Properties

Label 504.2.t.d.457.8
Level $504$
Weight $2$
Character 504.457
Analytic conductor $4.024$
Analytic rank $0$
Dimension $22$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [504,2,Mod(193,504)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(504, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("504.193");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 504.t (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.02446026187\)
Analytic rank: \(0\)
Dimension: \(22\)
Relative dimension: \(11\) over \(\Q(\zeta_{3})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 457.8
Character \(\chi\) \(=\) 504.457
Dual form 504.2.t.d.193.8

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.577666 + 1.63288i) q^{3} +1.85591 q^{5} +(-2.60465 + 0.464545i) q^{7} +(-2.33261 + 1.88652i) q^{9} +O(q^{10})\) \(q+(0.577666 + 1.63288i) q^{3} +1.85591 q^{5} +(-2.60465 + 0.464545i) q^{7} +(-2.33261 + 1.88652i) q^{9} -2.57601 q^{11} +(2.82227 + 4.88832i) q^{13} +(1.07210 + 3.03049i) q^{15} +(3.57951 + 6.19989i) q^{17} +(0.636599 - 1.10262i) q^{19} +(-2.26316 - 3.98473i) q^{21} +0.241277 q^{23} -1.55558 q^{25} +(-4.42793 - 2.71909i) q^{27} +(0.923571 - 1.59967i) q^{29} +(1.49552 - 2.59031i) q^{31} +(-1.48807 - 4.20632i) q^{33} +(-4.83401 + 0.862156i) q^{35} +(0.338260 - 0.585884i) q^{37} +(-6.35171 + 7.43225i) q^{39} +(-0.733933 - 1.27121i) q^{41} +(4.14269 - 7.17535i) q^{43} +(-4.32912 + 3.50122i) q^{45} +(6.15723 + 10.6646i) q^{47} +(6.56840 - 2.41995i) q^{49} +(-8.05593 + 9.42638i) q^{51} +(3.35508 + 5.81117i) q^{53} -4.78085 q^{55} +(2.16819 + 0.402544i) q^{57} +(-1.04139 + 1.80375i) q^{59} +(-6.47973 - 11.2232i) q^{61} +(5.19925 - 5.99732i) q^{63} +(5.23789 + 9.07230i) q^{65} +(2.41551 - 4.18379i) q^{67} +(0.139378 + 0.393977i) q^{69} -1.53621 q^{71} +(-6.55954 - 11.3615i) q^{73} +(-0.898606 - 2.54008i) q^{75} +(6.70960 - 1.19667i) q^{77} +(1.86009 + 3.22177i) q^{79} +(1.88209 - 8.80101i) q^{81} +(-3.00173 + 5.19915i) q^{83} +(6.64326 + 11.5065i) q^{85} +(3.14559 + 0.584007i) q^{87} +(6.60349 - 11.4376i) q^{89} +(-9.62187 - 11.4213i) q^{91} +(5.09357 + 0.945667i) q^{93} +(1.18147 - 2.04637i) q^{95} +(6.40860 - 11.1000i) q^{97} +(6.00881 - 4.85969i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 22 q + 2 q^{3} - 6 q^{5} + 7 q^{7} - 8 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 22 q + 2 q^{3} - 6 q^{5} + 7 q^{7} - 8 q^{9} + 6 q^{11} - 3 q^{13} - q^{15} + 7 q^{17} - q^{19} - 15 q^{21} - 4 q^{23} + 20 q^{25} - 4 q^{27} + 9 q^{29} - 4 q^{31} - 31 q^{33} + 14 q^{35} + 2 q^{37} + 8 q^{39} + 16 q^{41} + 22 q^{45} + 5 q^{47} - 15 q^{49} + 7 q^{51} + 11 q^{53} + 22 q^{55} + 7 q^{57} - 19 q^{59} - 13 q^{61} + 21 q^{63} + 13 q^{65} + 26 q^{67} - 4 q^{69} - 48 q^{71} - 35 q^{73} - 8 q^{75} - 4 q^{77} + 10 q^{79} - 8 q^{81} - 28 q^{83} - 20 q^{85} + 9 q^{87} + 6 q^{89} - 37 q^{91} - 32 q^{93} + 12 q^{95} - 29 q^{97} - 56 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/504\mathbb{Z}\right)^\times\).

\(n\) \(73\) \(127\) \(253\) \(281\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0.577666 + 1.63288i 0.333515 + 0.942745i
\(4\) 0 0
\(5\) 1.85591 0.829990 0.414995 0.909824i \(-0.363783\pi\)
0.414995 + 0.909824i \(0.363783\pi\)
\(6\) 0 0
\(7\) −2.60465 + 0.464545i −0.984465 + 0.175582i
\(8\) 0 0
\(9\) −2.33261 + 1.88652i −0.777535 + 0.628840i
\(10\) 0 0
\(11\) −2.57601 −0.776696 −0.388348 0.921513i \(-0.626954\pi\)
−0.388348 + 0.921513i \(0.626954\pi\)
\(12\) 0 0
\(13\) 2.82227 + 4.88832i 0.782757 + 1.35578i 0.930330 + 0.366724i \(0.119521\pi\)
−0.147573 + 0.989051i \(0.547146\pi\)
\(14\) 0 0
\(15\) 1.07210 + 3.03049i 0.276814 + 0.782469i
\(16\) 0 0
\(17\) 3.57951 + 6.19989i 0.868158 + 1.50369i 0.863876 + 0.503704i \(0.168030\pi\)
0.00428199 + 0.999991i \(0.498637\pi\)
\(18\) 0 0
\(19\) 0.636599 1.10262i 0.146046 0.252959i −0.783717 0.621118i \(-0.786679\pi\)
0.929763 + 0.368160i \(0.120012\pi\)
\(20\) 0 0
\(21\) −2.26316 3.98473i −0.493863 0.869540i
\(22\) 0 0
\(23\) 0.241277 0.0503098 0.0251549 0.999684i \(-0.491992\pi\)
0.0251549 + 0.999684i \(0.491992\pi\)
\(24\) 0 0
\(25\) −1.55558 −0.311116
\(26\) 0 0
\(27\) −4.42793 2.71909i −0.852155 0.523289i
\(28\) 0 0
\(29\) 0.923571 1.59967i 0.171503 0.297051i −0.767443 0.641118i \(-0.778471\pi\)
0.938945 + 0.344066i \(0.111804\pi\)
\(30\) 0 0
\(31\) 1.49552 2.59031i 0.268602 0.465233i −0.699899 0.714242i \(-0.746772\pi\)
0.968501 + 0.249009i \(0.0801049\pi\)
\(32\) 0 0
\(33\) −1.48807 4.20632i −0.259040 0.732226i
\(34\) 0 0
\(35\) −4.83401 + 0.862156i −0.817096 + 0.145731i
\(36\) 0 0
\(37\) 0.338260 0.585884i 0.0556097 0.0963188i −0.836880 0.547386i \(-0.815623\pi\)
0.892490 + 0.451067i \(0.148956\pi\)
\(38\) 0 0
\(39\) −6.35171 + 7.43225i −1.01709 + 1.19011i
\(40\) 0 0
\(41\) −0.733933 1.27121i −0.114621 0.198529i 0.803007 0.595969i \(-0.203232\pi\)
−0.917628 + 0.397440i \(0.869899\pi\)
\(42\) 0 0
\(43\) 4.14269 7.17535i 0.631754 1.09423i −0.355439 0.934700i \(-0.615669\pi\)
0.987193 0.159531i \(-0.0509981\pi\)
\(44\) 0 0
\(45\) −4.32912 + 3.50122i −0.645346 + 0.521931i
\(46\) 0 0
\(47\) 6.15723 + 10.6646i 0.898124 + 1.55560i 0.829890 + 0.557928i \(0.188403\pi\)
0.0682346 + 0.997669i \(0.478263\pi\)
\(48\) 0 0
\(49\) 6.56840 2.41995i 0.938342 0.345708i
\(50\) 0 0
\(51\) −8.05593 + 9.42638i −1.12806 + 1.31996i
\(52\) 0 0
\(53\) 3.35508 + 5.81117i 0.460856 + 0.798226i 0.999004 0.0446243i \(-0.0142091\pi\)
−0.538148 + 0.842851i \(0.680876\pi\)
\(54\) 0 0
\(55\) −4.78085 −0.644650
\(56\) 0 0
\(57\) 2.16819 + 0.402544i 0.287184 + 0.0533182i
\(58\) 0 0
\(59\) −1.04139 + 1.80375i −0.135578 + 0.234828i −0.925818 0.377969i \(-0.876622\pi\)
0.790240 + 0.612797i \(0.209956\pi\)
\(60\) 0 0
\(61\) −6.47973 11.2232i −0.829644 1.43699i −0.898317 0.439347i \(-0.855210\pi\)
0.0686730 0.997639i \(-0.478123\pi\)
\(62\) 0 0
\(63\) 5.19925 5.99732i 0.655043 0.755591i
\(64\) 0 0
\(65\) 5.23789 + 9.07230i 0.649681 + 1.12528i
\(66\) 0 0
\(67\) 2.41551 4.18379i 0.295102 0.511131i −0.679907 0.733298i \(-0.737980\pi\)
0.975009 + 0.222167i \(0.0713132\pi\)
\(68\) 0 0
\(69\) 0.139378 + 0.393977i 0.0167791 + 0.0474293i
\(70\) 0 0
\(71\) −1.53621 −0.182314 −0.0911572 0.995837i \(-0.529057\pi\)
−0.0911572 + 0.995837i \(0.529057\pi\)
\(72\) 0 0
\(73\) −6.55954 11.3615i −0.767736 1.32976i −0.938788 0.344496i \(-0.888050\pi\)
0.171052 0.985262i \(-0.445283\pi\)
\(74\) 0 0
\(75\) −0.898606 2.54008i −0.103762 0.293303i
\(76\) 0 0
\(77\) 6.70960 1.19667i 0.764630 0.136373i
\(78\) 0 0
\(79\) 1.86009 + 3.22177i 0.209277 + 0.362478i 0.951487 0.307689i \(-0.0995558\pi\)
−0.742210 + 0.670167i \(0.766222\pi\)
\(80\) 0 0
\(81\) 1.88209 8.80101i 0.209121 0.977890i
\(82\) 0 0
\(83\) −3.00173 + 5.19915i −0.329483 + 0.570681i −0.982409 0.186740i \(-0.940208\pi\)
0.652926 + 0.757421i \(0.273541\pi\)
\(84\) 0 0
\(85\) 6.64326 + 11.5065i 0.720563 + 1.24805i
\(86\) 0 0
\(87\) 3.14559 + 0.584007i 0.337242 + 0.0626121i
\(88\) 0 0
\(89\) 6.60349 11.4376i 0.699968 1.21238i −0.268509 0.963277i \(-0.586531\pi\)
0.968477 0.249103i \(-0.0801359\pi\)
\(90\) 0 0
\(91\) −9.62187 11.4213i −1.00865 1.19728i
\(92\) 0 0
\(93\) 5.09357 + 0.945667i 0.528179 + 0.0980611i
\(94\) 0 0
\(95\) 1.18147 2.04637i 0.121217 0.209953i
\(96\) 0 0
\(97\) 6.40860 11.1000i 0.650695 1.12704i −0.332260 0.943188i \(-0.607811\pi\)
0.982955 0.183848i \(-0.0588556\pi\)
\(98\) 0 0
\(99\) 6.00881 4.85969i 0.603908 0.488417i
\(100\) 0 0
\(101\) 12.2013 1.21408 0.607039 0.794672i \(-0.292357\pi\)
0.607039 + 0.794672i \(0.292357\pi\)
\(102\) 0 0
\(103\) 13.6433 1.34431 0.672155 0.740411i \(-0.265369\pi\)
0.672155 + 0.740411i \(0.265369\pi\)
\(104\) 0 0
\(105\) −4.20024 7.39532i −0.409901 0.721710i
\(106\) 0 0
\(107\) −6.48002 + 11.2237i −0.626448 + 1.08504i 0.361811 + 0.932251i \(0.382158\pi\)
−0.988259 + 0.152788i \(0.951175\pi\)
\(108\) 0 0
\(109\) 7.70089 + 13.3383i 0.737612 + 1.27758i 0.953568 + 0.301178i \(0.0973799\pi\)
−0.215956 + 0.976403i \(0.569287\pi\)
\(110\) 0 0
\(111\) 1.15208 + 0.213894i 0.109351 + 0.0203019i
\(112\) 0 0
\(113\) −7.73446 13.3965i −0.727597 1.26023i −0.957896 0.287115i \(-0.907304\pi\)
0.230299 0.973120i \(-0.426029\pi\)
\(114\) 0 0
\(115\) 0.447790 0.0417566
\(116\) 0 0
\(117\) −15.8051 6.07824i −1.46119 0.561934i
\(118\) 0 0
\(119\) −12.2035 14.4857i −1.11869 1.32790i
\(120\) 0 0
\(121\) −4.36418 −0.396744
\(122\) 0 0
\(123\) 1.65177 1.93276i 0.148935 0.174271i
\(124\) 0 0
\(125\) −12.1666 −1.08821
\(126\) 0 0
\(127\) −3.19404 −0.283425 −0.141713 0.989908i \(-0.545261\pi\)
−0.141713 + 0.989908i \(0.545261\pi\)
\(128\) 0 0
\(129\) 14.1096 + 2.61957i 1.24228 + 0.230640i
\(130\) 0 0
\(131\) 14.0868 1.23077 0.615383 0.788229i \(-0.289002\pi\)
0.615383 + 0.788229i \(0.289002\pi\)
\(132\) 0 0
\(133\) −1.14590 + 3.16767i −0.0993620 + 0.274672i
\(134\) 0 0
\(135\) −8.21785 5.04640i −0.707280 0.434325i
\(136\) 0 0
\(137\) 13.6964 1.17016 0.585079 0.810976i \(-0.301063\pi\)
0.585079 + 0.810976i \(0.301063\pi\)
\(138\) 0 0
\(139\) −4.94131 8.55859i −0.419116 0.725931i 0.576735 0.816932i \(-0.304327\pi\)
−0.995851 + 0.0910010i \(0.970993\pi\)
\(140\) 0 0
\(141\) −13.8573 + 16.2146i −1.16699 + 1.36552i
\(142\) 0 0
\(143\) −7.27019 12.5923i −0.607964 1.05302i
\(144\) 0 0
\(145\) 1.71407 2.96885i 0.142346 0.246550i
\(146\) 0 0
\(147\) 7.74583 + 9.32749i 0.638866 + 0.769318i
\(148\) 0 0
\(149\) −3.92029 −0.321163 −0.160581 0.987023i \(-0.551337\pi\)
−0.160581 + 0.987023i \(0.551337\pi\)
\(150\) 0 0
\(151\) 19.5784 1.59327 0.796634 0.604462i \(-0.206612\pi\)
0.796634 + 0.604462i \(0.206612\pi\)
\(152\) 0 0
\(153\) −20.0458 7.70909i −1.62061 0.623243i
\(154\) 0 0
\(155\) 2.77555 4.80739i 0.222937 0.386139i
\(156\) 0 0
\(157\) −7.39637 + 12.8109i −0.590295 + 1.02242i 0.403898 + 0.914804i \(0.367655\pi\)
−0.994193 + 0.107616i \(0.965678\pi\)
\(158\) 0 0
\(159\) −7.55084 + 8.83537i −0.598821 + 0.700690i
\(160\) 0 0
\(161\) −0.628443 + 0.112084i −0.0495282 + 0.00883347i
\(162\) 0 0
\(163\) 7.54686 13.0715i 0.591116 1.02384i −0.402967 0.915215i \(-0.632021\pi\)
0.994082 0.108628i \(-0.0346456\pi\)
\(164\) 0 0
\(165\) −2.76173 7.80656i −0.215001 0.607740i
\(166\) 0 0
\(167\) 1.92946 + 3.34192i 0.149306 + 0.258605i 0.930971 0.365093i \(-0.118963\pi\)
−0.781665 + 0.623698i \(0.785629\pi\)
\(168\) 0 0
\(169\) −9.43043 + 16.3340i −0.725418 + 1.25646i
\(170\) 0 0
\(171\) 0.595183 + 3.77293i 0.0455147 + 0.288524i
\(172\) 0 0
\(173\) −0.325786 0.564277i −0.0247690 0.0429012i 0.853375 0.521297i \(-0.174552\pi\)
−0.878144 + 0.478396i \(0.841218\pi\)
\(174\) 0 0
\(175\) 4.05174 0.722638i 0.306283 0.0546263i
\(176\) 0 0
\(177\) −3.54688 0.658511i −0.266600 0.0494967i
\(178\) 0 0
\(179\) 10.9059 + 18.8896i 0.815145 + 1.41187i 0.909223 + 0.416308i \(0.136676\pi\)
−0.0940781 + 0.995565i \(0.529990\pi\)
\(180\) 0 0
\(181\) −25.0338 −1.86075 −0.930374 0.366613i \(-0.880517\pi\)
−0.930374 + 0.366613i \(0.880517\pi\)
\(182\) 0 0
\(183\) 14.5831 17.0639i 1.07801 1.26140i
\(184\) 0 0
\(185\) 0.627782 1.08735i 0.0461555 0.0799436i
\(186\) 0 0
\(187\) −9.22085 15.9710i −0.674295 1.16791i
\(188\) 0 0
\(189\) 12.7963 + 5.02531i 0.930797 + 0.365537i
\(190\) 0 0
\(191\) −4.33036 7.50041i −0.313334 0.542711i 0.665748 0.746177i \(-0.268113\pi\)
−0.979082 + 0.203466i \(0.934779\pi\)
\(192\) 0 0
\(193\) −0.808322 + 1.40006i −0.0581843 + 0.100778i −0.893650 0.448764i \(-0.851864\pi\)
0.835466 + 0.549542i \(0.185198\pi\)
\(194\) 0 0
\(195\) −11.7882 + 13.7936i −0.844173 + 0.987781i
\(196\) 0 0
\(197\) 10.7746 0.767659 0.383829 0.923404i \(-0.374605\pi\)
0.383829 + 0.923404i \(0.374605\pi\)
\(198\) 0 0
\(199\) 2.38768 + 4.13558i 0.169258 + 0.293163i 0.938159 0.346204i \(-0.112530\pi\)
−0.768901 + 0.639368i \(0.779196\pi\)
\(200\) 0 0
\(201\) 8.22699 + 1.52741i 0.580287 + 0.107735i
\(202\) 0 0
\(203\) −1.66246 + 4.59562i −0.116682 + 0.322549i
\(204\) 0 0
\(205\) −1.36212 2.35925i −0.0951343 0.164777i
\(206\) 0 0
\(207\) −0.562805 + 0.455174i −0.0391176 + 0.0316368i
\(208\) 0 0
\(209\) −1.63988 + 2.84036i −0.113433 + 0.196472i
\(210\) 0 0
\(211\) 2.42787 + 4.20520i 0.167142 + 0.289498i 0.937414 0.348218i \(-0.113213\pi\)
−0.770272 + 0.637715i \(0.779880\pi\)
\(212\) 0 0
\(213\) −0.887415 2.50845i −0.0608046 0.171876i
\(214\) 0 0
\(215\) 7.68848 13.3168i 0.524350 0.908200i
\(216\) 0 0
\(217\) −2.69198 + 7.44158i −0.182743 + 0.505167i
\(218\) 0 0
\(219\) 14.7627 17.2741i 0.997570 1.16727i
\(220\) 0 0
\(221\) −20.2047 + 34.9955i −1.35911 + 2.35406i
\(222\) 0 0
\(223\) 3.86187 6.68896i 0.258610 0.447926i −0.707260 0.706954i \(-0.750069\pi\)
0.965870 + 0.259028i \(0.0834021\pi\)
\(224\) 0 0
\(225\) 3.62856 2.93463i 0.241904 0.195642i
\(226\) 0 0
\(227\) −13.9491 −0.925837 −0.462919 0.886401i \(-0.653198\pi\)
−0.462919 + 0.886401i \(0.653198\pi\)
\(228\) 0 0
\(229\) 1.60027 0.105749 0.0528745 0.998601i \(-0.483162\pi\)
0.0528745 + 0.998601i \(0.483162\pi\)
\(230\) 0 0
\(231\) 5.82993 + 10.2647i 0.383581 + 0.675368i
\(232\) 0 0
\(233\) 3.69939 6.40753i 0.242355 0.419771i −0.719030 0.694979i \(-0.755413\pi\)
0.961385 + 0.275208i \(0.0887468\pi\)
\(234\) 0 0
\(235\) 11.4273 + 19.7926i 0.745434 + 1.29113i
\(236\) 0 0
\(237\) −4.18626 + 4.89841i −0.271927 + 0.318186i
\(238\) 0 0
\(239\) −1.25117 2.16709i −0.0809316 0.140178i 0.822719 0.568449i \(-0.192456\pi\)
−0.903650 + 0.428271i \(0.859123\pi\)
\(240\) 0 0
\(241\) 4.24297 0.273314 0.136657 0.990618i \(-0.456364\pi\)
0.136657 + 0.990618i \(0.456364\pi\)
\(242\) 0 0
\(243\) 15.4582 2.01080i 0.991645 0.128993i
\(244\) 0 0
\(245\) 12.1904 4.49123i 0.778815 0.286934i
\(246\) 0 0
\(247\) 7.18661 0.457273
\(248\) 0 0
\(249\) −10.2236 1.89810i −0.647894 0.120287i
\(250\) 0 0
\(251\) −13.5381 −0.854516 −0.427258 0.904130i \(-0.640520\pi\)
−0.427258 + 0.904130i \(0.640520\pi\)
\(252\) 0 0
\(253\) −0.621532 −0.0390754
\(254\) 0 0
\(255\) −14.9511 + 17.4946i −0.936275 + 1.09555i
\(256\) 0 0
\(257\) −6.15495 −0.383935 −0.191968 0.981401i \(-0.561487\pi\)
−0.191968 + 0.981401i \(0.561487\pi\)
\(258\) 0 0
\(259\) −0.608880 + 1.68316i −0.0378340 + 0.104586i
\(260\) 0 0
\(261\) 0.863485 + 5.47373i 0.0534484 + 0.338816i
\(262\) 0 0
\(263\) −25.3411 −1.56260 −0.781300 0.624156i \(-0.785443\pi\)
−0.781300 + 0.624156i \(0.785443\pi\)
\(264\) 0 0
\(265\) 6.22675 + 10.7850i 0.382506 + 0.662520i
\(266\) 0 0
\(267\) 22.4908 + 4.17562i 1.37642 + 0.255544i
\(268\) 0 0
\(269\) −5.42092 9.38931i −0.330519 0.572476i 0.652095 0.758138i \(-0.273891\pi\)
−0.982614 + 0.185662i \(0.940557\pi\)
\(270\) 0 0
\(271\) −15.0184 + 26.0127i −0.912306 + 1.58016i −0.101507 + 0.994835i \(0.532366\pi\)
−0.810799 + 0.585325i \(0.800967\pi\)
\(272\) 0 0
\(273\) 13.0914 22.3091i 0.792326 1.35021i
\(274\) 0 0
\(275\) 4.00719 0.241643
\(276\) 0 0
\(277\) 19.7629 1.18744 0.593720 0.804672i \(-0.297659\pi\)
0.593720 + 0.804672i \(0.297659\pi\)
\(278\) 0 0
\(279\) 1.39822 + 8.86348i 0.0837092 + 0.530643i
\(280\) 0 0
\(281\) −3.98596 + 6.90388i −0.237782 + 0.411851i −0.960078 0.279734i \(-0.909754\pi\)
0.722295 + 0.691585i \(0.243087\pi\)
\(282\) 0 0
\(283\) −11.6063 + 20.1028i −0.689926 + 1.19499i 0.281936 + 0.959433i \(0.409023\pi\)
−0.971861 + 0.235553i \(0.924310\pi\)
\(284\) 0 0
\(285\) 4.02398 + 0.747087i 0.238360 + 0.0442536i
\(286\) 0 0
\(287\) 2.50217 + 2.97011i 0.147698 + 0.175320i
\(288\) 0 0
\(289\) −17.1258 + 29.6627i −1.00740 + 1.74486i
\(290\) 0 0
\(291\) 21.8270 + 4.05239i 1.27952 + 0.237555i
\(292\) 0 0
\(293\) 11.8556 + 20.5345i 0.692612 + 1.19964i 0.970979 + 0.239164i \(0.0768735\pi\)
−0.278367 + 0.960475i \(0.589793\pi\)
\(294\) 0 0
\(295\) −1.93274 + 3.34760i −0.112528 + 0.194905i
\(296\) 0 0
\(297\) 11.4064 + 7.00440i 0.661865 + 0.406437i
\(298\) 0 0
\(299\) 0.680950 + 1.17944i 0.0393803 + 0.0682088i
\(300\) 0 0
\(301\) −7.45698 + 20.6137i −0.429813 + 1.18816i
\(302\) 0 0
\(303\) 7.04829 + 19.9233i 0.404913 + 1.14456i
\(304\) 0 0
\(305\) −12.0258 20.8293i −0.688597 1.19268i
\(306\) 0 0
\(307\) 3.87810 0.221335 0.110668 0.993857i \(-0.464701\pi\)
0.110668 + 0.993857i \(0.464701\pi\)
\(308\) 0 0
\(309\) 7.88124 + 22.2778i 0.448348 + 1.26734i
\(310\) 0 0
\(311\) 3.46220 5.99670i 0.196323 0.340042i −0.751010 0.660290i \(-0.770433\pi\)
0.947333 + 0.320249i \(0.103767\pi\)
\(312\) 0 0
\(313\) −15.1157 26.1811i −0.854388 1.47984i −0.877212 0.480104i \(-0.840599\pi\)
0.0228236 0.999740i \(-0.492734\pi\)
\(314\) 0 0
\(315\) 9.64935 11.1305i 0.543679 0.627133i
\(316\) 0 0
\(317\) −4.68699 8.11811i −0.263248 0.455959i 0.703855 0.710343i \(-0.251460\pi\)
−0.967103 + 0.254385i \(0.918127\pi\)
\(318\) 0 0
\(319\) −2.37913 + 4.12077i −0.133205 + 0.230719i
\(320\) 0 0
\(321\) −22.0703 4.09755i −1.23184 0.228703i
\(322\) 0 0
\(323\) 9.11484 0.507163
\(324\) 0 0
\(325\) −4.39027 7.60418i −0.243529 0.421804i
\(326\) 0 0
\(327\) −17.3314 + 20.2797i −0.958428 + 1.12147i
\(328\) 0 0
\(329\) −20.9916 24.9173i −1.15731 1.37374i
\(330\) 0 0
\(331\) −13.7720 23.8539i −0.756979 1.31113i −0.944384 0.328844i \(-0.893341\pi\)
0.187405 0.982283i \(-0.439992\pi\)
\(332\) 0 0
\(333\) 0.316254 + 2.00477i 0.0173306 + 0.109861i
\(334\) 0 0
\(335\) 4.48298 7.76475i 0.244931 0.424234i
\(336\) 0 0
\(337\) −3.41673 5.91796i −0.186121 0.322372i 0.757832 0.652449i \(-0.226258\pi\)
−0.943954 + 0.330078i \(0.892925\pi\)
\(338\) 0 0
\(339\) 17.4069 20.3681i 0.945415 1.10625i
\(340\) 0 0
\(341\) −3.85246 + 6.67266i −0.208622 + 0.361345i
\(342\) 0 0
\(343\) −15.9842 + 9.35445i −0.863065 + 0.505093i
\(344\) 0 0
\(345\) 0.258673 + 0.731188i 0.0139265 + 0.0393658i
\(346\) 0 0
\(347\) −10.0959 + 17.4867i −0.541979 + 0.938735i 0.456812 + 0.889564i \(0.348991\pi\)
−0.998790 + 0.0491714i \(0.984342\pi\)
\(348\) 0 0
\(349\) −4.25154 + 7.36388i −0.227580 + 0.394180i −0.957090 0.289790i \(-0.906415\pi\)
0.729511 + 0.683970i \(0.239748\pi\)
\(350\) 0 0
\(351\) 0.794966 29.3191i 0.0424321 1.56494i
\(352\) 0 0
\(353\) 4.70904 0.250637 0.125318 0.992117i \(-0.460005\pi\)
0.125318 + 0.992117i \(0.460005\pi\)
\(354\) 0 0
\(355\) −2.85107 −0.151319
\(356\) 0 0
\(357\) 16.6039 28.2948i 0.878771 1.49752i
\(358\) 0 0
\(359\) 6.03357 10.4504i 0.318440 0.551554i −0.661723 0.749748i \(-0.730175\pi\)
0.980163 + 0.198195i \(0.0635079\pi\)
\(360\) 0 0
\(361\) 8.68948 + 15.0506i 0.457341 + 0.792138i
\(362\) 0 0
\(363\) −2.52104 7.12619i −0.132320 0.374028i
\(364\) 0 0
\(365\) −12.1739 21.0859i −0.637213 1.10369i
\(366\) 0 0
\(367\) 0.960711 0.0501487 0.0250744 0.999686i \(-0.492018\pi\)
0.0250744 + 0.999686i \(0.492018\pi\)
\(368\) 0 0
\(369\) 4.11013 + 1.58065i 0.213965 + 0.0822854i
\(370\) 0 0
\(371\) −11.4384 13.5775i −0.593850 0.704908i
\(372\) 0 0
\(373\) −7.04998 −0.365034 −0.182517 0.983203i \(-0.558425\pi\)
−0.182517 + 0.983203i \(0.558425\pi\)
\(374\) 0 0
\(375\) −7.02822 19.8666i −0.362936 1.02591i
\(376\) 0 0
\(377\) 10.4263 0.536980
\(378\) 0 0
\(379\) −37.1330 −1.90739 −0.953697 0.300769i \(-0.902757\pi\)
−0.953697 + 0.300769i \(0.902757\pi\)
\(380\) 0 0
\(381\) −1.84509 5.21549i −0.0945267 0.267198i
\(382\) 0 0
\(383\) 32.1975 1.64522 0.822608 0.568609i \(-0.192518\pi\)
0.822608 + 0.568609i \(0.192518\pi\)
\(384\) 0 0
\(385\) 12.4524 2.22092i 0.634635 0.113189i
\(386\) 0 0
\(387\) 3.87317 + 24.5525i 0.196884 + 1.24807i
\(388\) 0 0
\(389\) −25.7426 −1.30520 −0.652600 0.757702i \(-0.726322\pi\)
−0.652600 + 0.757702i \(0.726322\pi\)
\(390\) 0 0
\(391\) 0.863654 + 1.49589i 0.0436769 + 0.0756506i
\(392\) 0 0
\(393\) 8.13743 + 23.0020i 0.410479 + 1.16030i
\(394\) 0 0
\(395\) 3.45217 + 5.97933i 0.173697 + 0.300853i
\(396\) 0 0
\(397\) 9.44903 16.3662i 0.474233 0.821396i −0.525332 0.850898i \(-0.676059\pi\)
0.999565 + 0.0295016i \(0.00939202\pi\)
\(398\) 0 0
\(399\) −5.83438 0.0412635i −0.292084 0.00206576i
\(400\) 0 0
\(401\) 15.2039 0.759245 0.379622 0.925142i \(-0.376054\pi\)
0.379622 + 0.925142i \(0.376054\pi\)
\(402\) 0 0
\(403\) 16.8830 0.841002
\(404\) 0 0
\(405\) 3.49300 16.3339i 0.173569 0.811639i
\(406\) 0 0
\(407\) −0.871362 + 1.50924i −0.0431918 + 0.0748104i
\(408\) 0 0
\(409\) 14.9729 25.9339i 0.740363 1.28235i −0.211967 0.977277i \(-0.567987\pi\)
0.952330 0.305070i \(-0.0986798\pi\)
\(410\) 0 0
\(411\) 7.91191 + 22.3645i 0.390266 + 1.10316i
\(412\) 0 0
\(413\) 1.87454 5.18191i 0.0922403 0.254985i
\(414\) 0 0
\(415\) −5.57096 + 9.64918i −0.273468 + 0.473660i
\(416\) 0 0
\(417\) 11.1207 13.0126i 0.544585 0.637229i
\(418\) 0 0
\(419\) −12.2660 21.2453i −0.599231 1.03790i −0.992935 0.118661i \(-0.962140\pi\)
0.393704 0.919237i \(-0.371194\pi\)
\(420\) 0 0
\(421\) −2.37791 + 4.11866i −0.115892 + 0.200731i −0.918136 0.396265i \(-0.870306\pi\)
0.802244 + 0.596996i \(0.203639\pi\)
\(422\) 0 0
\(423\) −34.4814 13.2606i −1.67654 0.644755i
\(424\) 0 0
\(425\) −5.56822 9.64444i −0.270098 0.467824i
\(426\) 0 0
\(427\) 22.0911 + 26.2224i 1.06906 + 1.26899i
\(428\) 0 0
\(429\) 16.3621 19.1455i 0.789968 0.924355i
\(430\) 0 0
\(431\) 1.36446 + 2.36331i 0.0657237 + 0.113837i 0.897015 0.442000i \(-0.145731\pi\)
−0.831291 + 0.555837i \(0.812398\pi\)
\(432\) 0 0
\(433\) 14.5592 0.699672 0.349836 0.936811i \(-0.386237\pi\)
0.349836 + 0.936811i \(0.386237\pi\)
\(434\) 0 0
\(435\) 5.83794 + 1.08387i 0.279908 + 0.0519674i
\(436\) 0 0
\(437\) 0.153597 0.266037i 0.00734753 0.0127263i
\(438\) 0 0
\(439\) 1.44066 + 2.49529i 0.0687587 + 0.119094i 0.898355 0.439270i \(-0.144763\pi\)
−0.829596 + 0.558363i \(0.811429\pi\)
\(440\) 0 0
\(441\) −10.7562 + 18.0362i −0.512199 + 0.858867i
\(442\) 0 0
\(443\) −12.4865 21.6273i −0.593254 1.02755i −0.993791 0.111265i \(-0.964510\pi\)
0.400537 0.916281i \(-0.368824\pi\)
\(444\) 0 0
\(445\) 12.2555 21.2272i 0.580967 1.00626i
\(446\) 0 0
\(447\) −2.26462 6.40138i −0.107113 0.302775i
\(448\) 0 0
\(449\) −2.99154 −0.141180 −0.0705898 0.997505i \(-0.522488\pi\)
−0.0705898 + 0.997505i \(0.522488\pi\)
\(450\) 0 0
\(451\) 1.89062 + 3.27464i 0.0890257 + 0.154197i
\(452\) 0 0
\(453\) 11.3098 + 31.9692i 0.531379 + 1.50205i
\(454\) 0 0
\(455\) −17.8574 21.1969i −0.837166 0.993727i
\(456\) 0 0
\(457\) 12.8085 + 22.1850i 0.599158 + 1.03777i 0.992946 + 0.118571i \(0.0378312\pi\)
−0.393788 + 0.919201i \(0.628835\pi\)
\(458\) 0 0
\(459\) 1.00826 37.1857i 0.0470616 1.73568i
\(460\) 0 0
\(461\) −6.45759 + 11.1849i −0.300760 + 0.520931i −0.976308 0.216384i \(-0.930574\pi\)
0.675548 + 0.737316i \(0.263907\pi\)
\(462\) 0 0
\(463\) −12.2457 21.2102i −0.569108 0.985724i −0.996654 0.0817305i \(-0.973955\pi\)
0.427547 0.903993i \(-0.359378\pi\)
\(464\) 0 0
\(465\) 9.45324 + 1.75508i 0.438383 + 0.0813898i
\(466\) 0 0
\(467\) −10.4087 + 18.0283i −0.481655 + 0.834251i −0.999778 0.0210550i \(-0.993297\pi\)
0.518123 + 0.855306i \(0.326631\pi\)
\(468\) 0 0
\(469\) −4.34800 + 12.0194i −0.200772 + 0.555005i
\(470\) 0 0
\(471\) −25.1913 4.67699i −1.16075 0.215504i
\(472\) 0 0
\(473\) −10.6716 + 18.4838i −0.490681 + 0.849884i
\(474\) 0 0
\(475\) −0.990281 + 1.71522i −0.0454372 + 0.0786996i
\(476\) 0 0
\(477\) −18.7890 7.22575i −0.860288 0.330844i
\(478\) 0 0
\(479\) 27.4873 1.25592 0.627962 0.778244i \(-0.283889\pi\)
0.627962 + 0.778244i \(0.283889\pi\)
\(480\) 0 0
\(481\) 3.81865 0.174115
\(482\) 0 0
\(483\) −0.546050 0.961425i −0.0248461 0.0437464i
\(484\) 0 0
\(485\) 11.8938 20.6007i 0.540070 0.935429i
\(486\) 0 0
\(487\) −6.32927 10.9626i −0.286807 0.496763i 0.686239 0.727376i \(-0.259260\pi\)
−0.973046 + 0.230613i \(0.925927\pi\)
\(488\) 0 0
\(489\) 25.7038 + 4.77215i 1.16237 + 0.215804i
\(490\) 0 0
\(491\) −1.40618 2.43557i −0.0634598 0.109916i 0.832550 0.553950i \(-0.186880\pi\)
−0.896010 + 0.444034i \(0.853547\pi\)
\(492\) 0 0
\(493\) 13.2237 0.595566
\(494\) 0 0
\(495\) 11.1518 9.01917i 0.501238 0.405381i
\(496\) 0 0
\(497\) 4.00128 0.713638i 0.179482 0.0320110i
\(498\) 0 0
\(499\) −4.24205 −0.189900 −0.0949502 0.995482i \(-0.530269\pi\)
−0.0949502 + 0.995482i \(0.530269\pi\)
\(500\) 0 0
\(501\) −4.34237 + 5.08108i −0.194003 + 0.227006i
\(502\) 0 0
\(503\) 22.2162 0.990570 0.495285 0.868730i \(-0.335064\pi\)
0.495285 + 0.868730i \(0.335064\pi\)
\(504\) 0 0
\(505\) 22.6446 1.00767
\(506\) 0 0
\(507\) −32.1191 5.96319i −1.42646 0.264835i
\(508\) 0 0
\(509\) −4.85469 −0.215180 −0.107590 0.994195i \(-0.534313\pi\)
−0.107590 + 0.994195i \(0.534313\pi\)
\(510\) 0 0
\(511\) 22.3632 + 26.5454i 0.989290 + 1.17430i
\(512\) 0 0
\(513\) −5.81694 + 3.15136i −0.256824 + 0.139136i
\(514\) 0 0
\(515\) 25.3207 1.11576
\(516\) 0 0
\(517\) −15.8611 27.4722i −0.697569 1.20823i
\(518\) 0 0
\(519\) 0.733203 0.857933i 0.0321840 0.0376591i
\(520\) 0 0
\(521\) 7.92316 + 13.7233i 0.347120 + 0.601229i 0.985737 0.168296i \(-0.0538263\pi\)
−0.638617 + 0.769525i \(0.720493\pi\)
\(522\) 0 0
\(523\) 10.7605 18.6377i 0.470524 0.814972i −0.528908 0.848679i \(-0.677398\pi\)
0.999432 + 0.0337078i \(0.0107316\pi\)
\(524\) 0 0
\(525\) 3.52054 + 6.19858i 0.153649 + 0.270528i
\(526\) 0 0
\(527\) 21.4128 0.932758
\(528\) 0 0
\(529\) −22.9418 −0.997469
\(530\) 0 0
\(531\) −0.973643 6.17204i −0.0422525 0.267844i
\(532\) 0 0
\(533\) 4.14271 7.17539i 0.179441 0.310801i
\(534\) 0 0
\(535\) −12.0264 + 20.8303i −0.519945 + 0.900572i
\(536\) 0 0
\(537\) −24.5445 + 28.7199i −1.05917 + 1.23936i
\(538\) 0 0
\(539\) −16.9202 + 6.23382i −0.728806 + 0.268510i
\(540\) 0 0
\(541\) 7.55977 13.0939i 0.325020 0.562951i −0.656497 0.754329i \(-0.727962\pi\)
0.981516 + 0.191378i \(0.0612957\pi\)
\(542\) 0 0
\(543\) −14.4612 40.8772i −0.620588 1.75421i
\(544\) 0 0
\(545\) 14.2922 + 24.7548i 0.612211 + 1.06038i
\(546\) 0 0
\(547\) −19.4532 + 33.6939i −0.831757 + 1.44065i 0.0648863 + 0.997893i \(0.479332\pi\)
−0.896644 + 0.442753i \(0.854002\pi\)
\(548\) 0 0
\(549\) 36.2875 + 13.9552i 1.54871 + 0.595594i
\(550\) 0 0
\(551\) −1.17589 2.03670i −0.0500945 0.0867662i
\(552\) 0 0
\(553\) −6.34154 7.52749i −0.269670 0.320101i
\(554\) 0 0
\(555\) 2.13816 + 0.396969i 0.0907600 + 0.0168504i
\(556\) 0 0
\(557\) −5.37036 9.30173i −0.227549 0.394127i 0.729532 0.683947i \(-0.239738\pi\)
−0.957081 + 0.289820i \(0.906405\pi\)
\(558\) 0 0
\(559\) 46.7672 1.97804
\(560\) 0 0
\(561\) 20.7521 24.2824i 0.876156 1.02520i
\(562\) 0 0
\(563\) 11.7380 20.3308i 0.494697 0.856840i −0.505285 0.862953i \(-0.668612\pi\)
0.999981 + 0.00611281i \(0.00194578\pi\)
\(564\) 0 0
\(565\) −14.3545 24.8627i −0.603898 1.04598i
\(566\) 0 0
\(567\) −0.813726 + 23.7979i −0.0341733 + 0.999416i
\(568\) 0 0
\(569\) 18.9681 + 32.8537i 0.795183 + 1.37730i 0.922723 + 0.385463i \(0.125958\pi\)
−0.127540 + 0.991833i \(0.540708\pi\)
\(570\) 0 0
\(571\) 2.15815 3.73803i 0.0903158 0.156432i −0.817328 0.576172i \(-0.804546\pi\)
0.907644 + 0.419741i \(0.137879\pi\)
\(572\) 0 0
\(573\) 9.74578 11.4037i 0.407136 0.476396i
\(574\) 0 0
\(575\) −0.375326 −0.0156522
\(576\) 0 0
\(577\) −5.05923 8.76284i −0.210618 0.364802i 0.741290 0.671185i \(-0.234214\pi\)
−0.951908 + 0.306383i \(0.900881\pi\)
\(578\) 0 0
\(579\) −2.75306 0.511131i −0.114413 0.0212419i
\(580\) 0 0
\(581\) 5.40322 14.9364i 0.224163 0.619667i
\(582\) 0 0
\(583\) −8.64272 14.9696i −0.357945 0.619979i
\(584\) 0 0
\(585\) −29.3330 11.2807i −1.21277 0.466400i
\(586\) 0 0
\(587\) −4.10992 + 7.11859i −0.169635 + 0.293816i −0.938291 0.345846i \(-0.887592\pi\)
0.768657 + 0.639661i \(0.220925\pi\)
\(588\) 0 0
\(589\) −1.90409 3.29797i −0.0784565 0.135891i
\(590\) 0 0
\(591\) 6.22412 + 17.5937i 0.256026 + 0.723706i
\(592\) 0 0
\(593\) 21.8434 37.8339i 0.897002 1.55365i 0.0656957 0.997840i \(-0.479073\pi\)
0.831307 0.555814i \(-0.187593\pi\)
\(594\) 0 0
\(595\) −22.6486 26.8842i −0.928504 1.10215i
\(596\) 0 0
\(597\) −5.37363 + 6.28778i −0.219928 + 0.257342i
\(598\) 0 0
\(599\) 7.63946 13.2319i 0.312140 0.540642i −0.666686 0.745339i \(-0.732288\pi\)
0.978825 + 0.204697i \(0.0656209\pi\)
\(600\) 0 0
\(601\) 7.65696 13.2622i 0.312334 0.540978i −0.666533 0.745475i \(-0.732223\pi\)
0.978867 + 0.204497i \(0.0655559\pi\)
\(602\) 0 0
\(603\) 2.25836 + 14.3160i 0.0919676 + 0.582994i
\(604\) 0 0
\(605\) −8.09955 −0.329293
\(606\) 0 0
\(607\) −2.66981 −0.108364 −0.0541821 0.998531i \(-0.517255\pi\)
−0.0541821 + 0.998531i \(0.517255\pi\)
\(608\) 0 0
\(609\) −8.46445 0.0598647i −0.342997 0.00242584i
\(610\) 0 0
\(611\) −34.7547 + 60.1970i −1.40603 + 2.43531i
\(612\) 0 0
\(613\) −13.5875 23.5343i −0.548796 0.950542i −0.998357 0.0572929i \(-0.981753\pi\)
0.449562 0.893249i \(-0.351580\pi\)
\(614\) 0 0
\(615\) 3.06554 3.58703i 0.123614 0.144643i
\(616\) 0 0
\(617\) −17.6058 30.4942i −0.708785 1.22765i −0.965308 0.261113i \(-0.915910\pi\)
0.256524 0.966538i \(-0.417423\pi\)
\(618\) 0 0
\(619\) −31.2681 −1.25677 −0.628385 0.777902i \(-0.716284\pi\)
−0.628385 + 0.777902i \(0.716284\pi\)
\(620\) 0 0
\(621\) −1.06836 0.656055i −0.0428717 0.0263266i
\(622\) 0 0
\(623\) −11.8865 + 32.8585i −0.476223 + 1.31645i
\(624\) 0 0
\(625\) −14.8023 −0.592090
\(626\) 0 0
\(627\) −5.58528 1.03696i −0.223055 0.0414121i
\(628\) 0 0
\(629\) 4.84322 0.193112
\(630\) 0 0
\(631\) 15.5090 0.617403 0.308702 0.951159i \(-0.400106\pi\)
0.308702 + 0.951159i \(0.400106\pi\)
\(632\) 0 0
\(633\) −5.46409 + 6.39363i −0.217178 + 0.254124i
\(634\) 0 0
\(635\) −5.92787 −0.235240
\(636\) 0 0
\(637\) 30.3673 + 25.2786i 1.20320 + 1.00158i
\(638\) 0 0
\(639\) 3.58337 2.89809i 0.141756 0.114647i
\(640\) 0 0
\(641\) −33.5310 −1.32440 −0.662198 0.749329i \(-0.730376\pi\)
−0.662198 + 0.749329i \(0.730376\pi\)
\(642\) 0 0
\(643\) −10.2721 17.7918i −0.405093 0.701641i 0.589239 0.807958i \(-0.299427\pi\)
−0.994332 + 0.106317i \(0.966094\pi\)
\(644\) 0 0
\(645\) 26.1862 + 4.86170i 1.03108 + 0.191429i
\(646\) 0 0
\(647\) −16.8855 29.2465i −0.663836 1.14980i −0.979599 0.200960i \(-0.935594\pi\)
0.315763 0.948838i \(-0.397739\pi\)
\(648\) 0 0
\(649\) 2.68264 4.64647i 0.105303 0.182390i
\(650\) 0 0
\(651\) −13.7063 0.0969374i −0.537191 0.00379928i
\(652\) 0 0
\(653\) 18.0115 0.704845 0.352423 0.935841i \(-0.385358\pi\)
0.352423 + 0.935841i \(0.385358\pi\)
\(654\) 0 0
\(655\) 26.1438 1.02152
\(656\) 0 0
\(657\) 36.7344 + 14.1271i 1.43315 + 0.551150i
\(658\) 0 0
\(659\) 1.42710 2.47180i 0.0555918 0.0962878i −0.836890 0.547371i \(-0.815629\pi\)
0.892482 + 0.451083i \(0.148962\pi\)
\(660\) 0 0
\(661\) −7.02746 + 12.1719i −0.273337 + 0.473433i −0.969714 0.244243i \(-0.921461\pi\)
0.696378 + 0.717676i \(0.254794\pi\)
\(662\) 0 0
\(663\) −68.8151 12.7761i −2.67256 0.496184i
\(664\) 0 0
\(665\) −2.12669 + 5.87892i −0.0824695 + 0.227975i
\(666\) 0 0
\(667\) 0.222837 0.385964i 0.00862827 0.0149446i
\(668\) 0 0
\(669\) 13.1532 + 2.44200i 0.508530 + 0.0944132i
\(670\) 0 0
\(671\) 16.6918 + 28.9111i 0.644381 + 1.11610i
\(672\) 0 0
\(673\) −7.54157 + 13.0624i −0.290706 + 0.503518i −0.973977 0.226647i \(-0.927223\pi\)
0.683271 + 0.730165i \(0.260557\pi\)
\(674\) 0 0
\(675\) 6.88800 + 4.22977i 0.265119 + 0.162804i
\(676\) 0 0
\(677\) 18.1093 + 31.3663i 0.695998 + 1.20550i 0.969843 + 0.243731i \(0.0783713\pi\)
−0.273845 + 0.961774i \(0.588295\pi\)
\(678\) 0 0
\(679\) −11.5357 + 31.8887i −0.442699 + 1.22378i
\(680\) 0 0
\(681\) −8.05794 22.7773i −0.308781 0.872828i
\(682\) 0 0
\(683\) 8.84350 + 15.3174i 0.338387 + 0.586104i 0.984130 0.177452i \(-0.0567853\pi\)
−0.645742 + 0.763555i \(0.723452\pi\)
\(684\) 0 0
\(685\) 25.4193 0.971220
\(686\) 0 0
\(687\) 0.924422 + 2.61305i 0.0352689 + 0.0996942i
\(688\) 0 0
\(689\) −18.9379 + 32.8014i −0.721477 + 1.24963i
\(690\) 0 0
\(691\) −11.2049 19.4074i −0.426253 0.738292i 0.570283 0.821448i \(-0.306833\pi\)
−0.996537 + 0.0831559i \(0.973500\pi\)
\(692\) 0 0
\(693\) −13.3933 + 15.4491i −0.508769 + 0.586865i
\(694\) 0 0
\(695\) −9.17064 15.8840i −0.347862 0.602515i
\(696\) 0 0
\(697\) 5.25424 9.10061i 0.199018 0.344710i
\(698\) 0 0
\(699\) 12.5997 + 2.33925i 0.476566 + 0.0884787i
\(700\) 0 0
\(701\) −31.1776 −1.17756 −0.588781 0.808293i \(-0.700392\pi\)
−0.588781 + 0.808293i \(0.700392\pi\)
\(702\) 0 0
\(703\) −0.430672 0.745946i −0.0162431 0.0281339i
\(704\) 0 0
\(705\) −25.7179 + 30.0929i −0.968592 + 1.13337i
\(706\) 0 0
\(707\) −31.7802 + 5.66806i −1.19522 + 0.213170i
\(708\) 0 0
\(709\) 4.02492 + 6.97137i 0.151159 + 0.261815i 0.931654 0.363347i \(-0.118366\pi\)
−0.780495 + 0.625162i \(0.785033\pi\)
\(710\) 0 0
\(711\) −10.4168 4.00602i −0.390660 0.150238i
\(712\) 0 0
\(713\) 0.360834 0.624982i 0.0135133 0.0234058i
\(714\) 0 0
\(715\) −13.4929 23.3703i −0.504604 0.874000i
\(716\) 0 0
\(717\) 2.81585 3.29487i 0.105160 0.123049i
\(718\) 0 0
\(719\) −20.9980 + 36.3696i −0.783093 + 1.35636i 0.147039 + 0.989131i \(0.453026\pi\)
−0.930132 + 0.367226i \(0.880308\pi\)
\(720\) 0 0
\(721\) −35.5359 + 6.33791i −1.32343 + 0.236036i
\(722\) 0 0
\(723\) 2.45102 + 6.92827i 0.0911543 + 0.257665i
\(724\) 0 0
\(725\) −1.43669 + 2.48842i −0.0533573 + 0.0924176i
\(726\) 0 0
\(727\) 0.668774 1.15835i 0.0248035 0.0429609i −0.853357 0.521327i \(-0.825437\pi\)
0.878161 + 0.478366i \(0.158771\pi\)
\(728\) 0 0
\(729\) 12.2131 + 24.0799i 0.452337 + 0.891847i
\(730\) 0 0
\(731\) 59.3152 2.19385
\(732\) 0 0
\(733\) 29.4749 1.08868 0.544340 0.838865i \(-0.316780\pi\)
0.544340 + 0.838865i \(0.316780\pi\)
\(734\) 0 0
\(735\) 14.3756 + 17.3110i 0.530252 + 0.638527i
\(736\) 0 0
\(737\) −6.22238 + 10.7775i −0.229204 + 0.396993i
\(738\) 0 0
\(739\) 9.52146 + 16.4916i 0.350252 + 0.606655i 0.986294 0.165000i \(-0.0527625\pi\)
−0.636041 + 0.771655i \(0.719429\pi\)
\(740\) 0 0
\(741\) 4.15146 + 11.7349i 0.152508 + 0.431092i
\(742\) 0 0
\(743\) 21.6613 + 37.5185i 0.794676 + 1.37642i 0.923045 + 0.384693i \(0.125693\pi\)
−0.128369 + 0.991726i \(0.540974\pi\)
\(744\) 0 0
\(745\) −7.27573 −0.266562
\(746\) 0 0
\(747\) −2.80645 17.7904i −0.102682 0.650917i
\(748\) 0 0
\(749\) 11.6643 32.2441i 0.426203 1.17818i
\(750\) 0 0
\(751\) 34.8763 1.27265 0.636327 0.771420i \(-0.280453\pi\)
0.636327 + 0.771420i \(0.280453\pi\)
\(752\) 0 0
\(753\) −7.82049 22.1061i −0.284994 0.805591i
\(754\) 0 0
\(755\) 36.3358 1.32240
\(756\) 0 0
\(757\) 8.67255 0.315209 0.157605 0.987502i \(-0.449623\pi\)
0.157605 + 0.987502i \(0.449623\pi\)
\(758\) 0 0
\(759\) −0.359038 1.01489i −0.0130322 0.0368381i
\(760\) 0 0
\(761\) −5.48977 −0.199004 −0.0995021 0.995037i \(-0.531725\pi\)
−0.0995021 + 0.995037i \(0.531725\pi\)
\(762\) 0 0
\(763\) −26.2544 31.1643i −0.950473 1.12822i
\(764\) 0 0
\(765\) −37.2033 14.3074i −1.34509 0.517285i
\(766\) 0 0
\(767\) −11.7564 −0.424499
\(768\) 0 0
\(769\) 1.81365 + 3.14134i 0.0654021 + 0.113280i 0.896872 0.442290i \(-0.145834\pi\)
−0.831470 + 0.555569i \(0.812500\pi\)
\(770\) 0 0
\(771\) −3.55550 10.0503i −0.128048 0.361953i
\(772\) 0 0
\(773\) −6.96717 12.0675i −0.250592 0.434037i 0.713097 0.701065i \(-0.247292\pi\)
−0.963689 + 0.267028i \(0.913958\pi\)
\(774\) 0 0
\(775\) −2.32640 + 4.02944i −0.0835666 + 0.144742i
\(776\) 0 0
\(777\) −3.10013 0.0219256i −0.111217 0.000786577i
\(778\) 0 0
\(779\) −1.86888 −0.0669597
\(780\) 0 0
\(781\) 3.95729 0.141603
\(782\) 0 0
\(783\) −8.43916 + 4.57196i −0.301591 + 0.163388i
\(784\) 0 0
\(785\) −13.7270 + 23.7759i −0.489939 + 0.848599i
\(786\) 0 0
\(787\) −8.78923 + 15.2234i −0.313302 + 0.542655i −0.979075 0.203499i \(-0.934769\pi\)
0.665773 + 0.746154i \(0.268102\pi\)
\(788\) 0 0
\(789\) −14.6387 41.3790i −0.521151 1.47313i
\(790\) 0 0
\(791\) 26.3688 + 31.3001i 0.937567 + 1.11290i
\(792\) 0 0
\(793\) 36.5751 63.3499i 1.29882 2.24962i
\(794\) 0 0
\(795\) −14.0137 + 16.3977i −0.497015 + 0.581566i
\(796\) 0 0
\(797\) 5.57971 + 9.66434i 0.197644 + 0.342329i 0.947764 0.318973i \(-0.103338\pi\)
−0.750120 + 0.661301i \(0.770004\pi\)
\(798\) 0 0
\(799\) −44.0797 + 76.3483i −1.55943 + 2.70101i
\(800\) 0 0
\(801\) 6.17388 + 39.1370i 0.218143 + 1.38284i
\(802\) 0 0
\(803\) 16.8974 + 29.2672i 0.596297 + 1.03282i
\(804\) 0 0
\(805\) −1.16634 + 0.208019i −0.0411079 + 0.00733169i
\(806\) 0 0
\(807\) 12.2001 14.2756i 0.429466 0.502525i
\(808\) 0 0
\(809\) 14.3481 + 24.8517i 0.504453 + 0.873738i 0.999987 + 0.00514935i \(0.00163910\pi\)
−0.495534 + 0.868589i \(0.665028\pi\)
\(810\) 0 0
\(811\) 47.1695 1.65635 0.828173 0.560473i \(-0.189380\pi\)
0.828173 + 0.560473i \(0.189380\pi\)
\(812\) 0 0
\(813\) −51.1513 9.49670i −1.79396 0.333064i
\(814\) 0 0
\(815\) 14.0063 24.2597i 0.490620 0.849779i
\(816\) 0 0
\(817\) −5.27446 9.13563i −0.184530 0.319615i
\(818\) 0 0
\(819\) 43.9905 + 8.48949i 1.53715 + 0.296647i
\(820\) 0 0
\(821\) 19.3854 + 33.5765i 0.676554 + 1.17183i 0.976012 + 0.217717i \(0.0698609\pi\)
−0.299458 + 0.954110i \(0.596806\pi\)
\(822\) 0 0
\(823\) 11.3920 19.7316i 0.397101 0.687799i −0.596266 0.802787i \(-0.703350\pi\)
0.993367 + 0.114988i \(0.0366830\pi\)
\(824\) 0 0
\(825\) 2.31482 + 6.54327i 0.0805916 + 0.227807i
\(826\) 0 0
\(827\) −1.55152 −0.0539515 −0.0269758 0.999636i \(-0.508588\pi\)
−0.0269758 + 0.999636i \(0.508588\pi\)
\(828\) 0 0
\(829\) −23.8972 41.3911i −0.829983 1.43757i −0.898051 0.439892i \(-0.855017\pi\)
0.0680673 0.997681i \(-0.478317\pi\)
\(830\) 0 0
\(831\) 11.4164 + 32.2706i 0.396030 + 1.11945i
\(832\) 0 0
\(833\) 38.5151 + 32.0611i 1.33447 + 1.11085i
\(834\) 0 0
\(835\) 3.58090 + 6.20231i 0.123922 + 0.214640i
\(836\) 0 0
\(837\) −13.6653 + 7.40326i −0.472342 + 0.255894i
\(838\) 0 0
\(839\) 19.5804 33.9142i 0.675990 1.17085i −0.300188 0.953880i \(-0.597049\pi\)
0.976178 0.216970i \(-0.0696173\pi\)
\(840\) 0 0
\(841\) 12.7940 + 22.1599i 0.441174 + 0.764135i
\(842\) 0 0
\(843\) −13.5758 2.52046i −0.467574 0.0868093i
\(844\) 0 0
\(845\) −17.5021 + 30.3145i −0.602089 + 1.04285i
\(846\) 0 0
\(847\) 11.3672 2.02736i 0.390580 0.0696609i
\(848\) 0 0
\(849\) −39.5301 7.33911i −1.35667 0.251877i
\(850\) 0 0
\(851\) 0.0816145 0.141361i 0.00279771 0.00484578i
\(852\) 0 0
\(853\) 14.5234 25.1552i 0.497270 0.861298i −0.502725 0.864447i \(-0.667669\pi\)
0.999995 + 0.00314895i \(0.00100234\pi\)
\(854\) 0 0
\(855\) 1.10461 + 7.00224i 0.0377768 + 0.239472i
\(856\) 0 0
\(857\) −48.2584 −1.64848 −0.824239 0.566243i \(-0.808397\pi\)
−0.824239 + 0.566243i \(0.808397\pi\)
\(858\) 0 0
\(859\) −10.1506 −0.346332 −0.173166 0.984893i \(-0.555400\pi\)
−0.173166 + 0.984893i \(0.555400\pi\)
\(860\) 0 0
\(861\) −3.40442 + 5.80148i −0.116022 + 0.197714i
\(862\) 0 0
\(863\) 25.7981 44.6837i 0.878179 1.52105i 0.0248411 0.999691i \(-0.492092\pi\)
0.853338 0.521359i \(-0.174575\pi\)
\(864\) 0 0
\(865\) −0.604630 1.04725i −0.0205580 0.0356076i
\(866\) 0 0
\(867\) −58.3287 10.8292i −1.98094 0.367780i
\(868\) 0 0
\(869\) −4.79161 8.29931i −0.162544 0.281535i
\(870\) 0 0
\(871\) 27.2689 0.923972
\(872\) 0 0
\(873\) 5.99167 + 37.9819i 0.202787 + 1.28549i
\(874\) 0 0
\(875\) 31.6897 5.65193i 1.07131 0.191070i
\(876\) 0 0
\(877\) −10.3978 −0.351109 −0.175555 0.984470i \(-0.556172\pi\)
−0.175555 + 0.984470i \(0.556172\pi\)
\(878\) 0 0
\(879\) −26.6819 + 31.2209i −0.899957 + 1.05305i
\(880\) 0 0
\(881\) 23.6562 0.796996 0.398498 0.917169i \(-0.369532\pi\)
0.398498 + 0.917169i \(0.369532\pi\)
\(882\) 0 0
\(883\) 41.8601 1.40871 0.704353 0.709850i \(-0.251237\pi\)
0.704353 + 0.709850i \(0.251237\pi\)
\(884\) 0 0
\(885\) −6.58271 1.22214i −0.221276 0.0410818i
\(886\) 0 0
\(887\) 42.2505 1.41863 0.709316 0.704891i \(-0.249004\pi\)
0.709316 + 0.704891i \(0.249004\pi\)
\(888\) 0 0
\(889\) 8.31936 1.48378i 0.279022 0.0497643i
\(890\) 0 0
\(891\) −4.84829 + 22.6715i −0.162424 + 0.759523i
\(892\) 0 0
\(893\) 15.6787 0.524669
\(894\) 0 0
\(895\) 20.2404 + 35.0574i 0.676563 + 1.17184i
\(896\) 0 0
\(897\) −1.53252 + 1.79323i −0.0511695 + 0.0598743i
\(898\) 0 0
\(899\) −2.76243 4.78467i −0.0921321 0.159578i
\(900\) 0 0
\(901\) −24.0191 + 41.6023i −0.800192 + 1.38597i
\(902\) 0 0
\(903\) −37.9674 0.268524i −1.26348 0.00893592i
\(904\) 0 0
\(905\) −46.4606 −1.54440
\(906\) 0 0
\(907\) −40.8807 −1.35742 −0.678711 0.734405i \(-0.737461\pi\)
−0.678711 + 0.734405i \(0.737461\pi\)
\(908\) 0 0
\(909\) −28.4609 + 23.0180i −0.943988 + 0.763460i
\(910\) 0 0
\(911\) 14.4235 24.9823i 0.477873 0.827701i −0.521805 0.853065i \(-0.674741\pi\)
0.999678 + 0.0253641i \(0.00807452\pi\)
\(912\) 0 0
\(913\) 7.73249 13.3931i 0.255908 0.443246i
\(914\) 0 0
\(915\) 27.0649 31.6691i 0.894739 1.04695i
\(916\) 0 0
\(917\) −36.6910 + 6.54393i −1.21165 + 0.216100i
\(918\) 0 0
\(919\) 21.8195 37.7925i 0.719760 1.24666i −0.241335 0.970442i \(-0.577585\pi\)
0.961095 0.276219i \(-0.0890815\pi\)
\(920\) 0 0
\(921\) 2.24025 + 6.33248i 0.0738186 + 0.208662i
\(922\) 0 0
\(923\) −4.33560 7.50947i −0.142708 0.247177i
\(924\) 0 0
\(925\) −0.526192 + 0.911391i −0.0173011 + 0.0299663i
\(926\) 0 0
\(927\) −31.8243 + 25.7383i −1.04525 + 0.845355i
\(928\) 0 0
\(929\) 13.7377 + 23.7944i 0.450719 + 0.780668i 0.998431 0.0559990i \(-0.0178344\pi\)
−0.547712 + 0.836667i \(0.684501\pi\)
\(930\) 0 0
\(931\) 1.51314 8.78299i 0.0495911 0.287851i
\(932\) 0 0
\(933\) 11.7919 + 2.18927i 0.386049 + 0.0716735i
\(934\) 0 0
\(935\) −17.1131 29.6408i −0.559658 0.969356i
\(936\) 0 0
\(937\) −3.11920 −0.101900 −0.0509500 0.998701i \(-0.516225\pi\)
−0.0509500 + 0.998701i \(0.516225\pi\)
\(938\) 0 0
\(939\) 34.0188 39.8060i 1.11016 1.29902i
\(940\) 0 0
\(941\) 13.0608 22.6219i 0.425769 0.737454i −0.570723 0.821143i \(-0.693337\pi\)
0.996492 + 0.0836892i \(0.0266703\pi\)
\(942\) 0 0
\(943\) −0.177081 0.306714i −0.00576656 0.00998797i
\(944\) 0 0
\(945\) 23.7489 + 9.32654i 0.772552 + 0.303392i
\(946\) 0 0
\(947\) 3.59015 + 6.21833i 0.116664 + 0.202068i 0.918444 0.395551i \(-0.129447\pi\)
−0.801780 + 0.597620i \(0.796113\pi\)
\(948\) 0 0
\(949\) 37.0256 64.1302i 1.20190 2.08176i
\(950\) 0 0
\(951\) 10.5484 12.3429i 0.342055 0.400245i
\(952\) 0 0
\(953\) −32.1187 −1.04043 −0.520214 0.854036i \(-0.674148\pi\)
−0.520214 + 0.854036i \(0.674148\pi\)
\(954\) 0 0
\(955\) −8.03678 13.9201i −0.260064 0.450444i
\(956\) 0 0
\(957\) −8.10306 1.50441i −0.261935 0.0486305i
\(958\) 0 0
\(959\) −35.6742 + 6.36257i −1.15198 + 0.205458i
\(960\) 0 0
\(961\) 11.0269 + 19.0991i 0.355705 + 0.616100i
\(962\) 0 0
\(963\) −6.05844 38.4052i −0.195231 1.23759i
\(964\) 0 0
\(965\) −1.50018 + 2.59838i −0.0482924 + 0.0836449i
\(966\) 0 0
\(967\) −27.4860 47.6071i −0.883890 1.53094i −0.846981 0.531623i \(-0.821582\pi\)
−0.0369085 0.999319i \(-0.511751\pi\)
\(968\) 0 0
\(969\) 5.26533 + 14.8835i 0.169147 + 0.478126i
\(970\) 0 0
\(971\) 20.8518 36.1163i 0.669165 1.15903i −0.308973 0.951071i \(-0.599985\pi\)
0.978138 0.207957i \(-0.0666813\pi\)
\(972\) 0 0
\(973\) 16.8462 + 19.9967i 0.540065 + 0.641064i
\(974\) 0 0
\(975\) 9.88061 11.5615i 0.316433 0.370263i
\(976\) 0 0
\(977\) −2.61437 + 4.52823i −0.0836412 + 0.144871i −0.904811 0.425813i \(-0.859988\pi\)
0.821170 + 0.570683i \(0.193322\pi\)
\(978\) 0 0
\(979\) −17.0106 + 29.4633i −0.543662 + 0.941651i
\(980\) 0 0
\(981\) −43.1262 16.5852i −1.37691 0.529525i
\(982\) 0 0
\(983\) 6.90697 0.220298 0.110149 0.993915i \(-0.464867\pi\)
0.110149 + 0.993915i \(0.464867\pi\)
\(984\) 0 0
\(985\) 19.9967 0.637149
\(986\) 0 0
\(987\) 28.5609 48.6707i 0.909103 1.54921i
\(988\) 0 0
\(989\) 0.999537 1.73125i 0.0317834 0.0550505i
\(990\) 0 0
\(991\) 2.19861 + 3.80811i 0.0698412 + 0.120968i 0.898831 0.438295i \(-0.144417\pi\)
−0.828990 + 0.559263i \(0.811084\pi\)
\(992\) 0 0
\(993\) 30.9949 36.2676i 0.983593 1.15092i
\(994\) 0 0
\(995\) 4.43133 + 7.67528i 0.140482 + 0.243323i
\(996\) 0 0
\(997\) −28.0359 −0.887907 −0.443954 0.896050i \(-0.646425\pi\)
−0.443954 + 0.896050i \(0.646425\pi\)
\(998\) 0 0
\(999\) −3.09086 + 1.67449i −0.0977906 + 0.0529786i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 504.2.t.d.457.8 yes 22
3.2 odd 2 1512.2.t.d.289.3 22
4.3 odd 2 1008.2.t.k.961.4 22
7.4 even 3 504.2.q.d.25.7 22
9.4 even 3 504.2.q.d.121.7 yes 22
9.5 odd 6 1512.2.q.c.793.9 22
12.11 even 2 3024.2.t.l.289.3 22
21.11 odd 6 1512.2.q.c.1369.9 22
28.11 odd 6 1008.2.q.k.529.5 22
36.23 even 6 3024.2.q.k.2305.9 22
36.31 odd 6 1008.2.q.k.625.5 22
63.4 even 3 inner 504.2.t.d.193.8 yes 22
63.32 odd 6 1512.2.t.d.361.3 22
84.11 even 6 3024.2.q.k.2881.9 22
252.67 odd 6 1008.2.t.k.193.4 22
252.95 even 6 3024.2.t.l.1873.3 22
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
504.2.q.d.25.7 22 7.4 even 3
504.2.q.d.121.7 yes 22 9.4 even 3
504.2.t.d.193.8 yes 22 63.4 even 3 inner
504.2.t.d.457.8 yes 22 1.1 even 1 trivial
1008.2.q.k.529.5 22 28.11 odd 6
1008.2.q.k.625.5 22 36.31 odd 6
1008.2.t.k.193.4 22 252.67 odd 6
1008.2.t.k.961.4 22 4.3 odd 2
1512.2.q.c.793.9 22 9.5 odd 6
1512.2.q.c.1369.9 22 21.11 odd 6
1512.2.t.d.289.3 22 3.2 odd 2
1512.2.t.d.361.3 22 63.32 odd 6
3024.2.q.k.2305.9 22 36.23 even 6
3024.2.q.k.2881.9 22 84.11 even 6
3024.2.t.l.289.3 22 12.11 even 2
3024.2.t.l.1873.3 22 252.95 even 6