Properties

Label 3024.2.t.l.289.3
Level $3024$
Weight $2$
Character 3024.289
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(289,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 4, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.289");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.t (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 289.3
Character \(\chi\) \(=\) 3024.289
Dual form 3024.2.t.l.1873.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.85591 q^{5} +(2.60465 - 0.464545i) q^{7} +O(q^{10})\) \(q-1.85591 q^{5} +(2.60465 - 0.464545i) q^{7} -2.57601 q^{11} +(2.82227 + 4.88832i) q^{13} +(-3.57951 - 6.19989i) q^{17} +(-0.636599 + 1.10262i) q^{19} +0.241277 q^{23} -1.55558 q^{25} +(-0.923571 + 1.59967i) q^{29} +(-1.49552 + 2.59031i) q^{31} +(-4.83401 + 0.862156i) q^{35} +(0.338260 - 0.585884i) q^{37} +(0.733933 + 1.27121i) q^{41} +(-4.14269 + 7.17535i) q^{43} +(6.15723 + 10.6646i) q^{47} +(6.56840 - 2.41995i) q^{49} +(-3.35508 - 5.81117i) q^{53} +4.78085 q^{55} +(-1.04139 + 1.80375i) q^{59} +(-6.47973 - 11.2232i) q^{61} +(-5.23789 - 9.07230i) q^{65} +(-2.41551 + 4.18379i) q^{67} -1.53621 q^{71} +(-6.55954 - 11.3615i) q^{73} +(-6.70960 + 1.19667i) q^{77} +(-1.86009 - 3.22177i) q^{79} +(-3.00173 + 5.19915i) q^{83} +(6.64326 + 11.5065i) q^{85} +(-6.60349 + 11.4376i) q^{89} +(9.62187 + 11.4213i) q^{91} +(1.18147 - 2.04637i) q^{95} +(6.40860 - 11.1000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 6 q^{5} - 7 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 22 q + 6 q^{5} - 7 q^{7} + 6 q^{11} - 3 q^{13} - 7 q^{17} + q^{19} - 4 q^{23} + 20 q^{25} - 9 q^{29} + 4 q^{31} + 14 q^{35} + 2 q^{37} - 16 q^{41} + 5 q^{47} - 15 q^{49} - 11 q^{53} - 22 q^{55} - 19 q^{59} - 13 q^{61} - 13 q^{65} - 26 q^{67} - 48 q^{71} - 35 q^{73} + 4 q^{77} - 10 q^{79} - 28 q^{83} - 20 q^{85} - 6 q^{89} + 37 q^{91} + 12 q^{95} - 29 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.85591 −0.829990 −0.414995 0.909824i \(-0.636217\pi\)
−0.414995 + 0.909824i \(0.636217\pi\)
\(6\) 0 0
\(7\) 2.60465 0.464545i 0.984465 0.175582i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.57601 −0.776696 −0.388348 0.921513i \(-0.626954\pi\)
−0.388348 + 0.921513i \(0.626954\pi\)
\(12\) 0 0
\(13\) 2.82227 + 4.88832i 0.782757 + 1.35578i 0.930330 + 0.366724i \(0.119521\pi\)
−0.147573 + 0.989051i \(0.547146\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.57951 6.19989i −0.868158 1.50369i −0.863876 0.503704i \(-0.831970\pi\)
−0.00428199 0.999991i \(-0.501363\pi\)
\(18\) 0 0
\(19\) −0.636599 + 1.10262i −0.146046 + 0.252959i −0.929763 0.368160i \(-0.879988\pi\)
0.783717 + 0.621118i \(0.213321\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 0.241277 0.0503098 0.0251549 0.999684i \(-0.491992\pi\)
0.0251549 + 0.999684i \(0.491992\pi\)
\(24\) 0 0
\(25\) −1.55558 −0.311116
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.923571 + 1.59967i −0.171503 + 0.297051i −0.938945 0.344066i \(-0.888196\pi\)
0.767443 + 0.641118i \(0.221529\pi\)
\(30\) 0 0
\(31\) −1.49552 + 2.59031i −0.268602 + 0.465233i −0.968501 0.249009i \(-0.919895\pi\)
0.699899 + 0.714242i \(0.253228\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.83401 + 0.862156i −0.817096 + 0.145731i
\(36\) 0 0
\(37\) 0.338260 0.585884i 0.0556097 0.0963188i −0.836880 0.547386i \(-0.815623\pi\)
0.892490 + 0.451067i \(0.148956\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.733933 + 1.27121i 0.114621 + 0.198529i 0.917628 0.397440i \(-0.130101\pi\)
−0.803007 + 0.595969i \(0.796768\pi\)
\(42\) 0 0
\(43\) −4.14269 + 7.17535i −0.631754 + 1.09423i 0.355439 + 0.934700i \(0.384331\pi\)
−0.987193 + 0.159531i \(0.949002\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 6.15723 + 10.6646i 0.898124 + 1.55560i 0.829890 + 0.557928i \(0.188403\pi\)
0.0682346 + 0.997669i \(0.478263\pi\)
\(48\) 0 0
\(49\) 6.56840 2.41995i 0.938342 0.345708i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.35508 5.81117i −0.460856 0.798226i 0.538148 0.842851i \(-0.319124\pi\)
−0.999004 + 0.0446243i \(0.985791\pi\)
\(54\) 0 0
\(55\) 4.78085 0.644650
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.04139 + 1.80375i −0.135578 + 0.234828i −0.925818 0.377969i \(-0.876622\pi\)
0.790240 + 0.612797i \(0.209956\pi\)
\(60\) 0 0
\(61\) −6.47973 11.2232i −0.829644 1.43699i −0.898317 0.439347i \(-0.855210\pi\)
0.0686730 0.997639i \(-0.478123\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −5.23789 9.07230i −0.649681 1.12528i
\(66\) 0 0
\(67\) −2.41551 + 4.18379i −0.295102 + 0.511131i −0.975009 0.222167i \(-0.928687\pi\)
0.679907 + 0.733298i \(0.262020\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.53621 −0.182314 −0.0911572 0.995837i \(-0.529057\pi\)
−0.0911572 + 0.995837i \(0.529057\pi\)
\(72\) 0 0
\(73\) −6.55954 11.3615i −0.767736 1.32976i −0.938788 0.344496i \(-0.888050\pi\)
0.171052 0.985262i \(-0.445283\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −6.70960 + 1.19667i −0.764630 + 0.136373i
\(78\) 0 0
\(79\) −1.86009 3.22177i −0.209277 0.362478i 0.742210 0.670167i \(-0.233778\pi\)
−0.951487 + 0.307689i \(0.900444\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.00173 + 5.19915i −0.329483 + 0.570681i −0.982409 0.186740i \(-0.940208\pi\)
0.652926 + 0.757421i \(0.273541\pi\)
\(84\) 0 0
\(85\) 6.64326 + 11.5065i 0.720563 + 1.24805i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.60349 + 11.4376i −0.699968 + 1.21238i 0.268509 + 0.963277i \(0.413469\pi\)
−0.968477 + 0.249103i \(0.919864\pi\)
\(90\) 0 0
\(91\) 9.62187 + 11.4213i 1.00865 + 1.19728i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 1.18147 2.04637i 0.121217 0.209953i
\(96\) 0 0
\(97\) 6.40860 11.1000i 0.650695 1.12704i −0.332260 0.943188i \(-0.607811\pi\)
0.982955 0.183848i \(-0.0588556\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −12.2013 −1.21408 −0.607039 0.794672i \(-0.707643\pi\)
−0.607039 + 0.794672i \(0.707643\pi\)
\(102\) 0 0
\(103\) −13.6433 −1.34431 −0.672155 0.740411i \(-0.734631\pi\)
−0.672155 + 0.740411i \(0.734631\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.48002 + 11.2237i −0.626448 + 1.08504i 0.361811 + 0.932251i \(0.382158\pi\)
−0.988259 + 0.152788i \(0.951175\pi\)
\(108\) 0 0
\(109\) 7.70089 + 13.3383i 0.737612 + 1.27758i 0.953568 + 0.301178i \(0.0973799\pi\)
−0.215956 + 0.976403i \(0.569287\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.73446 + 13.3965i 0.727597 + 1.26023i 0.957896 + 0.287115i \(0.0926961\pi\)
−0.230299 + 0.973120i \(0.573971\pi\)
\(114\) 0 0
\(115\) −0.447790 −0.0417566
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −12.2035 14.4857i −1.11869 1.32790i
\(120\) 0 0
\(121\) −4.36418 −0.396744
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1666 1.08821
\(126\) 0 0
\(127\) 3.19404 0.283425 0.141713 0.989908i \(-0.454739\pi\)
0.141713 + 0.989908i \(0.454739\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 14.0868 1.23077 0.615383 0.788229i \(-0.289002\pi\)
0.615383 + 0.788229i \(0.289002\pi\)
\(132\) 0 0
\(133\) −1.14590 + 3.16767i −0.0993620 + 0.274672i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −13.6964 −1.17016 −0.585079 0.810976i \(-0.698937\pi\)
−0.585079 + 0.810976i \(0.698937\pi\)
\(138\) 0 0
\(139\) 4.94131 + 8.55859i 0.419116 + 0.725931i 0.995851 0.0910010i \(-0.0290067\pi\)
−0.576735 + 0.816932i \(0.695673\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.27019 12.5923i −0.607964 1.05302i
\(144\) 0 0
\(145\) 1.71407 2.96885i 0.142346 0.246550i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.92029 0.321163 0.160581 0.987023i \(-0.448663\pi\)
0.160581 + 0.987023i \(0.448663\pi\)
\(150\) 0 0
\(151\) −19.5784 −1.59327 −0.796634 0.604462i \(-0.793388\pi\)
−0.796634 + 0.604462i \(0.793388\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.77555 4.80739i 0.222937 0.386139i
\(156\) 0 0
\(157\) −7.39637 + 12.8109i −0.590295 + 1.02242i 0.403898 + 0.914804i \(0.367655\pi\)
−0.994193 + 0.107616i \(0.965678\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.628443 0.112084i 0.0495282 0.00883347i
\(162\) 0 0
\(163\) −7.54686 + 13.0715i −0.591116 + 1.02384i 0.402967 + 0.915215i \(0.367979\pi\)
−0.994082 + 0.108628i \(0.965354\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.92946 + 3.34192i 0.149306 + 0.258605i 0.930971 0.365093i \(-0.118963\pi\)
−0.781665 + 0.623698i \(0.785629\pi\)
\(168\) 0 0
\(169\) −9.43043 + 16.3340i −0.725418 + 1.25646i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 0.325786 + 0.564277i 0.0247690 + 0.0429012i 0.878144 0.478396i \(-0.158782\pi\)
−0.853375 + 0.521297i \(0.825448\pi\)
\(174\) 0 0
\(175\) −4.05174 + 0.722638i −0.306283 + 0.0546263i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.9059 + 18.8896i 0.815145 + 1.41187i 0.909223 + 0.416308i \(0.136676\pi\)
−0.0940781 + 0.995565i \(0.529990\pi\)
\(180\) 0 0
\(181\) −25.0338 −1.86075 −0.930374 0.366613i \(-0.880517\pi\)
−0.930374 + 0.366613i \(0.880517\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −0.627782 + 1.08735i −0.0461555 + 0.0799436i
\(186\) 0 0
\(187\) 9.22085 + 15.9710i 0.674295 + 1.16791i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.33036 7.50041i −0.313334 0.542711i 0.665748 0.746177i \(-0.268113\pi\)
−0.979082 + 0.203466i \(0.934779\pi\)
\(192\) 0 0
\(193\) −0.808322 + 1.40006i −0.0581843 + 0.100778i −0.893650 0.448764i \(-0.851864\pi\)
0.835466 + 0.549542i \(0.185198\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.7746 −0.767659 −0.383829 0.923404i \(-0.625395\pi\)
−0.383829 + 0.923404i \(0.625395\pi\)
\(198\) 0 0
\(199\) −2.38768 4.13558i −0.169258 0.293163i 0.768901 0.639368i \(-0.220804\pi\)
−0.938159 + 0.346204i \(0.887470\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −1.66246 + 4.59562i −0.116682 + 0.322549i
\(204\) 0 0
\(205\) −1.36212 2.35925i −0.0951343 0.164777i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.63988 2.84036i 0.113433 0.196472i
\(210\) 0 0
\(211\) −2.42787 4.20520i −0.167142 0.289498i 0.770272 0.637715i \(-0.220120\pi\)
−0.937414 + 0.348218i \(0.886787\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.68848 13.3168i 0.524350 0.908200i
\(216\) 0 0
\(217\) −2.69198 + 7.44158i −0.182743 + 0.505167i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 20.2047 34.9955i 1.35911 2.35406i
\(222\) 0 0
\(223\) −3.86187 + 6.68896i −0.258610 + 0.447926i −0.965870 0.259028i \(-0.916598\pi\)
0.707260 + 0.706954i \(0.249931\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −13.9491 −0.925837 −0.462919 0.886401i \(-0.653198\pi\)
−0.462919 + 0.886401i \(0.653198\pi\)
\(228\) 0 0
\(229\) 1.60027 0.105749 0.0528745 0.998601i \(-0.483162\pi\)
0.0528745 + 0.998601i \(0.483162\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.69939 + 6.40753i −0.242355 + 0.419771i −0.961385 0.275208i \(-0.911253\pi\)
0.719030 + 0.694979i \(0.244587\pi\)
\(234\) 0 0
\(235\) −11.4273 19.7926i −0.745434 1.29113i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.25117 2.16709i −0.0809316 0.140178i 0.822719 0.568449i \(-0.192456\pi\)
−0.903650 + 0.428271i \(0.859123\pi\)
\(240\) 0 0
\(241\) 4.24297 0.273314 0.136657 0.990618i \(-0.456364\pi\)
0.136657 + 0.990618i \(0.456364\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −12.1904 + 4.49123i −0.778815 + 0.286934i
\(246\) 0 0
\(247\) −7.18661 −0.457273
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.5381 −0.854516 −0.427258 0.904130i \(-0.640520\pi\)
−0.427258 + 0.904130i \(0.640520\pi\)
\(252\) 0 0
\(253\) −0.621532 −0.0390754
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 6.15495 0.383935 0.191968 0.981401i \(-0.438513\pi\)
0.191968 + 0.981401i \(0.438513\pi\)
\(258\) 0 0
\(259\) 0.608880 1.68316i 0.0378340 0.104586i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −25.3411 −1.56260 −0.781300 0.624156i \(-0.785443\pi\)
−0.781300 + 0.624156i \(0.785443\pi\)
\(264\) 0 0
\(265\) 6.22675 + 10.7850i 0.382506 + 0.662520i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.42092 + 9.38931i 0.330519 + 0.572476i 0.982614 0.185662i \(-0.0594428\pi\)
−0.652095 + 0.758138i \(0.726109\pi\)
\(270\) 0 0
\(271\) 15.0184 26.0127i 0.912306 1.58016i 0.101507 0.994835i \(-0.467634\pi\)
0.810799 0.585325i \(-0.199033\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.00719 0.241643
\(276\) 0 0
\(277\) 19.7629 1.18744 0.593720 0.804672i \(-0.297659\pi\)
0.593720 + 0.804672i \(0.297659\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.98596 6.90388i 0.237782 0.411851i −0.722295 0.691585i \(-0.756913\pi\)
0.960078 + 0.279734i \(0.0902462\pi\)
\(282\) 0 0
\(283\) 11.6063 20.1028i 0.689926 1.19499i −0.281936 0.959433i \(-0.590977\pi\)
0.971861 0.235553i \(-0.0756901\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.50217 + 2.97011i 0.147698 + 0.175320i
\(288\) 0 0
\(289\) −17.1258 + 29.6627i −1.00740 + 1.74486i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.8556 20.5345i −0.692612 1.19964i −0.970979 0.239164i \(-0.923126\pi\)
0.278367 0.960475i \(-0.410207\pi\)
\(294\) 0 0
\(295\) 1.93274 3.34760i 0.112528 0.194905i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.680950 + 1.17944i 0.0393803 + 0.0682088i
\(300\) 0 0
\(301\) −7.45698 + 20.6137i −0.429813 + 1.18816i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.0258 + 20.8293i 0.688597 + 1.19268i
\(306\) 0 0
\(307\) −3.87810 −0.221335 −0.110668 0.993857i \(-0.535299\pi\)
−0.110668 + 0.993857i \(0.535299\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 3.46220 5.99670i 0.196323 0.340042i −0.751010 0.660290i \(-0.770433\pi\)
0.947333 + 0.320249i \(0.103767\pi\)
\(312\) 0 0
\(313\) −15.1157 26.1811i −0.854388 1.47984i −0.877212 0.480104i \(-0.840599\pi\)
0.0228236 0.999740i \(-0.492734\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.68699 + 8.11811i 0.263248 + 0.455959i 0.967103 0.254385i \(-0.0818730\pi\)
−0.703855 + 0.710343i \(0.748540\pi\)
\(318\) 0 0
\(319\) 2.37913 4.12077i 0.133205 0.230719i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.11484 0.507163
\(324\) 0 0
\(325\) −4.39027 7.60418i −0.243529 0.421804i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 20.9916 + 24.9173i 1.15731 + 1.37374i
\(330\) 0 0
\(331\) 13.7720 + 23.8539i 0.756979 + 1.31113i 0.944384 + 0.328844i \(0.106659\pi\)
−0.187405 + 0.982283i \(0.560008\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.48298 7.76475i 0.244931 0.424234i
\(336\) 0 0
\(337\) −3.41673 5.91796i −0.186121 0.322372i 0.757832 0.652449i \(-0.226258\pi\)
−0.943954 + 0.330078i \(0.892925\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.85246 6.67266i 0.208622 0.361345i
\(342\) 0 0
\(343\) 15.9842 9.35445i 0.863065 0.505093i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −10.0959 + 17.4867i −0.541979 + 0.938735i 0.456812 + 0.889564i \(0.348991\pi\)
−0.998790 + 0.0491714i \(0.984342\pi\)
\(348\) 0 0
\(349\) −4.25154 + 7.36388i −0.227580 + 0.394180i −0.957090 0.289790i \(-0.906415\pi\)
0.729511 + 0.683970i \(0.239748\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −4.70904 −0.250637 −0.125318 0.992117i \(-0.539995\pi\)
−0.125318 + 0.992117i \(0.539995\pi\)
\(354\) 0 0
\(355\) 2.85107 0.151319
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.03357 10.4504i 0.318440 0.551554i −0.661723 0.749748i \(-0.730175\pi\)
0.980163 + 0.198195i \(0.0635079\pi\)
\(360\) 0 0
\(361\) 8.68948 + 15.0506i 0.457341 + 0.792138i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.1739 + 21.0859i 0.637213 + 1.10369i
\(366\) 0 0
\(367\) −0.960711 −0.0501487 −0.0250744 0.999686i \(-0.507982\pi\)
−0.0250744 + 0.999686i \(0.507982\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −11.4384 13.5775i −0.593850 0.704908i
\(372\) 0 0
\(373\) −7.04998 −0.365034 −0.182517 0.983203i \(-0.558425\pi\)
−0.182517 + 0.983203i \(0.558425\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.4263 −0.536980
\(378\) 0 0
\(379\) 37.1330 1.90739 0.953697 0.300769i \(-0.0972434\pi\)
0.953697 + 0.300769i \(0.0972434\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 32.1975 1.64522 0.822608 0.568609i \(-0.192518\pi\)
0.822608 + 0.568609i \(0.192518\pi\)
\(384\) 0 0
\(385\) 12.4524 2.22092i 0.634635 0.113189i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 25.7426 1.30520 0.652600 0.757702i \(-0.273678\pi\)
0.652600 + 0.757702i \(0.273678\pi\)
\(390\) 0 0
\(391\) −0.863654 1.49589i −0.0436769 0.0756506i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.45217 + 5.97933i 0.173697 + 0.300853i
\(396\) 0 0
\(397\) 9.44903 16.3662i 0.474233 0.821396i −0.525332 0.850898i \(-0.676059\pi\)
0.999565 + 0.0295016i \(0.00939202\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −15.2039 −0.759245 −0.379622 0.925142i \(-0.623946\pi\)
−0.379622 + 0.925142i \(0.623946\pi\)
\(402\) 0 0
\(403\) −16.8830 −0.841002
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.871362 + 1.50924i −0.0431918 + 0.0748104i
\(408\) 0 0
\(409\) 14.9729 25.9339i 0.740363 1.28235i −0.211967 0.977277i \(-0.567987\pi\)
0.952330 0.305070i \(-0.0986798\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.87454 + 5.18191i −0.0922403 + 0.254985i
\(414\) 0 0
\(415\) 5.57096 9.64918i 0.273468 0.473660i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.2660 21.2453i −0.599231 1.03790i −0.992935 0.118661i \(-0.962140\pi\)
0.393704 0.919237i \(-0.371194\pi\)
\(420\) 0 0
\(421\) −2.37791 + 4.11866i −0.115892 + 0.200731i −0.918136 0.396265i \(-0.870306\pi\)
0.802244 + 0.596996i \(0.203639\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 5.56822 + 9.64444i 0.270098 + 0.467824i
\(426\) 0 0
\(427\) −22.0911 26.2224i −1.06906 1.26899i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.36446 + 2.36331i 0.0657237 + 0.113837i 0.897015 0.442000i \(-0.145731\pi\)
−0.831291 + 0.555837i \(0.812398\pi\)
\(432\) 0 0
\(433\) 14.5592 0.699672 0.349836 0.936811i \(-0.386237\pi\)
0.349836 + 0.936811i \(0.386237\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −0.153597 + 0.266037i −0.00734753 + 0.0127263i
\(438\) 0 0
\(439\) −1.44066 2.49529i −0.0687587 0.119094i 0.829596 0.558363i \(-0.188571\pi\)
−0.898355 + 0.439270i \(0.855237\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.4865 21.6273i −0.593254 1.02755i −0.993791 0.111265i \(-0.964510\pi\)
0.400537 0.916281i \(-0.368824\pi\)
\(444\) 0 0
\(445\) 12.2555 21.2272i 0.580967 1.00626i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.99154 0.141180 0.0705898 0.997505i \(-0.477512\pi\)
0.0705898 + 0.997505i \(0.477512\pi\)
\(450\) 0 0
\(451\) −1.89062 3.27464i −0.0890257 0.154197i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −17.8574 21.1969i −0.837166 0.993727i
\(456\) 0 0
\(457\) 12.8085 + 22.1850i 0.599158 + 1.03777i 0.992946 + 0.118571i \(0.0378312\pi\)
−0.393788 + 0.919201i \(0.628835\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.45759 11.1849i 0.300760 0.520931i −0.675548 0.737316i \(-0.736093\pi\)
0.976308 + 0.216384i \(0.0694264\pi\)
\(462\) 0 0
\(463\) 12.2457 + 21.2102i 0.569108 + 0.985724i 0.996654 + 0.0817305i \(0.0260447\pi\)
−0.427547 + 0.903993i \(0.640622\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.4087 + 18.0283i −0.481655 + 0.834251i −0.999778 0.0210550i \(-0.993297\pi\)
0.518123 + 0.855306i \(0.326631\pi\)
\(468\) 0 0
\(469\) −4.34800 + 12.0194i −0.200772 + 0.555005i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 10.6716 18.4838i 0.490681 0.849884i
\(474\) 0 0
\(475\) 0.990281 1.71522i 0.0454372 0.0786996i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 27.4873 1.25592 0.627962 0.778244i \(-0.283889\pi\)
0.627962 + 0.778244i \(0.283889\pi\)
\(480\) 0 0
\(481\) 3.81865 0.174115
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.8938 + 20.6007i −0.540070 + 0.935429i
\(486\) 0 0
\(487\) 6.32927 + 10.9626i 0.286807 + 0.496763i 0.973046 0.230613i \(-0.0740730\pi\)
−0.686239 + 0.727376i \(0.740740\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.40618 2.43557i −0.0634598 0.109916i 0.832550 0.553950i \(-0.186880\pi\)
−0.896010 + 0.444034i \(0.853547\pi\)
\(492\) 0 0
\(493\) 13.2237 0.595566
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −4.00128 + 0.713638i −0.179482 + 0.0320110i
\(498\) 0 0
\(499\) 4.24205 0.189900 0.0949502 0.995482i \(-0.469731\pi\)
0.0949502 + 0.995482i \(0.469731\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.2162 0.990570 0.495285 0.868730i \(-0.335064\pi\)
0.495285 + 0.868730i \(0.335064\pi\)
\(504\) 0 0
\(505\) 22.6446 1.00767
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.85469 0.215180 0.107590 0.994195i \(-0.465687\pi\)
0.107590 + 0.994195i \(0.465687\pi\)
\(510\) 0 0
\(511\) −22.3632 26.5454i −0.989290 1.17430i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 25.3207 1.11576
\(516\) 0 0
\(517\) −15.8611 27.4722i −0.697569 1.20823i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.92316 13.7233i −0.347120 0.601229i 0.638617 0.769525i \(-0.279507\pi\)
−0.985737 + 0.168296i \(0.946174\pi\)
\(522\) 0 0
\(523\) −10.7605 + 18.6377i −0.470524 + 0.814972i −0.999432 0.0337078i \(-0.989268\pi\)
0.528908 + 0.848679i \(0.322602\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 21.4128 0.932758
\(528\) 0 0
\(529\) −22.9418 −0.997469
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.14271 + 7.17539i −0.179441 + 0.310801i
\(534\) 0 0
\(535\) 12.0264 20.8303i 0.519945 0.900572i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.9202 + 6.23382i −0.728806 + 0.268510i
\(540\) 0 0
\(541\) 7.55977 13.0939i 0.325020 0.562951i −0.656497 0.754329i \(-0.727962\pi\)
0.981516 + 0.191378i \(0.0612957\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.2922 24.7548i −0.612211 1.06038i
\(546\) 0 0
\(547\) 19.4532 33.6939i 0.831757 1.44065i −0.0648863 0.997893i \(-0.520668\pi\)
0.896644 0.442753i \(-0.145998\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −1.17589 2.03670i −0.0500945 0.0867662i
\(552\) 0 0
\(553\) −6.34154 7.52749i −0.269670 0.320101i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.37036 + 9.30173i 0.227549 + 0.394127i 0.957081 0.289820i \(-0.0935954\pi\)
−0.729532 + 0.683947i \(0.760262\pi\)
\(558\) 0 0
\(559\) −46.7672 −1.97804
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 11.7380 20.3308i 0.494697 0.856840i −0.505285 0.862953i \(-0.668612\pi\)
0.999981 + 0.00611281i \(0.00194578\pi\)
\(564\) 0 0
\(565\) −14.3545 24.8627i −0.603898 1.04598i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −18.9681 32.8537i −0.795183 1.37730i −0.922723 0.385463i \(-0.874042\pi\)
0.127540 0.991833i \(-0.459292\pi\)
\(570\) 0 0
\(571\) −2.15815 + 3.73803i −0.0903158 + 0.156432i −0.907644 0.419741i \(-0.862121\pi\)
0.817328 + 0.576172i \(0.195454\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.375326 −0.0156522
\(576\) 0 0
\(577\) −5.05923 8.76284i −0.210618 0.364802i 0.741290 0.671185i \(-0.234214\pi\)
−0.951908 + 0.306383i \(0.900881\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −5.40322 + 14.9364i −0.224163 + 0.619667i
\(582\) 0 0
\(583\) 8.64272 + 14.9696i 0.357945 + 0.619979i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.10992 + 7.11859i −0.169635 + 0.293816i −0.938291 0.345846i \(-0.887592\pi\)
0.768657 + 0.639661i \(0.220925\pi\)
\(588\) 0 0
\(589\) −1.90409 3.29797i −0.0784565 0.135891i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21.8434 + 37.8339i −0.897002 + 1.55365i −0.0656957 + 0.997840i \(0.520927\pi\)
−0.831307 + 0.555814i \(0.812407\pi\)
\(594\) 0 0
\(595\) 22.6486 + 26.8842i 0.928504 + 1.10215i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 7.63946 13.2319i 0.312140 0.540642i −0.666686 0.745339i \(-0.732288\pi\)
0.978825 + 0.204697i \(0.0656209\pi\)
\(600\) 0 0
\(601\) 7.65696 13.2622i 0.312334 0.540978i −0.666533 0.745475i \(-0.732223\pi\)
0.978867 + 0.204497i \(0.0655559\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 8.09955 0.329293
\(606\) 0 0
\(607\) 2.66981 0.108364 0.0541821 0.998531i \(-0.482745\pi\)
0.0541821 + 0.998531i \(0.482745\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −34.7547 + 60.1970i −1.40603 + 2.43531i
\(612\) 0 0
\(613\) −13.5875 23.5343i −0.548796 0.950542i −0.998357 0.0572929i \(-0.981753\pi\)
0.449562 0.893249i \(-0.351580\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.6058 + 30.4942i 0.708785 + 1.22765i 0.965308 + 0.261113i \(0.0840895\pi\)
−0.256524 + 0.966538i \(0.582577\pi\)
\(618\) 0 0
\(619\) 31.2681 1.25677 0.628385 0.777902i \(-0.283716\pi\)
0.628385 + 0.777902i \(0.283716\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −11.8865 + 32.8585i −0.476223 + 1.31645i
\(624\) 0 0
\(625\) −14.8023 −0.592090
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.84322 −0.193112
\(630\) 0 0
\(631\) −15.5090 −0.617403 −0.308702 0.951159i \(-0.599894\pi\)
−0.308702 + 0.951159i \(0.599894\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −5.92787 −0.235240
\(636\) 0 0
\(637\) 30.3673 + 25.2786i 1.20320 + 1.00158i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 33.5310 1.32440 0.662198 0.749329i \(-0.269624\pi\)
0.662198 + 0.749329i \(0.269624\pi\)
\(642\) 0 0
\(643\) 10.2721 + 17.7918i 0.405093 + 0.701641i 0.994332 0.106317i \(-0.0339059\pi\)
−0.589239 + 0.807958i \(0.700573\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.8855 29.2465i −0.663836 1.14980i −0.979599 0.200960i \(-0.935594\pi\)
0.315763 0.948838i \(-0.397739\pi\)
\(648\) 0 0
\(649\) 2.68264 4.64647i 0.105303 0.182390i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −18.0115 −0.704845 −0.352423 0.935841i \(-0.614642\pi\)
−0.352423 + 0.935841i \(0.614642\pi\)
\(654\) 0 0
\(655\) −26.1438 −1.02152
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.42710 2.47180i 0.0555918 0.0962878i −0.836890 0.547371i \(-0.815629\pi\)
0.892482 + 0.451083i \(0.148962\pi\)
\(660\) 0 0
\(661\) −7.02746 + 12.1719i −0.273337 + 0.473433i −0.969714 0.244243i \(-0.921461\pi\)
0.696378 + 0.717676i \(0.254794\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.12669 5.87892i 0.0824695 0.227975i
\(666\) 0 0
\(667\) −0.222837 + 0.385964i −0.00862827 + 0.0149446i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.6918 + 28.9111i 0.644381 + 1.11610i
\(672\) 0 0
\(673\) −7.54157 + 13.0624i −0.290706 + 0.503518i −0.973977 0.226647i \(-0.927223\pi\)
0.683271 + 0.730165i \(0.260557\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −18.1093 31.3663i −0.695998 1.20550i −0.969843 0.243731i \(-0.921629\pi\)
0.273845 0.961774i \(-0.411705\pi\)
\(678\) 0 0
\(679\) 11.5357 31.8887i 0.442699 1.22378i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.84350 + 15.3174i 0.338387 + 0.586104i 0.984130 0.177452i \(-0.0567853\pi\)
−0.645742 + 0.763555i \(0.723452\pi\)
\(684\) 0 0
\(685\) 25.4193 0.971220
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 18.9379 32.8014i 0.721477 1.24963i
\(690\) 0 0
\(691\) 11.2049 + 19.4074i 0.426253 + 0.738292i 0.996537 0.0831559i \(-0.0265000\pi\)
−0.570283 + 0.821448i \(0.693167\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −9.17064 15.8840i −0.347862 0.602515i
\(696\) 0 0
\(697\) 5.25424 9.10061i 0.199018 0.344710i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.1776 1.17756 0.588781 0.808293i \(-0.299608\pi\)
0.588781 + 0.808293i \(0.299608\pi\)
\(702\) 0 0
\(703\) 0.430672 + 0.745946i 0.0162431 + 0.0281339i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −31.7802 + 5.66806i −1.19522 + 0.213170i
\(708\) 0 0
\(709\) 4.02492 + 6.97137i 0.151159 + 0.261815i 0.931654 0.363347i \(-0.118366\pi\)
−0.780495 + 0.625162i \(0.785033\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.360834 + 0.624982i −0.0135133 + 0.0234058i
\(714\) 0 0
\(715\) 13.4929 + 23.3703i 0.504604 + 0.874000i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.9980 + 36.3696i −0.783093 + 1.35636i 0.147039 + 0.989131i \(0.453026\pi\)
−0.930132 + 0.367226i \(0.880308\pi\)
\(720\) 0 0
\(721\) −35.5359 + 6.33791i −1.32343 + 0.236036i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 1.43669 2.48842i 0.0533573 0.0924176i
\(726\) 0 0
\(727\) −0.668774 + 1.15835i −0.0248035 + 0.0429609i −0.878161 0.478366i \(-0.841229\pi\)
0.853357 + 0.521327i \(0.174563\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 59.3152 2.19385
\(732\) 0 0
\(733\) 29.4749 1.08868 0.544340 0.838865i \(-0.316780\pi\)
0.544340 + 0.838865i \(0.316780\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.22238 10.7775i 0.229204 0.396993i
\(738\) 0 0
\(739\) −9.52146 16.4916i −0.350252 0.606655i 0.636041 0.771655i \(-0.280571\pi\)
−0.986294 + 0.165000i \(0.947238\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.6613 + 37.5185i 0.794676 + 1.37642i 0.923045 + 0.384693i \(0.125693\pi\)
−0.128369 + 0.991726i \(0.540974\pi\)
\(744\) 0 0
\(745\) −7.27573 −0.266562
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −11.6643 + 32.2441i −0.426203 + 1.17818i
\(750\) 0 0
\(751\) −34.8763 −1.27265 −0.636327 0.771420i \(-0.719547\pi\)
−0.636327 + 0.771420i \(0.719547\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 36.3358 1.32240
\(756\) 0 0
\(757\) 8.67255 0.315209 0.157605 0.987502i \(-0.449623\pi\)
0.157605 + 0.987502i \(0.449623\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 5.48977 0.199004 0.0995021 0.995037i \(-0.468275\pi\)
0.0995021 + 0.995037i \(0.468275\pi\)
\(762\) 0 0
\(763\) 26.2544 + 31.1643i 0.950473 + 1.12822i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −11.7564 −0.424499
\(768\) 0 0
\(769\) 1.81365 + 3.14134i 0.0654021 + 0.113280i 0.896872 0.442290i \(-0.145834\pi\)
−0.831470 + 0.555569i \(0.812500\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.96717 + 12.0675i 0.250592 + 0.434037i 0.963689 0.267028i \(-0.0860415\pi\)
−0.713097 + 0.701065i \(0.752708\pi\)
\(774\) 0 0
\(775\) 2.32640 4.02944i 0.0835666 0.144742i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −1.86888 −0.0669597
\(780\) 0 0
\(781\) 3.95729 0.141603
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.7270 23.7759i 0.489939 0.848599i
\(786\) 0 0
\(787\) 8.78923 15.2234i 0.313302 0.542655i −0.665773 0.746154i \(-0.731898\pi\)
0.979075 + 0.203499i \(0.0652314\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 26.3688 + 31.3001i 0.937567 + 1.11290i
\(792\) 0 0
\(793\) 36.5751 63.3499i 1.29882 2.24962i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.57971 9.66434i −0.197644 0.342329i 0.750120 0.661301i \(-0.229996\pi\)
−0.947764 + 0.318973i \(0.896662\pi\)
\(798\) 0 0
\(799\) 44.0797 76.3483i 1.55943 2.70101i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 16.8974 + 29.2672i 0.596297 + 1.03282i
\(804\) 0 0
\(805\) −1.16634 + 0.208019i −0.0411079 + 0.00733169i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −14.3481 24.8517i −0.504453 0.873738i −0.999987 0.00514935i \(-0.998361\pi\)
0.495534 0.868589i \(-0.334972\pi\)
\(810\) 0 0
\(811\) −47.1695 −1.65635 −0.828173 0.560473i \(-0.810620\pi\)
−0.828173 + 0.560473i \(0.810620\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 14.0063 24.2597i 0.490620 0.849779i
\(816\) 0 0
\(817\) −5.27446 9.13563i −0.184530 0.319615i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −19.3854 33.5765i −0.676554 1.17183i −0.976012 0.217717i \(-0.930139\pi\)
0.299458 0.954110i \(-0.403194\pi\)
\(822\) 0 0
\(823\) −11.3920 + 19.7316i −0.397101 + 0.687799i −0.993367 0.114988i \(-0.963317\pi\)
0.596266 + 0.802787i \(0.296650\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.55152 −0.0539515 −0.0269758 0.999636i \(-0.508588\pi\)
−0.0269758 + 0.999636i \(0.508588\pi\)
\(828\) 0 0
\(829\) −23.8972 41.3911i −0.829983 1.43757i −0.898051 0.439892i \(-0.855017\pi\)
0.0680673 0.997681i \(-0.478317\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −38.5151 32.0611i −1.33447 1.11085i
\(834\) 0 0
\(835\) −3.58090 6.20231i −0.123922 0.214640i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 19.5804 33.9142i 0.675990 1.17085i −0.300188 0.953880i \(-0.597049\pi\)
0.976178 0.216970i \(-0.0696173\pi\)
\(840\) 0 0
\(841\) 12.7940 + 22.1599i 0.441174 + 0.764135i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.5021 30.3145i 0.602089 1.04285i
\(846\) 0 0
\(847\) −11.3672 + 2.02736i −0.390580 + 0.0696609i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 0.0816145 0.141361i 0.00279771 0.00484578i
\(852\) 0 0
\(853\) 14.5234 25.1552i 0.497270 0.861298i −0.502725 0.864447i \(-0.667669\pi\)
0.999995 + 0.00314895i \(0.00100234\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 48.2584 1.64848 0.824239 0.566243i \(-0.191603\pi\)
0.824239 + 0.566243i \(0.191603\pi\)
\(858\) 0 0
\(859\) 10.1506 0.346332 0.173166 0.984893i \(-0.444600\pi\)
0.173166 + 0.984893i \(0.444600\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.7981 44.6837i 0.878179 1.52105i 0.0248411 0.999691i \(-0.492092\pi\)
0.853338 0.521359i \(-0.174575\pi\)
\(864\) 0 0
\(865\) −0.604630 1.04725i −0.0205580 0.0356076i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.79161 + 8.29931i 0.162544 + 0.281535i
\(870\) 0 0
\(871\) −27.2689 −0.923972
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 31.6897 5.65193i 1.07131 0.191070i
\(876\) 0 0
\(877\) −10.3978 −0.351109 −0.175555 0.984470i \(-0.556172\pi\)
−0.175555 + 0.984470i \(0.556172\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.6562 −0.796996 −0.398498 0.917169i \(-0.630468\pi\)
−0.398498 + 0.917169i \(0.630468\pi\)
\(882\) 0 0
\(883\) −41.8601 −1.40871 −0.704353 0.709850i \(-0.748763\pi\)
−0.704353 + 0.709850i \(0.748763\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) 42.2505 1.41863 0.709316 0.704891i \(-0.249004\pi\)
0.709316 + 0.704891i \(0.249004\pi\)
\(888\) 0 0
\(889\) 8.31936 1.48378i 0.279022 0.0497643i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −15.6787 −0.524669
\(894\) 0 0
\(895\) −20.2404 35.0574i −0.676563 1.17184i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.76243 4.78467i −0.0921321 0.159578i
\(900\) 0 0
\(901\) −24.0191 + 41.6023i −0.800192 + 1.38597i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 46.4606 1.54440
\(906\) 0 0
\(907\) 40.8807 1.35742 0.678711 0.734405i \(-0.262539\pi\)
0.678711 + 0.734405i \(0.262539\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14.4235 24.9823i 0.477873 0.827701i −0.521805 0.853065i \(-0.674741\pi\)
0.999678 + 0.0253641i \(0.00807452\pi\)
\(912\) 0 0
\(913\) 7.73249 13.3931i 0.255908 0.443246i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.6910 6.54393i 1.21165 0.216100i
\(918\) 0 0
\(919\) −21.8195 + 37.7925i −0.719760 + 1.24666i 0.241335 + 0.970442i \(0.422415\pi\)
−0.961095 + 0.276219i \(0.910919\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.33560 7.50947i −0.142708 0.247177i
\(924\) 0 0
\(925\) −0.526192 + 0.911391i −0.0173011 + 0.0299663i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.7377 23.7944i −0.450719 0.780668i 0.547712 0.836667i \(-0.315499\pi\)
−0.998431 + 0.0559990i \(0.982166\pi\)
\(930\) 0 0
\(931\) −1.51314 + 8.78299i −0.0495911 + 0.287851i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17.1131 29.6408i −0.559658 0.969356i
\(936\) 0 0
\(937\) −3.11920 −0.101900 −0.0509500 0.998701i \(-0.516225\pi\)
−0.0509500 + 0.998701i \(0.516225\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −13.0608 + 22.6219i −0.425769 + 0.737454i −0.996492 0.0836892i \(-0.973330\pi\)
0.570723 + 0.821143i \(0.306663\pi\)
\(942\) 0 0
\(943\) 0.177081 + 0.306714i 0.00576656 + 0.00998797i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.59015 + 6.21833i 0.116664 + 0.202068i 0.918444 0.395551i \(-0.129447\pi\)
−0.801780 + 0.597620i \(0.796113\pi\)
\(948\) 0 0
\(949\) 37.0256 64.1302i 1.20190 2.08176i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.1187 1.04043 0.520214 0.854036i \(-0.325852\pi\)
0.520214 + 0.854036i \(0.325852\pi\)
\(954\) 0 0
\(955\) 8.03678 + 13.9201i 0.260064 + 0.450444i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −35.6742 + 6.36257i −1.15198 + 0.205458i
\(960\) 0 0
\(961\) 11.0269 + 19.0991i 0.355705 + 0.616100i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.50018 2.59838i 0.0482924 0.0836449i
\(966\) 0 0
\(967\) 27.4860 + 47.6071i 0.883890 + 1.53094i 0.846981 + 0.531623i \(0.178418\pi\)
0.0369085 + 0.999319i \(0.488249\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.8518 36.1163i 0.669165 1.15903i −0.308973 0.951071i \(-0.599985\pi\)
0.978138 0.207957i \(-0.0666813\pi\)
\(972\) 0 0
\(973\) 16.8462 + 19.9967i 0.540065 + 0.641064i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 2.61437 4.52823i 0.0836412 0.144871i −0.821170 0.570683i \(-0.806678\pi\)
0.904811 + 0.425813i \(0.140012\pi\)
\(978\) 0 0
\(979\) 17.0106 29.4633i 0.543662 0.941651i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 6.90697 0.220298 0.110149 0.993915i \(-0.464867\pi\)
0.110149 + 0.993915i \(0.464867\pi\)
\(984\) 0 0
\(985\) 19.9967 0.637149
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.999537 + 1.73125i −0.0317834 + 0.0550505i
\(990\) 0 0
\(991\) −2.19861 3.80811i −0.0698412 0.120968i 0.828990 0.559263i \(-0.188916\pi\)
−0.898831 + 0.438295i \(0.855583\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.43133 + 7.67528i 0.140482 + 0.243323i
\(996\) 0 0
\(997\) −28.0359 −0.887907 −0.443954 0.896050i \(-0.646425\pi\)
−0.443954 + 0.896050i \(0.646425\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.t.l.289.3 22
3.2 odd 2 1008.2.t.k.961.4 22
4.3 odd 2 1512.2.t.d.289.3 22
7.4 even 3 3024.2.q.k.2881.9 22
9.4 even 3 3024.2.q.k.2305.9 22
9.5 odd 6 1008.2.q.k.625.5 22
12.11 even 2 504.2.t.d.457.8 yes 22
21.11 odd 6 1008.2.q.k.529.5 22
28.11 odd 6 1512.2.q.c.1369.9 22
36.23 even 6 504.2.q.d.121.7 yes 22
36.31 odd 6 1512.2.q.c.793.9 22
63.4 even 3 inner 3024.2.t.l.1873.3 22
63.32 odd 6 1008.2.t.k.193.4 22
84.11 even 6 504.2.q.d.25.7 22
252.67 odd 6 1512.2.t.d.361.3 22
252.95 even 6 504.2.t.d.193.8 yes 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.7 22 84.11 even 6
504.2.q.d.121.7 yes 22 36.23 even 6
504.2.t.d.193.8 yes 22 252.95 even 6
504.2.t.d.457.8 yes 22 12.11 even 2
1008.2.q.k.529.5 22 21.11 odd 6
1008.2.q.k.625.5 22 9.5 odd 6
1008.2.t.k.193.4 22 63.32 odd 6
1008.2.t.k.961.4 22 3.2 odd 2
1512.2.q.c.793.9 22 36.31 odd 6
1512.2.q.c.1369.9 22 28.11 odd 6
1512.2.t.d.289.3 22 4.3 odd 2
1512.2.t.d.361.3 22 252.67 odd 6
3024.2.q.k.2305.9 22 9.4 even 3
3024.2.q.k.2881.9 22 7.4 even 3
3024.2.t.l.289.3 22 1.1 even 1 trivial
3024.2.t.l.1873.3 22 63.4 even 3 inner