Properties

Label 3024.2.q.k.2881.9
Level $3024$
Weight $2$
Character 3024.2881
Analytic conductor $24.147$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3024,2,Mod(2305,3024)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3024, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3024.2305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3024 = 2^{4} \cdot 3^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3024.q (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(24.1467615712\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: no (minimal twist has level 504)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2881.9
Character \(\chi\) \(=\) 3024.2881
Dual form 3024.2.q.k.2305.9

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.927957 - 1.60727i) q^{5} +(-0.900017 - 2.48796i) q^{7} +O(q^{10})\) \(q+(0.927957 - 1.60727i) q^{5} +(-0.900017 - 2.48796i) q^{7} +(1.28800 + 2.23089i) q^{11} +(2.82227 + 4.88832i) q^{13} +(-3.57951 + 6.19989i) q^{17} +(-0.636599 - 1.10262i) q^{19} +(-0.120639 + 0.208952i) q^{23} +(0.777791 + 1.34717i) q^{25} +(-0.923571 + 1.59967i) q^{29} +2.99103 q^{31} +(-4.83401 - 0.862156i) q^{35} +(0.338260 + 0.585884i) q^{37} +(0.733933 + 1.27121i) q^{41} +(-4.14269 + 7.17535i) q^{43} -12.3145 q^{47} +(-5.37994 + 4.47842i) q^{49} +(-3.35508 + 5.81117i) q^{53} +4.78085 q^{55} +2.08279 q^{59} +12.9595 q^{61} +10.4758 q^{65} +4.83102 q^{67} -1.53621 q^{71} +(-6.55954 + 11.3615i) q^{73} +(4.39115 - 5.21235i) q^{77} +3.72018 q^{79} +(-3.00173 + 5.19915i) q^{83} +(6.64326 + 11.5065i) q^{85} +(-6.60349 - 11.4376i) q^{89} +(9.62187 - 11.4213i) q^{91} -2.36294 q^{95} +(6.40860 - 11.1000i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q - 3 q^{5} + 5 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 22 q - 3 q^{5} + 5 q^{7} - 3 q^{11} - 3 q^{13} - 7 q^{17} + q^{19} + 2 q^{23} - 10 q^{25} - 9 q^{29} - 8 q^{31} + 14 q^{35} + 2 q^{37} - 16 q^{41} - 10 q^{47} + 15 q^{49} - 11 q^{53} - 22 q^{55} + 38 q^{59} + 26 q^{61} + 26 q^{65} + 52 q^{67} - 48 q^{71} - 35 q^{73} - 17 q^{77} + 20 q^{79} - 28 q^{83} - 20 q^{85} - 6 q^{89} + 37 q^{91} - 24 q^{95} - 29 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3024\mathbb{Z}\right)^\times\).

\(n\) \(757\) \(785\) \(1135\) \(2593\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.927957 1.60727i 0.414995 0.718793i −0.580433 0.814308i \(-0.697117\pi\)
0.995428 + 0.0955156i \(0.0304500\pi\)
\(6\) 0 0
\(7\) −0.900017 2.48796i −0.340174 0.940362i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.28800 + 2.23089i 0.388348 + 0.672638i 0.992227 0.124437i \(-0.0397126\pi\)
−0.603880 + 0.797076i \(0.706379\pi\)
\(12\) 0 0
\(13\) 2.82227 + 4.88832i 0.782757 + 1.35578i 0.930330 + 0.366724i \(0.119521\pi\)
−0.147573 + 0.989051i \(0.547146\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.57951 + 6.19989i −0.868158 + 1.50369i −0.00428199 + 0.999991i \(0.501363\pi\)
−0.863876 + 0.503704i \(0.831970\pi\)
\(18\) 0 0
\(19\) −0.636599 1.10262i −0.146046 0.252959i 0.783717 0.621118i \(-0.213321\pi\)
−0.929763 + 0.368160i \(0.879988\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −0.120639 + 0.208952i −0.0251549 + 0.0435696i −0.878329 0.478057i \(-0.841341\pi\)
0.853174 + 0.521627i \(0.174675\pi\)
\(24\) 0 0
\(25\) 0.777791 + 1.34717i 0.155558 + 0.269435i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −0.923571 + 1.59967i −0.171503 + 0.297051i −0.938945 0.344066i \(-0.888196\pi\)
0.767443 + 0.641118i \(0.221529\pi\)
\(30\) 0 0
\(31\) 2.99103 0.537205 0.268602 0.963251i \(-0.413438\pi\)
0.268602 + 0.963251i \(0.413438\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −4.83401 0.862156i −0.817096 0.145731i
\(36\) 0 0
\(37\) 0.338260 + 0.585884i 0.0556097 + 0.0963188i 0.892490 0.451067i \(-0.148956\pi\)
−0.836880 + 0.547386i \(0.815623\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0.733933 + 1.27121i 0.114621 + 0.198529i 0.917628 0.397440i \(-0.130101\pi\)
−0.803007 + 0.595969i \(0.796768\pi\)
\(42\) 0 0
\(43\) −4.14269 + 7.17535i −0.631754 + 1.09423i 0.355439 + 0.934700i \(0.384331\pi\)
−0.987193 + 0.159531i \(0.949002\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −12.3145 −1.79625 −0.898124 0.439742i \(-0.855070\pi\)
−0.898124 + 0.439742i \(0.855070\pi\)
\(48\) 0 0
\(49\) −5.37994 + 4.47842i −0.768563 + 0.639774i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −3.35508 + 5.81117i −0.460856 + 0.798226i −0.999004 0.0446243i \(-0.985791\pi\)
0.538148 + 0.842851i \(0.319124\pi\)
\(54\) 0 0
\(55\) 4.78085 0.644650
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 2.08279 0.271156 0.135578 0.990767i \(-0.456711\pi\)
0.135578 + 0.990767i \(0.456711\pi\)
\(60\) 0 0
\(61\) 12.9595 1.65929 0.829644 0.558292i \(-0.188543\pi\)
0.829644 + 0.558292i \(0.188543\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.4758 1.29936
\(66\) 0 0
\(67\) 4.83102 0.590203 0.295102 0.955466i \(-0.404646\pi\)
0.295102 + 0.955466i \(0.404646\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.53621 −0.182314 −0.0911572 0.995837i \(-0.529057\pi\)
−0.0911572 + 0.995837i \(0.529057\pi\)
\(72\) 0 0
\(73\) −6.55954 + 11.3615i −0.767736 + 1.32976i 0.171052 + 0.985262i \(0.445283\pi\)
−0.938788 + 0.344496i \(0.888050\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.39115 5.21235i 0.500418 0.594002i
\(78\) 0 0
\(79\) 3.72018 0.418553 0.209277 0.977856i \(-0.432889\pi\)
0.209277 + 0.977856i \(0.432889\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −3.00173 + 5.19915i −0.329483 + 0.570681i −0.982409 0.186740i \(-0.940208\pi\)
0.652926 + 0.757421i \(0.273541\pi\)
\(84\) 0 0
\(85\) 6.64326 + 11.5065i 0.720563 + 1.24805i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −6.60349 11.4376i −0.699968 1.21238i −0.968477 0.249103i \(-0.919864\pi\)
0.268509 0.963277i \(-0.413469\pi\)
\(90\) 0 0
\(91\) 9.62187 11.4213i 1.00865 1.19728i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −2.36294 −0.242433
\(96\) 0 0
\(97\) 6.40860 11.1000i 0.650695 1.12704i −0.332260 0.943188i \(-0.607811\pi\)
0.982955 0.183848i \(-0.0588556\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 6.10066 + 10.5667i 0.607039 + 1.05142i 0.991726 + 0.128375i \(0.0409760\pi\)
−0.384687 + 0.923047i \(0.625691\pi\)
\(102\) 0 0
\(103\) 6.82163 11.8154i 0.672155 1.16421i −0.305137 0.952309i \(-0.598702\pi\)
0.977292 0.211898i \(-0.0679644\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −6.48002 11.2237i −0.626448 1.08504i −0.988259 0.152788i \(-0.951175\pi\)
0.361811 0.932251i \(-0.382158\pi\)
\(108\) 0 0
\(109\) 7.70089 13.3383i 0.737612 1.27758i −0.215956 0.976403i \(-0.569287\pi\)
0.953568 0.301178i \(-0.0973799\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 7.73446 + 13.3965i 0.727597 + 1.26023i 0.957896 + 0.287115i \(0.0926961\pi\)
−0.230299 + 0.973120i \(0.573971\pi\)
\(114\) 0 0
\(115\) 0.223895 + 0.387797i 0.0208783 + 0.0361623i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 18.6467 + 3.32569i 1.70934 + 0.304865i
\(120\) 0 0
\(121\) 2.18209 3.77949i 0.198372 0.343590i
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 12.1666 1.08821
\(126\) 0 0
\(127\) 3.19404 0.283425 0.141713 0.989908i \(-0.454739\pi\)
0.141713 + 0.989908i \(0.454739\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −7.04338 + 12.1995i −0.615383 + 1.06587i 0.374935 + 0.927051i \(0.377665\pi\)
−0.990317 + 0.138823i \(0.955668\pi\)
\(132\) 0 0
\(133\) −2.17033 + 2.57621i −0.188192 + 0.223386i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 6.84818 + 11.8614i 0.585079 + 1.01339i 0.994866 + 0.101206i \(0.0322700\pi\)
−0.409786 + 0.912182i \(0.634397\pi\)
\(138\) 0 0
\(139\) 4.94131 + 8.55859i 0.419116 + 0.725931i 0.995851 0.0910010i \(-0.0290067\pi\)
−0.576735 + 0.816932i \(0.695673\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −7.27019 + 12.5923i −0.607964 + 1.05302i
\(144\) 0 0
\(145\) 1.71407 + 2.96885i 0.142346 + 0.246550i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −1.96015 + 3.39507i −0.160581 + 0.278135i −0.935077 0.354444i \(-0.884670\pi\)
0.774496 + 0.632579i \(0.218004\pi\)
\(150\) 0 0
\(151\) 9.78920 + 16.9554i 0.796634 + 1.37981i 0.921796 + 0.387674i \(0.126722\pi\)
−0.125162 + 0.992136i \(0.539945\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 2.77555 4.80739i 0.222937 0.386139i
\(156\) 0 0
\(157\) 14.7927 1.18059 0.590295 0.807188i \(-0.299012\pi\)
0.590295 + 0.807188i \(0.299012\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0.628443 + 0.112084i 0.0495282 + 0.00883347i
\(162\) 0 0
\(163\) −7.54686 13.0715i −0.591116 1.02384i −0.994082 0.108628i \(-0.965354\pi\)
0.402967 0.915215i \(-0.367979\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.92946 + 3.34192i 0.149306 + 0.258605i 0.930971 0.365093i \(-0.118963\pi\)
−0.781665 + 0.623698i \(0.785629\pi\)
\(168\) 0 0
\(169\) −9.43043 + 16.3340i −0.725418 + 1.25646i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −0.651571 −0.0495380 −0.0247690 0.999693i \(-0.507885\pi\)
−0.0247690 + 0.999693i \(0.507885\pi\)
\(174\) 0 0
\(175\) 2.65170 3.14760i 0.200449 0.237936i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 10.9059 18.8896i 0.815145 1.41187i −0.0940781 0.995565i \(-0.529990\pi\)
0.909223 0.416308i \(-0.136676\pi\)
\(180\) 0 0
\(181\) −25.0338 −1.86075 −0.930374 0.366613i \(-0.880517\pi\)
−0.930374 + 0.366613i \(0.880517\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 1.25556 0.0923109
\(186\) 0 0
\(187\) −18.4417 −1.34859
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 8.66073 0.626668 0.313334 0.949643i \(-0.398554\pi\)
0.313334 + 0.949643i \(0.398554\pi\)
\(192\) 0 0
\(193\) 1.61664 0.116369 0.0581843 0.998306i \(-0.481469\pi\)
0.0581843 + 0.998306i \(0.481469\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −10.7746 −0.767659 −0.383829 0.923404i \(-0.625395\pi\)
−0.383829 + 0.923404i \(0.625395\pi\)
\(198\) 0 0
\(199\) −2.38768 + 4.13558i −0.169258 + 0.293163i −0.938159 0.346204i \(-0.887470\pi\)
0.768901 + 0.639368i \(0.220804\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 4.81115 + 0.858080i 0.337677 + 0.0602254i
\(204\) 0 0
\(205\) 2.72423 0.190269
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 1.63988 2.84036i 0.113433 0.196472i
\(210\) 0 0
\(211\) −2.42787 4.20520i −0.167142 0.289498i 0.770272 0.637715i \(-0.220120\pi\)
−0.937414 + 0.348218i \(0.886787\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 7.68848 + 13.3168i 0.524350 + 0.908200i
\(216\) 0 0
\(217\) −2.69198 7.44158i −0.182743 0.505167i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −40.4094 −2.71823
\(222\) 0 0
\(223\) −3.86187 + 6.68896i −0.258610 + 0.447926i −0.965870 0.259028i \(-0.916598\pi\)
0.707260 + 0.706954i \(0.249931\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 6.97457 + 12.0803i 0.462919 + 0.801799i 0.999105 0.0423011i \(-0.0134689\pi\)
−0.536186 + 0.844100i \(0.680136\pi\)
\(228\) 0 0
\(229\) −0.800136 + 1.38588i −0.0528745 + 0.0915812i −0.891251 0.453510i \(-0.850172\pi\)
0.838377 + 0.545091i \(0.183505\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −3.69939 6.40753i −0.242355 0.419771i 0.719030 0.694979i \(-0.244587\pi\)
−0.961385 + 0.275208i \(0.911253\pi\)
\(234\) 0 0
\(235\) −11.4273 + 19.7926i −0.745434 + 1.29113i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.25117 2.16709i −0.0809316 0.140178i 0.822719 0.568449i \(-0.192456\pi\)
−0.903650 + 0.428271i \(0.859123\pi\)
\(240\) 0 0
\(241\) −2.12148 3.67452i −0.136657 0.236697i 0.789572 0.613658i \(-0.210302\pi\)
−0.926229 + 0.376961i \(0.876969\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 2.20567 + 12.8028i 0.140915 + 0.817940i
\(246\) 0 0
\(247\) 3.59331 6.22379i 0.228637 0.396010i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −13.5381 −0.854516 −0.427258 0.904130i \(-0.640520\pi\)
−0.427258 + 0.904130i \(0.640520\pi\)
\(252\) 0 0
\(253\) −0.621532 −0.0390754
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −3.07747 + 5.33034i −0.191968 + 0.332497i −0.945902 0.324452i \(-0.894820\pi\)
0.753935 + 0.656949i \(0.228153\pi\)
\(258\) 0 0
\(259\) 1.15322 1.36889i 0.0716576 0.0850584i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 12.6706 + 21.9460i 0.781300 + 1.35325i 0.931185 + 0.364547i \(0.118776\pi\)
−0.149885 + 0.988703i \(0.547890\pi\)
\(264\) 0 0
\(265\) 6.22675 + 10.7850i 0.382506 + 0.662520i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 5.42092 9.38931i 0.330519 0.572476i −0.652095 0.758138i \(-0.726109\pi\)
0.982614 + 0.185662i \(0.0594428\pi\)
\(270\) 0 0
\(271\) 15.0184 + 26.0127i 0.912306 + 1.58016i 0.810799 + 0.585325i \(0.199033\pi\)
0.101507 + 0.994835i \(0.467634\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −2.00360 + 3.47033i −0.120821 + 0.209269i
\(276\) 0 0
\(277\) −9.88147 17.1152i −0.593720 1.02835i −0.993726 0.111841i \(-0.964325\pi\)
0.400006 0.916513i \(-0.369008\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 3.98596 6.90388i 0.237782 0.411851i −0.722295 0.691585i \(-0.756913\pi\)
0.960078 + 0.279734i \(0.0902462\pi\)
\(282\) 0 0
\(283\) −23.2127 −1.37985 −0.689926 0.723880i \(-0.742357\pi\)
−0.689926 + 0.723880i \(0.742357\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 2.50217 2.97011i 0.147698 0.175320i
\(288\) 0 0
\(289\) −17.1258 29.6627i −1.00740 1.74486i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −11.8556 20.5345i −0.692612 1.19964i −0.970979 0.239164i \(-0.923126\pi\)
0.278367 0.960475i \(-0.410207\pi\)
\(294\) 0 0
\(295\) 1.93274 3.34760i 0.112528 0.194905i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −1.36190 −0.0787607
\(300\) 0 0
\(301\) 21.5805 + 3.84893i 1.24388 + 0.221849i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 12.0258 20.8293i 0.688597 1.19268i
\(306\) 0 0
\(307\) −3.87810 −0.221335 −0.110668 0.993857i \(-0.535299\pi\)
−0.110668 + 0.993857i \(0.535299\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −6.92439 −0.392646 −0.196323 0.980539i \(-0.562900\pi\)
−0.196323 + 0.980539i \(0.562900\pi\)
\(312\) 0 0
\(313\) 30.2313 1.70878 0.854388 0.519636i \(-0.173932\pi\)
0.854388 + 0.519636i \(0.173932\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −9.37399 −0.526496 −0.263248 0.964728i \(-0.584794\pi\)
−0.263248 + 0.964728i \(0.584794\pi\)
\(318\) 0 0
\(319\) −4.75825 −0.266411
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 9.11484 0.507163
\(324\) 0 0
\(325\) −4.39027 + 7.60418i −0.243529 + 0.421804i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 11.0832 + 30.6379i 0.611038 + 1.68912i
\(330\) 0 0
\(331\) −27.5441 −1.51396 −0.756979 0.653439i \(-0.773326\pi\)
−0.756979 + 0.653439i \(0.773326\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.48298 7.76475i 0.244931 0.424234i
\(336\) 0 0
\(337\) −3.41673 5.91796i −0.186121 0.322372i 0.757832 0.652449i \(-0.226258\pi\)
−0.943954 + 0.330078i \(0.892925\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 3.85246 + 6.67266i 0.208622 + 0.361345i
\(342\) 0 0
\(343\) 15.9842 + 9.35445i 0.863065 + 0.505093i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 20.1919 1.08396 0.541979 0.840392i \(-0.317675\pi\)
0.541979 + 0.840392i \(0.317675\pi\)
\(348\) 0 0
\(349\) −4.25154 + 7.36388i −0.227580 + 0.394180i −0.957090 0.289790i \(-0.906415\pi\)
0.729511 + 0.683970i \(0.239748\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.35452 + 4.07815i 0.125318 + 0.217058i 0.921857 0.387529i \(-0.126671\pi\)
−0.796539 + 0.604587i \(0.793338\pi\)
\(354\) 0 0
\(355\) −1.42554 + 2.46910i −0.0756596 + 0.131046i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.03357 + 10.4504i 0.318440 + 0.551554i 0.980163 0.198195i \(-0.0635079\pi\)
−0.661723 + 0.749748i \(0.730175\pi\)
\(360\) 0 0
\(361\) 8.68948 15.0506i 0.457341 0.792138i
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 12.1739 + 21.0859i 0.637213 + 1.10369i
\(366\) 0 0
\(367\) 0.480356 + 0.832001i 0.0250744 + 0.0434301i 0.878290 0.478128i \(-0.158684\pi\)
−0.853216 + 0.521558i \(0.825351\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 17.4776 + 3.11717i 0.907393 + 0.161836i
\(372\) 0 0
\(373\) 3.52499 6.10547i 0.182517 0.316129i −0.760220 0.649666i \(-0.774909\pi\)
0.942737 + 0.333537i \(0.108242\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −10.4263 −0.536980
\(378\) 0 0
\(379\) 37.1330 1.90739 0.953697 0.300769i \(-0.0972434\pi\)
0.953697 + 0.300769i \(0.0972434\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −16.0988 + 27.8839i −0.822608 + 1.42480i 0.0811254 + 0.996704i \(0.474149\pi\)
−0.903734 + 0.428095i \(0.859185\pi\)
\(384\) 0 0
\(385\) −4.30285 11.8946i −0.219293 0.606204i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −12.8713 22.2937i −0.652600 1.13034i −0.982490 0.186317i \(-0.940345\pi\)
0.329889 0.944020i \(-0.392989\pi\)
\(390\) 0 0
\(391\) −0.863654 1.49589i −0.0436769 0.0756506i
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 3.45217 5.97933i 0.173697 0.300853i
\(396\) 0 0
\(397\) 9.44903 + 16.3662i 0.474233 + 0.821396i 0.999565 0.0295016i \(-0.00939202\pi\)
−0.525332 + 0.850898i \(0.676059\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 7.60193 13.1669i 0.379622 0.657525i −0.611385 0.791333i \(-0.709387\pi\)
0.991007 + 0.133808i \(0.0427206\pi\)
\(402\) 0 0
\(403\) 8.44150 + 14.6211i 0.420501 + 0.728329i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −0.871362 + 1.50924i −0.0431918 + 0.0748104i
\(408\) 0 0
\(409\) −29.9458 −1.48073 −0.740363 0.672207i \(-0.765346\pi\)
−0.740363 + 0.672207i \(0.765346\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −1.87454 5.18191i −0.0922403 0.254985i
\(414\) 0 0
\(415\) 5.57096 + 9.64918i 0.273468 + 0.473660i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −12.2660 21.2453i −0.599231 1.03790i −0.992935 0.118661i \(-0.962140\pi\)
0.393704 0.919237i \(-0.371194\pi\)
\(420\) 0 0
\(421\) −2.37791 + 4.11866i −0.115892 + 0.200731i −0.918136 0.396265i \(-0.870306\pi\)
0.802244 + 0.596996i \(0.203639\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −11.1364 −0.540197
\(426\) 0 0
\(427\) −11.6637 32.2427i −0.564448 1.56033i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.36446 2.36331i 0.0657237 0.113837i −0.831291 0.555837i \(-0.812398\pi\)
0.897015 + 0.442000i \(0.145731\pi\)
\(432\) 0 0
\(433\) 14.5592 0.699672 0.349836 0.936811i \(-0.386237\pi\)
0.349836 + 0.936811i \(0.386237\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 0.307194 0.0146951
\(438\) 0 0
\(439\) 2.88131 0.137517 0.0687587 0.997633i \(-0.478096\pi\)
0.0687587 + 0.997633i \(0.478096\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 24.9731 1.18651 0.593254 0.805016i \(-0.297843\pi\)
0.593254 + 0.805016i \(0.297843\pi\)
\(444\) 0 0
\(445\) −24.5110 −1.16193
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 2.99154 0.141180 0.0705898 0.997505i \(-0.477512\pi\)
0.0705898 + 0.997505i \(0.477512\pi\)
\(450\) 0 0
\(451\) −1.89062 + 3.27464i −0.0890257 + 0.154197i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −9.42838 26.0634i −0.442009 1.22187i
\(456\) 0 0
\(457\) −25.6171 −1.19832 −0.599158 0.800631i \(-0.704498\pi\)
−0.599158 + 0.800631i \(0.704498\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 6.45759 11.1849i 0.300760 0.520931i −0.675548 0.737316i \(-0.736093\pi\)
0.976308 + 0.216384i \(0.0694264\pi\)
\(462\) 0 0
\(463\) 12.2457 + 21.2102i 0.569108 + 0.985724i 0.996654 + 0.0817305i \(0.0260447\pi\)
−0.427547 + 0.903993i \(0.640622\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −10.4087 18.0283i −0.481655 0.834251i 0.518123 0.855306i \(-0.326631\pi\)
−0.999778 + 0.0210550i \(0.993297\pi\)
\(468\) 0 0
\(469\) −4.34800 12.0194i −0.200772 0.555005i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −21.3432 −0.981362
\(474\) 0 0
\(475\) 0.990281 1.71522i 0.0454372 0.0786996i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −13.7436 23.8047i −0.627962 1.08766i −0.987960 0.154709i \(-0.950556\pi\)
0.359998 0.932953i \(-0.382777\pi\)
\(480\) 0 0
\(481\) −1.90932 + 3.30705i −0.0870577 + 0.150788i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −11.8938 20.6007i −0.540070 0.935429i
\(486\) 0 0
\(487\) 6.32927 10.9626i 0.286807 0.496763i −0.686239 0.727376i \(-0.740740\pi\)
0.973046 + 0.230613i \(0.0740730\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −1.40618 2.43557i −0.0634598 0.109916i 0.832550 0.553950i \(-0.186880\pi\)
−0.896010 + 0.444034i \(0.853547\pi\)
\(492\) 0 0
\(493\) −6.61186 11.4521i −0.297783 0.515776i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 1.38261 + 3.82203i 0.0620187 + 0.171442i
\(498\) 0 0
\(499\) −2.12103 + 3.67373i −0.0949502 + 0.164459i −0.909588 0.415512i \(-0.863603\pi\)
0.814638 + 0.579970i \(0.196936\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 22.2162 0.990570 0.495285 0.868730i \(-0.335064\pi\)
0.495285 + 0.868730i \(0.335064\pi\)
\(504\) 0 0
\(505\) 22.6446 1.00767
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −2.42735 + 4.20429i −0.107590 + 0.186352i −0.914794 0.403922i \(-0.867647\pi\)
0.807203 + 0.590273i \(0.200980\pi\)
\(510\) 0 0
\(511\) 34.1706 + 6.09440i 1.51162 + 0.269601i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −12.6604 21.9284i −0.557882 0.966280i
\(516\) 0 0
\(517\) −15.8611 27.4722i −0.697569 1.20823i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −7.92316 + 13.7233i −0.347120 + 0.601229i −0.985737 0.168296i \(-0.946174\pi\)
0.638617 + 0.769525i \(0.279507\pi\)
\(522\) 0 0
\(523\) −10.7605 18.6377i −0.470524 0.814972i 0.528908 0.848679i \(-0.322602\pi\)
−0.999432 + 0.0337078i \(0.989268\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −10.7064 + 18.5441i −0.466379 + 0.807792i
\(528\) 0 0
\(529\) 11.4709 + 19.8682i 0.498734 + 0.863833i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −4.14271 + 7.17539i −0.179441 + 0.310801i
\(534\) 0 0
\(535\) −24.0527 −1.03989
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −16.9202 6.23382i −0.728806 0.268510i
\(540\) 0 0
\(541\) 7.55977 + 13.0939i 0.325020 + 0.562951i 0.981516 0.191378i \(-0.0612957\pi\)
−0.656497 + 0.754329i \(0.727962\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −14.2922 24.7548i −0.612211 1.06038i
\(546\) 0 0
\(547\) 19.4532 33.6939i 0.831757 1.44065i −0.0648863 0.997893i \(-0.520668\pi\)
0.896644 0.442753i \(-0.145998\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 2.35177 0.100189
\(552\) 0 0
\(553\) −3.34823 9.25568i −0.142381 0.393592i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 5.37036 9.30173i 0.227549 0.394127i −0.729532 0.683947i \(-0.760262\pi\)
0.957081 + 0.289820i \(0.0935954\pi\)
\(558\) 0 0
\(559\) −46.7672 −1.97804
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −23.4760 −0.989394 −0.494697 0.869066i \(-0.664721\pi\)
−0.494697 + 0.869066i \(0.664721\pi\)
\(564\) 0 0
\(565\) 28.7090 1.20780
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 37.9361 1.59037 0.795183 0.606370i \(-0.207375\pi\)
0.795183 + 0.606370i \(0.207375\pi\)
\(570\) 0 0
\(571\) 4.31630 0.180632 0.0903158 0.995913i \(-0.471212\pi\)
0.0903158 + 0.995913i \(0.471212\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.375326 −0.0156522
\(576\) 0 0
\(577\) −5.05923 + 8.76284i −0.210618 + 0.364802i −0.951908 0.306383i \(-0.900881\pi\)
0.741290 + 0.671185i \(0.234214\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 15.6369 + 2.78888i 0.648729 + 0.115702i
\(582\) 0 0
\(583\) −17.2854 −0.715890
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −4.10992 + 7.11859i −0.169635 + 0.293816i −0.938291 0.345846i \(-0.887592\pi\)
0.768657 + 0.639661i \(0.220925\pi\)
\(588\) 0 0
\(589\) −1.90409 3.29797i −0.0784565 0.135891i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −21.8434 37.8339i −0.897002 1.55365i −0.831307 0.555814i \(-0.812407\pi\)
−0.0656957 0.997840i \(-0.520927\pi\)
\(594\) 0 0
\(595\) 22.6486 26.8842i 0.928504 1.10215i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −15.2789 −0.624280 −0.312140 0.950036i \(-0.601046\pi\)
−0.312140 + 0.950036i \(0.601046\pi\)
\(600\) 0 0
\(601\) 7.65696 13.2622i 0.312334 0.540978i −0.666533 0.745475i \(-0.732223\pi\)
0.978867 + 0.204497i \(0.0655559\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −4.04977 7.01441i −0.164647 0.285176i
\(606\) 0 0
\(607\) −1.33490 + 2.31212i −0.0541821 + 0.0938461i −0.891844 0.452342i \(-0.850588\pi\)
0.837662 + 0.546189i \(0.183922\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −34.7547 60.1970i −1.40603 2.43531i
\(612\) 0 0
\(613\) −13.5875 + 23.5343i −0.548796 + 0.950542i 0.449562 + 0.893249i \(0.351580\pi\)
−0.998357 + 0.0572929i \(0.981753\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.6058 + 30.4942i 0.708785 + 1.22765i 0.965308 + 0.261113i \(0.0840895\pi\)
−0.256524 + 0.966538i \(0.582577\pi\)
\(618\) 0 0
\(619\) −15.6340 27.0790i −0.628385 1.08840i −0.987876 0.155247i \(-0.950383\pi\)
0.359490 0.933149i \(-0.382951\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −22.5130 + 26.7233i −0.901966 + 1.07064i
\(624\) 0 0
\(625\) 7.40113 12.8191i 0.296045 0.512765i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −4.84322 −0.193112
\(630\) 0 0
\(631\) −15.5090 −0.617403 −0.308702 0.951159i \(-0.599894\pi\)
−0.308702 + 0.951159i \(0.599894\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 2.96393 5.13369i 0.117620 0.203724i
\(636\) 0 0
\(637\) −37.0756 13.6595i −1.46899 0.541210i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −16.7655 29.0387i −0.662198 1.14696i −0.980037 0.198816i \(-0.936290\pi\)
0.317839 0.948145i \(-0.397043\pi\)
\(642\) 0 0
\(643\) 10.2721 + 17.7918i 0.405093 + 0.701641i 0.994332 0.106317i \(-0.0339059\pi\)
−0.589239 + 0.807958i \(0.700573\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.8855 + 29.2465i −0.663836 + 1.14980i 0.315763 + 0.948838i \(0.397739\pi\)
−0.979599 + 0.200960i \(0.935594\pi\)
\(648\) 0 0
\(649\) 2.68264 + 4.64647i 0.105303 + 0.182390i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 9.00576 15.5984i 0.352423 0.610414i −0.634251 0.773127i \(-0.718691\pi\)
0.986673 + 0.162714i \(0.0520247\pi\)
\(654\) 0 0
\(655\) 13.0719 + 22.6412i 0.510762 + 0.884665i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 1.42710 2.47180i 0.0555918 0.0962878i −0.836890 0.547371i \(-0.815629\pi\)
0.892482 + 0.451083i \(0.148962\pi\)
\(660\) 0 0
\(661\) 14.0549 0.546673 0.273337 0.961918i \(-0.411873\pi\)
0.273337 + 0.961918i \(0.411873\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 2.12669 + 5.87892i 0.0824695 + 0.227975i
\(666\) 0 0
\(667\) −0.222837 0.385964i −0.00862827 0.0149446i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 16.6918 + 28.9111i 0.644381 + 1.11610i
\(672\) 0 0
\(673\) −7.54157 + 13.0624i −0.290706 + 0.503518i −0.973977 0.226647i \(-0.927223\pi\)
0.683271 + 0.730165i \(0.260557\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 36.2187 1.39200 0.695998 0.718043i \(-0.254962\pi\)
0.695998 + 0.718043i \(0.254962\pi\)
\(678\) 0 0
\(679\) −33.3843 5.95417i −1.28117 0.228500i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 8.84350 15.3174i 0.338387 0.586104i −0.645742 0.763555i \(-0.723452\pi\)
0.984130 + 0.177452i \(0.0567853\pi\)
\(684\) 0 0
\(685\) 25.4193 0.971220
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −37.8758 −1.44295
\(690\) 0 0
\(691\) −22.4097 −0.852506 −0.426253 0.904604i \(-0.640167\pi\)
−0.426253 + 0.904604i \(0.640167\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 18.3413 0.695725
\(696\) 0 0
\(697\) −10.5085 −0.398037
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 31.1776 1.17756 0.588781 0.808293i \(-0.299608\pi\)
0.588781 + 0.808293i \(0.299608\pi\)
\(702\) 0 0
\(703\) 0.430672 0.745946i 0.0162431 0.0281339i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 20.7988 24.6884i 0.782218 0.928503i
\(708\) 0 0
\(709\) −8.04985 −0.302318 −0.151159 0.988509i \(-0.548301\pi\)
−0.151159 + 0.988509i \(0.548301\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −0.360834 + 0.624982i −0.0135133 + 0.0234058i
\(714\) 0 0
\(715\) 13.4929 + 23.3703i 0.504604 + 0.874000i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −20.9980 36.3696i −0.783093 1.35636i −0.930132 0.367226i \(-0.880308\pi\)
0.147039 0.989131i \(-0.453026\pi\)
\(720\) 0 0
\(721\) −35.5359 6.33791i −1.32343 0.236036i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −2.87338 −0.106715
\(726\) 0 0
\(727\) −0.668774 + 1.15835i −0.0248035 + 0.0429609i −0.878161 0.478366i \(-0.841229\pi\)
0.853357 + 0.521327i \(0.174563\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −29.6576 51.3684i −1.09693 1.89993i
\(732\) 0 0
\(733\) −14.7374 + 25.5260i −0.544340 + 0.942824i 0.454308 + 0.890845i \(0.349886\pi\)
−0.998648 + 0.0519798i \(0.983447\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.22238 + 10.7775i 0.229204 + 0.396993i
\(738\) 0 0
\(739\) −9.52146 + 16.4916i −0.350252 + 0.606655i −0.986294 0.165000i \(-0.947238\pi\)
0.636041 + 0.771655i \(0.280571\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 21.6613 + 37.5185i 0.794676 + 1.37642i 0.923045 + 0.384693i \(0.125693\pi\)
−0.128369 + 0.991726i \(0.540974\pi\)
\(744\) 0 0
\(745\) 3.63786 + 6.30097i 0.133281 + 0.230850i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −22.0921 + 26.2236i −0.807228 + 0.958190i
\(750\) 0 0
\(751\) 17.4381 30.2037i 0.636327 1.10215i −0.349906 0.936785i \(-0.613786\pi\)
0.986232 0.165365i \(-0.0528803\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 36.3358 1.32240
\(756\) 0 0
\(757\) 8.67255 0.315209 0.157605 0.987502i \(-0.449623\pi\)
0.157605 + 0.987502i \(0.449623\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −2.74489 + 4.75428i −0.0995021 + 0.172343i −0.911479 0.411347i \(-0.865058\pi\)
0.811977 + 0.583690i \(0.198392\pi\)
\(762\) 0 0
\(763\) −40.1163 7.15482i −1.45231 0.259022i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 5.87819 + 10.1813i 0.212249 + 0.367627i
\(768\) 0 0
\(769\) 1.81365 + 3.14134i 0.0654021 + 0.113280i 0.896872 0.442290i \(-0.145834\pi\)
−0.831470 + 0.555569i \(0.812500\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 6.96717 12.0675i 0.250592 0.434037i −0.713097 0.701065i \(-0.752708\pi\)
0.963689 + 0.267028i \(0.0860415\pi\)
\(774\) 0 0
\(775\) 2.32640 + 4.02944i 0.0835666 + 0.144742i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0.934441 1.61850i 0.0334798 0.0579888i
\(780\) 0 0
\(781\) −1.97864 3.42711i −0.0708014 0.122632i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 13.7270 23.7759i 0.489939 0.848599i
\(786\) 0 0
\(787\) −17.5785 −0.626604 −0.313302 0.949654i \(-0.601435\pi\)
−0.313302 + 0.949654i \(0.601435\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 26.3688 31.3001i 0.937567 1.11290i
\(792\) 0 0
\(793\) 36.5751 + 63.3499i 1.29882 + 2.24962i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −5.57971 9.66434i −0.197644 0.342329i 0.750120 0.661301i \(-0.229996\pi\)
−0.947764 + 0.318973i \(0.896662\pi\)
\(798\) 0 0
\(799\) 44.0797 76.3483i 1.55943 2.70101i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −33.7949 −1.19259
\(804\) 0 0
\(805\) 0.763317 0.906067i 0.0269034 0.0319347i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −14.3481 + 24.8517i −0.504453 + 0.873738i 0.495534 + 0.868589i \(0.334972\pi\)
−0.999987 + 0.00514935i \(0.998361\pi\)
\(810\) 0 0
\(811\) −47.1695 −1.65635 −0.828173 0.560473i \(-0.810620\pi\)
−0.828173 + 0.560473i \(0.810620\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −28.0126 −0.981240
\(816\) 0 0
\(817\) 10.5489 0.369060
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 38.7707 1.35311 0.676554 0.736393i \(-0.263472\pi\)
0.676554 + 0.736393i \(0.263472\pi\)
\(822\) 0 0
\(823\) 22.7840 0.794202 0.397101 0.917775i \(-0.370016\pi\)
0.397101 + 0.917775i \(0.370016\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −1.55152 −0.0539515 −0.0269758 0.999636i \(-0.508588\pi\)
−0.0269758 + 0.999636i \(0.508588\pi\)
\(828\) 0 0
\(829\) −23.8972 + 41.3911i −0.829983 + 1.43757i 0.0680673 + 0.997681i \(0.478317\pi\)
−0.898051 + 0.439892i \(0.855017\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −8.50818 49.3856i −0.294791 1.71111i
\(834\) 0 0
\(835\) 7.16181 0.247845
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 19.5804 33.9142i 0.675990 1.17085i −0.300188 0.953880i \(-0.597049\pi\)
0.976178 0.216970i \(-0.0696173\pi\)
\(840\) 0 0
\(841\) 12.7940 + 22.1599i 0.441174 + 0.764135i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 17.5021 + 30.3145i 0.602089 + 1.04285i
\(846\) 0 0
\(847\) −11.3672 2.02736i −0.390580 0.0696609i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) −0.163229 −0.00559542
\(852\) 0 0
\(853\) 14.5234 25.1552i 0.497270 0.861298i −0.502725 0.864447i \(-0.667669\pi\)
0.999995 + 0.00314895i \(0.00100234\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −24.1292 41.7930i −0.824239 1.42762i −0.902500 0.430690i \(-0.858270\pi\)
0.0782612 0.996933i \(-0.475063\pi\)
\(858\) 0 0
\(859\) −5.07528 + 8.79063i −0.173166 + 0.299933i −0.939525 0.342480i \(-0.888733\pi\)
0.766359 + 0.642413i \(0.222066\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 25.7981 + 44.6837i 0.878179 + 1.52105i 0.853338 + 0.521359i \(0.174575\pi\)
0.0248411 + 0.999691i \(0.492092\pi\)
\(864\) 0 0
\(865\) −0.604630 + 1.04725i −0.0205580 + 0.0356076i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 4.79161 + 8.29931i 0.162544 + 0.281535i
\(870\) 0 0
\(871\) 13.6345 + 23.6156i 0.461986 + 0.800183i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) −10.9501 30.2701i −0.370182 1.02332i
\(876\) 0 0
\(877\) 5.19891 9.00477i 0.175555 0.304069i −0.764798 0.644270i \(-0.777161\pi\)
0.940353 + 0.340200i \(0.110495\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −23.6562 −0.796996 −0.398498 0.917169i \(-0.630468\pi\)
−0.398498 + 0.917169i \(0.630468\pi\)
\(882\) 0 0
\(883\) −41.8601 −1.40871 −0.704353 0.709850i \(-0.748763\pi\)
−0.704353 + 0.709850i \(0.748763\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −21.1252 + 36.5900i −0.709316 + 1.22857i 0.255795 + 0.966731i \(0.417663\pi\)
−0.965111 + 0.261840i \(0.915671\pi\)
\(888\) 0 0
\(889\) −2.87469 7.94667i −0.0964141 0.266523i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 7.83937 + 13.5782i 0.262334 + 0.454377i
\(894\) 0 0
\(895\) −20.2404 35.0574i −0.676563 1.17184i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −2.76243 + 4.78467i −0.0921321 + 0.159578i
\(900\) 0 0
\(901\) −24.0191 41.6023i −0.800192 1.38597i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −23.2303 + 40.2360i −0.772201 + 1.33749i
\(906\) 0 0
\(907\) −20.4404 35.4037i −0.678711 1.17556i −0.975369 0.220578i \(-0.929206\pi\)
0.296658 0.954984i \(-0.404128\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 14.4235 24.9823i 0.477873 0.827701i −0.521805 0.853065i \(-0.674741\pi\)
0.999678 + 0.0253641i \(0.00807452\pi\)
\(912\) 0 0
\(913\) −15.4650 −0.511816
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 36.6910 + 6.54393i 1.21165 + 0.216100i
\(918\) 0 0
\(919\) −21.8195 37.7925i −0.719760 1.24666i −0.961095 0.276219i \(-0.910919\pi\)
0.241335 0.970442i \(-0.422415\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −4.33560 7.50947i −0.142708 0.247177i
\(924\) 0 0
\(925\) −0.526192 + 0.911391i −0.0173011 + 0.0299663i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 27.4754 0.901438 0.450719 0.892666i \(-0.351168\pi\)
0.450719 + 0.892666i \(0.351168\pi\)
\(930\) 0 0
\(931\) 8.36286 + 3.08108i 0.274082 + 0.100978i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −17.1131 + 29.6408i −0.559658 + 0.969356i
\(936\) 0 0
\(937\) −3.11920 −0.101900 −0.0509500 0.998701i \(-0.516225\pi\)
−0.0509500 + 0.998701i \(0.516225\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 26.1215 0.851538 0.425769 0.904832i \(-0.360004\pi\)
0.425769 + 0.904832i \(0.360004\pi\)
\(942\) 0 0
\(943\) −0.354163 −0.0115331
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −7.18031 −0.233329 −0.116664 0.993171i \(-0.537220\pi\)
−0.116664 + 0.993171i \(0.537220\pi\)
\(948\) 0 0
\(949\) −74.0512 −2.40380
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 32.1187 1.04043 0.520214 0.854036i \(-0.325852\pi\)
0.520214 + 0.854036i \(0.325852\pi\)
\(954\) 0 0
\(955\) 8.03678 13.9201i 0.260064 0.450444i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 23.3473 27.7135i 0.753922 0.894915i
\(960\) 0 0
\(961\) −22.0537 −0.711411
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 1.50018 2.59838i 0.0482924 0.0836449i
\(966\) 0 0
\(967\) 27.4860 + 47.6071i 0.883890 + 1.53094i 0.846981 + 0.531623i \(0.178418\pi\)
0.0369085 + 0.999319i \(0.488249\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 20.8518 + 36.1163i 0.669165 + 1.15903i 0.978138 + 0.207957i \(0.0666813\pi\)
−0.308973 + 0.951071i \(0.599985\pi\)
\(972\) 0 0
\(973\) 16.8462 19.9967i 0.540065 0.641064i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −5.22874 −0.167282 −0.0836412 0.996496i \(-0.526655\pi\)
−0.0836412 + 0.996496i \(0.526655\pi\)
\(978\) 0 0
\(979\) 17.0106 29.4633i 0.543662 0.941651i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −3.45349 5.98162i −0.110149 0.190784i 0.805681 0.592349i \(-0.201800\pi\)
−0.915830 + 0.401566i \(0.868466\pi\)
\(984\) 0 0
\(985\) −9.99837 + 17.3177i −0.318575 + 0.551788i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −0.999537 1.73125i −0.0317834 0.0550505i
\(990\) 0 0
\(991\) −2.19861 + 3.80811i −0.0698412 + 0.120968i −0.898831 0.438295i \(-0.855583\pi\)
0.828990 + 0.559263i \(0.188916\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 4.43133 + 7.67528i 0.140482 + 0.243323i
\(996\) 0 0
\(997\) 14.0180 + 24.2798i 0.443954 + 0.768950i 0.997979 0.0635498i \(-0.0202422\pi\)
−0.554025 + 0.832500i \(0.686909\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3024.2.q.k.2881.9 22
3.2 odd 2 1008.2.q.k.529.5 22
4.3 odd 2 1512.2.q.c.1369.9 22
7.2 even 3 3024.2.t.l.289.3 22
9.4 even 3 3024.2.t.l.1873.3 22
9.5 odd 6 1008.2.t.k.193.4 22
12.11 even 2 504.2.q.d.25.7 22
21.2 odd 6 1008.2.t.k.961.4 22
28.23 odd 6 1512.2.t.d.289.3 22
36.23 even 6 504.2.t.d.193.8 yes 22
36.31 odd 6 1512.2.t.d.361.3 22
63.23 odd 6 1008.2.q.k.625.5 22
63.58 even 3 inner 3024.2.q.k.2305.9 22
84.23 even 6 504.2.t.d.457.8 yes 22
252.23 even 6 504.2.q.d.121.7 yes 22
252.247 odd 6 1512.2.q.c.793.9 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.7 22 12.11 even 2
504.2.q.d.121.7 yes 22 252.23 even 6
504.2.t.d.193.8 yes 22 36.23 even 6
504.2.t.d.457.8 yes 22 84.23 even 6
1008.2.q.k.529.5 22 3.2 odd 2
1008.2.q.k.625.5 22 63.23 odd 6
1008.2.t.k.193.4 22 9.5 odd 6
1008.2.t.k.961.4 22 21.2 odd 6
1512.2.q.c.793.9 22 252.247 odd 6
1512.2.q.c.1369.9 22 4.3 odd 2
1512.2.t.d.289.3 22 28.23 odd 6
1512.2.t.d.361.3 22 36.31 odd 6
3024.2.q.k.2305.9 22 63.58 even 3 inner
3024.2.q.k.2881.9 22 1.1 even 1 trivial
3024.2.t.l.289.3 22 7.2 even 3
3024.2.t.l.1873.3 22 9.4 even 3