Properties

Label 5292.2.i.e.2125.3
Level $5292$
Weight $2$
Character 5292.2125
Analytic conductor $42.257$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5292,2,Mod(1549,5292)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5292, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5292.1549");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5292 = 2^{2} \cdot 3^{3} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5292.i (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(42.2568327497\)
Analytic rank: \(0\)
Dimension: \(6\)
Relative dimension: \(3\) over \(\Q(\zeta_{3})\)
Coefficient field: 6.0.309123.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} + 10x^{4} - 15x^{3} + 19x^{2} - 12x + 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 3 \)
Twist minimal: no (minimal twist has level 252)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2125.3
Root \(0.500000 + 0.224437i\) of defining polynomial
Character \(\chi\) \(=\) 5292.2125
Dual form 5292.2.i.e.1549.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.849814 - 1.47192i) q^{5} +(1.23855 + 2.14523i) q^{11} +(0.388736 + 0.673310i) q^{13} +(-1.40545 + 2.43430i) q^{17} +(-2.49381 - 4.31941i) q^{19} +(0.356004 - 0.616617i) q^{23} +(1.05563 + 1.82841i) q^{25} +(2.25526 - 3.90623i) q^{29} -5.09888 q^{31} +(3.43818 + 5.95510i) q^{37} +(2.93818 + 5.08907i) q^{41} +(2.32691 - 4.03033i) q^{43} +12.9876 q^{47} +(0.944368 - 1.63569i) q^{53} +4.21015 q^{55} +14.2880 q^{59} -14.3090 q^{61} +1.32141 q^{65} +7.98762 q^{67} +10.2632 q^{71} +(2.49381 - 4.31941i) q^{73} -9.21015 q^{79} +(-4.40545 + 7.63046i) q^{83} +(2.38874 + 4.13741i) q^{85} +(-4.82691 - 8.36046i) q^{89} -8.47710 q^{95} +(4.32072 - 7.48371i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - q^{5} + 2 q^{11} + 3 q^{13} - 2 q^{17} + 3 q^{19} + 14 q^{23} + 6 q^{25} + q^{29} + 6 q^{31} + 3 q^{37} - 3 q^{43} + 42 q^{47} + 6 q^{53} - 12 q^{55} + 62 q^{59} - 12 q^{61} - 30 q^{65} + 12 q^{67}+ \cdots - 9 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/5292\mathbb{Z}\right)^\times\).

\(n\) \(785\) \(1081\) \(2647\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.849814 1.47192i 0.380048 0.658263i −0.611020 0.791615i \(-0.709241\pi\)
0.991069 + 0.133352i \(0.0425740\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.23855 + 2.14523i 0.373437 + 0.646812i 0.990092 0.140422i \(-0.0448459\pi\)
−0.616655 + 0.787234i \(0.711513\pi\)
\(12\) 0 0
\(13\) 0.388736 + 0.673310i 0.107816 + 0.186743i 0.914885 0.403714i \(-0.132281\pi\)
−0.807069 + 0.590457i \(0.798948\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.40545 + 2.43430i −0.340871 + 0.590405i −0.984595 0.174852i \(-0.944055\pi\)
0.643724 + 0.765258i \(0.277389\pi\)
\(18\) 0 0
\(19\) −2.49381 4.31941i −0.572119 0.990940i −0.996348 0.0853846i \(-0.972788\pi\)
0.424229 0.905555i \(-0.360545\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.356004 0.616617i 0.0742320 0.128574i −0.826520 0.562907i \(-0.809683\pi\)
0.900752 + 0.434334i \(0.143016\pi\)
\(24\) 0 0
\(25\) 1.05563 + 1.82841i 0.211126 + 0.365682i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 2.25526 3.90623i 0.418791 0.725368i −0.577027 0.816725i \(-0.695787\pi\)
0.995818 + 0.0913573i \(0.0291205\pi\)
\(30\) 0 0
\(31\) −5.09888 −0.915787 −0.457893 0.889007i \(-0.651396\pi\)
−0.457893 + 0.889007i \(0.651396\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 3.43818 + 5.95510i 0.565233 + 0.979012i 0.997028 + 0.0770405i \(0.0245471\pi\)
−0.431795 + 0.901972i \(0.642120\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 2.93818 + 5.08907i 0.458866 + 0.794780i 0.998901 0.0468628i \(-0.0149223\pi\)
−0.540035 + 0.841643i \(0.681589\pi\)
\(42\) 0 0
\(43\) 2.32691 4.03033i 0.354851 0.614620i −0.632241 0.774771i \(-0.717865\pi\)
0.987092 + 0.160151i \(0.0511982\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 12.9876 1.89444 0.947220 0.320586i \(-0.103880\pi\)
0.947220 + 0.320586i \(0.103880\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 0.944368 1.63569i 0.129719 0.224680i −0.793849 0.608115i \(-0.791926\pi\)
0.923568 + 0.383436i \(0.125259\pi\)
\(54\) 0 0
\(55\) 4.21015 0.567696
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 14.2880 1.86014 0.930069 0.367385i \(-0.119747\pi\)
0.930069 + 0.367385i \(0.119747\pi\)
\(60\) 0 0
\(61\) −14.3090 −1.83208 −0.916042 0.401082i \(-0.868634\pi\)
−0.916042 + 0.401082i \(0.868634\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 1.32141 0.163901
\(66\) 0 0
\(67\) 7.98762 0.975843 0.487922 0.872887i \(-0.337755\pi\)
0.487922 + 0.872887i \(0.337755\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 10.2632 1.21802 0.609011 0.793162i \(-0.291567\pi\)
0.609011 + 0.793162i \(0.291567\pi\)
\(72\) 0 0
\(73\) 2.49381 4.31941i 0.291878 0.505548i −0.682376 0.731002i \(-0.739053\pi\)
0.974254 + 0.225454i \(0.0723864\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −9.21015 −1.03622 −0.518111 0.855313i \(-0.673365\pi\)
−0.518111 + 0.855313i \(0.673365\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −4.40545 + 7.63046i −0.483561 + 0.837551i −0.999822 0.0188798i \(-0.993990\pi\)
0.516261 + 0.856431i \(0.327323\pi\)
\(84\) 0 0
\(85\) 2.38874 + 4.13741i 0.259095 + 0.448765i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −4.82691 8.36046i −0.511652 0.886207i −0.999909 0.0135071i \(-0.995700\pi\)
0.488257 0.872700i \(-0.337633\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.47710 −0.869732
\(96\) 0 0
\(97\) 4.32072 7.48371i 0.438703 0.759856i −0.558887 0.829244i \(-0.688771\pi\)
0.997590 + 0.0693880i \(0.0221047\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −1.20582 2.08854i −0.119983 0.207817i 0.799777 0.600297i \(-0.204951\pi\)
−0.919761 + 0.392479i \(0.871617\pi\)
\(102\) 0 0
\(103\) −2.16690 + 3.75317i −0.213511 + 0.369811i −0.952811 0.303565i \(-0.901823\pi\)
0.739300 + 0.673376i \(0.235156\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 9.59888 + 16.6258i 0.927959 + 1.60727i 0.786732 + 0.617295i \(0.211772\pi\)
0.141228 + 0.989977i \(0.454895\pi\)
\(108\) 0 0
\(109\) −9.48143 + 16.4223i −0.908156 + 1.57297i −0.0915329 + 0.995802i \(0.529177\pi\)
−0.816623 + 0.577171i \(0.804157\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 6.46472 + 11.1972i 0.608150 + 1.05335i 0.991545 + 0.129762i \(0.0414213\pi\)
−0.383395 + 0.923584i \(0.625245\pi\)
\(114\) 0 0
\(115\) −0.605074 1.04802i −0.0564235 0.0977283i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 2.43199 4.21233i 0.221090 0.382939i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.0865 1.08105
\(126\) 0 0
\(127\) 17.6291 1.56433 0.782163 0.623073i \(-0.214116\pi\)
0.782163 + 0.623073i \(0.214116\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.84362 4.92530i 0.248449 0.430326i −0.714647 0.699485i \(-0.753413\pi\)
0.963096 + 0.269160i \(0.0867460\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −9.72617 16.8462i −0.830963 1.43927i −0.897276 0.441471i \(-0.854457\pi\)
0.0663128 0.997799i \(-0.478876\pi\)
\(138\) 0 0
\(139\) −1.49381 2.58736i −0.126703 0.219457i 0.795694 0.605699i \(-0.207106\pi\)
−0.922397 + 0.386242i \(0.873773\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −0.962937 + 1.66786i −0.0805249 + 0.139473i
\(144\) 0 0
\(145\) −3.83310 6.63913i −0.318322 0.551350i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 4.04944 7.01384i 0.331743 0.574596i −0.651111 0.758983i \(-0.725697\pi\)
0.982854 + 0.184387i \(0.0590299\pi\)
\(150\) 0 0
\(151\) 4.43199 + 7.67643i 0.360670 + 0.624699i 0.988071 0.153997i \(-0.0492147\pi\)
−0.627401 + 0.778696i \(0.715881\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −4.33310 + 7.50516i −0.348043 + 0.602829i
\(156\) 0 0
\(157\) 8.76509 0.699530 0.349765 0.936837i \(-0.386261\pi\)
0.349765 + 0.936837i \(0.386261\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 0.993810 + 1.72133i 0.0778412 + 0.134825i 0.902318 0.431070i \(-0.141864\pi\)
−0.824477 + 0.565895i \(0.808531\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.31089 2.27053i −0.101440 0.175699i 0.810838 0.585270i \(-0.199012\pi\)
−0.912278 + 0.409571i \(0.865678\pi\)
\(168\) 0 0
\(169\) 6.19777 10.7349i 0.476751 0.825758i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −5.22981 −0.397615 −0.198808 0.980039i \(-0.563707\pi\)
−0.198808 + 0.980039i \(0.563707\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −2.38255 + 4.12669i −0.178080 + 0.308443i −0.941223 0.337786i \(-0.890322\pi\)
0.763143 + 0.646230i \(0.223655\pi\)
\(180\) 0 0
\(181\) 10.4313 0.775352 0.387676 0.921796i \(-0.373278\pi\)
0.387676 + 0.921796i \(0.373278\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 11.6872 0.859264
\(186\) 0 0
\(187\) −6.96286 −0.509175
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −13.3214 −0.963904 −0.481952 0.876198i \(-0.660072\pi\)
−0.481952 + 0.876198i \(0.660072\pi\)
\(192\) 0 0
\(193\) −14.6414 −1.05391 −0.526957 0.849892i \(-0.676667\pi\)
−0.526957 + 0.849892i \(0.676667\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 18.4858 1.31706 0.658528 0.752556i \(-0.271179\pi\)
0.658528 + 0.752556i \(0.271179\pi\)
\(198\) 0 0
\(199\) 11.8083 20.4527i 0.837071 1.44985i −0.0552614 0.998472i \(-0.517599\pi\)
0.892333 0.451378i \(-0.149067\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 9.98762 0.697566
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 6.17742 10.6996i 0.427301 0.740107i
\(210\) 0 0
\(211\) 7.27747 + 12.6050i 0.501002 + 0.867761i 0.999999 + 0.00115718i \(0.000368342\pi\)
−0.498998 + 0.866603i \(0.666298\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −3.95489 6.85007i −0.269721 0.467171i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.18539 −0.147005
\(222\) 0 0
\(223\) 4.72253 8.17966i 0.316244 0.547750i −0.663457 0.748214i \(-0.730912\pi\)
0.979701 + 0.200464i \(0.0642449\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −9.55563 16.5508i −0.634230 1.09852i −0.986678 0.162687i \(-0.947984\pi\)
0.352448 0.935831i \(-0.385349\pi\)
\(228\) 0 0
\(229\) 5.72253 9.91171i 0.378155 0.654984i −0.612639 0.790363i \(-0.709892\pi\)
0.990794 + 0.135379i \(0.0432252\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −0.595243 1.03099i −0.0389956 0.0675424i 0.845869 0.533391i \(-0.179083\pi\)
−0.884865 + 0.465848i \(0.845749\pi\)
\(234\) 0 0
\(235\) 11.0371 19.1168i 0.719979 1.24704i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 12.1414 + 21.0296i 0.785365 + 1.36029i 0.928781 + 0.370630i \(0.120858\pi\)
−0.143416 + 0.989663i \(0.545809\pi\)
\(240\) 0 0
\(241\) −10.7095 18.5493i −0.689857 1.19487i −0.971884 0.235461i \(-0.924340\pi\)
0.282027 0.959406i \(-0.408993\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 1.93887 3.35822i 0.123367 0.213678i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −2.67996 −0.169158 −0.0845789 0.996417i \(-0.526955\pi\)
−0.0845789 + 0.996417i \(0.526955\pi\)
\(252\) 0 0
\(253\) 1.76371 0.110884
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 5.54256 9.60000i 0.345736 0.598832i −0.639752 0.768582i \(-0.720963\pi\)
0.985487 + 0.169750i \(0.0542961\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 6.70396 + 11.6116i 0.413384 + 0.716002i 0.995257 0.0972776i \(-0.0310135\pi\)
−0.581873 + 0.813279i \(0.697680\pi\)
\(264\) 0 0
\(265\) −1.60507 2.78007i −0.0985989 0.170778i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −2.04511 + 3.54224i −0.124693 + 0.215974i −0.921613 0.388111i \(-0.873128\pi\)
0.796920 + 0.604085i \(0.206461\pi\)
\(270\) 0 0
\(271\) 3.06182 + 5.30323i 0.185992 + 0.322148i 0.943910 0.330201i \(-0.107117\pi\)
−0.757918 + 0.652350i \(0.773783\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.61491 + 4.52915i −0.157685 + 0.273118i
\(276\) 0 0
\(277\) −7.88255 13.6530i −0.473616 0.820327i 0.525928 0.850529i \(-0.323718\pi\)
−0.999544 + 0.0302019i \(0.990385\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −10.5946 + 18.3503i −0.632018 + 1.09469i 0.355120 + 0.934821i \(0.384440\pi\)
−0.987139 + 0.159867i \(0.948893\pi\)
\(282\) 0 0
\(283\) −6.87636 −0.408757 −0.204378 0.978892i \(-0.565517\pi\)
−0.204378 + 0.978892i \(0.565517\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.54944 + 7.87987i 0.267614 + 0.463521i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 13.7534 + 23.8216i 0.803482 + 1.39167i 0.917311 + 0.398172i \(0.130355\pi\)
−0.113829 + 0.993500i \(0.536311\pi\)
\(294\) 0 0
\(295\) 12.1421 21.0308i 0.706943 1.22446i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.553566 0.0320135
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −12.1600 + 21.0618i −0.696281 + 1.20599i
\(306\) 0 0
\(307\) 21.5178 1.22809 0.614043 0.789273i \(-0.289542\pi\)
0.614043 + 0.789273i \(0.289542\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 18.3855 1.04255 0.521273 0.853390i \(-0.325457\pi\)
0.521273 + 0.853390i \(0.325457\pi\)
\(312\) 0 0
\(313\) 0.00137742 7.78563e−5 3.89281e−5 1.00000i \(-0.499988\pi\)
3.89281e−5 1.00000i \(0.499988\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.0989 −0.791872 −0.395936 0.918278i \(-0.629580\pi\)
−0.395936 + 0.918278i \(0.629580\pi\)
\(318\) 0 0
\(319\) 11.1730 0.625568
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 14.0197 0.780075
\(324\) 0 0
\(325\) −0.820724 + 1.42154i −0.0455256 + 0.0788526i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 13.9629 0.767468 0.383734 0.923444i \(-0.374638\pi\)
0.383734 + 0.923444i \(0.374638\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 6.78799 11.7571i 0.370868 0.642362i
\(336\) 0 0
\(337\) −12.0982 20.9547i −0.659031 1.14147i −0.980867 0.194679i \(-0.937633\pi\)
0.321836 0.946795i \(-0.395700\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −6.31522 10.9383i −0.341988 0.592341i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 32.7156 1.75626 0.878132 0.478418i \(-0.158790\pi\)
0.878132 + 0.478418i \(0.158790\pi\)
\(348\) 0 0
\(349\) −11.8887 + 20.5919i −0.636389 + 1.10226i 0.349830 + 0.936813i \(0.386240\pi\)
−0.986219 + 0.165445i \(0.947094\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −10.0309 17.3740i −0.533889 0.924724i −0.999216 0.0395847i \(-0.987396\pi\)
0.465327 0.885139i \(-0.345937\pi\)
\(354\) 0 0
\(355\) 8.72184 15.1067i 0.462907 0.801779i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.15087 + 7.18953i 0.219075 + 0.379449i 0.954525 0.298130i \(-0.0963628\pi\)
−0.735451 + 0.677578i \(0.763029\pi\)
\(360\) 0 0
\(361\) −2.93818 + 5.08907i −0.154641 + 0.267846i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −4.23855 7.34138i −0.221856 0.384266i
\(366\) 0 0
\(367\) 5.77197 + 9.99735i 0.301294 + 0.521857i 0.976429 0.215837i \(-0.0692480\pi\)
−0.675135 + 0.737694i \(0.735915\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −1.42580 + 2.46956i −0.0738250 + 0.127869i −0.900575 0.434701i \(-0.856854\pi\)
0.826750 + 0.562570i \(0.190187\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 3.50680 0.180609
\(378\) 0 0
\(379\) 35.9519 1.84672 0.923361 0.383932i \(-0.125430\pi\)
0.923361 + 0.383932i \(0.125430\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 0.915278 1.58531i 0.0467685 0.0810054i −0.841694 0.539956i \(-0.818441\pi\)
0.888462 + 0.458950i \(0.151774\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −5.69530 9.86454i −0.288763 0.500152i 0.684752 0.728776i \(-0.259911\pi\)
−0.973515 + 0.228624i \(0.926577\pi\)
\(390\) 0 0
\(391\) 1.00069 + 1.73324i 0.0506070 + 0.0876539i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −7.82691 + 13.5566i −0.393815 + 0.682107i
\(396\) 0 0
\(397\) −5.21565 9.03377i −0.261766 0.453392i 0.704945 0.709262i \(-0.250972\pi\)
−0.966711 + 0.255870i \(0.917638\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −17.0371 + 29.5091i −0.850790 + 1.47361i 0.0297058 + 0.999559i \(0.490543\pi\)
−0.880496 + 0.474053i \(0.842790\pi\)
\(402\) 0 0
\(403\) −1.98212 3.43313i −0.0987364 0.171016i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −8.51671 + 14.7514i −0.422158 + 0.731199i
\(408\) 0 0
\(409\) −3.97524 −0.196563 −0.0982815 0.995159i \(-0.531335\pi\)
−0.0982815 + 0.995159i \(0.531335\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 7.48762 + 12.9689i 0.367553 + 0.636620i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.72184 + 8.17847i 0.230677 + 0.399544i 0.958008 0.286743i \(-0.0925726\pi\)
−0.727331 + 0.686287i \(0.759239\pi\)
\(420\) 0 0
\(421\) 3.16002 5.47331i 0.154010 0.266753i −0.778688 0.627411i \(-0.784115\pi\)
0.932698 + 0.360658i \(0.117448\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −5.93454 −0.287867
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −13.8770 + 24.0357i −0.668434 + 1.15776i 0.309908 + 0.950766i \(0.399702\pi\)
−0.978342 + 0.206995i \(0.933632\pi\)
\(432\) 0 0
\(433\) −11.2473 −0.540510 −0.270255 0.962789i \(-0.587108\pi\)
−0.270255 + 0.962789i \(0.587108\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −3.55122 −0.169878
\(438\) 0 0
\(439\) 15.0865 0.720040 0.360020 0.932945i \(-0.382770\pi\)
0.360020 + 0.932945i \(0.382770\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −7.93316 −0.376916 −0.188458 0.982081i \(-0.560349\pi\)
−0.188458 + 0.982081i \(0.560349\pi\)
\(444\) 0 0
\(445\) −16.4079 −0.777810
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.5636 1.53677 0.768386 0.639987i \(-0.221060\pi\)
0.768386 + 0.639987i \(0.221060\pi\)
\(450\) 0 0
\(451\) −7.27816 + 12.6061i −0.342715 + 0.593600i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 11.4079 0.533640 0.266820 0.963746i \(-0.414027\pi\)
0.266820 + 0.963746i \(0.414027\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −2.45853 + 4.25830i −0.114505 + 0.198329i −0.917582 0.397547i \(-0.869862\pi\)
0.803077 + 0.595876i \(0.203195\pi\)
\(462\) 0 0
\(463\) −7.59957 13.1628i −0.353182 0.611729i 0.633623 0.773642i \(-0.281567\pi\)
−0.986805 + 0.161913i \(0.948234\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −11.8905 20.5950i −0.550228 0.953022i −0.998258 0.0590037i \(-0.981208\pi\)
0.448030 0.894018i \(-0.352126\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 11.5280 0.530058
\(474\) 0 0
\(475\) 5.26509 9.11941i 0.241579 0.418427i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −3.02909 5.24654i −0.138403 0.239720i 0.788489 0.615048i \(-0.210863\pi\)
−0.926892 + 0.375328i \(0.877530\pi\)
\(480\) 0 0
\(481\) −2.67309 + 4.62992i −0.121882 + 0.211106i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −7.34362 12.7195i −0.333457 0.577564i
\(486\) 0 0
\(487\) −0.568012 + 0.983825i −0.0257391 + 0.0445814i −0.878608 0.477544i \(-0.841527\pi\)
0.852869 + 0.522125i \(0.174861\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −16.4382 28.4718i −0.741845 1.28491i −0.951655 0.307170i \(-0.900618\pi\)
0.209810 0.977742i \(-0.432715\pi\)
\(492\) 0 0
\(493\) 6.33929 + 10.9800i 0.285507 + 0.494513i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −13.0989 + 22.6879i −0.586387 + 1.01565i 0.408314 + 0.912841i \(0.366117\pi\)
−0.994701 + 0.102810i \(0.967217\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −25.8516 −1.15267 −0.576333 0.817215i \(-0.695517\pi\)
−0.576333 + 0.817215i \(0.695517\pi\)
\(504\) 0 0
\(505\) −4.09888 −0.182398
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −17.5858 + 30.4595i −0.779478 + 1.35009i 0.152766 + 0.988262i \(0.451182\pi\)
−0.932243 + 0.361832i \(0.882151\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 3.68292 + 6.37900i 0.162289 + 0.281092i
\(516\) 0 0
\(517\) 16.0858 + 27.8615i 0.707453 + 1.22535i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 8.93130 15.4695i 0.391287 0.677730i −0.601332 0.798999i \(-0.705363\pi\)
0.992620 + 0.121270i \(0.0386965\pi\)
\(522\) 0 0
\(523\) −11.4320 19.8008i −0.499886 0.865828i 0.500114 0.865960i \(-0.333291\pi\)
−1.00000 0.000131698i \(0.999958\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.16621 12.4122i 0.312165 0.540685i
\(528\) 0 0
\(529\) 11.2465 + 19.4795i 0.488979 + 0.846937i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −2.28435 + 3.95661i −0.0989462 + 0.171380i
\(534\) 0 0
\(535\) 32.6291 1.41068
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −11.1538 19.3190i −0.479541 0.830589i 0.520184 0.854054i \(-0.325863\pi\)
−0.999725 + 0.0234656i \(0.992530\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 16.1149 + 27.9118i 0.690287 + 1.19561i
\(546\) 0 0
\(547\) −10.8083 + 18.7206i −0.462131 + 0.800435i −0.999067 0.0431882i \(-0.986249\pi\)
0.536936 + 0.843623i \(0.319582\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −22.4968 −0.958394
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 1.58768 2.74993i 0.0672720 0.116518i −0.830428 0.557127i \(-0.811904\pi\)
0.897700 + 0.440608i \(0.145237\pi\)
\(558\) 0 0
\(559\) 3.61822 0.153034
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 43.7628 1.84438 0.922190 0.386737i \(-0.126398\pi\)
0.922190 + 0.386737i \(0.126398\pi\)
\(564\) 0 0
\(565\) 21.9752 0.924505
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 23.8626 1.00037 0.500186 0.865918i \(-0.333265\pi\)
0.500186 + 0.865918i \(0.333265\pi\)
\(570\) 0 0
\(571\) 10.2212 0.427742 0.213871 0.976862i \(-0.431393\pi\)
0.213871 + 0.976862i \(0.431393\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.50324 0.0626893
\(576\) 0 0
\(577\) −18.0185 + 31.2089i −0.750120 + 1.29925i 0.197645 + 0.980274i \(0.436671\pi\)
−0.947764 + 0.318972i \(0.896663\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) 4.67859 0.193767
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 10.5142 18.2111i 0.433966 0.751651i −0.563245 0.826290i \(-0.690447\pi\)
0.997211 + 0.0746391i \(0.0237805\pi\)
\(588\) 0 0
\(589\) 12.7156 + 22.0242i 0.523939 + 0.907489i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 12.5803 + 21.7897i 0.516612 + 0.894798i 0.999814 + 0.0192889i \(0.00614021\pi\)
−0.483202 + 0.875509i \(0.660526\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 2.22253 0.0908100 0.0454050 0.998969i \(-0.485542\pi\)
0.0454050 + 0.998969i \(0.485542\pi\)
\(600\) 0 0
\(601\) 14.0494 24.3343i 0.573089 0.992619i −0.423158 0.906056i \(-0.639078\pi\)
0.996246 0.0865627i \(-0.0275883\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.13348 7.15939i −0.168050 0.291071i
\(606\) 0 0
\(607\) −3.26509 + 5.65531i −0.132526 + 0.229542i −0.924650 0.380819i \(-0.875642\pi\)
0.792124 + 0.610361i \(0.208975\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 5.04875 + 8.74470i 0.204251 + 0.353773i
\(612\) 0 0
\(613\) −5.36398 + 9.29068i −0.216649 + 0.375247i −0.953781 0.300501i \(-0.902846\pi\)
0.737132 + 0.675748i \(0.236179\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −15.5265 26.8928i −0.625075 1.08266i −0.988526 0.151049i \(-0.951735\pi\)
0.363451 0.931613i \(-0.381598\pi\)
\(618\) 0 0
\(619\) −0.723217 1.25265i −0.0290685 0.0503482i 0.851125 0.524963i \(-0.175921\pi\)
−0.880194 + 0.474615i \(0.842587\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 4.99312 8.64834i 0.199725 0.345934i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −19.3287 −0.770686
\(630\) 0 0
\(631\) 0.0741250 0.00295087 0.00147544 0.999999i \(-0.499530\pi\)
0.00147544 + 0.999999i \(0.499530\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 14.9814 25.9486i 0.594520 1.02974i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −23.5204 40.7384i −0.928998 1.60907i −0.785002 0.619494i \(-0.787338\pi\)
−0.143996 0.989578i \(-0.545995\pi\)
\(642\) 0 0
\(643\) −16.8647 29.2105i −0.665077 1.15195i −0.979264 0.202587i \(-0.935065\pi\)
0.314187 0.949361i \(-0.398268\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −22.4814 + 38.9390i −0.883836 + 1.53085i −0.0367945 + 0.999323i \(0.511715\pi\)
−0.847042 + 0.531526i \(0.821619\pi\)
\(648\) 0 0
\(649\) 17.6964 + 30.6510i 0.694644 + 1.20316i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 20.8578 36.1267i 0.816228 1.41375i −0.0922143 0.995739i \(-0.529394\pi\)
0.908443 0.418010i \(-0.137272\pi\)
\(654\) 0 0
\(655\) −4.83310 8.37118i −0.188845 0.327089i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −10.5259 + 18.2313i −0.410029 + 0.710191i −0.994892 0.100941i \(-0.967815\pi\)
0.584863 + 0.811132i \(0.301148\pi\)
\(660\) 0 0
\(661\) −22.4437 −0.872958 −0.436479 0.899714i \(-0.643775\pi\)
−0.436479 + 0.899714i \(0.643775\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −1.60576 2.78126i −0.0621754 0.107691i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −17.7225 30.6962i −0.684168 1.18501i
\(672\) 0 0
\(673\) 5.83929 10.1140i 0.225088 0.389864i −0.731258 0.682101i \(-0.761066\pi\)
0.956346 + 0.292237i \(0.0943996\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 10.4684 0.402335 0.201167 0.979557i \(-0.435526\pi\)
0.201167 + 0.979557i \(0.435526\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 16.4079 28.4193i 0.627832 1.08744i −0.360154 0.932893i \(-0.617276\pi\)
0.987986 0.154543i \(-0.0493906\pi\)
\(684\) 0 0
\(685\) −33.0617 −1.26322
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 1.46844 0.0559431
\(690\) 0 0
\(691\) −5.90112 −0.224489 −0.112245 0.993681i \(-0.535804\pi\)
−0.112245 + 0.993681i \(0.535804\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −5.07784 −0.192614
\(696\) 0 0
\(697\) −16.5178 −0.625656
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 12.3782 0.467519 0.233759 0.972294i \(-0.424897\pi\)
0.233759 + 0.972294i \(0.424897\pi\)
\(702\) 0 0
\(703\) 17.1483 29.7018i 0.646761 1.12022i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −13.2829 −0.498850 −0.249425 0.968394i \(-0.580242\pi\)
−0.249425 + 0.968394i \(0.580242\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −1.81522 + 3.14406i −0.0679806 + 0.117746i
\(714\) 0 0
\(715\) 1.63664 + 2.83474i 0.0612067 + 0.106013i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 12.1847 + 21.1045i 0.454413 + 0.787066i 0.998654 0.0518628i \(-0.0165158\pi\)
−0.544242 + 0.838929i \(0.683183\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 9.52290 0.353672
\(726\) 0 0
\(727\) −7.99450 + 13.8469i −0.296500 + 0.513552i −0.975333 0.220740i \(-0.929153\pi\)
0.678833 + 0.734293i \(0.262486\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 6.54070 + 11.3288i 0.241917 + 0.419012i
\(732\) 0 0
\(733\) −21.1414 + 36.6181i −0.780877 + 1.35252i 0.150554 + 0.988602i \(0.451894\pi\)
−0.931431 + 0.363917i \(0.881439\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 9.89307 + 17.1353i 0.364416 + 0.631187i
\(738\) 0 0
\(739\) 1.54325 2.67299i 0.0567695 0.0983276i −0.836244 0.548357i \(-0.815253\pi\)
0.893014 + 0.450030i \(0.148587\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 3.31522 + 5.74213i 0.121624 + 0.210658i 0.920408 0.390959i \(-0.127857\pi\)
−0.798784 + 0.601617i \(0.794523\pi\)
\(744\) 0 0
\(745\) −6.88255 11.9209i −0.252157 0.436749i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 21.3702 37.0142i 0.779808 1.35067i −0.152243 0.988343i \(-0.548650\pi\)
0.932052 0.362325i \(-0.118017\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 15.0655 0.548288
\(756\) 0 0
\(757\) −31.0232 −1.12756 −0.563779 0.825926i \(-0.690653\pi\)
−0.563779 + 0.825926i \(0.690653\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −11.8182 + 20.4697i −0.428409 + 0.742025i −0.996732 0.0807799i \(-0.974259\pi\)
0.568323 + 0.822805i \(0.307592\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.55425 + 9.62025i 0.200553 + 0.347367i
\(768\) 0 0
\(769\) −1.73422 3.00376i −0.0625375 0.108318i 0.833061 0.553180i \(-0.186586\pi\)
−0.895599 + 0.444862i \(0.853253\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −17.2985 + 29.9619i −0.622184 + 1.07765i 0.366894 + 0.930263i \(0.380421\pi\)
−0.989078 + 0.147392i \(0.952912\pi\)
\(774\) 0 0
\(775\) −5.38255 9.32284i −0.193347 0.334886i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 14.6545 25.3824i 0.525053 0.909418i
\(780\) 0 0
\(781\) 12.7115 + 22.0170i 0.454854 + 0.787831i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 7.44870 12.9015i 0.265855 0.460475i
\(786\) 0 0
\(787\) 12.1593 0.433431 0.216715 0.976235i \(-0.430466\pi\)
0.216715 + 0.976235i \(0.430466\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −5.56243 9.63442i −0.197528 0.342128i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −2.89493 5.01416i −0.102544 0.177611i 0.810188 0.586170i \(-0.199365\pi\)
−0.912732 + 0.408559i \(0.866031\pi\)
\(798\) 0 0
\(799\) −18.2534 + 31.6158i −0.645759 + 1.11849i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 12.3548 0.435993
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −24.5908 + 42.5926i −0.864568 + 1.49748i 0.00290803 + 0.999996i \(0.499074\pi\)
−0.867476 + 0.497479i \(0.834259\pi\)
\(810\) 0 0
\(811\) −40.7266 −1.43010 −0.715052 0.699072i \(-0.753597\pi\)
−0.715052 + 0.699072i \(0.753597\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 3.37822 0.118334
\(816\) 0 0
\(817\) −23.2115 −0.812069
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −15.0938 −0.526777 −0.263388 0.964690i \(-0.584840\pi\)
−0.263388 + 0.964690i \(0.584840\pi\)
\(822\) 0 0
\(823\) 16.0000 0.557725 0.278862 0.960331i \(-0.410043\pi\)
0.278862 + 0.960331i \(0.410043\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −35.2348 −1.22523 −0.612616 0.790381i \(-0.709883\pi\)
−0.612616 + 0.790381i \(0.709883\pi\)
\(828\) 0 0
\(829\) −1.61745 + 2.80151i −0.0561765 + 0.0973006i −0.892746 0.450560i \(-0.851224\pi\)
0.836570 + 0.547861i \(0.184558\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −4.45606 −0.154208
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 15.5197 26.8808i 0.535798 0.928030i −0.463326 0.886188i \(-0.653344\pi\)
0.999124 0.0418419i \(-0.0133226\pi\)
\(840\) 0 0
\(841\) 4.32760 + 7.49563i 0.149228 + 0.258470i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −10.5339 18.2453i −0.362377 0.627656i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 4.89602 0.167833
\(852\) 0 0
\(853\) −8.03637 + 13.9194i −0.275160 + 0.476591i −0.970176 0.242403i \(-0.922064\pi\)
0.695015 + 0.718995i \(0.255398\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −9.61058 16.6460i −0.328291 0.568617i 0.653882 0.756597i \(-0.273139\pi\)
−0.982173 + 0.187980i \(0.939806\pi\)
\(858\) 0 0
\(859\) −7.40112 + 12.8191i −0.252523 + 0.437382i −0.964220 0.265104i \(-0.914594\pi\)
0.711697 + 0.702487i \(0.247927\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 7.38441 + 12.7902i 0.251368 + 0.435382i 0.963903 0.266255i \(-0.0857862\pi\)
−0.712535 + 0.701637i \(0.752453\pi\)
\(864\) 0 0
\(865\) −4.44437 + 7.69787i −0.151113 + 0.261735i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.4072 19.7579i −0.386964 0.670241i
\(870\) 0 0
\(871\) 3.10507 + 5.37815i 0.105211 + 0.182232i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −26.1916 + 45.3651i −0.884427 + 1.53187i −0.0380575 + 0.999276i \(0.512117\pi\)
−0.846369 + 0.532597i \(0.821216\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −31.3214 −1.05525 −0.527623 0.849479i \(-0.676916\pi\)
−0.527623 + 0.849479i \(0.676916\pi\)
\(882\) 0 0
\(883\) −43.0494 −1.44873 −0.724363 0.689419i \(-0.757866\pi\)
−0.724363 + 0.689419i \(0.757866\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 7.48831 12.9701i 0.251433 0.435494i −0.712488 0.701685i \(-0.752432\pi\)
0.963921 + 0.266190i \(0.0857649\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −32.3887 56.0988i −1.08385 1.87727i
\(894\) 0 0
\(895\) 4.04944 + 7.01384i 0.135358 + 0.234447i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −11.4993 + 19.9174i −0.383524 + 0.664282i
\(900\) 0 0
\(901\) 2.65452 + 4.59776i 0.0884348 + 0.153174i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 8.86467 15.3541i 0.294671 0.510386i
\(906\) 0 0
\(907\) −15.2280 26.3756i −0.505636 0.875787i −0.999979 0.00652002i \(-0.997925\pi\)
0.494343 0.869267i \(-0.335409\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −9.97593 + 17.2788i −0.330517 + 0.572473i −0.982613 0.185664i \(-0.940557\pi\)
0.652096 + 0.758136i \(0.273890\pi\)
\(912\) 0 0
\(913\) −21.8255 −0.722317
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −22.8145 39.5159i −0.752582 1.30351i −0.946567 0.322506i \(-0.895475\pi\)
0.193985 0.981004i \(-0.437859\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 3.98969 + 6.91034i 0.131322 + 0.227457i
\(924\) 0 0
\(925\) −7.25890 + 12.5728i −0.238671 + 0.413391i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 56.3722 1.84951 0.924755 0.380562i \(-0.124270\pi\)
0.924755 + 0.380562i \(0.124270\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −5.91714 + 10.2488i −0.193511 + 0.335171i
\(936\) 0 0
\(937\) 36.8530 1.20393 0.601967 0.798521i \(-0.294384\pi\)
0.601967 + 0.798521i \(0.294384\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −8.76000 −0.285568 −0.142784 0.989754i \(-0.545605\pi\)
−0.142784 + 0.989754i \(0.545605\pi\)
\(942\) 0 0
\(943\) 4.18401 0.136250
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −26.6452 −0.865852 −0.432926 0.901430i \(-0.642519\pi\)
−0.432926 + 0.901430i \(0.642519\pi\)
\(948\) 0 0
\(949\) 3.87773 0.125877
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −24.3039 −0.787282 −0.393641 0.919264i \(-0.628785\pi\)
−0.393641 + 0.919264i \(0.628785\pi\)
\(954\) 0 0
\(955\) −11.3207 + 19.6081i −0.366330 + 0.634502i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −5.00138 −0.161335
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −12.4425 + 21.5511i −0.400539 + 0.693753i
\(966\) 0 0
\(967\) 5.22872 + 9.05641i 0.168144 + 0.291234i 0.937767 0.347264i \(-0.112889\pi\)
−0.769623 + 0.638498i \(0.779556\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.8578 + 36.1267i 0.669358 + 1.15936i 0.978084 + 0.208211i \(0.0667642\pi\)
−0.308726 + 0.951151i \(0.599902\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.89011 −0.188441 −0.0942207 0.995551i \(-0.530036\pi\)
−0.0942207 + 0.995551i \(0.530036\pi\)
\(978\) 0 0
\(979\) 11.9567 20.7097i 0.382139 0.661885i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −20.9196 36.2338i −0.667232 1.15568i −0.978675 0.205415i \(-0.934146\pi\)
0.311443 0.950265i \(-0.399188\pi\)
\(984\) 0 0
\(985\) 15.7095 27.2096i 0.500545 0.866969i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −1.65678 2.86963i −0.0526826 0.0912489i
\(990\) 0 0
\(991\) 27.3578 47.3851i 0.869049 1.50524i 0.00607865 0.999982i \(-0.498065\pi\)
0.862970 0.505255i \(-0.168602\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) −20.0698 34.7619i −0.636255 1.10203i
\(996\) 0 0
\(997\) −9.02476 15.6313i −0.285817 0.495050i 0.686990 0.726667i \(-0.258932\pi\)
−0.972807 + 0.231617i \(0.925598\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5292.2.i.e.2125.3 6
3.2 odd 2 1764.2.i.d.1537.3 6
7.2 even 3 5292.2.l.f.3313.1 6
7.3 odd 6 756.2.j.b.505.1 6
7.4 even 3 5292.2.j.d.3529.3 6
7.5 odd 6 5292.2.l.e.3313.3 6
7.6 odd 2 5292.2.i.f.2125.1 6
9.4 even 3 5292.2.l.f.361.1 6
9.5 odd 6 1764.2.l.f.949.3 6
21.2 odd 6 1764.2.l.f.961.3 6
21.5 even 6 1764.2.l.e.961.1 6
21.11 odd 6 1764.2.j.e.1177.1 6
21.17 even 6 252.2.j.a.169.3 yes 6
21.20 even 2 1764.2.i.g.1537.1 6
28.3 even 6 3024.2.r.j.2017.1 6
63.4 even 3 5292.2.j.d.1765.3 6
63.5 even 6 1764.2.i.g.373.1 6
63.13 odd 6 5292.2.l.e.361.3 6
63.23 odd 6 1764.2.i.d.373.3 6
63.31 odd 6 756.2.j.b.253.1 6
63.32 odd 6 1764.2.j.e.589.1 6
63.38 even 6 2268.2.a.i.1.1 3
63.40 odd 6 5292.2.i.f.1549.1 6
63.41 even 6 1764.2.l.e.949.1 6
63.52 odd 6 2268.2.a.h.1.3 3
63.58 even 3 inner 5292.2.i.e.1549.3 6
63.59 even 6 252.2.j.a.85.3 6
84.59 odd 6 1008.2.r.j.673.1 6
252.31 even 6 3024.2.r.j.1009.1 6
252.59 odd 6 1008.2.r.j.337.1 6
252.115 even 6 9072.2.a.bv.1.3 3
252.227 odd 6 9072.2.a.by.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
252.2.j.a.85.3 6 63.59 even 6
252.2.j.a.169.3 yes 6 21.17 even 6
756.2.j.b.253.1 6 63.31 odd 6
756.2.j.b.505.1 6 7.3 odd 6
1008.2.r.j.337.1 6 252.59 odd 6
1008.2.r.j.673.1 6 84.59 odd 6
1764.2.i.d.373.3 6 63.23 odd 6
1764.2.i.d.1537.3 6 3.2 odd 2
1764.2.i.g.373.1 6 63.5 even 6
1764.2.i.g.1537.1 6 21.20 even 2
1764.2.j.e.589.1 6 63.32 odd 6
1764.2.j.e.1177.1 6 21.11 odd 6
1764.2.l.e.949.1 6 63.41 even 6
1764.2.l.e.961.1 6 21.5 even 6
1764.2.l.f.949.3 6 9.5 odd 6
1764.2.l.f.961.3 6 21.2 odd 6
2268.2.a.h.1.3 3 63.52 odd 6
2268.2.a.i.1.1 3 63.38 even 6
3024.2.r.j.1009.1 6 252.31 even 6
3024.2.r.j.2017.1 6 28.3 even 6
5292.2.i.e.1549.3 6 63.58 even 3 inner
5292.2.i.e.2125.3 6 1.1 even 1 trivial
5292.2.i.f.1549.1 6 63.40 odd 6
5292.2.i.f.2125.1 6 7.6 odd 2
5292.2.j.d.1765.3 6 63.4 even 3
5292.2.j.d.3529.3 6 7.4 even 3
5292.2.l.e.361.3 6 63.13 odd 6
5292.2.l.e.3313.3 6 7.5 odd 6
5292.2.l.f.361.1 6 9.4 even 3
5292.2.l.f.3313.1 6 7.2 even 3
9072.2.a.bv.1.3 3 252.115 even 6
9072.2.a.by.1.1 3 252.227 odd 6