Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [3024,2,Mod(289,3024)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 0, 4, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("3024.289");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 3024.t (of order \(3\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(24.1467615712\) |
Analytic rank: | \(0\) |
Dimension: | \(22\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{3})\) |
Twist minimal: | no (minimal twist has level 504) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{3}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
289.1 | 0 | 0 | 0 | −3.40736 | 0 | 2.05842 | − | 1.66220i | 0 | 0 | 0 | ||||||||||||||||
289.2 | 0 | 0 | 0 | −3.19500 | 0 | −2.61289 | − | 0.415693i | 0 | 0 | 0 | ||||||||||||||||
289.3 | 0 | 0 | 0 | −2.77180 | 0 | −0.855737 | + | 2.50354i | 0 | 0 | 0 | ||||||||||||||||
289.4 | 0 | 0 | 0 | −2.10440 | 0 | 1.78475 | + | 1.95312i | 0 | 0 | 0 | ||||||||||||||||
289.5 | 0 | 0 | 0 | −0.526004 | 0 | −2.43963 | + | 1.02383i | 0 | 0 | 0 | ||||||||||||||||
289.6 | 0 | 0 | 0 | 0.0619693 | 0 | 1.63689 | − | 2.07860i | 0 | 0 | 0 | ||||||||||||||||
289.7 | 0 | 0 | 0 | 0.468169 | 0 | 2.39007 | − | 1.13471i | 0 | 0 | 0 | ||||||||||||||||
289.8 | 0 | 0 | 0 | 1.78355 | 0 | −1.90167 | − | 1.83948i | 0 | 0 | 0 | ||||||||||||||||
289.9 | 0 | 0 | 0 | 2.66851 | 0 | 0.654882 | + | 2.56342i | 0 | 0 | 0 | ||||||||||||||||
289.10 | 0 | 0 | 0 | 3.79940 | 0 | −2.59312 | + | 0.525101i | 0 | 0 | 0 | ||||||||||||||||
289.11 | 0 | 0 | 0 | 4.22296 | 0 | 2.37802 | + | 1.15974i | 0 | 0 | 0 | ||||||||||||||||
1873.1 | 0 | 0 | 0 | −3.40736 | 0 | 2.05842 | + | 1.66220i | 0 | 0 | 0 | ||||||||||||||||
1873.2 | 0 | 0 | 0 | −3.19500 | 0 | −2.61289 | + | 0.415693i | 0 | 0 | 0 | ||||||||||||||||
1873.3 | 0 | 0 | 0 | −2.77180 | 0 | −0.855737 | − | 2.50354i | 0 | 0 | 0 | ||||||||||||||||
1873.4 | 0 | 0 | 0 | −2.10440 | 0 | 1.78475 | − | 1.95312i | 0 | 0 | 0 | ||||||||||||||||
1873.5 | 0 | 0 | 0 | −0.526004 | 0 | −2.43963 | − | 1.02383i | 0 | 0 | 0 | ||||||||||||||||
1873.6 | 0 | 0 | 0 | 0.0619693 | 0 | 1.63689 | + | 2.07860i | 0 | 0 | 0 | ||||||||||||||||
1873.7 | 0 | 0 | 0 | 0.468169 | 0 | 2.39007 | + | 1.13471i | 0 | 0 | 0 | ||||||||||||||||
1873.8 | 0 | 0 | 0 | 1.78355 | 0 | −1.90167 | + | 1.83948i | 0 | 0 | 0 | ||||||||||||||||
1873.9 | 0 | 0 | 0 | 2.66851 | 0 | 0.654882 | − | 2.56342i | 0 | 0 | 0 | ||||||||||||||||
See all 22 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
63.g | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 3024.2.t.k | 22 | |
3.b | odd | 2 | 1 | 1008.2.t.l | 22 | ||
4.b | odd | 2 | 1 | 1512.2.t.c | 22 | ||
7.c | even | 3 | 1 | 3024.2.q.l | 22 | ||
9.c | even | 3 | 1 | 3024.2.q.l | 22 | ||
9.d | odd | 6 | 1 | 1008.2.q.l | 22 | ||
12.b | even | 2 | 1 | 504.2.t.c | yes | 22 | |
21.h | odd | 6 | 1 | 1008.2.q.l | 22 | ||
28.g | odd | 6 | 1 | 1512.2.q.d | 22 | ||
36.f | odd | 6 | 1 | 1512.2.q.d | 22 | ||
36.h | even | 6 | 1 | 504.2.q.c | ✓ | 22 | |
63.g | even | 3 | 1 | inner | 3024.2.t.k | 22 | |
63.n | odd | 6 | 1 | 1008.2.t.l | 22 | ||
84.n | even | 6 | 1 | 504.2.q.c | ✓ | 22 | |
252.o | even | 6 | 1 | 504.2.t.c | yes | 22 | |
252.bl | odd | 6 | 1 | 1512.2.t.c | 22 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
504.2.q.c | ✓ | 22 | 36.h | even | 6 | 1 | |
504.2.q.c | ✓ | 22 | 84.n | even | 6 | 1 | |
504.2.t.c | yes | 22 | 12.b | even | 2 | 1 | |
504.2.t.c | yes | 22 | 252.o | even | 6 | 1 | |
1008.2.q.l | 22 | 9.d | odd | 6 | 1 | ||
1008.2.q.l | 22 | 21.h | odd | 6 | 1 | ||
1008.2.t.l | 22 | 3.b | odd | 2 | 1 | ||
1008.2.t.l | 22 | 63.n | odd | 6 | 1 | ||
1512.2.q.d | 22 | 28.g | odd | 6 | 1 | ||
1512.2.q.d | 22 | 36.f | odd | 6 | 1 | ||
1512.2.t.c | 22 | 4.b | odd | 2 | 1 | ||
1512.2.t.c | 22 | 252.bl | odd | 6 | 1 | ||
3024.2.q.l | 22 | 7.c | even | 3 | 1 | ||
3024.2.q.l | 22 | 9.c | even | 3 | 1 | ||
3024.2.t.k | 22 | 1.a | even | 1 | 1 | trivial | |
3024.2.t.k | 22 | 63.g | even | 3 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3024, [\chi])\):
\( T_{5}^{11} - T_{5}^{10} - 38 T_{5}^{9} + 21 T_{5}^{8} + 513 T_{5}^{7} - 108 T_{5}^{6} - 2841 T_{5}^{5} + \cdots + 74 \)
|
\( T_{11}^{11} + 3 T_{11}^{10} - 71 T_{11}^{9} - 231 T_{11}^{8} + 1675 T_{11}^{7} + 6195 T_{11}^{6} + \cdots - 65124 \)
|