic conductor $2.012$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [252,2,Mod(85,252)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("252.85");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 252 = 2^{2} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 252.j (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.01223013094\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 85.3
Root \(0.500000 - 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 252.85
Dual form 252.2.j.a.169.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.64400 + 0.545231i) q^{3} +(0.849814 - 1.47192i) q^{5} +(0.500000 + 0.866025i) q^{7} +(2.40545 + 1.79272i) q^{9} +(-1.23855 - 2.14523i) q^{11} +(-0.388736 + 0.673310i) q^{13} +(2.19963 - 1.95649i) q^{15} +2.81089 q^{17} -4.98762 q^{19} +(0.349814 + 1.69636i) q^{21} +(-0.356004 + 0.616617i) q^{23} +(1.05563 + 1.82841i) q^{25} +(2.97710 + 4.25874i) q^{27} +(-2.25526 - 3.90623i) q^{29} +(-2.54944 + 4.41576i) q^{31} +(-0.866524 - 4.20205i) q^{33} +1.69963 q^{35} -6.87636 q^{37} +(-1.00619 + 0.894969i) q^{39} +(2.93818 - 5.08907i) q^{41} +(2.32691 + 4.03033i) q^{43} +(4.68292 - 2.01715i) q^{45} +(-6.49381 - 11.2476i) q^{47} +(-0.500000 + 0.866025i) q^{49} +(4.62110 + 1.53259i) q^{51} +1.88874 q^{53} -4.21015 q^{55} +(-8.19963 - 2.71941i) q^{57} +(-7.14400 + 12.3738i) q^{59} +(-7.15452 - 12.3920i) q^{61} +(-0.349814 + 2.97954i) q^{63} +(0.660706 + 1.14438i) q^{65} +(-3.99381 + 6.91748i) q^{67} +(-0.921468 + 0.819611i) q^{69} -10.2632 q^{71} +4.98762 q^{73} +(0.738550 + 3.58146i) q^{75} +(1.23855 - 2.14523i) q^{77} +(4.60507 + 7.97622i) q^{79} +(2.57234 + 8.62456i) q^{81} +(-4.40545 - 7.63046i) q^{83} +(2.38874 - 4.13741i) q^{85} +(-1.57784 - 7.65146i) q^{87} +9.65383 q^{89} -0.777472 q^{91} +(-6.59888 + 5.86946i) q^{93} +(-4.23855 + 7.34138i) q^{95} +(-4.32072 - 7.48371i) q^{97} +(0.866524 - 7.38061i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 2 q^{3} - q^{5} + 3 q^{7} + 8 q^{9} - 2 q^{11} - 3 q^{13} + q^{15} + 4 q^{17} + 6 q^{19} - 4 q^{21} - 14 q^{23} + 6 q^{25} + 7 q^{27} - q^{29} + 3 q^{31} + 8 q^{33} - 2 q^{35} - 6 q^{37} - 24 q^{39}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/252\mathbb{Z}\right)^\times\).

\(n\) \(29\) \(73\) \(127\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.64400 + 0.545231i 0.949162 + 0.314789i
\(4\) 0 0
\(5\) 0.849814 1.47192i 0.380048 0.658263i −0.611020 0.791615i \(-0.709241\pi\)
0.991069 + 0.133352i \(0.0425740\pi\)
\(6\) 0 0
\(7\) 0.500000 + 0.866025i 0.188982 + 0.327327i
\(8\) 0 0
\(9\) 2.40545 + 1.79272i 0.801815 + 0.597572i
\(10\) 0 0
\(11\) −1.23855 2.14523i −0.373437 0.646812i 0.616655 0.787234i \(-0.288487\pi\)
−0.990092 + 0.140422i \(0.955154\pi\)
\(12\) 0 0
\(13\) −0.388736 + 0.673310i −0.107816 + 0.186743i −0.914885 0.403714i \(-0.867719\pi\)
0.807069 + 0.590457i \(0.201052\pi\)
\(14\) 0 0
\(15\) 2.19963 1.95649i 0.567942 0.505163i
\(16\) 0 0
\(17\) 2.81089 0.681742 0.340871 0.940110i \(-0.389278\pi\)
0.340871 + 0.940110i \(0.389278\pi\)
\(18\) 0 0
\(19\) −4.98762 −1.14424 −0.572119 0.820170i \(-0.693879\pi\)
−0.572119 + 0.820170i \(0.693879\pi\)
\(20\) 0 0
\(21\) 0.349814 + 1.69636i 0.0763357 + 0.370176i
\(22\) 0 0
\(23\) −0.356004 + 0.616617i −0.0742320 + 0.128574i −0.900752 0.434334i \(-0.856984\pi\)
0.826520 + 0.562907i \(0.190317\pi\)
\(24\) 0 0
\(25\) 1.05563 + 1.82841i 0.211126 + 0.365682i
\(26\) 0 0
\(27\) 2.97710 + 4.25874i 0.572943 + 0.819595i
\(28\) 0 0
\(29\) −2.25526 3.90623i −0.418791 0.725368i 0.577027 0.816725i \(-0.304213\pi\)
−0.995818 + 0.0913573i \(0.970879\pi\)
\(30\) 0 0
\(31\) −2.54944 + 4.41576i −0.457893 + 0.793095i −0.998849 0.0479563i \(-0.984729\pi\)
0.540956 + 0.841051i \(0.318063\pi\)
\(32\) 0 0
\(33\) −0.866524 4.20205i −0.150843 0.731483i
\(34\) 0 0
\(35\) 1.69963 0.287290
\(36\) 0 0
\(37\) −6.87636 −1.13047 −0.565233 0.824931i \(-0.691214\pi\)
−0.565233 + 0.824931i \(0.691214\pi\)
\(38\) 0 0
\(39\) −1.00619 + 0.894969i −0.161119 + 0.143310i
\(40\) 0 0
\(41\) 2.93818 5.08907i 0.458866 0.794780i −0.540035 0.841643i \(-0.681589\pi\)
0.998901 + 0.0468628i \(0.0149223\pi\)
\(42\) 0 0
\(43\) 2.32691 + 4.03033i 0.354851 + 0.614620i 0.987092 0.160151i \(-0.0511982\pi\)
−0.632241 + 0.774771i \(0.717865\pi\)
\(44\) 0 0
\(45\) 4.68292 2.01715i 0.698088 0.300699i
\(46\) 0 0
\(47\) −6.49381 11.2476i −0.947220 1.64063i −0.751245 0.660023i \(-0.770546\pi\)
−0.195975 0.980609i \(-0.562787\pi\)
\(48\) 0 0
\(49\) −0.500000 + 0.866025i −0.0714286 + 0.123718i
\(50\) 0 0
\(51\) 4.62110 + 1.53259i 0.647083 + 0.214605i
\(52\) 0 0
\(53\) 1.88874 0.259438 0.129719 0.991551i \(-0.458593\pi\)
0.129719 + 0.991551i \(0.458593\pi\)
\(54\) 0 0
\(55\) −4.21015 −0.567696
\(56\) 0 0
\(57\) −8.19963 2.71941i −1.08607 0.360194i
\(58\) 0 0
\(59\) −7.14400 + 12.3738i −0.930069 + 1.61093i −0.146870 + 0.989156i \(0.546920\pi\)
−0.783199 + 0.621771i \(0.786413\pi\)
\(60\) 0 0
\(61\) −7.15452 12.3920i −0.916042 1.58663i −0.805369 0.592774i \(-0.798033\pi\)
−0.110673 0.993857i \(-0.535301\pi\)
\(62\) 0 0
\(63\) −0.349814 + 2.97954i −0.0440724 + 0.375386i
\(64\) 0 0
\(65\) 0.660706 + 1.14438i 0.0819505 + 0.141942i
\(66\) 0 0
\(67\) −3.99381 + 6.91748i −0.487922 + 0.845105i −0.999904 0.0138913i \(-0.995578\pi\)
0.511982 + 0.858996i \(0.328911\pi\)
\(68\) 0 0
\(69\) −0.921468 + 0.819611i −0.110932 + 0.0986696i
\(70\) 0 0
\(71\) −10.2632 −1.21802 −0.609011 0.793162i \(-0.708433\pi\)
−0.609011 + 0.793162i \(0.708433\pi\)
\(72\) 0 0
\(73\) 4.98762 0.583757 0.291878 0.956455i \(-0.405720\pi\)
0.291878 + 0.956455i \(0.405720\pi\)
\(74\) 0 0
\(75\) 0.738550 + 3.58146i 0.0852804 + 0.413551i
\(76\) 0 0
\(77\) 1.23855 2.14523i 0.141146 0.244472i
\(78\) 0 0
\(79\) 4.60507 + 7.97622i 0.518111 + 0.897395i 0.999779 + 0.0210410i \(0.00669805\pi\)
−0.481667 + 0.876354i \(0.659969\pi\)
\(80\) 0 0
\(81\) 2.57234 + 8.62456i 0.285816 + 0.958285i
\(82\) 0 0
\(83\) −4.40545 7.63046i −0.483561 0.837551i 0.516261 0.856431i \(-0.327323\pi\)
−0.999822 + 0.0188798i \(0.993990\pi\)
\(84\) 0 0
\(85\) 2.38874 4.13741i 0.259095 0.448765i
\(86\) 0 0
\(87\) −1.57784 7.65146i −0.169163 0.820322i
\(88\) 0 0
\(89\) 9.65383 1.02330 0.511652 0.859193i \(-0.329034\pi\)
0.511652 + 0.859193i \(0.329034\pi\)
\(90\) 0 0
\(91\) −0.777472 −0.0815012
\(92\) 0 0
\(93\) −6.59888 + 5.86946i −0.684272 + 0.608635i
\(94\) 0 0
\(95\) −4.23855 + 7.34138i −0.434866 + 0.753210i
\(96\) 0 0
\(97\) −4.32072 7.48371i −0.438703 0.759856i 0.558887 0.829244i \(-0.311229\pi\)
−0.997590 + 0.0693880i \(0.977895\pi\)
\(98\) 0 0
\(99\) 0.866524 7.38061i 0.0870890 0.741779i
\(100\) 0 0
\(101\) −1.20582 2.08854i −0.119983 0.207817i 0.799777 0.600297i \(-0.204951\pi\)
−0.919761 + 0.392479i \(0.871617\pi\)
\(102\) 0 0
\(103\) 2.16690 3.75317i 0.213511 0.369811i −0.739300 0.673376i \(-0.764844\pi\)
0.952811 + 0.303565i \(0.0981769\pi\)
\(104\) 0 0
\(105\) 2.79418 + 0.926690i 0.272684 + 0.0904357i
\(106\) 0 0
\(107\) 19.1978 1.85592 0.927959 0.372682i \(-0.121562\pi\)
0.927959 + 0.372682i \(0.121562\pi\)
\(108\) 0 0
\(109\) 18.9629 1.81631 0.908156 0.418631i \(-0.137490\pi\)
0.908156 + 0.418631i \(0.137490\pi\)
\(110\) 0 0
\(111\) −11.3047 3.74920i −1.07299 0.355859i
\(112\) 0 0
\(113\) −6.46472 + 11.1972i −0.608150 + 1.05335i 0.383395 + 0.923584i \(0.374755\pi\)
−0.991545 + 0.129762i \(0.958579\pi\)
\(114\) 0 0
\(115\) 0.605074 + 1.04802i 0.0564235 + 0.0977283i
\(116\) 0 0
\(117\) −2.14214 + 0.922719i −0.198041 + 0.0853054i
\(118\) 0 0
\(119\) 1.40545 + 2.43430i 0.128837 + 0.223152i
\(120\) 0 0
\(121\) 2.43199 4.21233i 0.221090 0.382939i
\(122\) 0 0
\(123\) 7.60507 6.76443i 0.685726 0.609928i
\(124\) 0 0
\(125\) 12.0865 1.08105
\(126\) 0 0
\(127\) 17.6291 1.56433 0.782163 0.623073i \(-0.214116\pi\)
0.782163 + 0.623073i \(0.214116\pi\)
\(128\) 0 0
\(129\) 1.62797 + 7.89456i 0.143335 + 0.695077i
\(130\) 0 0
\(131\) 2.84362 4.92530i 0.248449 0.430326i −0.714647 0.699485i \(-0.753413\pi\)
0.963096 + 0.269160i \(0.0867460\pi\)
\(132\) 0 0
\(133\) −2.49381 4.31941i −0.216241 0.374540i
\(134\) 0 0
\(135\) 8.79851 0.762918i 0.757255 0.0656615i
\(136\) 0 0
\(137\) 9.72617 + 16.8462i 0.830963 + 1.43927i 0.897276 + 0.441471i \(0.145543\pi\)
−0.0663128 + 0.997799i \(0.521124\pi\)
\(138\) 0 0
\(139\) 1.49381 2.58736i 0.126703 0.219457i −0.795694 0.605699i \(-0.792894\pi\)
0.922397 + 0.386242i \(0.126227\pi\)
\(140\) 0 0
\(141\) −4.54325 22.0317i −0.382611 1.85540i
\(142\) 0 0
\(143\) 1.92587 0.161050
\(144\) 0 0
\(145\) −7.66621 −0.636644
\(146\) 0 0
\(147\) −1.29418 + 1.15113i −0.106742 + 0.0949433i
\(148\) 0 0
\(149\) −4.04944 + 7.01384i −0.331743 + 0.574596i −0.982854 0.184387i \(-0.940970\pi\)
0.651111 + 0.758983i \(0.274303\pi\)
\(150\) 0 0
\(151\) 4.43199 + 7.67643i 0.360670 + 0.624699i 0.988071 0.153997i \(-0.0492147\pi\)
−0.627401 + 0.778696i \(0.715881\pi\)
\(152\) 0 0
\(153\) 6.76145 + 5.03913i 0.546631 + 0.407390i
\(154\) 0 0
\(155\) 4.33310 + 7.50516i 0.348043 + 0.602829i
\(156\) 0 0
\(157\) 4.38255 7.59079i 0.349765 0.605811i −0.636442 0.771324i \(-0.719595\pi\)
0.986208 + 0.165513i \(0.0529280\pi\)
\(158\) 0 0
\(159\) 3.10507 + 1.02980i 0.246248 + 0.0816683i
\(160\) 0 0
\(161\) −0.712008 −0.0561141
\(162\) 0 0
\(163\) −1.98762 −0.155682 −0.0778412 0.996966i \(-0.524803\pi\)
−0.0778412 + 0.996966i \(0.524803\pi\)
\(164\) 0 0
\(165\) −6.92147 2.29550i −0.538836 0.178705i
\(166\) 0 0
\(167\) −1.31089 + 2.27053i −0.101440 + 0.175699i −0.912278 0.409571i \(-0.865678\pi\)
0.810838 + 0.585270i \(0.199012\pi\)
\(168\) 0 0
\(169\) 6.19777 + 10.7349i 0.476751 + 0.825758i
\(170\) 0 0
\(171\) −11.9975 8.94138i −0.917468 0.683765i
\(172\) 0 0
\(173\) 2.61491 + 4.52915i 0.198808 + 0.344345i 0.948142 0.317847i \(-0.102960\pi\)
−0.749334 + 0.662192i \(0.769626\pi\)
\(174\) 0 0
\(175\) −1.05563 + 1.82841i −0.0797983 + 0.138215i
\(176\) 0 0
\(177\) −18.4913 + 16.4473i −1.38989 + 1.23625i
\(178\) 0 0
\(179\) −4.76509 −0.356160 −0.178080 0.984016i \(-0.556989\pi\)
−0.178080 + 0.984016i \(0.556989\pi\)
\(180\) 0 0
\(181\) −10.4313 −0.775352 −0.387676 0.921796i \(-0.626722\pi\)
−0.387676 + 0.921796i \(0.626722\pi\)
\(182\) 0 0
\(183\) −5.00550 24.2732i −0.370017 1.79433i
\(184\) 0 0
\(185\) −5.84362 + 10.1215i −0.429632 + 0.744144i
\(186\) 0 0
\(187\) −3.48143 6.03001i −0.254587 0.440958i
\(188\) 0 0
\(189\) −2.19963 + 4.70761i −0.159999 + 0.342429i
\(190\) 0 0
\(191\) −6.66071 11.5367i −0.481952 0.834765i 0.517834 0.855481i \(-0.326739\pi\)
−0.999785 + 0.0207164i \(0.993405\pi\)
\(192\) 0 0
\(193\) 7.32072 12.6799i 0.526957 0.912717i −0.472549 0.881304i \(-0.656666\pi\)
0.999507 0.0314125i \(-0.0100005\pi\)
\(194\) 0 0
\(195\) 0.462249 + 2.24159i 0.0331023 + 0.160524i
\(196\) 0 0
\(197\) −18.4858 −1.31706 −0.658528 0.752556i \(-0.728821\pi\)
−0.658528 + 0.752556i \(0.728821\pi\)
\(198\) 0 0
\(199\) 23.6167 1.67414 0.837071 0.547094i \(-0.184266\pi\)
0.837071 + 0.547094i \(0.184266\pi\)
\(200\) 0 0
\(201\) −10.3374 + 9.19476i −0.729146 + 0.648549i
\(202\) 0 0
\(203\) 2.25526 3.90623i 0.158288 0.274163i
\(204\) 0 0
\(205\) −4.99381 8.64953i −0.348783 0.604110i
\(206\) 0 0
\(207\) −1.96177 + 0.845025i −0.136352 + 0.0587333i
\(208\) 0 0
\(209\) 6.17742 + 10.6996i 0.427301 + 0.740107i
\(210\) 0 0
\(211\) 7.27747 12.6050i 0.501002 0.867761i −0.498998 0.866603i \(-0.666298\pi\)
0.999999 0.00115718i \(-0.000368342\pi\)
\(212\) 0 0
\(213\) −16.8727 5.59583i −1.15610 0.383420i
\(214\) 0 0
\(215\) 7.90978 0.539442
\(216\) 0 0
\(217\) −5.09888 −0.346135
\(218\) 0 0
\(219\) 8.19963 + 2.71941i 0.554080 + 0.183760i
\(220\) 0 0
\(221\) −1.09269 + 1.89260i −0.0735026 + 0.127310i
\(222\) 0 0
\(223\) −4.72253 8.17966i −0.316244 0.547750i 0.663457 0.748214i \(-0.269088\pi\)
−0.979701 + 0.200464i \(0.935755\pi\)
\(224\) 0 0
\(225\) −0.738550 + 6.29059i −0.0492367 + 0.419372i
\(226\) 0 0
\(227\) −9.55563 16.5508i −0.634230 1.09852i −0.986678 0.162687i \(-0.947984\pi\)
0.352448 0.935831i \(-0.385349\pi\)
\(228\) 0 0
\(229\) −5.72253 + 9.91171i −0.378155 + 0.654984i −0.990794 0.135379i \(-0.956775\pi\)
0.612639 + 0.790363i \(0.290108\pi\)
\(230\) 0 0
\(231\) 3.20582 2.85146i 0.210927 0.187612i
\(232\) 0 0
\(233\) −1.19049 −0.0779913 −0.0389956 0.999239i \(-0.512416\pi\)
−0.0389956 + 0.999239i \(0.512416\pi\)
\(234\) 0 0
\(235\) −22.0741 −1.43996
\(236\) 0 0
\(237\) 3.22184 + 15.6237i 0.209281 + 1.01487i
\(238\) 0 0
\(239\) −12.1414 + 21.0296i −0.785365 + 1.36029i 0.143416 + 0.989663i \(0.454191\pi\)
−0.928781 + 0.370630i \(0.879142\pi\)
\(240\) 0 0
\(241\) 10.7095 + 18.5493i 0.689857 + 1.19487i 0.971884 + 0.235461i \(0.0756599\pi\)
−0.282027 + 0.959406i \(0.591007\pi\)
\(242\) 0 0
\(243\) −0.473458 + 15.5813i −0.0303723 + 0.999539i
\(244\) 0 0
\(245\) 0.849814 + 1.47192i 0.0542926 + 0.0940376i
\(246\) 0 0
\(247\) 1.93887 3.35822i 0.123367 0.213678i
\(248\) 0 0
\(249\) −3.08217 14.9464i −0.195325 0.947191i
\(250\) 0 0
\(251\) −2.67996 −0.169158 −0.0845789 0.996417i \(-0.526955\pi\)
−0.0845789 + 0.996417i \(0.526955\pi\)
\(252\) 0 0
\(253\) 1.76371 0.110884
\(254\) 0 0
\(255\) 6.18292 5.49948i 0.387189 0.344391i
\(256\) 0 0
\(257\) 5.54256 9.60000i 0.345736 0.598832i −0.639752 0.768582i \(-0.720963\pi\)
0.985487 + 0.169750i \(0.0542961\pi\)
\(258\) 0 0
\(259\) −3.43818 5.95510i −0.213638 0.370032i
\(260\) 0 0
\(261\) 1.57784 13.4393i 0.0976661 0.831869i
\(262\) 0 0
\(263\) −6.70396 11.6116i −0.413384 0.716002i 0.581873 0.813279i \(-0.302320\pi\)
−0.995257 + 0.0972776i \(0.968987\pi\)
\(264\) 0 0
\(265\) 1.60507 2.78007i 0.0985989 0.170778i
\(266\) 0 0
\(267\) 15.8709 + 5.26357i 0.971281 + 0.322125i
\(268\) 0 0
\(269\) 4.09022 0.249385 0.124693 0.992195i \(-0.460206\pi\)
0.124693 + 0.992195i \(0.460206\pi\)
\(270\) 0 0
\(271\) 6.12364 0.371985 0.185992 0.982551i \(-0.440450\pi\)
0.185992 + 0.982551i \(0.440450\pi\)
\(272\) 0 0
\(273\) −1.27816 0.423902i −0.0773578 0.0256557i
\(274\) 0 0
\(275\) 2.61491 4.52915i 0.157685 0.273118i
\(276\) 0 0
\(277\) −7.88255 13.6530i −0.473616 0.820327i 0.525928 0.850529i \(-0.323718\pi\)
−0.999544 + 0.0302019i \(0.990385\pi\)
\(278\) 0 0
\(279\) −14.0488 + 6.05146i −0.841077 + 0.362291i
\(280\) 0 0
\(281\) 10.5946 + 18.3503i 0.632018 + 1.09469i 0.987139 + 0.159867i \(0.0511065\pi\)
−0.355120 + 0.934821i \(0.615560\pi\)
\(282\) 0 0
\(283\) −3.43818 + 5.95510i −0.204378 + 0.353994i −0.949935 0.312449i \(-0.898851\pi\)
0.745556 + 0.666443i \(0.232184\pi\)
\(284\) 0 0
\(285\) −10.9709 + 9.75822i −0.649861 + 0.578027i
\(286\) 0 0
\(287\) 5.87636 0.346870
\(288\) 0 0
\(289\) −9.09888 −0.535228
\(290\) 0 0
\(291\) −3.02290 14.6590i −0.177206 0.859325i
\(292\) 0 0
\(293\) 13.7534 23.8216i 0.803482 1.39167i −0.113829 0.993500i \(-0.536311\pi\)
0.917311 0.398172i \(-0.130355\pi\)
\(294\) 0 0
\(295\) 12.1421 + 21.0308i 0.706943 + 1.22446i
\(296\) 0 0
\(297\) 5.44870 11.6612i 0.316166 0.676653i
\(298\) 0 0
\(299\) −0.276783 0.479402i −0.0160068 0.0277245i
\(300\) 0 0
\(301\) −2.32691 + 4.03033i −0.134121 + 0.232305i
\(302\) 0 0
\(303\) −0.843624 4.09100i −0.0484649 0.235022i
\(304\) 0 0
\(305\) −24.3200 −1.39256
\(306\) 0 0
\(307\) −21.5178 −1.22809 −0.614043 0.789273i \(-0.710458\pi\)
−0.614043 + 0.789273i \(0.710458\pi\)
\(308\) 0 0
\(309\) 5.60872 4.98874i 0.319069 0.283800i
\(310\) 0 0
\(311\) −9.19275 + 15.9223i −0.521273 + 0.902871i 0.478421 + 0.878131i \(0.341209\pi\)
−0.999694 + 0.0247407i \(0.992124\pi\)
\(312\) 0 0
\(313\) 0.000688709 0.00119288i 3.89281e−5 6.74255e-5i 0.866045 0.499966i \(-0.166654\pi\)
−0.866006 + 0.500034i \(0.833321\pi\)
\(314\) 0 0
\(315\) 4.08836 + 3.04695i 0.230353 + 0.171676i
\(316\) 0 0
\(317\) −7.04944 12.2100i −0.395936 0.685781i 0.597284 0.802030i \(-0.296247\pi\)
−0.993220 + 0.116248i \(0.962913\pi\)
\(318\) 0 0
\(319\) −5.58650 + 9.67611i −0.312784 + 0.541758i
\(320\) 0 0
\(321\) 31.5611 + 10.4672i 1.76157 + 0.584223i
\(322\) 0 0
\(323\) −14.0197 −0.780075
\(324\) 0 0
\(325\) −1.64145 −0.0910512
\(326\) 0 0
\(327\) 31.1749 + 10.3391i 1.72397 + 0.571756i
\(328\) 0 0
\(329\) 6.49381 11.2476i 0.358015 0.620101i
\(330\) 0 0
\(331\) −6.98143 12.0922i −0.383734 0.664647i 0.607859 0.794045i \(-0.292029\pi\)
−0.991593 + 0.129398i \(0.958695\pi\)
\(332\) 0 0
\(333\) −16.5407 12.3274i −0.906425 0.675535i
\(334\) 0 0
\(335\) 6.78799 + 11.7571i 0.370868 + 0.642362i
\(336\) 0 0
\(337\) −12.0982 + 20.9547i −0.659031 + 1.14147i 0.321836 + 0.946795i \(0.395700\pi\)
−0.980867 + 0.194679i \(0.937633\pi\)
\(338\) 0 0
\(339\) −16.7330 + 14.8834i −0.908814 + 0.808357i
\(340\) 0 0
\(341\) 12.6304 0.683977
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0.423327 + 2.05285i 0.0227912 + 0.110521i
\(346\) 0 0
\(347\) 16.3578 28.3325i 0.878132 1.52097i 0.0247435 0.999694i \(-0.492123\pi\)
0.853389 0.521275i \(-0.174544\pi\)
\(348\) 0 0
\(349\) 11.8887 + 20.5919i 0.636389 + 1.10226i 0.986219 + 0.165445i \(0.0529062\pi\)
−0.349830 + 0.936813i \(0.613760\pi\)
\(350\) 0 0
\(351\) −4.02476 + 0.348986i −0.214826 + 0.0186275i
\(352\) 0 0
\(353\) −10.0309 17.3740i −0.533889 0.924724i −0.999216 0.0395847i \(-0.987396\pi\)
0.465327 0.885139i \(-0.345937\pi\)
\(354\) 0 0
\(355\) −8.72184 + 15.1067i −0.462907 + 0.801779i
\(356\) 0 0
\(357\) 0.983290 + 4.76828i 0.0520412 + 0.252364i
\(358\) 0 0
\(359\) 8.30175 0.438150 0.219075 0.975708i \(-0.429696\pi\)
0.219075 + 0.975708i \(0.429696\pi\)
\(360\) 0 0
\(361\) 5.87636 0.309282
\(362\) 0 0
\(363\) 6.29487 5.59905i 0.330395 0.293874i
\(364\) 0 0
\(365\) 4.23855 7.34138i 0.221856 0.384266i
\(366\) 0 0
\(367\) −5.77197 9.99735i −0.301294 0.521857i 0.675135 0.737694i \(-0.264085\pi\)
−0.976429 + 0.215837i \(0.930752\pi\)
\(368\) 0 0
\(369\) 16.1909 6.97418i 0.842864 0.363061i
\(370\) 0 0
\(371\) 0.944368 + 1.63569i 0.0490291 + 0.0849210i
\(372\) 0 0
\(373\) −1.42580 + 2.46956i −0.0738250 + 0.127869i −0.900575 0.434701i \(-0.856854\pi\)
0.826750 + 0.562570i \(0.190187\pi\)
\(374\) 0 0
\(375\) 19.8702 + 6.58994i 1.02609 + 0.340303i
\(376\) 0 0
\(377\) 3.50680 0.180609
\(378\) 0 0
\(379\) 35.9519 1.84672 0.923361 0.383932i \(-0.125430\pi\)
0.923361 + 0.383932i \(0.125430\pi\)
\(380\) 0 0
\(381\) 28.9821 + 9.61192i 1.48480 + 0.492433i
\(382\) 0 0
\(383\) 0.915278 1.58531i 0.0467685 0.0810054i −0.841694 0.539956i \(-0.818441\pi\)
0.888462 + 0.458950i \(0.151774\pi\)
\(384\) 0 0
\(385\) −2.10507 3.64610i −0.107285 0.185822i
\(386\) 0 0
\(387\) −1.62797 + 13.8662i −0.0827546 + 0.704861i
\(388\) 0 0
\(389\) 5.69530 + 9.86454i 0.288763 + 0.500152i 0.973515 0.228624i \(-0.0734227\pi\)
−0.684752 + 0.728776i \(0.740089\pi\)
\(390\) 0 0
\(391\) −1.00069 + 1.73324i −0.0506070 + 0.0876539i
\(392\) 0 0
\(393\) 7.36033 6.54674i 0.371280 0.330240i
\(394\) 0 0
\(395\) 15.6538 0.787630
\(396\) 0 0
\(397\) −10.4313 −0.523532 −0.261766 0.965131i \(-0.584305\pi\)
−0.261766 + 0.965131i \(0.584305\pi\)
\(398\) 0 0
\(399\) −1.74474 8.46079i −0.0873462 0.423569i
\(400\) 0 0
\(401\) 17.0371 29.5091i 0.850790 1.47361i −0.0297058 0.999559i \(-0.509457\pi\)
0.880496 0.474053i \(-0.157210\pi\)
\(402\) 0 0
\(403\) −1.98212 3.43313i −0.0987364 0.171016i
\(404\) 0 0
\(405\) 14.8807 + 3.54299i 0.739427 + 0.176053i
\(406\) 0 0
\(407\) 8.51671 + 14.7514i 0.422158 + 0.731199i
\(408\) 0 0
\(409\) −1.98762 + 3.44266i −0.0982815 + 0.170229i −0.910973 0.412465i \(-0.864668\pi\)
0.812692 + 0.582694i \(0.198001\pi\)
\(410\) 0 0
\(411\) 6.80470 + 32.9981i 0.335651 + 1.62768i
\(412\) 0 0
\(413\) −14.2880 −0.703066
\(414\) 0 0
\(415\) −14.9752 −0.735106
\(416\) 0 0
\(417\) 3.86652 3.43913i 0.189345 0.168415i
\(418\) 0 0
\(419\) 4.72184 8.17847i 0.230677 0.399544i −0.727331 0.686287i \(-0.759239\pi\)
0.958008 + 0.286743i \(0.0925726\pi\)
\(420\) 0 0
\(421\) 3.16002 + 5.47331i 0.154010 + 0.266753i 0.932698 0.360658i \(-0.117448\pi\)
−0.778688 + 0.627411i \(0.784115\pi\)
\(422\) 0 0
\(423\) 4.54325 38.6971i 0.220900 1.88152i
\(424\) 0 0
\(425\) 2.96727 + 5.13946i 0.143934 + 0.249300i
\(426\) 0 0
\(427\) 7.15452 12.3920i 0.346231 0.599690i
\(428\) 0 0
\(429\) 3.16613 + 1.05005i 0.152862 + 0.0506967i
\(430\) 0 0
\(431\) −27.7541 −1.33687 −0.668434 0.743772i \(-0.733035\pi\)
−0.668434 + 0.743772i \(0.733035\pi\)
\(432\) 0 0
\(433\) 11.2473 0.540510 0.270255 0.962789i \(-0.412892\pi\)
0.270255 + 0.962789i \(0.412892\pi\)
\(434\) 0 0
\(435\) −12.6032 4.17985i −0.604278 0.200409i
\(436\) 0 0
\(437\) 1.77561 3.07545i 0.0849391 0.147119i
\(438\) 0 0
\(439\) 7.54325 + 13.0653i 0.360020 + 0.623573i 0.987964 0.154686i \(-0.0494366\pi\)
−0.627944 + 0.778259i \(0.716103\pi\)
\(440\) 0 0
\(441\) −2.75526 + 1.18682i −0.131203 + 0.0565152i
\(442\) 0 0
\(443\) −3.96658 6.87032i −0.188458 0.326419i 0.756278 0.654250i \(-0.227016\pi\)
−0.944736 + 0.327831i \(0.893682\pi\)
\(444\) 0 0
\(445\) 8.20396 14.2097i 0.388905 0.673603i
\(446\) 0 0
\(447\) −10.4814 + 9.32284i −0.495755 + 0.440955i
\(448\) 0 0
\(449\) −32.5636 −1.53677 −0.768386 0.639987i \(-0.778940\pi\)
−0.768386 + 0.639987i \(0.778940\pi\)
\(450\) 0 0
\(451\) −14.5563 −0.685430
\(452\) 0 0
\(453\) 3.10074 + 15.0365i 0.145686 + 0.706475i
\(454\) 0 0
\(455\) −0.660706 + 1.14438i −0.0309744 + 0.0536492i
\(456\) 0 0
\(457\) −5.70396 9.87955i −0.266820 0.462146i 0.701219 0.712946i \(-0.252640\pi\)
−0.968039 + 0.250800i \(0.919306\pi\)
\(458\) 0 0
\(459\) 8.36831 + 11.9709i 0.390599 + 0.558752i
\(460\) 0 0
\(461\) −2.45853 4.25830i −0.114505 0.198329i 0.803077 0.595876i \(-0.203195\pi\)
−0.917582 + 0.397547i \(0.869862\pi\)
\(462\) 0 0
\(463\) −7.59957 + 13.1628i −0.353182 + 0.611729i −0.986805 0.161913i \(-0.948234\pi\)
0.633623 + 0.773642i \(0.281567\pi\)
\(464\) 0 0
\(465\) 3.03156 + 14.7010i 0.140585 + 0.681742i
\(466\) 0 0
\(467\) 23.7810 1.10046 0.550228 0.835015i \(-0.314541\pi\)
0.550228 + 0.835015i \(0.314541\pi\)
\(468\) 0 0
\(469\) −7.98762 −0.368834
\(470\) 0 0
\(471\) 11.3436 10.0897i 0.522687 0.464910i
\(472\) 0 0
\(473\) 5.76400 9.98354i 0.265029 0.459044i
\(474\) 0 0
\(475\) −5.26509 9.11941i −0.241579 0.418427i
\(476\) 0 0
\(477\) 4.54325 + 3.38597i 0.208021 + 0.155033i
\(478\) 0 0
\(479\) −3.02909 5.24654i −0.138403 0.239720i 0.788489 0.615048i \(-0.210863\pi\)
−0.926892 + 0.375328i \(0.877530\pi\)
\(480\) 0 0
\(481\) 2.67309 4.62992i 0.121882 0.211106i
\(482\) 0 0
\(483\) −1.17054 0.388209i −0.0532613 0.0176641i
\(484\) 0 0
\(485\) −14.6872 −0.666914
\(486\) 0 0
\(487\) 1.13602 0.0514781 0.0257391 0.999669i \(-0.491806\pi\)
0.0257391 + 0.999669i \(0.491806\pi\)
\(488\) 0 0
\(489\) −3.26764 1.08371i −0.147768 0.0490072i
\(490\) 0 0
\(491\) 16.4382 28.4718i 0.741845 1.28491i −0.209810 0.977742i \(-0.567285\pi\)
0.951655 0.307170i \(-0.0993821\pi\)
\(492\) 0 0
\(493\) −6.33929 10.9800i −0.285507 0.494513i
\(494\) 0 0
\(495\) −10.1273 7.54760i −0.455188 0.339239i
\(496\) 0 0
\(497\) −5.13162 8.88822i −0.230184 0.398691i
\(498\) 0 0
\(499\) −13.0989 + 22.6879i −0.586387 + 1.01565i 0.408314 + 0.912841i \(0.366117\pi\)
−0.994701 + 0.102810i \(0.967217\pi\)
\(500\) 0 0
\(501\) −3.39307 + 3.01801i −0.151591 + 0.134835i
\(502\) 0 0
\(503\) −25.8516 −1.15267 −0.576333 0.817215i \(-0.695517\pi\)
−0.576333 + 0.817215i \(0.695517\pi\)
\(504\) 0 0
\(505\) −4.09888 −0.182398
\(506\) 0 0
\(507\) 4.33613 + 21.0273i 0.192574 + 0.933854i
\(508\) 0 0
\(509\) −17.5858 + 30.4595i −0.779478 + 1.35009i 0.152766 + 0.988262i \(0.451182\pi\)
−0.932243 + 0.361832i \(0.882151\pi\)
\(510\) 0 0
\(511\) 2.49381 + 4.31941i 0.110320 + 0.191079i
\(512\) 0 0
\(513\) −14.8486 21.2410i −0.655584 0.937812i
\(514\) 0 0
\(515\) −3.68292 6.37900i −0.162289 0.281092i
\(516\) 0 0
\(517\) −16.0858 + 27.8615i −0.707453 + 1.22535i
\(518\) 0 0
\(519\) 1.82946 + 8.87163i 0.0803045 + 0.389421i
\(520\) 0 0
\(521\) −17.8626 −0.782575 −0.391287 0.920269i \(-0.627970\pi\)
−0.391287 + 0.920269i \(0.627970\pi\)
\(522\) 0 0
\(523\) −22.8640 −0.999772 −0.499886 0.866091i \(-0.666625\pi\)
−0.499886 + 0.866091i \(0.666625\pi\)
\(524\) 0 0
\(525\) −2.73236 + 2.43033i −0.119250 + 0.106068i
\(526\) 0 0
\(527\) −7.16621 + 12.4122i −0.312165 + 0.540685i
\(528\) 0 0
\(529\) 11.2465 + 19.4795i 0.488979 + 0.846937i
\(530\) 0 0
\(531\) −39.3671 + 16.9573i −1.70839 + 0.735883i
\(532\) 0 0
\(533\) 2.28435 + 3.95661i 0.0989462 + 0.171380i
\(534\) 0 0
\(535\) 16.3145 28.2576i 0.705339 1.22168i
\(536\) 0 0
\(537\) −7.83379 2.59808i −0.338053 0.112115i
\(538\) 0 0
\(539\) 2.47710 0.106696
\(540\) 0 0
\(541\) 22.3077 0.959081 0.479541 0.877520i \(-0.340803\pi\)
0.479541 + 0.877520i \(0.340803\pi\)
\(542\) 0 0
\(543\) −17.1490 5.68747i −0.735935 0.244073i
\(544\) 0 0
\(545\) 16.1149 27.9118i 0.690287 1.19561i
\(546\) 0 0
\(547\) −10.8083 18.7206i −0.462131 0.800435i 0.536936 0.843623i \(-0.319582\pi\)
−0.999067 + 0.0431882i \(0.986249\pi\)
\(548\) 0 0
\(549\) 5.00550 42.6343i 0.213630 1.81959i
\(550\) 0 0
\(551\) 11.2484 + 19.4828i 0.479197 + 0.829994i
\(552\) 0 0
\(553\) −4.60507 + 7.97622i −0.195828 + 0.339183i
\(554\) 0 0
\(555\) −15.1254 + 13.4535i −0.642039 + 0.571069i
\(556\) 0 0
\(557\) 3.17535 0.134544 0.0672720 0.997735i \(-0.478570\pi\)
0.0672720 + 0.997735i \(0.478570\pi\)
\(558\) 0 0
\(559\) −3.61822 −0.153034
\(560\) 0 0
\(561\) −2.43571 11.8115i −0.102836 0.498682i
\(562\) 0 0
\(563\) −21.8814 + 37.8997i −0.922190 + 1.59728i −0.126171 + 0.992009i \(0.540269\pi\)
−0.796019 + 0.605271i \(0.793065\pi\)
\(564\) 0 0
\(565\) 10.9876 + 19.0311i 0.462253 + 0.800645i
\(566\) 0 0
\(567\) −6.18292 + 6.53999i −0.259658 + 0.274654i
\(568\) 0 0
\(569\) 11.9313 + 20.6656i 0.500186 + 0.866348i 1.00000 0.000214897i \(6.84039e-5\pi\)
−0.499814 + 0.866133i \(0.666598\pi\)
\(570\) 0 0
\(571\) −5.11058 + 8.85178i −0.213871 + 0.370435i −0.952923 0.303213i \(-0.901941\pi\)
0.739052 + 0.673649i \(0.235274\pi\)
\(572\) 0 0
\(573\) −4.66002 22.5979i −0.194675 0.944040i
\(574\) 0 0
\(575\) −1.50324 −0.0626893
\(576\) 0 0
\(577\) −36.0370 −1.50024 −0.750120 0.661302i \(-0.770004\pi\)
−0.750120 + 0.661302i \(0.770004\pi\)
\(578\) 0 0
\(579\) 18.9487 16.8542i 0.787481 0.700435i
\(580\) 0 0
\(581\) 4.40545 7.63046i 0.182769 0.316565i
\(582\) 0 0
\(583\) −2.33929 4.05178i −0.0968836 0.167807i
\(584\) 0 0
\(585\) −0.462249 + 3.93720i −0.0191116 + 0.162783i
\(586\) 0 0
\(587\) 10.5142 + 18.2111i 0.433966 + 0.751651i 0.997211 0.0746391i \(-0.0237805\pi\)
−0.563245 + 0.826290i \(0.690447\pi\)
\(588\) 0 0
\(589\) 12.7156 22.0242i 0.523939 0.907489i
\(590\) 0 0
\(591\) −30.3905 10.0790i −1.25010 0.414595i
\(592\) 0 0
\(593\) −25.1606 −1.03322 −0.516612 0.856220i \(-0.672807\pi\)
−0.516612 + 0.856220i \(0.672807\pi\)
\(594\) 0 0
\(595\) 4.77747 0.195857
\(596\) 0 0
\(597\) 38.8257 + 12.8766i 1.58903 + 0.527002i
\(598\) 0 0
\(599\) 1.11126 1.92477i 0.0454050 0.0786438i −0.842430 0.538806i \(-0.818875\pi\)
0.887835 + 0.460162i \(0.152209\pi\)
\(600\) 0 0
\(601\) −14.0494 24.3343i −0.573089 0.992619i −0.996246 0.0865627i \(-0.972412\pi\)
0.423158 0.906056i \(-0.360922\pi\)
\(602\) 0 0
\(603\) −22.0080 + 9.47987i −0.896234 + 0.386050i
\(604\) 0 0
\(605\) −4.13348 7.15939i −0.168050 0.291071i
\(606\) 0 0
\(607\) 3.26509 5.65531i 0.132526 0.229542i −0.792124 0.610361i \(-0.791025\pi\)
0.924650 + 0.380819i \(0.124358\pi\)
\(608\) 0 0
\(609\) 5.83743 5.19218i 0.236545 0.210398i
\(610\) 0 0
\(611\) 10.0975 0.408501
\(612\) 0 0
\(613\) 10.7280 0.433298 0.216649 0.976250i \(-0.430487\pi\)
0.216649 + 0.976250i \(0.430487\pi\)
\(614\) 0 0
\(615\) −3.49381 16.9426i −0.140884 0.683191i
\(616\) 0 0
\(617\) 15.5265 26.8928i 0.625075 1.08266i −0.363451 0.931613i \(-0.618402\pi\)
0.988526 0.151049i \(-0.0482650\pi\)
\(618\) 0 0
\(619\) 0.723217 + 1.25265i 0.0290685 + 0.0503482i 0.880194 0.474615i \(-0.157413\pi\)
−0.851125 + 0.524963i \(0.824079\pi\)
\(620\) 0 0
\(621\) −3.68587 + 0.319601i −0.147909 + 0.0128252i
\(622\) 0 0
\(623\) 4.82691 + 8.36046i 0.193386 + 0.334955i
\(624\) 0 0
\(625\) 4.99312 8.64834i 0.199725 0.345934i
\(626\) 0 0
\(627\) 4.32189 + 20.9582i 0.172600 + 0.836991i
\(628\) 0 0
\(629\) −19.3287 −0.770686
\(630\) 0 0
\(631\) 0.0741250 0.00295087 0.00147544 0.999999i \(-0.499530\pi\)
0.00147544 + 0.999999i \(0.499530\pi\)
\(632\) 0 0
\(633\) 18.8367 16.7546i 0.748693 0.665935i
\(634\) 0 0
\(635\) 14.9814 25.9486i 0.594520 1.02974i
\(636\) 0 0
\(637\) −0.388736 0.673310i −0.0154023 0.0266775i
\(638\) 0 0
\(639\) −24.6877 18.3991i −0.976628 0.727855i
\(640\) 0 0
\(641\) 23.5204 + 40.7384i 0.928998 + 1.60907i 0.785002 + 0.619494i \(0.212662\pi\)
0.143996 + 0.989578i \(0.454005\pi\)
\(642\) 0 0
\(643\) 16.8647 29.2105i 0.665077 1.15195i −0.314187 0.949361i \(-0.601732\pi\)
0.979264 0.202587i \(-0.0649348\pi\)
\(644\) 0 0
\(645\) 13.0036 + 4.31266i 0.512018 + 0.169811i
\(646\) 0 0
\(647\) 44.9629 1.76767 0.883836 0.467796i \(-0.154952\pi\)
0.883836 + 0.467796i \(0.154952\pi\)
\(648\) 0 0
\(649\) 35.3928 1.38929
\(650\) 0 0
\(651\) −8.38255 2.78007i −0.328538 0.108960i
\(652\) 0 0
\(653\) −20.8578 + 36.1267i −0.816228 + 1.41375i 0.0922143 + 0.995739i \(0.470606\pi\)
−0.908443 + 0.418010i \(0.862728\pi\)
\(654\) 0 0
\(655\) −4.83310 8.37118i −0.188845 0.327089i
\(656\) 0 0
\(657\) 11.9975 + 8.94138i 0.468065 + 0.348837i
\(658\) 0 0
\(659\) 10.5259 + 18.2313i 0.410029 + 0.710191i 0.994892 0.100941i \(-0.0321852\pi\)
−0.584863 + 0.811132i \(0.698852\pi\)
\(660\) 0 0
\(661\) −11.2218 + 19.4368i −0.436479 + 0.756004i −0.997415 0.0718553i \(-0.977108\pi\)
0.560936 + 0.827859i \(0.310441\pi\)
\(662\) 0 0
\(663\) −2.82829 + 2.51566i −0.109842 + 0.0977001i
\(664\) 0 0
\(665\) −8.47710 −0.328728
\(666\) 0 0
\(667\) 3.21153 0.124351
\(668\) 0 0
\(669\) −3.30401 16.0222i −0.127741 0.619454i
\(670\) 0 0
\(671\) −17.7225 + 30.6962i −0.684168 + 1.18501i
\(672\) 0 0
\(673\) 5.83929 + 10.1140i 0.225088 + 0.389864i 0.956346 0.292237i \(-0.0943996\pi\)
−0.731258 + 0.682101i \(0.761066\pi\)
\(674\) 0 0
\(675\) −4.64400 + 9.93902i −0.178747 + 0.382553i
\(676\) 0 0
\(677\) −5.23422 9.06593i −0.201167 0.348432i 0.747737 0.663995i \(-0.231140\pi\)
−0.948905 + 0.315562i \(0.897807\pi\)
\(678\) 0 0
\(679\) 4.32072 7.48371i 0.165814 0.287199i
\(680\) 0 0
\(681\) −6.68539 32.4195i −0.256185 1.24232i
\(682\) 0 0
\(683\) 32.8158 1.25566 0.627832 0.778349i \(-0.283943\pi\)
0.627832 + 0.778349i \(0.283943\pi\)
\(684\) 0 0
\(685\) 33.0617 1.26322
\(686\) 0 0
\(687\) −14.8120 + 13.1747i −0.565113 + 0.502647i
\(688\) 0 0
\(689\) −0.734219 + 1.27171i −0.0279715 + 0.0484481i
\(690\) 0 0
\(691\) −2.95056 5.11052i −0.112245 0.194413i 0.804430 0.594047i \(-0.202471\pi\)
−0.916675 + 0.399634i \(0.869137\pi\)
\(692\) 0 0
\(693\) 6.82505 2.93987i 0.259262 0.111676i
\(694\) 0 0
\(695\) −2.53892 4.39754i −0.0963068 0.166808i
\(696\) 0 0
\(697\) 8.25890 14.3048i 0.312828 0.541834i
\(698\) 0 0
\(699\) −1.95715 0.649089i −0.0740263 0.0245508i
\(700\) 0 0
\(701\) −12.3782 −0.467519 −0.233759 0.972294i \(-0.575103\pi\)
−0.233759 + 0.972294i \(0.575103\pi\)
\(702\) 0 0
\(703\) 34.2967 1.29352
\(704\) 0 0
\(705\) −36.2898 12.0355i −1.36675 0.453283i
\(706\) 0 0
\(707\) 1.20582 2.08854i 0.0453495 0.0785476i
\(708\) 0 0
\(709\) 6.64145 + 11.5033i 0.249425 + 0.432016i 0.963366 0.268189i \(-0.0864251\pi\)
−0.713942 + 0.700205i \(0.753092\pi\)
\(710\) 0 0
\(711\) −3.22184 + 27.4420i −0.120828 + 1.02915i
\(712\) 0 0
\(713\) −1.81522 3.14406i −0.0679806 0.117746i
\(714\) 0 0
\(715\) 1.63664 2.83474i 0.0612067 0.106013i
\(716\) 0 0
\(717\) −31.4265 + 27.9527i −1.17364 + 1.04391i
\(718\) 0 0
\(719\) −24.3694 −0.908825 −0.454413 0.890791i \(-0.650151\pi\)
−0.454413 + 0.890791i \(0.650151\pi\)
\(720\) 0 0
\(721\) 4.33379 0.161399
\(722\) 0 0
\(723\) 7.49264 + 36.3342i 0.278654 + 1.35128i
\(724\) 0 0
\(725\) 4.76145 8.24707i 0.176836 0.306289i
\(726\) 0 0
\(727\) 7.99450 + 13.8469i 0.296500 + 0.513552i 0.975333 0.220740i \(-0.0708473\pi\)
−0.678833 + 0.734293i \(0.737514\pi\)
\(728\) 0 0
\(729\) −9.27375 + 25.3574i −0.343472 + 0.939163i
\(730\) 0 0
\(731\) 6.54070 + 11.3288i 0.241917 + 0.419012i
\(732\) 0 0
\(733\) 21.1414 36.6181i 0.780877 1.35252i −0.150554 0.988602i \(-0.548106\pi\)
0.931431 0.363917i \(-0.118561\pi\)
\(734\) 0 0
\(735\) 0.594554 + 2.88318i 0.0219304 + 0.106348i
\(736\) 0 0
\(737\) 19.7861 0.728832
\(738\) 0 0
\(739\) −3.08650 −0.113539 −0.0567695 0.998387i \(-0.518080\pi\)
−0.0567695 + 0.998387i \(0.518080\pi\)
\(740\) 0 0
\(741\) 5.01849 4.46376i 0.184359 0.163980i
\(742\) 0 0
\(743\) −3.31522 + 5.74213i −0.121624 + 0.210658i −0.920408 0.390959i \(-0.872143\pi\)
0.798784 + 0.601617i \(0.205477\pi\)
\(744\) 0 0
\(745\) 6.88255 + 11.9209i 0.252157 + 0.436749i
\(746\) 0 0
\(747\) 3.08217 26.2524i 0.112771 0.960524i
\(748\) 0 0
\(749\) 9.59888 + 16.6258i 0.350736 + 0.607492i
\(750\) 0 0
\(751\) 21.3702 37.0142i 0.779808 1.35067i −0.152243 0.988343i \(-0.548650\pi\)
0.932052 0.362325i \(-0.118017\pi\)
\(752\) 0 0
\(753\) −4.40585 1.46120i −0.160558 0.0532491i
\(754\) 0 0
\(755\) 15.0655 0.548288
\(756\) 0 0
\(757\) −31.0232 −1.12756 −0.563779 0.825926i \(-0.690653\pi\)
−0.563779 + 0.825926i \(0.690653\pi\)
\(758\) 0 0
\(759\) 2.89954 + 0.961632i 0.105247 + 0.0349050i
\(760\) 0 0
\(761\) −11.8182 + 20.4697i −0.428409 + 0.742025i −0.996732 0.0807799i \(-0.974259\pi\)
0.568323 + 0.822805i \(0.307592\pi\)
\(762\) 0 0
\(763\) 9.48143 + 16.4223i 0.343251 + 0.594528i
\(764\) 0 0
\(765\) 13.1632 5.67000i 0.475916 0.204999i
\(766\) 0 0
\(767\) −5.55425 9.62025i −0.200553 0.347367i
\(768\) 0 0
\(769\) 1.73422 3.00376i 0.0625375 0.108318i −0.833061 0.553180i \(-0.813414\pi\)
0.895599 + 0.444862i \(0.146747\pi\)
\(770\) 0 0
\(771\) 14.3462 12.7604i 0.516665 0.459554i
\(772\) 0 0
\(773\) 34.5970 1.24437 0.622184 0.782871i \(-0.286245\pi\)
0.622184 + 0.782871i \(0.286245\pi\)
\(774\) 0 0
\(775\) −10.7651 −0.386694
\(776\) 0 0
\(777\) −2.40545 11.6648i −0.0862949 0.418471i
\(778\) 0 0
\(779\) −14.6545 + 25.3824i −0.525053 + 0.909418i
\(780\) 0 0
\(781\) 12.7115 + 22.0170i 0.454854 + 0.787831i
\(782\) 0 0
\(783\) 9.92147 21.2338i 0.354564 0.758834i
\(784\) 0 0
\(785\) −7.44870 12.9015i −0.265855 0.460475i
\(786\) 0 0
\(787\) 6.07963 10.5302i 0.216715 0.375362i −0.737087 0.675798i \(-0.763799\pi\)
0.953802 + 0.300437i \(0.0971323\pi\)
\(788\) 0 0
\(789\) −4.69028 22.7446i −0.166978 0.809730i
\(790\) 0 0
\(791\) −12.9294 −0.459718
\(792\) 0 0
\(793\) 11.1249 0.395056
\(794\) 0 0
\(795\) 4.15452 3.69529i 0.147346 0.131058i
\(796\) 0 0
\(797\) −2.89493 + 5.01416i −0.102544 + 0.177611i −0.912732 0.408559i \(-0.866031\pi\)
0.810188 + 0.586170i \(0.199365\pi\)
\(798\) 0 0
\(799\) −18.2534 31.6158i −0.645759 1.11849i
\(800\) 0 0
\(801\) 23.2218 + 17.3066i 0.820501 + 0.611497i
\(802\) 0 0
\(803\) −6.17742 10.6996i −0.217996 0.377581i
\(804\) 0 0
\(805\) −0.605074 + 1.04802i −0.0213261 + 0.0369378i
\(806\) 0 0
\(807\) 6.72431 + 2.23012i 0.236707 + 0.0785038i
\(808\) 0 0
\(809\) −49.1817 −1.72914 −0.864568 0.502516i \(-0.832408\pi\)
−0.864568 + 0.502516i \(0.832408\pi\)
\(810\) 0 0
\(811\) 40.7266 1.43010 0.715052 0.699072i \(-0.246403\pi\)
0.715052 + 0.699072i \(0.246403\pi\)
\(812\) 0 0
\(813\) 10.0672 + 3.33880i 0.353074 + 0.117097i
\(814\) 0 0
\(815\) −1.68911 + 2.92562i −0.0591669 + 0.102480i
\(816\) 0 0
\(817\) −11.6058 20.1018i −0.406034 0.703272i
\(818\) 0 0
\(819\) −1.87017 1.39379i −0.0653489 0.0487028i
\(820\) 0 0
\(821\) −7.54689 13.0716i −0.263388 0.456202i 0.703752 0.710446i \(-0.251507\pi\)
−0.967140 + 0.254244i \(0.918173\pi\)
\(822\) 0 0
\(823\) −8.00000 + 13.8564i −0.278862 + 0.483004i −0.971102 0.238664i \(-0.923291\pi\)
0.692240 + 0.721668i \(0.256624\pi\)
\(824\) 0 0
\(825\) 6.76833 6.02018i 0.235643 0.209596i
\(826\) 0 0
\(827\) 35.2348 1.22523 0.612616 0.790381i \(-0.290117\pi\)
0.612616 + 0.790381i \(0.290117\pi\)
\(828\) 0 0
\(829\) −3.23491 −0.112353 −0.0561765 0.998421i \(-0.517891\pi\)
−0.0561765 + 0.998421i \(0.517891\pi\)
\(830\) 0 0
\(831\) −5.51485 26.7432i −0.191308 0.927713i
\(832\) 0 0
\(833\) −1.40545 + 2.43430i −0.0486958 + 0.0843436i
\(834\) 0 0
\(835\) 2.22803 + 3.85906i 0.0771041 + 0.133548i
\(836\) 0 0
\(837\) −26.3955 + 2.28875i −0.912363 + 0.0791109i
\(838\) 0 0
\(839\) 15.5197 + 26.8808i 0.535798 + 0.928030i 0.999124 + 0.0418419i \(0.0133226\pi\)
−0.463326 + 0.886188i \(0.653344\pi\)
\(840\) 0 0
\(841\) 4.32760 7.49563i 0.149228 0.258470i
\(842\) 0 0
\(843\) 7.41225 + 35.9443i 0.255291 + 1.23799i
\(844\) 0 0
\(845\) 21.0678 0.724755
\(846\) 0 0
\(847\) 4.86398 0.167128
\(848\) 0 0
\(849\) −8.89926 + 7.91556i −0.305422 + 0.271661i
\(850\) 0 0
\(851\) 2.44801 4.24008i 0.0839167 0.145348i
\(852\) 0 0
\(853\) 8.03637 + 13.9194i 0.275160 + 0.476591i 0.970176 0.242403i \(-0.0779358\pi\)
−0.695015 + 0.718995i \(0.744602\pi\)
\(854\) 0 0
\(855\) −23.3566 + 10.0608i −0.798779 + 0.344072i
\(856\) 0 0
\(857\) −9.61058 16.6460i −0.328291 0.568617i 0.653882 0.756597i \(-0.273139\pi\)
−0.982173 + 0.187980i \(0.939806\pi\)
\(858\) 0 0
\(859\) 7.40112 12.8191i 0.252523 0.437382i −0.711697 0.702487i \(-0.752073\pi\)
0.964220 + 0.265104i \(0.0854064\pi\)
\(860\) 0 0
\(861\) 9.66071 + 3.20397i 0.329236 + 0.109191i
\(862\) 0 0
\(863\) 14.7688 0.502736 0.251368 0.967892i \(-0.419120\pi\)
0.251368 + 0.967892i \(0.419120\pi\)
\(864\) 0 0
\(865\) 8.88874 0.302226
\(866\) 0 0
\(867\) −14.9585 4.96099i −0.508018 0.168484i
\(868\) 0 0
\(869\) 11.4072 19.7579i 0.386964 0.670241i
\(870\) 0 0
\(871\) −3.10507 5.37815i −0.105211 0.182232i
\(872\) 0 0
\(873\) 3.02290 25.7475i 0.102310 0.871421i
\(874\) 0 0
\(875\) 6.04325 + 10.4672i 0.204299 + 0.353857i
\(876\) 0 0
\(877\) −26.1916 + 45.3651i −0.884427 + 1.53187i −0.0380575 + 0.999276i \(0.512117\pi\)
−0.846369 + 0.532597i \(0.821216\pi\)
\(878\) 0 0
\(879\) 35.5988 31.6638i 1.20072 1.06799i
\(880\) 0 0
\(881\) −31.3214 −1.05525 −0.527623 0.849479i \(-0.676916\pi\)
−0.527623 + 0.849479i \(0.676916\pi\)
\(882\) 0 0
\(883\) −43.0494 −1.44873 −0.724363 0.689419i \(-0.757866\pi\)
−0.724363 + 0.689419i \(0.757866\pi\)
\(884\) 0 0
\(885\) 8.49498 + 41.1948i 0.285556 + 1.38475i
\(886\) 0 0
\(887\) 7.48831 12.9701i 0.251433 0.435494i −0.712488 0.701685i \(-0.752432\pi\)
0.963921 + 0.266190i \(0.0857649\pi\)
\(888\) 0 0
\(889\) 8.81453 + 15.2672i 0.295630 + 0.512046i
\(890\) 0 0
\(891\) 15.3157 16.2002i 0.513095 0.542728i
\(892\) 0 0
\(893\) 32.3887 + 56.0988i 1.08385 + 1.87727i
\(894\) 0 0
\(895\) −4.04944 + 7.01384i −0.135358 + 0.234447i
\(896\) 0 0
\(897\) −0.193645 0.939046i −0.00646562 0.0313538i
\(898\) 0 0
\(899\) 22.9986 0.767047
\(900\) 0 0
\(901\) 5.30903 0.176870
\(902\) 0 0
\(903\) −6.02290 + 5.35715i −0.200430 + 0.178275i
\(904\) 0 0
\(905\) −8.86467 + 15.3541i −0.294671 + 0.510386i
\(906\) 0 0
\(907\) −15.2280 26.3756i −0.505636 0.875787i −0.999979 0.00652002i \(-0.997925\pi\)
0.494343 0.869267i \(-0.335409\pi\)
\(908\) 0 0
\(909\) 0.843624 7.18555i 0.0279812 0.238330i
\(910\) 0 0
\(911\) 9.97593 + 17.2788i 0.330517 + 0.572473i 0.982613 0.185664i \(-0.0594435\pi\)
−0.652096 + 0.758136i \(0.726110\pi\)
\(912\) 0 0
\(913\) −10.9127 + 18.9014i −0.361159 + 0.625545i
\(914\) 0 0
\(915\) −39.9820 13.2600i −1.32177 0.438363i
\(916\) 0 0
\(917\) 5.68725 0.187809
\(918\) 0 0
\(919\) 45.6291 1.50516 0.752582 0.658498i \(-0.228808\pi\)
0.752582 + 0.658498i \(0.228808\pi\)
\(920\) 0 0
\(921\) −35.3752 11.7322i −1.16565 0.386588i
\(922\) 0 0
\(923\) 3.98969 6.91034i 0.131322 0.227457i
\(924\) 0 0
\(925\) −7.25890 12.5728i −0.238671 0.413391i
\(926\) 0 0
\(927\) 11.9407 5.14343i 0.392185 0.168932i
\(928\) 0 0
\(929\) −28.1861 48.8197i −0.924755 1.60172i −0.791954 0.610580i \(-0.790936\pi\)
−0.132801 0.991143i \(-0.542397\pi\)
\(930\) 0 0
\(931\) 2.49381 4.31941i 0.0817313 0.141563i
\(932\) 0 0
\(933\) −23.7942 + 21.1640i −0.778987 + 0.692880i
\(934\) 0 0
\(935\) −11.8343 −0.387022
\(936\) 0 0
\(937\) −36.8530 −1.20393 −0.601967 0.798521i \(-0.705616\pi\)
−0.601967 + 0.798521i \(0.705616\pi\)
\(938\) 0 0
\(939\) 0.000481840 0.00233659i 1.57243e−5 7.62519e-5i
\(940\) 0 0
\(941\) 4.38000 7.58638i 0.142784 0.247309i −0.785760 0.618531i \(-0.787728\pi\)
0.928544 + 0.371223i \(0.121061\pi\)
\(942\) 0 0
\(943\) 2.09201 + 3.62346i 0.0681251 + 0.117996i
\(944\) 0 0
\(945\) 5.05996 + 7.23828i 0.164601 + 0.235461i
\(946\) 0 0
\(947\) −13.3226 23.0754i −0.432926 0.749849i 0.564198 0.825640i \(-0.309185\pi\)
−0.997124 + 0.0757901i \(0.975852\pi\)
\(948\) 0 0
\(949\) −1.93887 + 3.35822i −0.0629383 + 0.109012i
\(950\) 0 0
\(951\) −4.93199 23.9168i −0.159931 0.775554i
\(952\) 0 0
\(953\) 24.3039 0.787282 0.393641 0.919264i \(-0.371215\pi\)
0.393641 + 0.919264i \(0.371215\pi\)
\(954\) 0 0
\(955\) −22.6414 −0.732660
\(956\) 0 0
\(957\) −14.4599 + 12.8616i −0.467422 + 0.415755i
\(958\) 0 0
\(959\) −9.72617 + 16.8462i −0.314074 + 0.543993i
\(960\) 0 0
\(961\) 2.50069 + 4.33132i 0.0806674 + 0.139720i
\(962\) 0 0
\(963\) 46.1792 + 34.4161i 1.48810 + 1.10904i
\(964\) 0 0
\(965\) −12.4425 21.5511i −0.400539 0.693753i
\(966\) 0 0
\(967\) 5.22872 9.05641i 0.168144 0.291234i −0.769623 0.638498i \(-0.779556\pi\)
0.937767 + 0.347264i \(0.112889\pi\)
\(968\) 0 0
\(969\) −23.0483 7.64396i −0.740417 0.245559i
\(970\) 0 0
\(971\) −41.7156 −1.33872 −0.669358 0.742940i \(-0.733431\pi\)
−0.669358 + 0.742940i \(0.733431\pi\)
\(972\) 0 0
\(973\) 2.98762 0.0957787
\(974\) 0 0
\(975\) −2.69853 0.894969i −0.0864223 0.0286619i
\(976\) 0 0
\(977\) −2.94506 + 5.10099i −0.0942207 + 0.163195i −0.909283 0.416178i \(-0.863369\pi\)
0.815062 + 0.579373i \(0.196703\pi\)
\(978\) 0 0
\(979\) −11.9567 20.7097i −0.382139 0.661885i
\(980\) 0 0
\(981\) 45.6141 + 33.9950i 1.45635 + 1.08538i
\(982\) 0 0
\(983\) −20.9196 36.2338i −0.667232 1.15568i −0.978675 0.205415i \(-0.934146\pi\)
0.311443 0.950265i \(-0.399188\pi\)
\(984\) 0 0
\(985\) −15.7095 + 27.2096i −0.500545 + 0.866969i
\(986\) 0 0
\(987\) 16.8083 14.9504i 0.535015 0.475876i
\(988\) 0 0
\(989\) −3.31356 −0.105365
\(990\) 0 0
\(991\) −54.7156 −1.73810 −0.869049 0.494726i \(-0.835268\pi\)
−0.869049 + 0.494726i \(0.835268\pi\)
\(992\) 0 0
\(993\) −4.88441 23.6860i −0.155002 0.751653i
\(994\) 0 0
\(995\) 20.0698 34.7619i 0.636255 1.10203i
\(996\) 0 0
\(997\) 9.02476 + 15.6313i 0.285817 + 0.495050i 0.972807 0.231617i \(-0.0744017\pi\)
−0.686990 + 0.726667i \(0.741068\pi\)
\(998\) 0 0
\(999\) −20.4716 29.2846i −0.647693 0.926524i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 252.2.j.a.85.3 6
3.2 odd 2 756.2.j.b.253.1 6
4.3 odd 2 1008.2.r.j.337.1 6
7.2 even 3 1764.2.l.e.949.1 6
7.3 odd 6 1764.2.i.d.373.3 6
7.4 even 3 1764.2.i.g.373.1 6
7.5 odd 6 1764.2.l.f.949.3 6
7.6 odd 2 1764.2.j.e.589.1 6
9.2 odd 6 756.2.j.b.505.1 6
9.4 even 3 2268.2.a.i.1.1 3
9.5 odd 6 2268.2.a.h.1.3 3
9.7 even 3 inner 252.2.j.a.169.3 yes 6
12.11 even 2 3024.2.r.j.1009.1 6
21.2 odd 6 5292.2.l.e.361.3 6
21.5 even 6 5292.2.l.f.361.1 6
21.11 odd 6 5292.2.i.f.1549.1 6
21.17 even 6 5292.2.i.e.1549.3 6
21.20 even 2 5292.2.j.d.1765.3 6
36.7 odd 6 1008.2.r.j.673.1 6
36.11 even 6 3024.2.r.j.2017.1 6
36.23 even 6 9072.2.a.bv.1.3 3
36.31 odd 6 9072.2.a.by.1.1 3
63.2 odd 6 5292.2.i.f.2125.1 6
63.11 odd 6 5292.2.l.e.3313.3 6
63.16 even 3 1764.2.i.g.1537.1 6
63.20 even 6 5292.2.j.d.3529.3 6
63.25 even 3 1764.2.l.e.961.1 6
63.34 odd 6 1764.2.j.e.1177.1 6
63.38 even 6 5292.2.l.f.3313.1 6
63.47 even 6 5292.2.i.e.2125.3 6
63.52 odd 6 1764.2.l.f.961.3 6
63.61 odd 6 1764.2.i.d.1537.3 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.3 6 1.1 even 1 trivial
252.2.j.a.169.3 yes 6 9.7 even 3 inner
756.2.j.b.253.1 6 3.2 odd 2
756.2.j.b.505.1 6 9.2 odd 6
1008.2.r.j.337.1 6 4.3 odd 2
1008.2.r.j.673.1 6 36.7 odd 6
1764.2.i.d.373.3 6 7.3 odd 6
1764.2.i.d.1537.3 6 63.61 odd 6
1764.2.i.g.373.1 6 7.4 even 3
1764.2.i.g.1537.1 6 63.16 even 3
1764.2.j.e.589.1 6 7.6 odd 2
1764.2.j.e.1177.1 6 63.34 odd 6
1764.2.l.e.949.1 6 7.2 even 3
1764.2.l.e.961.1 6 63.25 even 3
1764.2.l.f.949.3 6 7.5 odd 6
1764.2.l.f.961.3 6 63.52 odd 6
2268.2.a.h.1.3 3 9.5 odd 6
2268.2.a.i.1.1 3 9.4 even 3
3024.2.r.j.1009.1 6 12.11 even 2
3024.2.r.j.2017.1 6 36.11 even 6
5292.2.i.e.1549.3 6 21.17 even 6
5292.2.i.e.2125.3 6 63.47 even 6
5292.2.i.f.1549.1 6 21.11 odd 6
5292.2.i.f.2125.1 6 63.2 odd 6
5292.2.j.d.1765.3 6 21.20 even 2
5292.2.j.d.3529.3 6 63.20 even 6
5292.2.l.e.361.3 6 21.2 odd 6
5292.2.l.e.3313.3 6 63.11 odd 6
5292.2.l.f.361.1 6 21.5 even 6
5292.2.l.f.3313.1 6 63.38 even 6
9072.2.a.bv.1.3 3 36.23 even 6
9072.2.a.by.1.1 3 36.31 odd 6