Properties

Label 5292.2.i.e.2125.3
Level 52925292
Weight 22
Character 5292.2125
Analytic conductor 42.25742.257
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [5292,2,Mod(1549,5292)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(5292, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("5292.1549"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 5292=223372 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5292.i (of order 33, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,0,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(5)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 42.256832749742.2568327497
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: 6.0.309123.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x63x5+10x415x3+19x212x+3 x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a11]\Z[a_1, \ldots, a_{11}]
Coefficient ring index: 3 3
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

Embedding invariants

Embedding label 2125.3
Root 0.500000+0.224437i0.500000 + 0.224437i of defining polynomial
Character χ\chi == 5292.2125
Dual form 5292.2.i.e.1549.3

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q+(0.8498141.47192i)q5+(1.23855+2.14523i)q11+(0.388736+0.673310i)q13+(1.40545+2.43430i)q17+(2.493814.31941i)q19+(0.3560040.616617i)q23+(1.05563+1.82841i)q25+(2.255263.90623i)q295.09888q31+(3.43818+5.95510i)q37+(2.93818+5.08907i)q41+(2.326914.03033i)q43+12.9876q47+(0.9443681.63569i)q53+4.21015q55+14.2880q5914.3090q61+1.32141q65+7.98762q67+10.2632q71+(2.493814.31941i)q739.21015q79+(4.40545+7.63046i)q83+(2.38874+4.13741i)q85+(4.826918.36046i)q898.47710q95+(4.320727.48371i)q97+O(q100)q+(0.849814 - 1.47192i) q^{5} +(1.23855 + 2.14523i) q^{11} +(0.388736 + 0.673310i) q^{13} +(-1.40545 + 2.43430i) q^{17} +(-2.49381 - 4.31941i) q^{19} +(0.356004 - 0.616617i) q^{23} +(1.05563 + 1.82841i) q^{25} +(2.25526 - 3.90623i) q^{29} -5.09888 q^{31} +(3.43818 + 5.95510i) q^{37} +(2.93818 + 5.08907i) q^{41} +(2.32691 - 4.03033i) q^{43} +12.9876 q^{47} +(0.944368 - 1.63569i) q^{53} +4.21015 q^{55} +14.2880 q^{59} -14.3090 q^{61} +1.32141 q^{65} +7.98762 q^{67} +10.2632 q^{71} +(2.49381 - 4.31941i) q^{73} -9.21015 q^{79} +(-4.40545 + 7.63046i) q^{83} +(2.38874 + 4.13741i) q^{85} +(-4.82691 - 8.36046i) q^{89} -8.47710 q^{95} +(4.32072 - 7.48371i) q^{97} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 6qq5+2q11+3q132q17+3q19+14q23+6q25+q29+6q31+3q373q43+42q47+6q5312q55+62q5912q6130q65+12q67+9q97+O(q100) 6 q - q^{5} + 2 q^{11} + 3 q^{13} - 2 q^{17} + 3 q^{19} + 14 q^{23} + 6 q^{25} + q^{29} + 6 q^{31} + 3 q^{37} - 3 q^{43} + 42 q^{47} + 6 q^{53} - 12 q^{55} + 62 q^{59} - 12 q^{61} - 30 q^{65} + 12 q^{67}+ \cdots - 9 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/5292Z)×\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times.

nn 785785 10811081 26472647
χ(n)\chi(n) e(23)e\left(\frac{2}{3}\right) e(23)e\left(\frac{2}{3}\right) 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 0 0
44 0 0
55 0.849814 1.47192i 0.380048 0.658263i −0.611020 0.791615i 0.709241π-0.709241\pi
0.991069 + 0.133352i 0.0425740π0.0425740\pi
66 0 0
77 0 0
88 0 0
99 0 0
1010 0 0
1111 1.23855 + 2.14523i 0.373437 + 0.646812i 0.990092 0.140422i 0.0448459π-0.0448459\pi
−0.616655 + 0.787234i 0.711513π0.711513\pi
1212 0 0
1313 0.388736 + 0.673310i 0.107816 + 0.186743i 0.914885 0.403714i 0.132281π-0.132281\pi
−0.807069 + 0.590457i 0.798948π0.798948\pi
1414 0 0
1515 0 0
1616 0 0
1717 −1.40545 + 2.43430i −0.340871 + 0.590405i −0.984595 0.174852i 0.944055π-0.944055\pi
0.643724 + 0.765258i 0.277389π0.277389\pi
1818 0 0
1919 −2.49381 4.31941i −0.572119 0.990940i −0.996348 0.0853846i 0.972788π-0.972788\pi
0.424229 0.905555i 0.360545π-0.360545\pi
2020 0 0
2121 0 0
2222 0 0
2323 0.356004 0.616617i 0.0742320 0.128574i −0.826520 0.562907i 0.809683π-0.809683\pi
0.900752 + 0.434334i 0.143016π0.143016\pi
2424 0 0
2525 1.05563 + 1.82841i 0.211126 + 0.365682i
2626 0 0
2727 0 0
2828 0 0
2929 2.25526 3.90623i 0.418791 0.725368i −0.577027 0.816725i 0.695787π-0.695787\pi
0.995818 + 0.0913573i 0.0291205π0.0291205\pi
3030 0 0
3131 −5.09888 −0.915787 −0.457893 0.889007i 0.651396π-0.651396\pi
−0.457893 + 0.889007i 0.651396π0.651396\pi
3232 0 0
3333 0 0
3434 0 0
3535 0 0
3636 0 0
3737 3.43818 + 5.95510i 0.565233 + 0.979012i 0.997028 + 0.0770405i 0.0245471π0.0245471\pi
−0.431795 + 0.901972i 0.642120π0.642120\pi
3838 0 0
3939 0 0
4040 0 0
4141 2.93818 + 5.08907i 0.458866 + 0.794780i 0.998901 0.0468628i 0.0149223π-0.0149223\pi
−0.540035 + 0.841643i 0.681589π0.681589\pi
4242 0 0
4343 2.32691 4.03033i 0.354851 0.614620i −0.632241 0.774771i 0.717865π-0.717865\pi
0.987092 + 0.160151i 0.0511982π0.0511982\pi
4444 0 0
4545 0 0
4646 0 0
4747 12.9876 1.89444 0.947220 0.320586i 0.103880π-0.103880\pi
0.947220 + 0.320586i 0.103880π0.103880\pi
4848 0 0
4949 0 0
5050 0 0
5151 0 0
5252 0 0
5353 0.944368 1.63569i 0.129719 0.224680i −0.793849 0.608115i 0.791926π-0.791926\pi
0.923568 + 0.383436i 0.125259π0.125259\pi
5454 0 0
5555 4.21015 0.567696
5656 0 0
5757 0 0
5858 0 0
5959 14.2880 1.86014 0.930069 0.367385i 0.119747π-0.119747\pi
0.930069 + 0.367385i 0.119747π0.119747\pi
6060 0 0
6161 −14.3090 −1.83208 −0.916042 0.401082i 0.868634π-0.868634\pi
−0.916042 + 0.401082i 0.868634π0.868634\pi
6262 0 0
6363 0 0
6464 0 0
6565 1.32141 0.163901
6666 0 0
6767 7.98762 0.975843 0.487922 0.872887i 0.337755π-0.337755\pi
0.487922 + 0.872887i 0.337755π0.337755\pi
6868 0 0
6969 0 0
7070 0 0
7171 10.2632 1.21802 0.609011 0.793162i 0.291567π-0.291567\pi
0.609011 + 0.793162i 0.291567π0.291567\pi
7272 0 0
7373 2.49381 4.31941i 0.291878 0.505548i −0.682376 0.731002i 0.739053π-0.739053\pi
0.974254 + 0.225454i 0.0723864π0.0723864\pi
7474 0 0
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 −9.21015 −1.03622 −0.518111 0.855313i 0.673365π-0.673365\pi
−0.518111 + 0.855313i 0.673365π0.673365\pi
8080 0 0
8181 0 0
8282 0 0
8383 −4.40545 + 7.63046i −0.483561 + 0.837551i −0.999822 0.0188798i 0.993990π-0.993990\pi
0.516261 + 0.856431i 0.327323π0.327323\pi
8484 0 0
8585 2.38874 + 4.13741i 0.259095 + 0.448765i
8686 0 0
8787 0 0
8888 0 0
8989 −4.82691 8.36046i −0.511652 0.886207i −0.999909 0.0135071i 0.995700π-0.995700\pi
0.488257 0.872700i 0.337633π-0.337633\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 −8.47710 −0.869732
9696 0 0
9797 4.32072 7.48371i 0.438703 0.759856i −0.558887 0.829244i 0.688771π-0.688771\pi
0.997590 + 0.0693880i 0.0221047π0.0221047\pi
9898 0 0
9999 0 0
100100 0 0
101101 −1.20582 2.08854i −0.119983 0.207817i 0.799777 0.600297i 0.204951π-0.204951\pi
−0.919761 + 0.392479i 0.871617π0.871617\pi
102102 0 0
103103 −2.16690 + 3.75317i −0.213511 + 0.369811i −0.952811 0.303565i 0.901823π-0.901823\pi
0.739300 + 0.673376i 0.235156π0.235156\pi
104104 0 0
105105 0 0
106106 0 0
107107 9.59888 + 16.6258i 0.927959 + 1.60727i 0.786732 + 0.617295i 0.211772π0.211772\pi
0.141228 + 0.989977i 0.454895π0.454895\pi
108108 0 0
109109 −9.48143 + 16.4223i −0.908156 + 1.57297i −0.0915329 + 0.995802i 0.529177π0.529177\pi
−0.816623 + 0.577171i 0.804157π0.804157\pi
110110 0 0
111111 0 0
112112 0 0
113113 6.46472 + 11.1972i 0.608150 + 1.05335i 0.991545 + 0.129762i 0.0414213π0.0414213\pi
−0.383395 + 0.923584i 0.625245π0.625245\pi
114114 0 0
115115 −0.605074 1.04802i −0.0564235 0.0977283i
116116 0 0
117117 0 0
118118 0 0
119119 0 0
120120 0 0
121121 2.43199 4.21233i 0.221090 0.382939i
122122 0 0
123123 0 0
124124 0 0
125125 12.0865 1.08105
126126 0 0
127127 17.6291 1.56433 0.782163 0.623073i 0.214116π-0.214116\pi
0.782163 + 0.623073i 0.214116π0.214116\pi
128128 0 0
129129 0 0
130130 0 0
131131 2.84362 4.92530i 0.248449 0.430326i −0.714647 0.699485i 0.753413π-0.753413\pi
0.963096 + 0.269160i 0.0867460π0.0867460\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 0 0
137137 −9.72617 16.8462i −0.830963 1.43927i −0.897276 0.441471i 0.854457π-0.854457\pi
0.0663128 0.997799i 0.478876π-0.478876\pi
138138 0 0
139139 −1.49381 2.58736i −0.126703 0.219457i 0.795694 0.605699i 0.207106π-0.207106\pi
−0.922397 + 0.386242i 0.873773π0.873773\pi
140140 0 0
141141 0 0
142142 0 0
143143 −0.962937 + 1.66786i −0.0805249 + 0.139473i
144144 0 0
145145 −3.83310 6.63913i −0.318322 0.551350i
146146 0 0
147147 0 0
148148 0 0
149149 4.04944 7.01384i 0.331743 0.574596i −0.651111 0.758983i 0.725697π-0.725697\pi
0.982854 + 0.184387i 0.0590299π0.0590299\pi
150150 0 0
151151 4.43199 + 7.67643i 0.360670 + 0.624699i 0.988071 0.153997i 0.0492147π-0.0492147\pi
−0.627401 + 0.778696i 0.715881π0.715881\pi
152152 0 0
153153 0 0
154154 0 0
155155 −4.33310 + 7.50516i −0.348043 + 0.602829i
156156 0 0
157157 8.76509 0.699530 0.349765 0.936837i 0.386261π-0.386261\pi
0.349765 + 0.936837i 0.386261π0.386261\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 0.993810 + 1.72133i 0.0778412 + 0.134825i 0.902318 0.431070i 0.141864π-0.141864\pi
−0.824477 + 0.565895i 0.808531π0.808531\pi
164164 0 0
165165 0 0
166166 0 0
167167 −1.31089 2.27053i −0.101440 0.175699i 0.810838 0.585270i 0.199012π-0.199012\pi
−0.912278 + 0.409571i 0.865678π0.865678\pi
168168 0 0
169169 6.19777 10.7349i 0.476751 0.825758i
170170 0 0
171171 0 0
172172 0 0
173173 −5.22981 −0.397615 −0.198808 0.980039i 0.563707π-0.563707\pi
−0.198808 + 0.980039i 0.563707π0.563707\pi
174174 0 0
175175 0 0
176176 0 0
177177 0 0
178178 0 0
179179 −2.38255 + 4.12669i −0.178080 + 0.308443i −0.941223 0.337786i 0.890322π-0.890322\pi
0.763143 + 0.646230i 0.223655π0.223655\pi
180180 0 0
181181 10.4313 0.775352 0.387676 0.921796i 0.373278π-0.373278\pi
0.387676 + 0.921796i 0.373278π0.373278\pi
182182 0 0
183183 0 0
184184 0 0
185185 11.6872 0.859264
186186 0 0
187187 −6.96286 −0.509175
188188 0 0
189189 0 0
190190 0 0
191191 −13.3214 −0.963904 −0.481952 0.876198i 0.660072π-0.660072\pi
−0.481952 + 0.876198i 0.660072π0.660072\pi
192192 0 0
193193 −14.6414 −1.05391 −0.526957 0.849892i 0.676667π-0.676667\pi
−0.526957 + 0.849892i 0.676667π0.676667\pi
194194 0 0
195195 0 0
196196 0 0
197197 18.4858 1.31706 0.658528 0.752556i 0.271179π-0.271179\pi
0.658528 + 0.752556i 0.271179π0.271179\pi
198198 0 0
199199 11.8083 20.4527i 0.837071 1.44985i −0.0552614 0.998472i 0.517599π-0.517599\pi
0.892333 0.451378i 0.149067π-0.149067\pi
200200 0 0
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 9.98762 0.697566
206206 0 0
207207 0 0
208208 0 0
209209 6.17742 10.6996i 0.427301 0.740107i
210210 0 0
211211 7.27747 + 12.6050i 0.501002 + 0.867761i 0.999999 + 0.00115718i 0.000368342π0.000368342\pi
−0.498998 + 0.866603i 0.666298π0.666298\pi
212212 0 0
213213 0 0
214214 0 0
215215 −3.95489 6.85007i −0.269721 0.467171i
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 −2.18539 −0.147005
222222 0 0
223223 4.72253 8.17966i 0.316244 0.547750i −0.663457 0.748214i 0.730912π-0.730912\pi
0.979701 + 0.200464i 0.0642449π0.0642449\pi
224224 0 0
225225 0 0
226226 0 0
227227 −9.55563 16.5508i −0.634230 1.09852i −0.986678 0.162687i 0.947984π-0.947984\pi
0.352448 0.935831i 0.385349π-0.385349\pi
228228 0 0
229229 5.72253 9.91171i 0.378155 0.654984i −0.612639 0.790363i 0.709892π-0.709892\pi
0.990794 + 0.135379i 0.0432252π0.0432252\pi
230230 0 0
231231 0 0
232232 0 0
233233 −0.595243 1.03099i −0.0389956 0.0675424i 0.845869 0.533391i 0.179083π-0.179083\pi
−0.884865 + 0.465848i 0.845749π0.845749\pi
234234 0 0
235235 11.0371 19.1168i 0.719979 1.24704i
236236 0 0
237237 0 0
238238 0 0
239239 12.1414 + 21.0296i 0.785365 + 1.36029i 0.928781 + 0.370630i 0.120858π0.120858\pi
−0.143416 + 0.989663i 0.545809π0.545809\pi
240240 0 0
241241 −10.7095 18.5493i −0.689857 1.19487i −0.971884 0.235461i 0.924340π-0.924340\pi
0.282027 0.959406i 0.408993π-0.408993\pi
242242 0 0
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 1.93887 3.35822i 0.123367 0.213678i
248248 0 0
249249 0 0
250250 0 0
251251 −2.67996 −0.169158 −0.0845789 0.996417i 0.526955π-0.526955\pi
−0.0845789 + 0.996417i 0.526955π0.526955\pi
252252 0 0
253253 1.76371 0.110884
254254 0 0
255255 0 0
256256 0 0
257257 5.54256 9.60000i 0.345736 0.598832i −0.639752 0.768582i 0.720963π-0.720963\pi
0.985487 + 0.169750i 0.0542961π0.0542961\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 0 0
263263 6.70396 + 11.6116i 0.413384 + 0.716002i 0.995257 0.0972776i 0.0310135π-0.0310135\pi
−0.581873 + 0.813279i 0.697680π0.697680\pi
264264 0 0
265265 −1.60507 2.78007i −0.0985989 0.170778i
266266 0 0
267267 0 0
268268 0 0
269269 −2.04511 + 3.54224i −0.124693 + 0.215974i −0.921613 0.388111i 0.873128π-0.873128\pi
0.796920 + 0.604085i 0.206461π0.206461\pi
270270 0 0
271271 3.06182 + 5.30323i 0.185992 + 0.322148i 0.943910 0.330201i 0.107117π-0.107117\pi
−0.757918 + 0.652350i 0.773783π0.773783\pi
272272 0 0
273273 0 0
274274 0 0
275275 −2.61491 + 4.52915i −0.157685 + 0.273118i
276276 0 0
277277 −7.88255 13.6530i −0.473616 0.820327i 0.525928 0.850529i 0.323718π-0.323718\pi
−0.999544 + 0.0302019i 0.990385π0.990385\pi
278278 0 0
279279 0 0
280280 0 0
281281 −10.5946 + 18.3503i −0.632018 + 1.09469i 0.355120 + 0.934821i 0.384440π0.384440\pi
−0.987139 + 0.159867i 0.948893π0.948893\pi
282282 0 0
283283 −6.87636 −0.408757 −0.204378 0.978892i 0.565517π-0.565517\pi
−0.204378 + 0.978892i 0.565517π0.565517\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 4.54944 + 7.87987i 0.267614 + 0.463521i
290290 0 0
291291 0 0
292292 0 0
293293 13.7534 + 23.8216i 0.803482 + 1.39167i 0.917311 + 0.398172i 0.130355π0.130355\pi
−0.113829 + 0.993500i 0.536311π0.536311\pi
294294 0 0
295295 12.1421 21.0308i 0.706943 1.22446i
296296 0 0
297297 0 0
298298 0 0
299299 0.553566 0.0320135
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 0 0
305305 −12.1600 + 21.0618i −0.696281 + 1.20599i
306306 0 0
307307 21.5178 1.22809 0.614043 0.789273i 0.289542π-0.289542\pi
0.614043 + 0.789273i 0.289542π0.289542\pi
308308 0 0
309309 0 0
310310 0 0
311311 18.3855 1.04255 0.521273 0.853390i 0.325457π-0.325457\pi
0.521273 + 0.853390i 0.325457π0.325457\pi
312312 0 0
313313 0.00137742 7.78563e−5 3.89281e−5 1.00000i 0.499988π-0.499988\pi
3.89281e−5 1.00000i 0.499988π0.499988\pi
314314 0 0
315315 0 0
316316 0 0
317317 −14.0989 −0.791872 −0.395936 0.918278i 0.629580π-0.629580\pi
−0.395936 + 0.918278i 0.629580π0.629580\pi
318318 0 0
319319 11.1730 0.625568
320320 0 0
321321 0 0
322322 0 0
323323 14.0197 0.780075
324324 0 0
325325 −0.820724 + 1.42154i −0.0455256 + 0.0788526i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 13.9629 0.767468 0.383734 0.923444i 0.374638π-0.374638\pi
0.383734 + 0.923444i 0.374638π0.374638\pi
332332 0 0
333333 0 0
334334 0 0
335335 6.78799 11.7571i 0.370868 0.642362i
336336 0 0
337337 −12.0982 20.9547i −0.659031 1.14147i −0.980867 0.194679i 0.937633π-0.937633\pi
0.321836 0.946795i 0.395700π-0.395700\pi
338338 0 0
339339 0 0
340340 0 0
341341 −6.31522 10.9383i −0.341988 0.592341i
342342 0 0
343343 0 0
344344 0 0
345345 0 0
346346 0 0
347347 32.7156 1.75626 0.878132 0.478418i 0.158790π-0.158790\pi
0.878132 + 0.478418i 0.158790π0.158790\pi
348348 0 0
349349 −11.8887 + 20.5919i −0.636389 + 1.10226i 0.349830 + 0.936813i 0.386240π0.386240\pi
−0.986219 + 0.165445i 0.947094π0.947094\pi
350350 0 0
351351 0 0
352352 0 0
353353 −10.0309 17.3740i −0.533889 0.924724i −0.999216 0.0395847i 0.987396π-0.987396\pi
0.465327 0.885139i 0.345937π-0.345937\pi
354354 0 0
355355 8.72184 15.1067i 0.462907 0.801779i
356356 0 0
357357 0 0
358358 0 0
359359 4.15087 + 7.18953i 0.219075 + 0.379449i 0.954525 0.298130i 0.0963628π-0.0963628\pi
−0.735451 + 0.677578i 0.763029π0.763029\pi
360360 0 0
361361 −2.93818 + 5.08907i −0.154641 + 0.267846i
362362 0 0
363363 0 0
364364 0 0
365365 −4.23855 7.34138i −0.221856 0.384266i
366366 0 0
367367 5.77197 + 9.99735i 0.301294 + 0.521857i 0.976429 0.215837i 0.0692480π-0.0692480\pi
−0.675135 + 0.737694i 0.735915π0.735915\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 −1.42580 + 2.46956i −0.0738250 + 0.127869i −0.900575 0.434701i 0.856854π-0.856854\pi
0.826750 + 0.562570i 0.190187π0.190187\pi
374374 0 0
375375 0 0
376376 0 0
377377 3.50680 0.180609
378378 0 0
379379 35.9519 1.84672 0.923361 0.383932i 0.125430π-0.125430\pi
0.923361 + 0.383932i 0.125430π0.125430\pi
380380 0 0
381381 0 0
382382 0 0
383383 0.915278 1.58531i 0.0467685 0.0810054i −0.841694 0.539956i 0.818441π-0.818441\pi
0.888462 + 0.458950i 0.151774π0.151774\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 −5.69530 9.86454i −0.288763 0.500152i 0.684752 0.728776i 0.259911π-0.259911\pi
−0.973515 + 0.228624i 0.926577π0.926577\pi
390390 0 0
391391 1.00069 + 1.73324i 0.0506070 + 0.0876539i
392392 0 0
393393 0 0
394394 0 0
395395 −7.82691 + 13.5566i −0.393815 + 0.682107i
396396 0 0
397397 −5.21565 9.03377i −0.261766 0.453392i 0.704945 0.709262i 0.250972π-0.250972\pi
−0.966711 + 0.255870i 0.917638π0.917638\pi
398398 0 0
399399 0 0
400400 0 0
401401 −17.0371 + 29.5091i −0.850790 + 1.47361i 0.0297058 + 0.999559i 0.490543π0.490543\pi
−0.880496 + 0.474053i 0.842790π0.842790\pi
402402 0 0
403403 −1.98212 3.43313i −0.0987364 0.171016i
404404 0 0
405405 0 0
406406 0 0
407407 −8.51671 + 14.7514i −0.422158 + 0.731199i
408408 0 0
409409 −3.97524 −0.196563 −0.0982815 0.995159i 0.531335π-0.531335\pi
−0.0982815 + 0.995159i 0.531335π0.531335\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 7.48762 + 12.9689i 0.367553 + 0.636620i
416416 0 0
417417 0 0
418418 0 0
419419 4.72184 + 8.17847i 0.230677 + 0.399544i 0.958008 0.286743i 0.0925726π-0.0925726\pi
−0.727331 + 0.686287i 0.759239π0.759239\pi
420420 0 0
421421 3.16002 5.47331i 0.154010 0.266753i −0.778688 0.627411i 0.784115π-0.784115\pi
0.932698 + 0.360658i 0.117448π0.117448\pi
422422 0 0
423423 0 0
424424 0 0
425425 −5.93454 −0.287867
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0 0
431431 −13.8770 + 24.0357i −0.668434 + 1.15776i 0.309908 + 0.950766i 0.399702π0.399702\pi
−0.978342 + 0.206995i 0.933632π0.933632\pi
432432 0 0
433433 −11.2473 −0.540510 −0.270255 0.962789i 0.587108π-0.587108\pi
−0.270255 + 0.962789i 0.587108π0.587108\pi
434434 0 0
435435 0 0
436436 0 0
437437 −3.55122 −0.169878
438438 0 0
439439 15.0865 0.720040 0.360020 0.932945i 0.382770π-0.382770\pi
0.360020 + 0.932945i 0.382770π0.382770\pi
440440 0 0
441441 0 0
442442 0 0
443443 −7.93316 −0.376916 −0.188458 0.982081i 0.560349π-0.560349\pi
−0.188458 + 0.982081i 0.560349π0.560349\pi
444444 0 0
445445 −16.4079 −0.777810
446446 0 0
447447 0 0
448448 0 0
449449 32.5636 1.53677 0.768386 0.639987i 0.221060π-0.221060\pi
0.768386 + 0.639987i 0.221060π0.221060\pi
450450 0 0
451451 −7.27816 + 12.6061i −0.342715 + 0.593600i
452452 0 0
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 11.4079 0.533640 0.266820 0.963746i 0.414027π-0.414027\pi
0.266820 + 0.963746i 0.414027π0.414027\pi
458458 0 0
459459 0 0
460460 0 0
461461 −2.45853 + 4.25830i −0.114505 + 0.198329i −0.917582 0.397547i 0.869862π-0.869862\pi
0.803077 + 0.595876i 0.203195π0.203195\pi
462462 0 0
463463 −7.59957 13.1628i −0.353182 0.611729i 0.633623 0.773642i 0.281567π-0.281567\pi
−0.986805 + 0.161913i 0.948234π0.948234\pi
464464 0 0
465465 0 0
466466 0 0
467467 −11.8905 20.5950i −0.550228 0.953022i −0.998258 0.0590037i 0.981208π-0.981208\pi
0.448030 0.894018i 0.352126π-0.352126\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 0 0
473473 11.5280 0.530058
474474 0 0
475475 5.26509 9.11941i 0.241579 0.418427i
476476 0 0
477477 0 0
478478 0 0
479479 −3.02909 5.24654i −0.138403 0.239720i 0.788489 0.615048i 0.210863π-0.210863\pi
−0.926892 + 0.375328i 0.877530π0.877530\pi
480480 0 0
481481 −2.67309 + 4.62992i −0.121882 + 0.211106i
482482 0 0
483483 0 0
484484 0 0
485485 −7.34362 12.7195i −0.333457 0.577564i
486486 0 0
487487 −0.568012 + 0.983825i −0.0257391 + 0.0445814i −0.878608 0.477544i 0.841527π-0.841527\pi
0.852869 + 0.522125i 0.174861π0.174861\pi
488488 0 0
489489 0 0
490490 0 0
491491 −16.4382 28.4718i −0.741845 1.28491i −0.951655 0.307170i 0.900618π-0.900618\pi
0.209810 0.977742i 0.432715π-0.432715\pi
492492 0 0
493493 6.33929 + 10.9800i 0.285507 + 0.494513i
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 −13.0989 + 22.6879i −0.586387 + 1.01565i 0.408314 + 0.912841i 0.366117π0.366117\pi
−0.994701 + 0.102810i 0.967217π0.967217\pi
500500 0 0
501501 0 0
502502 0 0
503503 −25.8516 −1.15267 −0.576333 0.817215i 0.695517π-0.695517\pi
−0.576333 + 0.817215i 0.695517π0.695517\pi
504504 0 0
505505 −4.09888 −0.182398
506506 0 0
507507 0 0
508508 0 0
509509 −17.5858 + 30.4595i −0.779478 + 1.35009i 0.152766 + 0.988262i 0.451182π0.451182\pi
−0.932243 + 0.361832i 0.882151π0.882151\pi
510510 0 0
511511 0 0
512512 0 0
513513 0 0
514514 0 0
515515 3.68292 + 6.37900i 0.162289 + 0.281092i
516516 0 0
517517 16.0858 + 27.8615i 0.707453 + 1.22535i
518518 0 0
519519 0 0
520520 0 0
521521 8.93130 15.4695i 0.391287 0.677730i −0.601332 0.798999i 0.705363π-0.705363\pi
0.992620 + 0.121270i 0.0386965π0.0386965\pi
522522 0 0
523523 −11.4320 19.8008i −0.499886 0.865828i 0.500114 0.865960i 0.333291π-0.333291\pi
−1.00000 0.000131698i 0.999958π0.999958\pi
524524 0 0
525525 0 0
526526 0 0
527527 7.16621 12.4122i 0.312165 0.540685i
528528 0 0
529529 11.2465 + 19.4795i 0.488979 + 0.846937i
530530 0 0
531531 0 0
532532 0 0
533533 −2.28435 + 3.95661i −0.0989462 + 0.171380i
534534 0 0
535535 32.6291 1.41068
536536 0 0
537537 0 0
538538 0 0
539539 0 0
540540 0 0
541541 −11.1538 19.3190i −0.479541 0.830589i 0.520184 0.854054i 0.325863π-0.325863\pi
−0.999725 + 0.0234656i 0.992530π0.992530\pi
542542 0 0
543543 0 0
544544 0 0
545545 16.1149 + 27.9118i 0.690287 + 1.19561i
546546 0 0
547547 −10.8083 + 18.7206i −0.462131 + 0.800435i −0.999067 0.0431882i 0.986249π-0.986249\pi
0.536936 + 0.843623i 0.319582π0.319582\pi
548548 0 0
549549 0 0
550550 0 0
551551 −22.4968 −0.958394
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 0 0
557557 1.58768 2.74993i 0.0672720 0.116518i −0.830428 0.557127i 0.811904π-0.811904\pi
0.897700 + 0.440608i 0.145237π0.145237\pi
558558 0 0
559559 3.61822 0.153034
560560 0 0
561561 0 0
562562 0 0
563563 43.7628 1.84438 0.922190 0.386737i 0.126398π-0.126398\pi
0.922190 + 0.386737i 0.126398π0.126398\pi
564564 0 0
565565 21.9752 0.924505
566566 0 0
567567 0 0
568568 0 0
569569 23.8626 1.00037 0.500186 0.865918i 0.333265π-0.333265\pi
0.500186 + 0.865918i 0.333265π0.333265\pi
570570 0 0
571571 10.2212 0.427742 0.213871 0.976862i 0.431393π-0.431393\pi
0.213871 + 0.976862i 0.431393π0.431393\pi
572572 0 0
573573 0 0
574574 0 0
575575 1.50324 0.0626893
576576 0 0
577577 −18.0185 + 31.2089i −0.750120 + 1.29925i 0.197645 + 0.980274i 0.436671π0.436671\pi
−0.947764 + 0.318972i 0.896663π0.896663\pi
578578 0 0
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 4.67859 0.193767
584584 0 0
585585 0 0
586586 0 0
587587 10.5142 18.2111i 0.433966 0.751651i −0.563245 0.826290i 0.690447π-0.690447\pi
0.997211 + 0.0746391i 0.0237805π0.0237805\pi
588588 0 0
589589 12.7156 + 22.0242i 0.523939 + 0.907489i
590590 0 0
591591 0 0
592592 0 0
593593 12.5803 + 21.7897i 0.516612 + 0.894798i 0.999814 + 0.0192889i 0.00614021π0.00614021\pi
−0.483202 + 0.875509i 0.660526π0.660526\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 2.22253 0.0908100 0.0454050 0.998969i 0.485542π-0.485542\pi
0.0454050 + 0.998969i 0.485542π0.485542\pi
600600 0 0
601601 14.0494 24.3343i 0.573089 0.992619i −0.423158 0.906056i 0.639078π-0.639078\pi
0.996246 0.0865627i 0.0275883π-0.0275883\pi
602602 0 0
603603 0 0
604604 0 0
605605 −4.13348 7.15939i −0.168050 0.291071i
606606 0 0
607607 −3.26509 + 5.65531i −0.132526 + 0.229542i −0.924650 0.380819i 0.875642π-0.875642\pi
0.792124 + 0.610361i 0.208975π0.208975\pi
608608 0 0
609609 0 0
610610 0 0
611611 5.04875 + 8.74470i 0.204251 + 0.353773i
612612 0 0
613613 −5.36398 + 9.29068i −0.216649 + 0.375247i −0.953781 0.300501i 0.902846π-0.902846\pi
0.737132 + 0.675748i 0.236179π0.236179\pi
614614 0 0
615615 0 0
616616 0 0
617617 −15.5265 26.8928i −0.625075 1.08266i −0.988526 0.151049i 0.951735π-0.951735\pi
0.363451 0.931613i 0.381598π-0.381598\pi
618618 0 0
619619 −0.723217 1.25265i −0.0290685 0.0503482i 0.851125 0.524963i 0.175921π-0.175921\pi
−0.880194 + 0.474615i 0.842587π0.842587\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 4.99312 8.64834i 0.199725 0.345934i
626626 0 0
627627 0 0
628628 0 0
629629 −19.3287 −0.770686
630630 0 0
631631 0.0741250 0.00295087 0.00147544 0.999999i 0.499530π-0.499530\pi
0.00147544 + 0.999999i 0.499530π0.499530\pi
632632 0 0
633633 0 0
634634 0 0
635635 14.9814 25.9486i 0.594520 1.02974i
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −23.5204 40.7384i −0.928998 1.60907i −0.785002 0.619494i 0.787338π-0.787338\pi
−0.143996 0.989578i 0.545995π-0.545995\pi
642642 0 0
643643 −16.8647 29.2105i −0.665077 1.15195i −0.979264 0.202587i 0.935065π-0.935065\pi
0.314187 0.949361i 0.398268π-0.398268\pi
644644 0 0
645645 0 0
646646 0 0
647647 −22.4814 + 38.9390i −0.883836 + 1.53085i −0.0367945 + 0.999323i 0.511715π0.511715\pi
−0.847042 + 0.531526i 0.821619π0.821619\pi
648648 0 0
649649 17.6964 + 30.6510i 0.694644 + 1.20316i
650650 0 0
651651 0 0
652652 0 0
653653 20.8578 36.1267i 0.816228 1.41375i −0.0922143 0.995739i 0.529394π-0.529394\pi
0.908443 0.418010i 0.137272π-0.137272\pi
654654 0 0
655655 −4.83310 8.37118i −0.188845 0.327089i
656656 0 0
657657 0 0
658658 0 0
659659 −10.5259 + 18.2313i −0.410029 + 0.710191i −0.994892 0.100941i 0.967815π-0.967815\pi
0.584863 + 0.811132i 0.301148π0.301148\pi
660660 0 0
661661 −22.4437 −0.872958 −0.436479 0.899714i 0.643775π-0.643775\pi
−0.436479 + 0.899714i 0.643775π0.643775\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 −1.60576 2.78126i −0.0621754 0.107691i
668668 0 0
669669 0 0
670670 0 0
671671 −17.7225 30.6962i −0.684168 1.18501i
672672 0 0
673673 5.83929 10.1140i 0.225088 0.389864i −0.731258 0.682101i 0.761066π-0.761066\pi
0.956346 + 0.292237i 0.0943996π0.0943996\pi
674674 0 0
675675 0 0
676676 0 0
677677 10.4684 0.402335 0.201167 0.979557i 0.435526π-0.435526\pi
0.201167 + 0.979557i 0.435526π0.435526\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 16.4079 28.4193i 0.627832 1.08744i −0.360154 0.932893i 0.617276π-0.617276\pi
0.987986 0.154543i 0.0493906π-0.0493906\pi
684684 0 0
685685 −33.0617 −1.26322
686686 0 0
687687 0 0
688688 0 0
689689 1.46844 0.0559431
690690 0 0
691691 −5.90112 −0.224489 −0.112245 0.993681i 0.535804π-0.535804\pi
−0.112245 + 0.993681i 0.535804π0.535804\pi
692692 0 0
693693 0 0
694694 0 0
695695 −5.07784 −0.192614
696696 0 0
697697 −16.5178 −0.625656
698698 0 0
699699 0 0
700700 0 0
701701 12.3782 0.467519 0.233759 0.972294i 0.424897π-0.424897\pi
0.233759 + 0.972294i 0.424897π0.424897\pi
702702 0 0
703703 17.1483 29.7018i 0.646761 1.12022i
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −13.2829 −0.498850 −0.249425 0.968394i 0.580242π-0.580242\pi
−0.249425 + 0.968394i 0.580242π0.580242\pi
710710 0 0
711711 0 0
712712 0 0
713713 −1.81522 + 3.14406i −0.0679806 + 0.117746i
714714 0 0
715715 1.63664 + 2.83474i 0.0612067 + 0.106013i
716716 0 0
717717 0 0
718718 0 0
719719 12.1847 + 21.1045i 0.454413 + 0.787066i 0.998654 0.0518628i 0.0165158π-0.0165158\pi
−0.544242 + 0.838929i 0.683183π0.683183\pi
720720 0 0
721721 0 0
722722 0 0
723723 0 0
724724 0 0
725725 9.52290 0.353672
726726 0 0
727727 −7.99450 + 13.8469i −0.296500 + 0.513552i −0.975333 0.220740i 0.929153π-0.929153\pi
0.678833 + 0.734293i 0.262486π0.262486\pi
728728 0 0
729729 0 0
730730 0 0
731731 6.54070 + 11.3288i 0.241917 + 0.419012i
732732 0 0
733733 −21.1414 + 36.6181i −0.780877 + 1.35252i 0.150554 + 0.988602i 0.451894π0.451894\pi
−0.931431 + 0.363917i 0.881439π0.881439\pi
734734 0 0
735735 0 0
736736 0 0
737737 9.89307 + 17.1353i 0.364416 + 0.631187i
738738 0 0
739739 1.54325 2.67299i 0.0567695 0.0983276i −0.836244 0.548357i 0.815253π-0.815253\pi
0.893014 + 0.450030i 0.148587π0.148587\pi
740740 0 0
741741 0 0
742742 0 0
743743 3.31522 + 5.74213i 0.121624 + 0.210658i 0.920408 0.390959i 0.127857π-0.127857\pi
−0.798784 + 0.601617i 0.794523π0.794523\pi
744744 0 0
745745 −6.88255 11.9209i −0.252157 0.436749i
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0 0
751751 21.3702 37.0142i 0.779808 1.35067i −0.152243 0.988343i 0.548650π-0.548650\pi
0.932052 0.362325i 0.118017π-0.118017\pi
752752 0 0
753753 0 0
754754 0 0
755755 15.0655 0.548288
756756 0 0
757757 −31.0232 −1.12756 −0.563779 0.825926i 0.690653π-0.690653\pi
−0.563779 + 0.825926i 0.690653π0.690653\pi
758758 0 0
759759 0 0
760760 0 0
761761 −11.8182 + 20.4697i −0.428409 + 0.742025i −0.996732 0.0807799i 0.974259π-0.974259\pi
0.568323 + 0.822805i 0.307592π0.307592\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 5.55425 + 9.62025i 0.200553 + 0.347367i
768768 0 0
769769 −1.73422 3.00376i −0.0625375 0.108318i 0.833061 0.553180i 0.186586π-0.186586\pi
−0.895599 + 0.444862i 0.853253π0.853253\pi
770770 0 0
771771 0 0
772772 0 0
773773 −17.2985 + 29.9619i −0.622184 + 1.07765i 0.366894 + 0.930263i 0.380421π0.380421\pi
−0.989078 + 0.147392i 0.952912π0.952912\pi
774774 0 0
775775 −5.38255 9.32284i −0.193347 0.334886i
776776 0 0
777777 0 0
778778 0 0
779779 14.6545 25.3824i 0.525053 0.909418i
780780 0 0
781781 12.7115 + 22.0170i 0.454854 + 0.787831i
782782 0 0
783783 0 0
784784 0 0
785785 7.44870 12.9015i 0.265855 0.460475i
786786 0 0
787787 12.1593 0.433431 0.216715 0.976235i 0.430466π-0.430466\pi
0.216715 + 0.976235i 0.430466π0.430466\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 −5.56243 9.63442i −0.197528 0.342128i
794794 0 0
795795 0 0
796796 0 0
797797 −2.89493 5.01416i −0.102544 0.177611i 0.810188 0.586170i 0.199365π-0.199365\pi
−0.912732 + 0.408559i 0.866031π0.866031\pi
798798 0 0
799799 −18.2534 + 31.6158i −0.645759 + 1.11849i
800800 0 0
801801 0 0
802802 0 0
803803 12.3548 0.435993
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 −24.5908 + 42.5926i −0.864568 + 1.49748i 0.00290803 + 0.999996i 0.499074π0.499074\pi
−0.867476 + 0.497479i 0.834259π0.834259\pi
810810 0 0
811811 −40.7266 −1.43010 −0.715052 0.699072i 0.753597π-0.753597\pi
−0.715052 + 0.699072i 0.753597π0.753597\pi
812812 0 0
813813 0 0
814814 0 0
815815 3.37822 0.118334
816816 0 0
817817 −23.2115 −0.812069
818818 0 0
819819 0 0
820820 0 0
821821 −15.0938 −0.526777 −0.263388 0.964690i 0.584840π-0.584840\pi
−0.263388 + 0.964690i 0.584840π0.584840\pi
822822 0 0
823823 16.0000 0.557725 0.278862 0.960331i 0.410043π-0.410043\pi
0.278862 + 0.960331i 0.410043π0.410043\pi
824824 0 0
825825 0 0
826826 0 0
827827 −35.2348 −1.22523 −0.612616 0.790381i 0.709883π-0.709883\pi
−0.612616 + 0.790381i 0.709883π0.709883\pi
828828 0 0
829829 −1.61745 + 2.80151i −0.0561765 + 0.0973006i −0.892746 0.450560i 0.851224π-0.851224\pi
0.836570 + 0.547861i 0.184558π0.184558\pi
830830 0 0
831831 0 0
832832 0 0
833833 0 0
834834 0 0
835835 −4.45606 −0.154208
836836 0 0
837837 0 0
838838 0 0
839839 15.5197 26.8808i 0.535798 0.928030i −0.463326 0.886188i 0.653344π-0.653344\pi
0.999124 0.0418419i 0.0133226π-0.0133226\pi
840840 0 0
841841 4.32760 + 7.49563i 0.149228 + 0.258470i
842842 0 0
843843 0 0
844844 0 0
845845 −10.5339 18.2453i −0.362377 0.627656i
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0 0
851851 4.89602 0.167833
852852 0 0
853853 −8.03637 + 13.9194i −0.275160 + 0.476591i −0.970176 0.242403i 0.922064π-0.922064\pi
0.695015 + 0.718995i 0.255398π0.255398\pi
854854 0 0
855855 0 0
856856 0 0
857857 −9.61058 16.6460i −0.328291 0.568617i 0.653882 0.756597i 0.273139π-0.273139\pi
−0.982173 + 0.187980i 0.939806π0.939806\pi
858858 0 0
859859 −7.40112 + 12.8191i −0.252523 + 0.437382i −0.964220 0.265104i 0.914594π-0.914594\pi
0.711697 + 0.702487i 0.247927π0.247927\pi
860860 0 0
861861 0 0
862862 0 0
863863 7.38441 + 12.7902i 0.251368 + 0.435382i 0.963903 0.266255i 0.0857862π-0.0857862\pi
−0.712535 + 0.701637i 0.752453π0.752453\pi
864864 0 0
865865 −4.44437 + 7.69787i −0.151113 + 0.261735i
866866 0 0
867867 0 0
868868 0 0
869869 −11.4072 19.7579i −0.386964 0.670241i
870870 0 0
871871 3.10507 + 5.37815i 0.105211 + 0.182232i
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −26.1916 + 45.3651i −0.884427 + 1.53187i −0.0380575 + 0.999276i 0.512117π0.512117\pi
−0.846369 + 0.532597i 0.821216π0.821216\pi
878878 0 0
879879 0 0
880880 0 0
881881 −31.3214 −1.05525 −0.527623 0.849479i 0.676916π-0.676916\pi
−0.527623 + 0.849479i 0.676916π0.676916\pi
882882 0 0
883883 −43.0494 −1.44873 −0.724363 0.689419i 0.757866π-0.757866\pi
−0.724363 + 0.689419i 0.757866π0.757866\pi
884884 0 0
885885 0 0
886886 0 0
887887 7.48831 12.9701i 0.251433 0.435494i −0.712488 0.701685i 0.752432π-0.752432\pi
0.963921 + 0.266190i 0.0857649π0.0857649\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 −32.3887 56.0988i −1.08385 1.87727i
894894 0 0
895895 4.04944 + 7.01384i 0.135358 + 0.234447i
896896 0 0
897897 0 0
898898 0 0
899899 −11.4993 + 19.9174i −0.383524 + 0.664282i
900900 0 0
901901 2.65452 + 4.59776i 0.0884348 + 0.153174i
902902 0 0
903903 0 0
904904 0 0
905905 8.86467 15.3541i 0.294671 0.510386i
906906 0 0
907907 −15.2280 26.3756i −0.505636 0.875787i −0.999979 0.00652002i 0.997925π-0.997925\pi
0.494343 0.869267i 0.335409π-0.335409\pi
908908 0 0
909909 0 0
910910 0 0
911911 −9.97593 + 17.2788i −0.330517 + 0.572473i −0.982613 0.185664i 0.940557π-0.940557\pi
0.652096 + 0.758136i 0.273890π0.273890\pi
912912 0 0
913913 −21.8255 −0.722317
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −22.8145 39.5159i −0.752582 1.30351i −0.946567 0.322506i 0.895475π-0.895475\pi
0.193985 0.981004i 0.437859π-0.437859\pi
920920 0 0
921921 0 0
922922 0 0
923923 3.98969 + 6.91034i 0.131322 + 0.227457i
924924 0 0
925925 −7.25890 + 12.5728i −0.238671 + 0.413391i
926926 0 0
927927 0 0
928928 0 0
929929 56.3722 1.84951 0.924755 0.380562i 0.124270π-0.124270\pi
0.924755 + 0.380562i 0.124270π0.124270\pi
930930 0 0
931931 0 0
932932 0 0
933933 0 0
934934 0 0
935935 −5.91714 + 10.2488i −0.193511 + 0.335171i
936936 0 0
937937 36.8530 1.20393 0.601967 0.798521i 0.294384π-0.294384\pi
0.601967 + 0.798521i 0.294384π0.294384\pi
938938 0 0
939939 0 0
940940 0 0
941941 −8.76000 −0.285568 −0.142784 0.989754i 0.545605π-0.545605\pi
−0.142784 + 0.989754i 0.545605π0.545605\pi
942942 0 0
943943 4.18401 0.136250
944944 0 0
945945 0 0
946946 0 0
947947 −26.6452 −0.865852 −0.432926 0.901430i 0.642519π-0.642519\pi
−0.432926 + 0.901430i 0.642519π0.642519\pi
948948 0 0
949949 3.87773 0.125877
950950 0 0
951951 0 0
952952 0 0
953953 −24.3039 −0.787282 −0.393641 0.919264i 0.628785π-0.628785\pi
−0.393641 + 0.919264i 0.628785π0.628785\pi
954954 0 0
955955 −11.3207 + 19.6081i −0.366330 + 0.634502i
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −5.00138 −0.161335
962962 0 0
963963 0 0
964964 0 0
965965 −12.4425 + 21.5511i −0.400539 + 0.693753i
966966 0 0
967967 5.22872 + 9.05641i 0.168144 + 0.291234i 0.937767 0.347264i 0.112889π-0.112889\pi
−0.769623 + 0.638498i 0.779556π0.779556\pi
968968 0 0
969969 0 0
970970 0 0
971971 20.8578 + 36.1267i 0.669358 + 1.15936i 0.978084 + 0.208211i 0.0667642π0.0667642\pi
−0.308726 + 0.951151i 0.599902π0.599902\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −5.89011 −0.188441 −0.0942207 0.995551i 0.530036π-0.530036\pi
−0.0942207 + 0.995551i 0.530036π0.530036\pi
978978 0 0
979979 11.9567 20.7097i 0.382139 0.661885i
980980 0 0
981981 0 0
982982 0 0
983983 −20.9196 36.2338i −0.667232 1.15568i −0.978675 0.205415i 0.934146π-0.934146\pi
0.311443 0.950265i 0.399188π-0.399188\pi
984984 0 0
985985 15.7095 27.2096i 0.500545 0.866969i
986986 0 0
987987 0 0
988988 0 0
989989 −1.65678 2.86963i −0.0526826 0.0912489i
990990 0 0
991991 27.3578 47.3851i 0.869049 1.50524i 0.00607865 0.999982i 0.498065π-0.498065\pi
0.862970 0.505255i 0.168602π-0.168602\pi
992992 0 0
993993 0 0
994994 0 0
995995 −20.0698 34.7619i −0.636255 1.10203i
996996 0 0
997997 −9.02476 15.6313i −0.285817 0.495050i 0.686990 0.726667i 0.258932π-0.258932\pi
−0.972807 + 0.231617i 0.925598π0.925598\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.i.e.2125.3 6
3.2 odd 2 1764.2.i.d.1537.3 6
7.2 even 3 5292.2.l.f.3313.1 6
7.3 odd 6 756.2.j.b.505.1 6
7.4 even 3 5292.2.j.d.3529.3 6
7.5 odd 6 5292.2.l.e.3313.3 6
7.6 odd 2 5292.2.i.f.2125.1 6
9.4 even 3 5292.2.l.f.361.1 6
9.5 odd 6 1764.2.l.f.949.3 6
21.2 odd 6 1764.2.l.f.961.3 6
21.5 even 6 1764.2.l.e.961.1 6
21.11 odd 6 1764.2.j.e.1177.1 6
21.17 even 6 252.2.j.a.169.3 yes 6
21.20 even 2 1764.2.i.g.1537.1 6
28.3 even 6 3024.2.r.j.2017.1 6
63.4 even 3 5292.2.j.d.1765.3 6
63.5 even 6 1764.2.i.g.373.1 6
63.13 odd 6 5292.2.l.e.361.3 6
63.23 odd 6 1764.2.i.d.373.3 6
63.31 odd 6 756.2.j.b.253.1 6
63.32 odd 6 1764.2.j.e.589.1 6
63.38 even 6 2268.2.a.i.1.1 3
63.40 odd 6 5292.2.i.f.1549.1 6
63.41 even 6 1764.2.l.e.949.1 6
63.52 odd 6 2268.2.a.h.1.3 3
63.58 even 3 inner 5292.2.i.e.1549.3 6
63.59 even 6 252.2.j.a.85.3 6
84.59 odd 6 1008.2.r.j.673.1 6
252.31 even 6 3024.2.r.j.1009.1 6
252.59 odd 6 1008.2.r.j.337.1 6
252.115 even 6 9072.2.a.bv.1.3 3
252.227 odd 6 9072.2.a.by.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.3 6 63.59 even 6
252.2.j.a.169.3 yes 6 21.17 even 6
756.2.j.b.253.1 6 63.31 odd 6
756.2.j.b.505.1 6 7.3 odd 6
1008.2.r.j.337.1 6 252.59 odd 6
1008.2.r.j.673.1 6 84.59 odd 6
1764.2.i.d.373.3 6 63.23 odd 6
1764.2.i.d.1537.3 6 3.2 odd 2
1764.2.i.g.373.1 6 63.5 even 6
1764.2.i.g.1537.1 6 21.20 even 2
1764.2.j.e.589.1 6 63.32 odd 6
1764.2.j.e.1177.1 6 21.11 odd 6
1764.2.l.e.949.1 6 63.41 even 6
1764.2.l.e.961.1 6 21.5 even 6
1764.2.l.f.949.3 6 9.5 odd 6
1764.2.l.f.961.3 6 21.2 odd 6
2268.2.a.h.1.3 3 63.52 odd 6
2268.2.a.i.1.1 3 63.38 even 6
3024.2.r.j.1009.1 6 252.31 even 6
3024.2.r.j.2017.1 6 28.3 even 6
5292.2.i.e.1549.3 6 63.58 even 3 inner
5292.2.i.e.2125.3 6 1.1 even 1 trivial
5292.2.i.f.1549.1 6 63.40 odd 6
5292.2.i.f.2125.1 6 7.6 odd 2
5292.2.j.d.1765.3 6 63.4 even 3
5292.2.j.d.3529.3 6 7.4 even 3
5292.2.l.e.361.3 6 63.13 odd 6
5292.2.l.e.3313.3 6 7.5 odd 6
5292.2.l.f.361.1 6 9.4 even 3
5292.2.l.f.3313.1 6 7.2 even 3
9072.2.a.bv.1.3 3 252.115 even 6
9072.2.a.by.1.1 3 252.227 odd 6