Properties

Label 306.4.a.h
Level $306$
Weight $4$
Character orbit 306.a
Self dual yes
Analytic conductor $18.055$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [306,4,Mod(1,306)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(306, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("306.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 306 = 2 \cdot 3^{2} \cdot 17 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 306.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(18.0545844618\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 34)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + 18 q^{5} - 10 q^{7} + 8 q^{8} + 36 q^{10} + 6 q^{11} + 74 q^{13} - 20 q^{14} + 16 q^{16} - 17 q^{17} - 88 q^{19} + 72 q^{20} + 12 q^{22} + 114 q^{23} + 199 q^{25} + 148 q^{26} - 40 q^{28}+ \cdots - 486 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 4.00000 18.0000 0 −10.0000 8.00000 0 36.0000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( -1 \)
\(17\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 306.4.a.h 1
3.b odd 2 1 34.4.a.a 1
4.b odd 2 1 2448.4.a.q 1
12.b even 2 1 272.4.a.a 1
15.d odd 2 1 850.4.a.d 1
15.e even 4 2 850.4.c.b 2
21.c even 2 1 1666.4.a.b 1
24.f even 2 1 1088.4.a.f 1
24.h odd 2 1 1088.4.a.i 1
51.c odd 2 1 578.4.a.b 1
51.f odd 4 2 578.4.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
34.4.a.a 1 3.b odd 2 1
272.4.a.a 1 12.b even 2 1
306.4.a.h 1 1.a even 1 1 trivial
578.4.a.b 1 51.c odd 2 1
578.4.b.c 2 51.f odd 4 2
850.4.a.d 1 15.d odd 2 1
850.4.c.b 2 15.e even 4 2
1088.4.a.f 1 24.f even 2 1
1088.4.a.i 1 24.h odd 2 1
1666.4.a.b 1 21.c even 2 1
2448.4.a.q 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 18 \) acting on \(S_{4}^{\mathrm{new}}(\Gamma_0(306))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 18 \) Copy content Toggle raw display
$7$ \( T + 10 \) Copy content Toggle raw display
$11$ \( T - 6 \) Copy content Toggle raw display
$13$ \( T - 74 \) Copy content Toggle raw display
$17$ \( T + 17 \) Copy content Toggle raw display
$19$ \( T + 88 \) Copy content Toggle raw display
$23$ \( T - 114 \) Copy content Toggle raw display
$29$ \( T - 90 \) Copy content Toggle raw display
$31$ \( T + 310 \) Copy content Toggle raw display
$37$ \( T - 86 \) Copy content Toggle raw display
$41$ \( T + 90 \) Copy content Toggle raw display
$43$ \( T - 368 \) Copy content Toggle raw display
$47$ \( T - 384 \) Copy content Toggle raw display
$53$ \( T - 258 \) Copy content Toggle raw display
$59$ \( T + 240 \) Copy content Toggle raw display
$61$ \( T - 302 \) Copy content Toggle raw display
$67$ \( T + 964 \) Copy content Toggle raw display
$71$ \( T - 390 \) Copy content Toggle raw display
$73$ \( T - 722 \) Copy content Toggle raw display
$79$ \( T + 898 \) Copy content Toggle raw display
$83$ \( T + 912 \) Copy content Toggle raw display
$89$ \( T + 1446 \) Copy content Toggle raw display
$97$ \( T + 1438 \) Copy content Toggle raw display
show more
show less