Properties

Label 308.2.y.b.137.6
Level $308$
Weight $2$
Character 308.137
Analytic conductor $2.459$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(9,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([0, 10, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.y (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 137.6
Character \(\chi\) \(=\) 308.137
Dual form 308.2.y.b.9.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.61762 - 1.16544i) q^{3} +(1.05782 - 0.224846i) q^{5} +(-2.30739 + 1.29459i) q^{7} +(3.48627 - 3.87190i) q^{9} +(2.91378 + 1.58426i) q^{11} +(-0.192953 - 0.593849i) q^{13} +(2.50691 - 1.82138i) q^{15} +(-1.85116 - 2.05593i) q^{17} +(-0.231015 + 2.19796i) q^{19} +(-4.53108 + 6.07786i) q^{21} +(-3.41468 - 5.91439i) q^{23} +(-3.49931 + 1.55799i) q^{25} +(1.95696 - 6.02289i) q^{27} +(-5.64552 + 4.10171i) q^{29} +(3.26747 + 0.694522i) q^{31} +(9.47352 + 0.751145i) q^{33} +(-2.14971 + 1.88825i) q^{35} +(-6.91813 - 3.08015i) q^{37} +(-1.19717 - 1.32959i) q^{39} +(3.27666 + 2.38063i) q^{41} +7.35350 q^{43} +(2.81726 - 4.87963i) q^{45} +(-0.982812 + 9.35083i) q^{47} +(3.64805 - 5.97425i) q^{49} +(-7.24169 - 3.22421i) q^{51} +(7.85012 + 1.66859i) q^{53} +(3.43846 + 1.02070i) q^{55} +(1.95688 + 6.02265i) q^{57} +(0.875795 + 8.33264i) q^{59} +(-14.0206 + 2.98017i) q^{61} +(-3.03164 + 13.4473i) q^{63} +(-0.337633 - 0.584798i) q^{65} +(3.06689 - 5.31200i) q^{67} +(-15.8312 - 11.5020i) q^{69} +(-1.03776 + 3.19390i) q^{71} +(-1.44942 - 13.7903i) q^{73} +(-7.34410 + 8.15645i) q^{75} +(-8.77419 + 0.116675i) q^{77} +(2.66452 - 2.95925i) q^{79} +(-0.262916 - 2.50148i) q^{81} +(-0.270229 + 0.831680i) q^{83} +(-2.42046 - 1.75857i) q^{85} +(-9.99752 + 17.3162i) q^{87} +(0.189410 + 0.328068i) q^{89} +(1.21401 + 1.12044i) q^{91} +(9.36240 - 1.99004i) q^{93} +(0.249831 + 2.37698i) q^{95} +(-1.69834 - 5.22696i) q^{97} +(16.2923 - 5.75872i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - q^{3} + 7 q^{5} - 7 q^{7} + 13 q^{9} - 5 q^{11} - 8 q^{13} - 48 q^{15} + 19 q^{17} + 13 q^{19} - 22 q^{21} - 30 q^{23} - 7 q^{25} + 26 q^{27} - 12 q^{29} + 3 q^{31} - 28 q^{33} + 37 q^{35} + 19 q^{37}+ \cdots + 140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.61762 1.16544i 1.51128 0.672866i 0.527063 0.849826i \(-0.323293\pi\)
0.984218 + 0.176960i \(0.0566265\pi\)
\(4\) 0 0
\(5\) 1.05782 0.224846i 0.473070 0.100554i 0.0347938 0.999395i \(-0.488923\pi\)
0.438276 + 0.898840i \(0.355589\pi\)
\(6\) 0 0
\(7\) −2.30739 + 1.29459i −0.872110 + 0.489311i
\(8\) 0 0
\(9\) 3.48627 3.87190i 1.16209 1.29063i
\(10\) 0 0
\(11\) 2.91378 + 1.58426i 0.878539 + 0.477672i
\(12\) 0 0
\(13\) −0.192953 0.593849i −0.0535156 0.164704i 0.920727 0.390208i \(-0.127597\pi\)
−0.974242 + 0.225504i \(0.927597\pi\)
\(14\) 0 0
\(15\) 2.50691 1.82138i 0.647282 0.470278i
\(16\) 0 0
\(17\) −1.85116 2.05593i −0.448973 0.498636i 0.475588 0.879668i \(-0.342235\pi\)
−0.924562 + 0.381033i \(0.875569\pi\)
\(18\) 0 0
\(19\) −0.231015 + 2.19796i −0.0529985 + 0.504247i 0.935534 + 0.353237i \(0.114919\pi\)
−0.988532 + 0.151010i \(0.951748\pi\)
\(20\) 0 0
\(21\) −4.53108 + 6.07786i −0.988762 + 1.32630i
\(22\) 0 0
\(23\) −3.41468 5.91439i −0.712009 1.23324i −0.964102 0.265533i \(-0.914452\pi\)
0.252092 0.967703i \(-0.418881\pi\)
\(24\) 0 0
\(25\) −3.49931 + 1.55799i −0.699862 + 0.311598i
\(26\) 0 0
\(27\) 1.95696 6.02289i 0.376616 1.15911i
\(28\) 0 0
\(29\) −5.64552 + 4.10171i −1.04835 + 0.761669i −0.971897 0.235405i \(-0.924358\pi\)
−0.0764495 + 0.997073i \(0.524358\pi\)
\(30\) 0 0
\(31\) 3.26747 + 0.694522i 0.586855 + 0.124740i 0.491764 0.870729i \(-0.336352\pi\)
0.0950911 + 0.995469i \(0.469686\pi\)
\(32\) 0 0
\(33\) 9.47352 + 0.751145i 1.64913 + 0.130758i
\(34\) 0 0
\(35\) −2.14971 + 1.88825i −0.363367 + 0.319172i
\(36\) 0 0
\(37\) −6.91813 3.08015i −1.13733 0.506373i −0.250341 0.968158i \(-0.580543\pi\)
−0.886992 + 0.461784i \(0.847209\pi\)
\(38\) 0 0
\(39\) −1.19717 1.32959i −0.191701 0.212905i
\(40\) 0 0
\(41\) 3.27666 + 2.38063i 0.511729 + 0.371793i 0.813479 0.581594i \(-0.197571\pi\)
−0.301750 + 0.953387i \(0.597571\pi\)
\(42\) 0 0
\(43\) 7.35350 1.12140 0.560699 0.828019i \(-0.310532\pi\)
0.560699 + 0.828019i \(0.310532\pi\)
\(44\) 0 0
\(45\) 2.81726 4.87963i 0.419972 0.727413i
\(46\) 0 0
\(47\) −0.982812 + 9.35083i −0.143358 + 1.36396i 0.652184 + 0.758061i \(0.273853\pi\)
−0.795542 + 0.605899i \(0.792814\pi\)
\(48\) 0 0
\(49\) 3.64805 5.97425i 0.521150 0.853465i
\(50\) 0 0
\(51\) −7.24169 3.22421i −1.01404 0.451480i
\(52\) 0 0
\(53\) 7.85012 + 1.66859i 1.07830 + 0.229199i 0.712625 0.701545i \(-0.247506\pi\)
0.365671 + 0.930744i \(0.380839\pi\)
\(54\) 0 0
\(55\) 3.43846 + 1.02070i 0.463642 + 0.137631i
\(56\) 0 0
\(57\) 1.95688 + 6.02265i 0.259195 + 0.797720i
\(58\) 0 0
\(59\) 0.875795 + 8.33264i 0.114019 + 1.08482i 0.890596 + 0.454795i \(0.150287\pi\)
−0.776577 + 0.630022i \(0.783046\pi\)
\(60\) 0 0
\(61\) −14.0206 + 2.98017i −1.79515 + 0.381572i −0.980209 0.197967i \(-0.936566\pi\)
−0.814945 + 0.579539i \(0.803233\pi\)
\(62\) 0 0
\(63\) −3.03164 + 13.4473i −0.381951 + 1.69420i
\(64\) 0 0
\(65\) −0.337633 0.584798i −0.0418783 0.0725353i
\(66\) 0 0
\(67\) 3.06689 5.31200i 0.374680 0.648964i −0.615599 0.788059i \(-0.711086\pi\)
0.990279 + 0.139095i \(0.0444193\pi\)
\(68\) 0 0
\(69\) −15.8312 11.5020i −1.90585 1.38468i
\(70\) 0 0
\(71\) −1.03776 + 3.19390i −0.123160 + 0.379046i −0.993561 0.113296i \(-0.963859\pi\)
0.870402 + 0.492342i \(0.163859\pi\)
\(72\) 0 0
\(73\) −1.44942 13.7903i −0.169641 1.61403i −0.666028 0.745927i \(-0.732007\pi\)
0.496387 0.868101i \(-0.334660\pi\)
\(74\) 0 0
\(75\) −7.34410 + 8.15645i −0.848024 + 0.941826i
\(76\) 0 0
\(77\) −8.77419 + 0.116675i −0.999912 + 0.0132963i
\(78\) 0 0
\(79\) 2.66452 2.95925i 0.299782 0.332942i −0.574368 0.818597i \(-0.694752\pi\)
0.874150 + 0.485655i \(0.161419\pi\)
\(80\) 0 0
\(81\) −0.262916 2.50148i −0.0292129 0.277942i
\(82\) 0 0
\(83\) −0.270229 + 0.831680i −0.0296615 + 0.0912887i −0.964791 0.263017i \(-0.915283\pi\)
0.935130 + 0.354305i \(0.115283\pi\)
\(84\) 0 0
\(85\) −2.42046 1.75857i −0.262536 0.190743i
\(86\) 0 0
\(87\) −9.99752 + 17.3162i −1.07185 + 1.85649i
\(88\) 0 0
\(89\) 0.189410 + 0.328068i 0.0200774 + 0.0347751i 0.875890 0.482512i \(-0.160275\pi\)
−0.855812 + 0.517287i \(0.826942\pi\)
\(90\) 0 0
\(91\) 1.21401 + 1.12044i 0.127263 + 0.117454i
\(92\) 0 0
\(93\) 9.36240 1.99004i 0.970836 0.206357i
\(94\) 0 0
\(95\) 0.249831 + 2.37698i 0.0256321 + 0.243873i
\(96\) 0 0
\(97\) −1.69834 5.22696i −0.172440 0.530717i 0.827067 0.562104i \(-0.190008\pi\)
−0.999507 + 0.0313863i \(0.990008\pi\)
\(98\) 0 0
\(99\) 16.2923 5.75872i 1.63744 0.578773i
\(100\) 0 0
\(101\) −2.80661 0.596564i −0.279268 0.0593603i 0.0661481 0.997810i \(-0.478929\pi\)
−0.345417 + 0.938449i \(0.612262\pi\)
\(102\) 0 0
\(103\) 10.1639 + 4.52528i 1.00148 + 0.445889i 0.840933 0.541139i \(-0.182007\pi\)
0.160550 + 0.987028i \(0.448673\pi\)
\(104\) 0 0
\(105\) −3.42647 + 7.44806i −0.334389 + 0.726856i
\(106\) 0 0
\(107\) −1.65570 + 15.7530i −0.160063 + 1.52290i 0.559710 + 0.828688i \(0.310912\pi\)
−0.719773 + 0.694209i \(0.755754\pi\)
\(108\) 0 0
\(109\) 5.48591 9.50187i 0.525455 0.910114i −0.474106 0.880468i \(-0.657229\pi\)
0.999560 0.0296463i \(-0.00943810\pi\)
\(110\) 0 0
\(111\) −21.6987 −2.05955
\(112\) 0 0
\(113\) −16.0077 11.6303i −1.50588 1.09409i −0.967964 0.251090i \(-0.919211\pi\)
−0.537918 0.842997i \(-0.680789\pi\)
\(114\) 0 0
\(115\) −4.94193 5.48857i −0.460837 0.511812i
\(116\) 0 0
\(117\) −2.97201 1.32322i −0.274763 0.122332i
\(118\) 0 0
\(119\) 6.93294 + 2.34731i 0.635542 + 0.215177i
\(120\) 0 0
\(121\) 5.98026 + 9.23236i 0.543660 + 0.839306i
\(122\) 0 0
\(123\) 11.3515 + 2.41284i 1.02353 + 0.217559i
\(124\) 0 0
\(125\) −7.72587 + 5.61317i −0.691023 + 0.502057i
\(126\) 0 0
\(127\) 3.50835 10.7976i 0.311316 0.958132i −0.665928 0.746016i \(-0.731964\pi\)
0.977244 0.212116i \(-0.0680356\pi\)
\(128\) 0 0
\(129\) 19.2486 8.57005i 1.69475 0.754551i
\(130\) 0 0
\(131\) −7.06364 12.2346i −0.617153 1.06894i −0.990003 0.141048i \(-0.954953\pi\)
0.372850 0.927892i \(-0.378381\pi\)
\(132\) 0 0
\(133\) −2.31243 5.37062i −0.200513 0.465691i
\(134\) 0 0
\(135\) 0.715878 6.81113i 0.0616130 0.586208i
\(136\) 0 0
\(137\) 0.193381 + 0.214771i 0.0165216 + 0.0183491i 0.751349 0.659905i \(-0.229404\pi\)
−0.734827 + 0.678254i \(0.762737\pi\)
\(138\) 0 0
\(139\) −5.68353 + 4.12933i −0.482071 + 0.350245i −0.802127 0.597154i \(-0.796298\pi\)
0.320056 + 0.947399i \(0.396298\pi\)
\(140\) 0 0
\(141\) 8.32519 + 25.6223i 0.701107 + 2.15779i
\(142\) 0 0
\(143\) 0.378586 2.03603i 0.0316589 0.170262i
\(144\) 0 0
\(145\) −5.04967 + 5.60823i −0.419352 + 0.465738i
\(146\) 0 0
\(147\) 2.58658 19.8899i 0.213337 1.64049i
\(148\) 0 0
\(149\) 21.5988 4.59097i 1.76944 0.376107i 0.796048 0.605233i \(-0.206920\pi\)
0.973397 + 0.229126i \(0.0735869\pi\)
\(150\) 0 0
\(151\) 18.6690 8.31197i 1.51926 0.676418i 0.533690 0.845680i \(-0.320805\pi\)
0.985571 + 0.169262i \(0.0541384\pi\)
\(152\) 0 0
\(153\) −14.4140 −1.16530
\(154\) 0 0
\(155\) 3.61254 0.290166
\(156\) 0 0
\(157\) 7.50995 3.34364i 0.599359 0.266852i −0.0845500 0.996419i \(-0.526945\pi\)
0.683909 + 0.729567i \(0.260279\pi\)
\(158\) 0 0
\(159\) 22.4932 4.78108i 1.78383 0.379165i
\(160\) 0 0
\(161\) 15.5357 + 9.22616i 1.22439 + 0.727124i
\(162\) 0 0
\(163\) 2.55077 2.83291i 0.199791 0.221891i −0.634921 0.772577i \(-0.718967\pi\)
0.834712 + 0.550686i \(0.185634\pi\)
\(164\) 0 0
\(165\) 10.1901 1.33551i 0.793301 0.103969i
\(166\) 0 0
\(167\) −2.19769 6.76380i −0.170063 0.523399i 0.829311 0.558787i \(-0.188733\pi\)
−0.999374 + 0.0353886i \(0.988733\pi\)
\(168\) 0 0
\(169\) 10.2018 7.41204i 0.784753 0.570157i
\(170\) 0 0
\(171\) 7.70491 + 8.55717i 0.589209 + 0.654383i
\(172\) 0 0
\(173\) −0.435280 + 4.14141i −0.0330937 + 0.314866i 0.965435 + 0.260643i \(0.0839346\pi\)
−0.998529 + 0.0542223i \(0.982732\pi\)
\(174\) 0 0
\(175\) 6.05728 8.12507i 0.457888 0.614198i
\(176\) 0 0
\(177\) 12.0037 + 20.7910i 0.902251 + 1.56274i
\(178\) 0 0
\(179\) 17.6638 7.86443i 1.32025 0.587815i 0.378963 0.925412i \(-0.376281\pi\)
0.941291 + 0.337597i \(0.109614\pi\)
\(180\) 0 0
\(181\) 4.89387 15.0618i 0.363759 1.11953i −0.586996 0.809590i \(-0.699690\pi\)
0.950755 0.309944i \(-0.100310\pi\)
\(182\) 0 0
\(183\) −33.2273 + 24.1411i −2.45624 + 1.78456i
\(184\) 0 0
\(185\) −8.01067 1.70272i −0.588956 0.125186i
\(186\) 0 0
\(187\) −2.13678 8.92325i −0.156256 0.652532i
\(188\) 0 0
\(189\) 3.28175 + 16.4306i 0.238712 + 1.19515i
\(190\) 0 0
\(191\) −7.17410 3.19412i −0.519100 0.231118i 0.130425 0.991458i \(-0.458366\pi\)
−0.649525 + 0.760340i \(0.725032\pi\)
\(192\) 0 0
\(193\) −7.54687 8.38165i −0.543235 0.603324i 0.407547 0.913184i \(-0.366384\pi\)
−0.950782 + 0.309860i \(0.899718\pi\)
\(194\) 0 0
\(195\) −1.56534 1.13729i −0.112096 0.0814428i
\(196\) 0 0
\(197\) 8.44137 0.601423 0.300711 0.953715i \(-0.402776\pi\)
0.300711 + 0.953715i \(0.402776\pi\)
\(198\) 0 0
\(199\) −12.9222 + 22.3819i −0.916028 + 1.58661i −0.110640 + 0.993861i \(0.535290\pi\)
−0.805389 + 0.592747i \(0.798043\pi\)
\(200\) 0 0
\(201\) 1.83712 17.4790i 0.129581 1.23288i
\(202\) 0 0
\(203\) 7.71634 16.7729i 0.541581 1.17723i
\(204\) 0 0
\(205\) 4.00138 + 1.78153i 0.279469 + 0.124427i
\(206\) 0 0
\(207\) −34.8045 7.39791i −2.41908 0.514191i
\(208\) 0 0
\(209\) −4.15526 + 6.03840i −0.287426 + 0.417685i
\(210\) 0 0
\(211\) −7.12826 21.9385i −0.490730 1.51031i −0.823507 0.567306i \(-0.807986\pi\)
0.332777 0.943005i \(-0.392014\pi\)
\(212\) 0 0
\(213\) 1.00583 + 9.56985i 0.0689185 + 0.655715i
\(214\) 0 0
\(215\) 7.77866 1.65340i 0.530500 0.112761i
\(216\) 0 0
\(217\) −8.43843 + 2.62752i −0.572838 + 0.178367i
\(218\) 0 0
\(219\) −19.8657 34.4084i −1.34240 2.32510i
\(220\) 0 0
\(221\) −0.863722 + 1.49601i −0.0581002 + 0.100633i
\(222\) 0 0
\(223\) 0.109862 + 0.0798192i 0.00735689 + 0.00534509i 0.591458 0.806336i \(-0.298553\pi\)
−0.584101 + 0.811681i \(0.698553\pi\)
\(224\) 0 0
\(225\) −6.16716 + 18.9806i −0.411144 + 1.26537i
\(226\) 0 0
\(227\) 0.184923 + 1.75942i 0.0122738 + 0.116777i 0.998943 0.0459597i \(-0.0146346\pi\)
−0.986670 + 0.162737i \(0.947968\pi\)
\(228\) 0 0
\(229\) −18.6209 + 20.6807i −1.23051 + 1.36662i −0.323099 + 0.946365i \(0.604725\pi\)
−0.907408 + 0.420251i \(0.861942\pi\)
\(230\) 0 0
\(231\) −22.8315 + 10.5312i −1.50220 + 0.692901i
\(232\) 0 0
\(233\) −10.1703 + 11.2952i −0.666275 + 0.739974i −0.977633 0.210319i \(-0.932550\pi\)
0.311357 + 0.950293i \(0.399216\pi\)
\(234\) 0 0
\(235\) 1.06286 + 10.1124i 0.0693334 + 0.659663i
\(236\) 0 0
\(237\) 3.52587 10.8515i 0.229030 0.704881i
\(238\) 0 0
\(239\) 0.203662 + 0.147969i 0.0131738 + 0.00957133i 0.594353 0.804205i \(-0.297408\pi\)
−0.581179 + 0.813776i \(0.697408\pi\)
\(240\) 0 0
\(241\) −7.50249 + 12.9947i −0.483278 + 0.837062i −0.999816 0.0192024i \(-0.993887\pi\)
0.516538 + 0.856265i \(0.327221\pi\)
\(242\) 0 0
\(243\) 5.89573 + 10.2117i 0.378211 + 0.655081i
\(244\) 0 0
\(245\) 2.51568 7.13991i 0.160721 0.456152i
\(246\) 0 0
\(247\) 1.34983 0.286916i 0.0858878 0.0182560i
\(248\) 0 0
\(249\) 0.261915 + 2.49195i 0.0165982 + 0.157921i
\(250\) 0 0
\(251\) 4.24511 + 13.0651i 0.267949 + 0.824662i 0.990999 + 0.133867i \(0.0427395\pi\)
−0.723050 + 0.690795i \(0.757261\pi\)
\(252\) 0 0
\(253\) −0.579705 22.6430i −0.0364458 1.42355i
\(254\) 0 0
\(255\) −8.38533 1.78236i −0.525110 0.111616i
\(256\) 0 0
\(257\) 6.96286 + 3.10007i 0.434332 + 0.193377i 0.612243 0.790670i \(-0.290267\pi\)
−0.177911 + 0.984046i \(0.556934\pi\)
\(258\) 0 0
\(259\) 19.9503 1.84908i 1.23965 0.114896i
\(260\) 0 0
\(261\) −3.80042 + 36.1586i −0.235240 + 2.23816i
\(262\) 0 0
\(263\) 0.0803943 0.139247i 0.00495732 0.00858634i −0.863536 0.504287i \(-0.831755\pi\)
0.868493 + 0.495701i \(0.165089\pi\)
\(264\) 0 0
\(265\) 8.67916 0.533156
\(266\) 0 0
\(267\) 0.878144 + 0.638009i 0.0537416 + 0.0390455i
\(268\) 0 0
\(269\) −6.90790 7.67200i −0.421182 0.467770i 0.494790 0.869013i \(-0.335245\pi\)
−0.915972 + 0.401243i \(0.868578\pi\)
\(270\) 0 0
\(271\) −15.9244 7.09000i −0.967339 0.430687i −0.138616 0.990346i \(-0.544265\pi\)
−0.828723 + 0.559659i \(0.810932\pi\)
\(272\) 0 0
\(273\) 4.48362 + 1.51803i 0.271361 + 0.0918755i
\(274\) 0 0
\(275\) −12.6645 1.00415i −0.763697 0.0605527i
\(276\) 0 0
\(277\) 4.25426 + 0.904270i 0.255613 + 0.0543323i 0.333936 0.942596i \(-0.391623\pi\)
−0.0783225 + 0.996928i \(0.524956\pi\)
\(278\) 0 0
\(279\) 14.0804 10.2300i 0.842972 0.612455i
\(280\) 0 0
\(281\) −3.74325 + 11.5206i −0.223304 + 0.687259i 0.775156 + 0.631770i \(0.217671\pi\)
−0.998459 + 0.0554880i \(0.982329\pi\)
\(282\) 0 0
\(283\) 28.2298 12.5687i 1.67809 0.747133i 0.678163 0.734911i \(-0.262776\pi\)
0.999925 0.0122218i \(-0.00389043\pi\)
\(284\) 0 0
\(285\) 3.42419 + 5.93087i 0.202831 + 0.351314i
\(286\) 0 0
\(287\) −10.6425 1.25109i −0.628206 0.0738496i
\(288\) 0 0
\(289\) 0.976960 9.29515i 0.0574682 0.546774i
\(290\) 0 0
\(291\) −10.5373 11.7029i −0.617708 0.686034i
\(292\) 0 0
\(293\) 4.20555 3.05551i 0.245691 0.178505i −0.458124 0.888888i \(-0.651478\pi\)
0.703815 + 0.710383i \(0.251478\pi\)
\(294\) 0 0
\(295\) 2.79999 + 8.61748i 0.163022 + 0.501729i
\(296\) 0 0
\(297\) 15.2440 14.4491i 0.884544 0.838420i
\(298\) 0 0
\(299\) −2.85338 + 3.16900i −0.165015 + 0.183268i
\(300\) 0 0
\(301\) −16.9674 + 9.51980i −0.977983 + 0.548712i
\(302\) 0 0
\(303\) −8.04189 + 1.70936i −0.461995 + 0.0982000i
\(304\) 0 0
\(305\) −14.1611 + 6.30494i −0.810864 + 0.361020i
\(306\) 0 0
\(307\) 17.9401 1.02389 0.511947 0.859017i \(-0.328924\pi\)
0.511947 + 0.859017i \(0.328924\pi\)
\(308\) 0 0
\(309\) 31.8792 1.81355
\(310\) 0 0
\(311\) −1.98048 + 0.881768i −0.112303 + 0.0500005i −0.462119 0.886818i \(-0.652911\pi\)
0.349816 + 0.936818i \(0.386244\pi\)
\(312\) 0 0
\(313\) −18.8173 + 3.99975i −1.06362 + 0.226079i −0.706307 0.707906i \(-0.749640\pi\)
−0.357312 + 0.933985i \(0.616307\pi\)
\(314\) 0 0
\(315\) −0.183353 + 14.9064i −0.0103308 + 0.839881i
\(316\) 0 0
\(317\) 10.3050 11.4449i 0.578787 0.642808i −0.380654 0.924718i \(-0.624301\pi\)
0.959441 + 0.281909i \(0.0909678\pi\)
\(318\) 0 0
\(319\) −22.9480 + 3.00754i −1.28484 + 0.168390i
\(320\) 0 0
\(321\) 14.0251 + 43.1649i 0.782805 + 2.40923i
\(322\) 0 0
\(323\) 4.94650 3.59384i 0.275230 0.199967i
\(324\) 0 0
\(325\) 1.60041 + 1.77744i 0.0887750 + 0.0985946i
\(326\) 0 0
\(327\) 3.28616 31.2657i 0.181725 1.72900i
\(328\) 0 0
\(329\) −9.83781 22.8483i −0.542376 1.25967i
\(330\) 0 0
\(331\) 2.96884 + 5.14219i 0.163182 + 0.282640i 0.936008 0.351978i \(-0.114491\pi\)
−0.772826 + 0.634618i \(0.781157\pi\)
\(332\) 0 0
\(333\) −36.0445 + 16.0481i −1.97523 + 0.879428i
\(334\) 0 0
\(335\) 2.04982 6.30870i 0.111994 0.344681i
\(336\) 0 0
\(337\) 4.17284 3.03174i 0.227309 0.165150i −0.468302 0.883569i \(-0.655134\pi\)
0.695611 + 0.718419i \(0.255134\pi\)
\(338\) 0 0
\(339\) −55.4565 11.7876i −3.01198 0.640217i
\(340\) 0 0
\(341\) 8.42039 + 7.20020i 0.455990 + 0.389913i
\(342\) 0 0
\(343\) −0.683225 + 18.5077i −0.0368907 + 0.999319i
\(344\) 0 0
\(345\) −19.3327 8.60745i −1.04083 0.463410i
\(346\) 0 0
\(347\) 17.8855 + 19.8639i 0.960145 + 1.06635i 0.997749 + 0.0670565i \(0.0213608\pi\)
−0.0376040 + 0.999293i \(0.511973\pi\)
\(348\) 0 0
\(349\) 10.6247 + 7.71930i 0.568728 + 0.413205i 0.834643 0.550792i \(-0.185674\pi\)
−0.265915 + 0.963996i \(0.585674\pi\)
\(350\) 0 0
\(351\) −3.95429 −0.211064
\(352\) 0 0
\(353\) 16.2404 28.1292i 0.864390 1.49717i −0.00326199 0.999995i \(-0.501038\pi\)
0.867652 0.497172i \(-0.165628\pi\)
\(354\) 0 0
\(355\) −0.379626 + 3.61190i −0.0201484 + 0.191700i
\(356\) 0 0
\(357\) 20.8834 1.93556i 1.10527 0.102441i
\(358\) 0 0
\(359\) 9.25795 + 4.12190i 0.488616 + 0.217546i 0.636230 0.771499i \(-0.280493\pi\)
−0.147615 + 0.989045i \(0.547160\pi\)
\(360\) 0 0
\(361\) 13.8071 + 2.93480i 0.726691 + 0.154463i
\(362\) 0 0
\(363\) 26.4138 + 17.1972i 1.38636 + 0.902617i
\(364\) 0 0
\(365\) −4.63390 14.2617i −0.242549 0.746490i
\(366\) 0 0
\(367\) 2.24832 + 21.3913i 0.117361 + 1.11662i 0.881703 + 0.471806i \(0.156398\pi\)
−0.764341 + 0.644812i \(0.776936\pi\)
\(368\) 0 0
\(369\) 20.6409 4.38736i 1.07452 0.228397i
\(370\) 0 0
\(371\) −20.2734 + 6.31263i −1.05254 + 0.327735i
\(372\) 0 0
\(373\) −3.85835 6.68285i −0.199778 0.346025i 0.748679 0.662933i \(-0.230689\pi\)
−0.948456 + 0.316908i \(0.897355\pi\)
\(374\) 0 0
\(375\) −13.6816 + 23.6971i −0.706512 + 1.22372i
\(376\) 0 0
\(377\) 3.52512 + 2.56115i 0.181553 + 0.131906i
\(378\) 0 0
\(379\) 2.43418 7.49164i 0.125035 0.384820i −0.868872 0.495037i \(-0.835155\pi\)
0.993908 + 0.110217i \(0.0351546\pi\)
\(380\) 0 0
\(381\) −3.40041 32.3527i −0.174208 1.65748i
\(382\) 0 0
\(383\) −1.91749 + 2.12959i −0.0979794 + 0.108817i −0.790140 0.612926i \(-0.789992\pi\)
0.692161 + 0.721743i \(0.256659\pi\)
\(384\) 0 0
\(385\) −9.25525 + 2.09626i −0.471691 + 0.106835i
\(386\) 0 0
\(387\) 25.6363 28.4720i 1.30317 1.44731i
\(388\) 0 0
\(389\) 1.86307 + 17.7259i 0.0944612 + 0.898738i 0.934440 + 0.356120i \(0.115900\pi\)
−0.839979 + 0.542619i \(0.817433\pi\)
\(390\) 0 0
\(391\) −5.83843 + 17.9688i −0.295262 + 0.908724i
\(392\) 0 0
\(393\) −32.7485 23.7932i −1.65194 1.20021i
\(394\) 0 0
\(395\) 2.15320 3.72945i 0.108339 0.187649i
\(396\) 0 0
\(397\) −2.80186 4.85296i −0.140621 0.243563i 0.787109 0.616813i \(-0.211577\pi\)
−0.927731 + 0.373250i \(0.878243\pi\)
\(398\) 0 0
\(399\) −12.3122 11.3632i −0.616379 0.568872i
\(400\) 0 0
\(401\) −21.1008 + 4.48512i −1.05373 + 0.223976i −0.702037 0.712141i \(-0.747726\pi\)
−0.351689 + 0.936117i \(0.614392\pi\)
\(402\) 0 0
\(403\) −0.218027 2.07439i −0.0108607 0.103333i
\(404\) 0 0
\(405\) −0.840564 2.58699i −0.0417680 0.128549i
\(406\) 0 0
\(407\) −15.2782 19.9350i −0.757311 0.988140i
\(408\) 0 0
\(409\) −27.3816 5.82014i −1.35393 0.287787i −0.526893 0.849931i \(-0.676643\pi\)
−0.827039 + 0.562144i \(0.809977\pi\)
\(410\) 0 0
\(411\) 0.756498 + 0.336815i 0.0373153 + 0.0166138i
\(412\) 0 0
\(413\) −12.8082 18.0928i −0.630249 0.890289i
\(414\) 0 0
\(415\) −0.0988531 + 0.940524i −0.00485251 + 0.0461685i
\(416\) 0 0
\(417\) −10.0648 + 17.4328i −0.492877 + 0.853688i
\(418\) 0 0
\(419\) −13.2229 −0.645981 −0.322990 0.946402i \(-0.604688\pi\)
−0.322990 + 0.946402i \(0.604688\pi\)
\(420\) 0 0
\(421\) 8.84984 + 6.42979i 0.431315 + 0.313369i 0.782174 0.623059i \(-0.214111\pi\)
−0.350860 + 0.936428i \(0.614111\pi\)
\(422\) 0 0
\(423\) 32.7791 + 36.4049i 1.59378 + 1.77007i
\(424\) 0 0
\(425\) 9.68091 + 4.31022i 0.469593 + 0.209076i
\(426\) 0 0
\(427\) 28.4928 25.0274i 1.37886 1.21116i
\(428\) 0 0
\(429\) −1.38188 5.77077i −0.0667177 0.278616i
\(430\) 0 0
\(431\) −3.28136 0.697475i −0.158058 0.0335962i 0.128203 0.991748i \(-0.459079\pi\)
−0.286261 + 0.958152i \(0.592412\pi\)
\(432\) 0 0
\(433\) −8.56499 + 6.22283i −0.411607 + 0.299050i −0.774252 0.632877i \(-0.781874\pi\)
0.362645 + 0.931927i \(0.381874\pi\)
\(434\) 0 0
\(435\) −6.68206 + 20.5653i −0.320380 + 0.986029i
\(436\) 0 0
\(437\) 13.7885 6.13902i 0.659591 0.293669i
\(438\) 0 0
\(439\) 5.41795 + 9.38416i 0.258584 + 0.447881i 0.965863 0.259054i \(-0.0834106\pi\)
−0.707278 + 0.706935i \(0.750077\pi\)
\(440\) 0 0
\(441\) −10.4136 34.9528i −0.495886 1.66442i
\(442\) 0 0
\(443\) −1.94808 + 18.5348i −0.0925563 + 0.880614i 0.845464 + 0.534033i \(0.179324\pi\)
−0.938020 + 0.346581i \(0.887343\pi\)
\(444\) 0 0
\(445\) 0.274125 + 0.304447i 0.0129948 + 0.0144322i
\(446\) 0 0
\(447\) 51.1869 37.1895i 2.42106 1.75900i
\(448\) 0 0
\(449\) 11.0012 + 33.8582i 0.519179 + 1.59787i 0.775548 + 0.631288i \(0.217474\pi\)
−0.256370 + 0.966579i \(0.582526\pi\)
\(450\) 0 0
\(451\) 5.77594 + 12.1277i 0.271979 + 0.571072i
\(452\) 0 0
\(453\) 39.1812 43.5151i 1.84089 2.04452i
\(454\) 0 0
\(455\) 1.53613 + 0.912257i 0.0720147 + 0.0427672i
\(456\) 0 0
\(457\) −16.9287 + 3.59830i −0.791890 + 0.168321i −0.586061 0.810267i \(-0.699322\pi\)
−0.205828 + 0.978588i \(0.565989\pi\)
\(458\) 0 0
\(459\) −16.0053 + 7.12601i −0.747062 + 0.332613i
\(460\) 0 0
\(461\) 18.2705 0.850942 0.425471 0.904972i \(-0.360108\pi\)
0.425471 + 0.904972i \(0.360108\pi\)
\(462\) 0 0
\(463\) −11.1967 −0.520357 −0.260178 0.965561i \(-0.583781\pi\)
−0.260178 + 0.965561i \(0.583781\pi\)
\(464\) 0 0
\(465\) 9.45625 4.21019i 0.438523 0.195243i
\(466\) 0 0
\(467\) −35.8944 + 7.62960i −1.66100 + 0.353056i −0.940340 0.340237i \(-0.889493\pi\)
−0.720656 + 0.693293i \(0.756159\pi\)
\(468\) 0 0
\(469\) −0.199600 + 16.2272i −0.00921665 + 0.749303i
\(470\) 0 0
\(471\) 15.7613 17.5047i 0.726244 0.806576i
\(472\) 0 0
\(473\) 21.4265 + 11.6498i 0.985192 + 0.535660i
\(474\) 0 0
\(475\) −2.61601 8.05126i −0.120031 0.369417i
\(476\) 0 0
\(477\) 33.8283 24.5777i 1.54889 1.12534i
\(478\) 0 0
\(479\) −14.5731 16.1850i −0.665860 0.739513i 0.311697 0.950181i \(-0.399102\pi\)
−0.977557 + 0.210669i \(0.932436\pi\)
\(480\) 0 0
\(481\) −0.494268 + 4.70265i −0.0225367 + 0.214422i
\(482\) 0 0
\(483\) 51.4191 + 6.04464i 2.33965 + 0.275041i
\(484\) 0 0
\(485\) −2.97179 5.14730i −0.134942 0.233727i
\(486\) 0 0
\(487\) 18.2284 8.11579i 0.826006 0.367762i 0.0502050 0.998739i \(-0.484013\pi\)
0.775801 + 0.630977i \(0.217346\pi\)
\(488\) 0 0
\(489\) 3.37534 10.3882i 0.152638 0.469772i
\(490\) 0 0
\(491\) −15.1747 + 11.0251i −0.684826 + 0.497555i −0.874955 0.484204i \(-0.839109\pi\)
0.190129 + 0.981759i \(0.439109\pi\)
\(492\) 0 0
\(493\) 18.8836 + 4.01383i 0.850475 + 0.180774i
\(494\) 0 0
\(495\) 15.9395 9.75493i 0.716426 0.438452i
\(496\) 0 0
\(497\) −1.74029 8.71304i −0.0780627 0.390833i
\(498\) 0 0
\(499\) −12.5181 5.57341i −0.560386 0.249500i 0.106940 0.994265i \(-0.465895\pi\)
−0.667326 + 0.744765i \(0.732561\pi\)
\(500\) 0 0
\(501\) −13.6355 15.1438i −0.609189 0.676573i
\(502\) 0 0
\(503\) 30.2095 + 21.9485i 1.34697 + 0.978633i 0.999156 + 0.0410704i \(0.0130768\pi\)
0.347817 + 0.937563i \(0.386923\pi\)
\(504\) 0 0
\(505\) −3.10302 −0.138082
\(506\) 0 0
\(507\) 18.0661 31.2914i 0.802344 1.38970i
\(508\) 0 0
\(509\) 2.35307 22.3880i 0.104298 0.992330i −0.809764 0.586756i \(-0.800405\pi\)
0.914062 0.405575i \(-0.132929\pi\)
\(510\) 0 0
\(511\) 21.1972 + 29.9430i 0.937707 + 1.32460i
\(512\) 0 0
\(513\) 12.7860 + 5.69269i 0.564516 + 0.251339i
\(514\) 0 0
\(515\) 11.7691 + 2.50159i 0.518607 + 0.110233i
\(516\) 0 0
\(517\) −17.6778 + 25.6893i −0.777470 + 1.12981i
\(518\) 0 0
\(519\) 3.68716 + 11.3479i 0.161848 + 0.498118i
\(520\) 0 0
\(521\) 2.97144 + 28.2713i 0.130181 + 1.23859i 0.843260 + 0.537506i \(0.180634\pi\)
−0.713079 + 0.701084i \(0.752700\pi\)
\(522\) 0 0
\(523\) −29.2253 + 6.21204i −1.27794 + 0.271633i −0.796388 0.604787i \(-0.793258\pi\)
−0.481547 + 0.876420i \(0.659925\pi\)
\(524\) 0 0
\(525\) 6.38637 28.3277i 0.278724 1.23632i
\(526\) 0 0
\(527\) −4.62074 8.00335i −0.201282 0.348631i
\(528\) 0 0
\(529\) −11.8200 + 20.4729i −0.513915 + 0.890127i
\(530\) 0 0
\(531\) 35.3164 + 25.6589i 1.53260 + 1.11350i
\(532\) 0 0
\(533\) 0.781495 2.40519i 0.0338503 0.104180i
\(534\) 0 0
\(535\) 1.79056 + 17.0360i 0.0774126 + 0.736532i
\(536\) 0 0
\(537\) 37.0715 41.1721i 1.59975 1.77671i
\(538\) 0 0
\(539\) 20.0944 11.6282i 0.865526 0.500863i
\(540\) 0 0
\(541\) 4.19838 4.66277i 0.180502 0.200468i −0.646103 0.763250i \(-0.723602\pi\)
0.826605 + 0.562782i \(0.190269\pi\)
\(542\) 0 0
\(543\) −4.74330 45.1295i −0.203554 1.93669i
\(544\) 0 0
\(545\) 3.66663 11.2847i 0.157061 0.483384i
\(546\) 0 0
\(547\) −29.0569 21.1110i −1.24238 0.902643i −0.244627 0.969617i \(-0.578665\pi\)
−0.997755 + 0.0669745i \(0.978665\pi\)
\(548\) 0 0
\(549\) −37.3407 + 64.6760i −1.59366 + 2.76031i
\(550\) 0 0
\(551\) −7.71120 13.3562i −0.328508 0.568993i
\(552\) 0 0
\(553\) −2.31705 + 10.2776i −0.0985308 + 0.437048i
\(554\) 0 0
\(555\) −22.9533 + 4.87887i −0.974312 + 0.207096i
\(556\) 0 0
\(557\) −2.31337 22.0102i −0.0980206 0.932604i −0.927439 0.373975i \(-0.877994\pi\)
0.829418 0.558629i \(-0.188672\pi\)
\(558\) 0 0
\(559\) −1.41888 4.36687i −0.0600123 0.184699i
\(560\) 0 0
\(561\) −15.9927 20.8673i −0.675214 0.881020i
\(562\) 0 0
\(563\) −43.3867 9.22212i −1.82853 0.388666i −0.840360 0.542029i \(-0.817656\pi\)
−0.988170 + 0.153363i \(0.950990\pi\)
\(564\) 0 0
\(565\) −19.5483 8.70345i −0.822402 0.366157i
\(566\) 0 0
\(567\) 3.84505 + 5.43151i 0.161477 + 0.228102i
\(568\) 0 0
\(569\) −2.03990 + 19.4083i −0.0855170 + 0.813640i 0.864750 + 0.502203i \(0.167477\pi\)
−0.950267 + 0.311437i \(0.899190\pi\)
\(570\) 0 0
\(571\) −9.23702 + 15.9990i −0.386557 + 0.669537i −0.991984 0.126364i \(-0.959669\pi\)
0.605427 + 0.795901i \(0.293002\pi\)
\(572\) 0 0
\(573\) −22.5016 −0.940017
\(574\) 0 0
\(575\) 21.1636 + 15.3762i 0.882583 + 0.641234i
\(576\) 0 0
\(577\) 24.4557 + 27.1608i 1.01810 + 1.13072i 0.991372 + 0.131076i \(0.0418431\pi\)
0.0267312 + 0.999643i \(0.491490\pi\)
\(578\) 0 0
\(579\) −29.5231 13.1445i −1.22694 0.546268i
\(580\) 0 0
\(581\) −0.453165 2.26884i −0.0188005 0.0941274i
\(582\) 0 0
\(583\) 20.2300 + 17.2985i 0.837843 + 0.716432i
\(584\) 0 0
\(585\) −3.44136 0.731485i −0.142283 0.0302432i
\(586\) 0 0
\(587\) −4.41680 + 3.20899i −0.182301 + 0.132449i −0.675193 0.737641i \(-0.735940\pi\)
0.492892 + 0.870090i \(0.335940\pi\)
\(588\) 0 0
\(589\) −2.28137 + 7.02133i −0.0940021 + 0.289309i
\(590\) 0 0
\(591\) 22.0963 9.83789i 0.908919 0.404677i
\(592\) 0 0
\(593\) 21.1055 + 36.5557i 0.866697 + 1.50116i 0.865352 + 0.501164i \(0.167095\pi\)
0.00134483 + 0.999999i \(0.499572\pi\)
\(594\) 0 0
\(595\) 7.86156 + 0.924178i 0.322293 + 0.0378876i
\(596\) 0 0
\(597\) −7.74062 + 73.6471i −0.316803 + 3.01417i
\(598\) 0 0
\(599\) −29.4761 32.7365i −1.20436 1.33758i −0.926195 0.377046i \(-0.876940\pi\)
−0.278167 0.960533i \(-0.589727\pi\)
\(600\) 0 0
\(601\) −18.8729 + 13.7120i −0.769841 + 0.559322i −0.901913 0.431918i \(-0.857837\pi\)
0.132072 + 0.991240i \(0.457837\pi\)
\(602\) 0 0
\(603\) −9.87554 30.3938i −0.402163 1.23773i
\(604\) 0 0
\(605\) 8.40187 + 8.42151i 0.341585 + 0.342383i
\(606\) 0 0
\(607\) 1.97877 2.19764i 0.0803156 0.0891995i −0.701647 0.712524i \(-0.747552\pi\)
0.781963 + 0.623325i \(0.214219\pi\)
\(608\) 0 0
\(609\) 0.650660 52.8979i 0.0263661 2.14353i
\(610\) 0 0
\(611\) 5.74262 1.22063i 0.232322 0.0493815i
\(612\) 0 0
\(613\) −18.3618 + 8.17522i −0.741628 + 0.330194i −0.742537 0.669806i \(-0.766377\pi\)
0.000908552 1.00000i \(0.499711\pi\)
\(614\) 0 0
\(615\) 12.5503 0.506079
\(616\) 0 0
\(617\) 0.715487 0.0288044 0.0144022 0.999896i \(-0.495415\pi\)
0.0144022 + 0.999896i \(0.495415\pi\)
\(618\) 0 0
\(619\) −28.2158 + 12.5625i −1.13409 + 0.504929i −0.885943 0.463794i \(-0.846488\pi\)
−0.248146 + 0.968723i \(0.579821\pi\)
\(620\) 0 0
\(621\) −42.3041 + 8.99202i −1.69761 + 0.360837i
\(622\) 0 0
\(623\) −0.861756 0.511769i −0.0345255 0.0205036i
\(624\) 0 0
\(625\) 5.90497 6.55813i 0.236199 0.262325i
\(626\) 0 0
\(627\) −3.83951 + 20.6489i −0.153335 + 0.824638i
\(628\) 0 0
\(629\) 6.47403 + 19.9250i 0.258137 + 0.794463i
\(630\) 0 0
\(631\) −17.2828 + 12.5567i −0.688016 + 0.499873i −0.876007 0.482298i \(-0.839802\pi\)
0.187991 + 0.982171i \(0.439802\pi\)
\(632\) 0 0
\(633\) −44.2271 49.1191i −1.75787 1.95231i
\(634\) 0 0
\(635\) 1.28340 12.2107i 0.0509301 0.484568i
\(636\) 0 0
\(637\) −4.25171 1.01364i −0.168459 0.0401619i
\(638\) 0 0
\(639\) 8.74855 + 15.1529i 0.346087 + 0.599440i
\(640\) 0 0
\(641\) −10.1661 + 4.52624i −0.401537 + 0.178776i −0.597561 0.801823i \(-0.703863\pi\)
0.196024 + 0.980599i \(0.437197\pi\)
\(642\) 0 0
\(643\) 1.54329 4.74975i 0.0608613 0.187312i −0.916003 0.401171i \(-0.868603\pi\)
0.976865 + 0.213859i \(0.0686033\pi\)
\(644\) 0 0
\(645\) 18.4346 13.3935i 0.725861 0.527369i
\(646\) 0 0
\(647\) −7.14680 1.51910i −0.280970 0.0597220i 0.0652712 0.997868i \(-0.479209\pi\)
−0.346241 + 0.938146i \(0.612542\pi\)
\(648\) 0 0
\(649\) −10.6492 + 25.6670i −0.418016 + 1.00752i
\(650\) 0 0
\(651\) −19.0264 + 16.7123i −0.745702 + 0.655007i
\(652\) 0 0
\(653\) 7.15803 + 3.18696i 0.280116 + 0.124715i 0.541986 0.840388i \(-0.317673\pi\)
−0.261870 + 0.965103i \(0.584339\pi\)
\(654\) 0 0
\(655\) −10.2229 11.3537i −0.399443 0.443626i
\(656\) 0 0
\(657\) −58.4476 42.4647i −2.28026 1.65670i
\(658\) 0 0
\(659\) 0.307551 0.0119805 0.00599025 0.999982i \(-0.498093\pi\)
0.00599025 + 0.999982i \(0.498093\pi\)
\(660\) 0 0
\(661\) 0.967431 1.67564i 0.0376287 0.0651748i −0.846598 0.532233i \(-0.821353\pi\)
0.884226 + 0.467058i \(0.154686\pi\)
\(662\) 0 0
\(663\) −0.517385 + 4.92259i −0.0200936 + 0.191178i
\(664\) 0 0
\(665\) −3.65368 5.16119i −0.141684 0.200142i
\(666\) 0 0
\(667\) 43.5368 + 19.3838i 1.68575 + 0.750544i
\(668\) 0 0
\(669\) 0.380600 + 0.0808991i 0.0147149 + 0.00312774i
\(670\) 0 0
\(671\) −45.5743 13.5287i −1.75938 0.522268i
\(672\) 0 0
\(673\) −5.58936 17.2023i −0.215454 0.663099i −0.999121 0.0419181i \(-0.986653\pi\)
0.783667 0.621181i \(-0.213347\pi\)
\(674\) 0 0
\(675\) 2.53563 + 24.1249i 0.0975963 + 0.928567i
\(676\) 0 0
\(677\) 26.8330 5.70352i 1.03127 0.219204i 0.338960 0.940801i \(-0.389925\pi\)
0.692314 + 0.721597i \(0.256591\pi\)
\(678\) 0 0
\(679\) 10.6855 + 9.86194i 0.410073 + 0.378467i
\(680\) 0 0
\(681\) 2.53455 + 4.38998i 0.0971243 + 0.168224i
\(682\) 0 0
\(683\) 11.3231 19.6121i 0.433265 0.750437i −0.563887 0.825852i \(-0.690695\pi\)
0.997152 + 0.0754148i \(0.0240281\pi\)
\(684\) 0 0
\(685\) 0.252851 + 0.183707i 0.00966096 + 0.00701910i
\(686\) 0 0
\(687\) −24.6405 + 75.8356i −0.940092 + 2.89331i
\(688\) 0 0
\(689\) −0.523812 4.98374i −0.0199557 0.189865i
\(690\) 0 0
\(691\) 10.3283 11.4707i 0.392906 0.436366i −0.513942 0.857825i \(-0.671815\pi\)
0.906847 + 0.421459i \(0.138482\pi\)
\(692\) 0 0
\(693\) −30.1375 + 34.3795i −1.14483 + 1.30597i
\(694\) 0 0
\(695\) −5.08367 + 5.64599i −0.192835 + 0.214165i
\(696\) 0 0
\(697\) −1.17123 11.1435i −0.0443636 0.422091i
\(698\) 0 0
\(699\) −13.4580 + 41.4193i −0.509026 + 1.56662i
\(700\) 0 0
\(701\) −5.95134 4.32390i −0.224779 0.163312i 0.469696 0.882828i \(-0.344363\pi\)
−0.694475 + 0.719517i \(0.744363\pi\)
\(702\) 0 0
\(703\) 8.36824 14.4942i 0.315614 0.546660i
\(704\) 0 0
\(705\) 14.5676 + 25.2318i 0.548647 + 0.950285i
\(706\) 0 0
\(707\) 7.24824 2.25692i 0.272598 0.0848803i
\(708\) 0 0
\(709\) 21.5521 4.58105i 0.809408 0.172045i 0.215422 0.976521i \(-0.430887\pi\)
0.593985 + 0.804476i \(0.297554\pi\)
\(710\) 0 0
\(711\) −2.16867 20.6335i −0.0813315 0.773817i
\(712\) 0 0
\(713\) −7.04968 21.6967i −0.264012 0.812547i
\(714\) 0 0
\(715\) −0.0573196 2.23887i −0.00214363 0.0837291i
\(716\) 0 0
\(717\) 0.705558 + 0.149971i 0.0263495 + 0.00560077i
\(718\) 0 0
\(719\) 13.3285 + 5.93421i 0.497067 + 0.221309i 0.639929 0.768434i \(-0.278964\pi\)
−0.142862 + 0.989743i \(0.545630\pi\)
\(720\) 0 0
\(721\) −29.3105 + 2.71662i −1.09158 + 0.101172i
\(722\) 0 0
\(723\) −4.49413 + 42.7588i −0.167139 + 1.59022i
\(724\) 0 0
\(725\) 13.3650 23.1488i 0.496363 0.859726i
\(726\) 0 0
\(727\) −1.06804 −0.0396116 −0.0198058 0.999804i \(-0.506305\pi\)
−0.0198058 + 0.999804i \(0.506305\pi\)
\(728\) 0 0
\(729\) 33.4385 + 24.2945i 1.23846 + 0.899797i
\(730\) 0 0
\(731\) −13.6125 15.1183i −0.503478 0.559169i
\(732\) 0 0
\(733\) −37.6755 16.7742i −1.39158 0.619570i −0.432221 0.901768i \(-0.642270\pi\)
−0.959356 + 0.282198i \(0.908937\pi\)
\(734\) 0 0
\(735\) −1.73603 21.6214i −0.0640345 0.797518i
\(736\) 0 0
\(737\) 17.3518 10.6193i 0.639162 0.391166i
\(738\) 0 0
\(739\) 34.2805 + 7.28654i 1.26103 + 0.268040i 0.789467 0.613794i \(-0.210357\pi\)
0.471561 + 0.881833i \(0.343691\pi\)
\(740\) 0 0
\(741\) 3.19896 2.32418i 0.117517 0.0853809i
\(742\) 0 0
\(743\) 2.26608 6.97427i 0.0831343 0.255861i −0.900846 0.434139i \(-0.857053\pi\)
0.983980 + 0.178278i \(0.0570526\pi\)
\(744\) 0 0
\(745\) 21.8153 9.71281i 0.799252 0.355850i
\(746\) 0 0
\(747\) 2.27809 + 3.94576i 0.0833509 + 0.144368i
\(748\) 0 0
\(749\) −16.5734 38.4917i −0.605578 1.40645i
\(750\) 0 0
\(751\) −2.57657 + 24.5145i −0.0940205 + 0.894546i 0.841258 + 0.540634i \(0.181815\pi\)
−0.935279 + 0.353912i \(0.884851\pi\)
\(752\) 0 0
\(753\) 26.3386 + 29.2520i 0.959833 + 1.06600i
\(754\) 0 0
\(755\) 17.8794 12.9902i 0.650700 0.472761i
\(756\) 0 0
\(757\) −1.90247 5.85521i −0.0691466 0.212811i 0.910512 0.413483i \(-0.135688\pi\)
−0.979659 + 0.200671i \(0.935688\pi\)
\(758\) 0 0
\(759\) −27.9064 58.5950i −1.01294 2.12686i
\(760\) 0 0
\(761\) −1.64073 + 1.82222i −0.0594766 + 0.0660554i −0.772149 0.635442i \(-0.780818\pi\)
0.712672 + 0.701497i \(0.247485\pi\)
\(762\) 0 0
\(763\) −0.357035 + 29.0265i −0.0129255 + 1.05083i
\(764\) 0 0
\(765\) −15.2474 + 3.24093i −0.551270 + 0.117176i
\(766\) 0 0
\(767\) 4.77934 2.12790i 0.172572 0.0768340i
\(768\) 0 0
\(769\) 20.3699 0.734557 0.367279 0.930111i \(-0.380290\pi\)
0.367279 + 0.930111i \(0.380290\pi\)
\(770\) 0 0
\(771\) 21.8390 0.786514
\(772\) 0 0
\(773\) 0.500541 0.222855i 0.0180032 0.00801554i −0.397715 0.917509i \(-0.630197\pi\)
0.415718 + 0.909493i \(0.363530\pi\)
\(774\) 0 0
\(775\) −12.5159 + 2.66034i −0.449586 + 0.0955624i
\(776\) 0 0
\(777\) 50.0673 28.0910i 1.79615 1.00776i
\(778\) 0 0
\(779\) −5.98950 + 6.65202i −0.214596 + 0.238333i
\(780\) 0 0
\(781\) −8.08377 + 7.66225i −0.289260 + 0.274177i
\(782\) 0 0
\(783\) 13.6561 + 42.0292i 0.488030 + 1.50200i
\(784\) 0 0
\(785\) 7.19234 5.22554i 0.256706 0.186508i
\(786\) 0 0
\(787\) 22.0796 + 24.5218i 0.787051 + 0.874109i 0.994564 0.104123i \(-0.0332036\pi\)
−0.207513 + 0.978232i \(0.566537\pi\)
\(788\) 0 0
\(789\) 0.0481577 0.458190i 0.00171446 0.0163120i
\(790\) 0 0
\(791\) 51.9926 + 6.11206i 1.84864 + 0.217320i
\(792\) 0 0
\(793\) 4.47509 + 7.75108i 0.158915 + 0.275249i
\(794\) 0 0
\(795\) 22.7187 10.1150i 0.805749 0.358743i
\(796\) 0 0
\(797\) −12.8643 + 39.5924i −0.455678 + 1.40243i 0.414659 + 0.909977i \(0.363901\pi\)
−0.870337 + 0.492456i \(0.836099\pi\)
\(798\) 0 0
\(799\) 21.0440 15.2893i 0.744482 0.540898i
\(800\) 0 0
\(801\) 1.93058 + 0.410357i 0.0682137 + 0.0144993i
\(802\) 0 0
\(803\) 17.6240 42.4781i 0.621939 1.49902i
\(804\) 0 0
\(805\) 18.5084 + 6.26645i 0.652335 + 0.220863i
\(806\) 0 0
\(807\) −27.0235 12.0316i −0.951271 0.423533i
\(808\) 0 0
\(809\) 5.12310 + 5.68978i 0.180119 + 0.200042i 0.826442 0.563021i \(-0.190361\pi\)
−0.646324 + 0.763063i \(0.723694\pi\)
\(810\) 0 0
\(811\) −24.2505 17.6190i −0.851550 0.618687i 0.0740232 0.997257i \(-0.476416\pi\)
−0.925573 + 0.378569i \(0.876416\pi\)
\(812\) 0 0
\(813\) −49.9469 −1.75171
\(814\) 0 0
\(815\) 2.06127 3.57023i 0.0722033 0.125060i
\(816\) 0 0
\(817\) −1.69877 + 16.1627i −0.0594325 + 0.565462i
\(818\) 0 0
\(819\) 8.57061 0.794360i 0.299482 0.0277572i
\(820\) 0 0
\(821\) −31.6455 14.0895i −1.10444 0.491727i −0.228203 0.973614i \(-0.573285\pi\)
−0.876234 + 0.481887i \(0.839952\pi\)
\(822\) 0 0
\(823\) −1.84848 0.392906i −0.0644338 0.0136958i 0.175582 0.984465i \(-0.443819\pi\)
−0.240016 + 0.970769i \(0.577153\pi\)
\(824\) 0 0
\(825\) −34.3210 + 12.1312i −1.19490 + 0.422353i
\(826\) 0 0
\(827\) −0.0291606 0.0897472i −0.00101401 0.00312082i 0.950548 0.310577i \(-0.100522\pi\)
−0.951562 + 0.307456i \(0.900522\pi\)
\(828\) 0 0
\(829\) 2.34473 + 22.3086i 0.0814360 + 0.774811i 0.956682 + 0.291134i \(0.0940325\pi\)
−0.875246 + 0.483677i \(0.839301\pi\)
\(830\) 0 0
\(831\) 12.1899 2.59104i 0.422862 0.0898821i
\(832\) 0 0
\(833\) −19.0358 + 3.55920i −0.659551 + 0.123319i
\(834\) 0 0
\(835\) −3.84557 6.66072i −0.133081 0.230504i
\(836\) 0 0
\(837\) 10.5773 18.3205i 0.365606 0.633248i
\(838\) 0 0
\(839\) −27.8840 20.2589i −0.962664 0.699416i −0.00889603 0.999960i \(-0.502832\pi\)
−0.953768 + 0.300544i \(0.902832\pi\)
\(840\) 0 0
\(841\) 6.08638 18.7320i 0.209875 0.645929i
\(842\) 0 0
\(843\) 3.62808 + 34.5189i 0.124958 + 1.18889i
\(844\) 0 0
\(845\) 9.12506 10.1344i 0.313912 0.348634i
\(846\) 0 0
\(847\) −25.7509 13.5606i −0.884812 0.465948i
\(848\) 0 0
\(849\) 59.2467 65.8002i 2.03334 2.25826i
\(850\) 0 0
\(851\) 5.40596 + 51.4343i 0.185314 + 1.76314i
\(852\) 0 0
\(853\) 10.6963 32.9197i 0.366233 1.12715i −0.582972 0.812492i \(-0.698110\pi\)
0.949205 0.314657i \(-0.101890\pi\)
\(854\) 0 0
\(855\) 10.0744 + 7.31950i 0.344538 + 0.250321i
\(856\) 0 0
\(857\) −5.24449 + 9.08372i −0.179148 + 0.310294i −0.941589 0.336764i \(-0.890668\pi\)
0.762441 + 0.647058i \(0.224001\pi\)
\(858\) 0 0
\(859\) 15.7529 + 27.2849i 0.537483 + 0.930948i 0.999039 + 0.0438365i \(0.0139581\pi\)
−0.461556 + 0.887111i \(0.652709\pi\)
\(860\) 0 0
\(861\) −29.3160 + 9.12826i −0.999086 + 0.311090i
\(862\) 0 0
\(863\) −24.9347 + 5.30003i −0.848787 + 0.180415i −0.611716 0.791077i \(-0.709521\pi\)
−0.237071 + 0.971492i \(0.576187\pi\)
\(864\) 0 0
\(865\) 0.470733 + 4.47872i 0.0160054 + 0.152281i
\(866\) 0 0
\(867\) −8.27561 25.4697i −0.281055 0.864997i
\(868\) 0 0
\(869\) 12.4520 4.40132i 0.422407 0.149305i
\(870\) 0 0
\(871\) −3.74629 0.796299i −0.126938 0.0269816i
\(872\) 0 0
\(873\) −26.1592 11.6468i −0.885353 0.394185i
\(874\) 0 0
\(875\) 10.5598 22.9536i 0.356985 0.775974i
\(876\) 0 0
\(877\) 5.26481 50.0913i 0.177780 1.69146i −0.434379 0.900730i \(-0.643032\pi\)
0.612159 0.790734i \(-0.290301\pi\)
\(878\) 0 0
\(879\) 7.44750 12.8995i 0.251198 0.435088i
\(880\) 0 0
\(881\) 35.1829 1.18534 0.592672 0.805444i \(-0.298073\pi\)
0.592672 + 0.805444i \(0.298073\pi\)
\(882\) 0 0
\(883\) −20.1316 14.6265i −0.677483 0.492220i 0.195039 0.980796i \(-0.437517\pi\)
−0.872522 + 0.488575i \(0.837517\pi\)
\(884\) 0 0
\(885\) 17.3724 + 19.2940i 0.583968 + 0.648562i
\(886\) 0 0
\(887\) 51.8290 + 23.0757i 1.74025 + 0.774808i 0.994030 + 0.109104i \(0.0347980\pi\)
0.746216 + 0.665704i \(0.231869\pi\)
\(888\) 0 0
\(889\) 5.88339 + 29.4561i 0.197323 + 0.987926i
\(890\) 0 0
\(891\) 3.19691 7.70530i 0.107100 0.258137i
\(892\) 0 0
\(893\) −20.3257 4.32037i −0.680175 0.144576i
\(894\) 0 0
\(895\) 16.9168 12.2908i 0.565465 0.410835i
\(896\) 0 0
\(897\) −3.77579 + 11.6207i −0.126070 + 0.388003i
\(898\) 0 0
\(899\) −21.2953 + 9.48127i −0.710238 + 0.316218i
\(900\) 0 0
\(901\) −11.1014 19.2281i −0.369840 0.640581i
\(902\) 0 0
\(903\) −33.3193 + 44.6936i −1.10880 + 1.48731i
\(904\) 0 0
\(905\) 1.79024 17.0330i 0.0595095 0.566195i
\(906\) 0 0
\(907\) −25.8493 28.7086i −0.858313 0.953253i 0.141011 0.990008i \(-0.454965\pi\)
−0.999324 + 0.0367547i \(0.988298\pi\)
\(908\) 0 0
\(909\) −12.0945 + 8.78714i −0.401148 + 0.291451i
\(910\) 0 0
\(911\) −3.28333 10.1051i −0.108782 0.334796i 0.881818 0.471590i \(-0.156320\pi\)
−0.990599 + 0.136795i \(0.956320\pi\)
\(912\) 0 0
\(913\) −2.10498 + 1.99522i −0.0696648 + 0.0660322i
\(914\) 0 0
\(915\) −29.7204 + 33.0078i −0.982526 + 1.09121i
\(916\) 0 0
\(917\) 32.1373 + 19.0853i 1.06127 + 0.630253i
\(918\) 0 0
\(919\) 21.1400 4.49344i 0.697344 0.148225i 0.154418 0.988006i \(-0.450650\pi\)
0.542926 + 0.839781i \(0.317316\pi\)
\(920\) 0 0
\(921\) 46.9602 20.9080i 1.54739 0.688943i
\(922\) 0 0
\(923\) 2.09693 0.0690214
\(924\) 0 0
\(925\) 29.0075 0.953761
\(926\) 0 0
\(927\) 52.9557 23.5774i 1.73929 0.774384i
\(928\) 0 0
\(929\) 17.8382 3.79163i 0.585253 0.124399i 0.0942370 0.995550i \(-0.469959\pi\)
0.491016 + 0.871150i \(0.336626\pi\)
\(930\) 0 0
\(931\) 12.2884 + 9.39842i 0.402737 + 0.308021i
\(932\) 0 0
\(933\) −4.15650 + 4.61626i −0.136078 + 0.151130i
\(934\) 0 0
\(935\) −4.26667 8.95871i −0.139535 0.292981i
\(936\) 0 0
\(937\) −11.7970 36.3075i −0.385392 1.18611i −0.936195 0.351480i \(-0.885679\pi\)
0.550803 0.834635i \(-0.314321\pi\)
\(938\) 0 0
\(939\) −44.5951 + 32.4002i −1.45531 + 1.05734i
\(940\) 0 0
\(941\) 27.4236 + 30.4570i 0.893984 + 0.992870i 0.999999 0.00149461i \(-0.000475749\pi\)
−0.106015 + 0.994365i \(0.533809\pi\)
\(942\) 0 0
\(943\) 2.89127 27.5086i 0.0941526 0.895802i
\(944\) 0 0
\(945\) 7.16584 + 16.6427i 0.233105 + 0.541386i
\(946\) 0 0
\(947\) 0.136090 + 0.235715i 0.00442233 + 0.00765970i 0.868228 0.496165i \(-0.165259\pi\)
−0.863806 + 0.503825i \(0.831926\pi\)
\(948\) 0 0
\(949\) −7.90966 + 3.52161i −0.256759 + 0.114316i
\(950\) 0 0
\(951\) 13.6363 41.9681i 0.442186 1.36091i
\(952\) 0 0
\(953\) −5.11089 + 3.71328i −0.165558 + 0.120285i −0.667479 0.744628i \(-0.732627\pi\)
0.501921 + 0.864913i \(0.332627\pi\)
\(954\) 0 0
\(955\) −8.30707 1.76572i −0.268810 0.0571374i
\(956\) 0 0
\(957\) −56.5639 + 34.6170i −1.82845 + 1.11901i
\(958\) 0 0
\(959\) −0.724245 0.245210i −0.0233871 0.00791824i
\(960\) 0 0
\(961\) −18.1259 8.07018i −0.584707 0.260328i
\(962\) 0 0
\(963\) 55.2217 + 61.3299i 1.77950 + 1.97633i
\(964\) 0 0
\(965\) −9.86778 7.16936i −0.317655 0.230790i
\(966\) 0 0
\(967\) 18.9704 0.610046 0.305023 0.952345i \(-0.401336\pi\)
0.305023 + 0.952345i \(0.401336\pi\)
\(968\) 0 0
\(969\) 8.75963 15.1721i 0.281400 0.487399i
\(970\) 0 0
\(971\) −2.39840 + 22.8192i −0.0769682 + 0.732304i 0.886182 + 0.463338i \(0.153348\pi\)
−0.963150 + 0.268966i \(0.913318\pi\)
\(972\) 0 0
\(973\) 7.76830 16.8858i 0.249040 0.541335i
\(974\) 0 0
\(975\) 6.26077 + 2.78747i 0.200505 + 0.0892706i
\(976\) 0 0
\(977\) −16.6141 3.53143i −0.531532 0.112981i −0.0656756 0.997841i \(-0.520920\pi\)
−0.465856 + 0.884860i \(0.654254\pi\)
\(978\) 0 0
\(979\) 0.0321559 + 1.25599i 0.00102771 + 0.0401417i
\(980\) 0 0
\(981\) −17.6649 54.3670i −0.563997 1.73581i
\(982\) 0 0
\(983\) −0.625618 5.95236i −0.0199541 0.189851i 0.980004 0.198977i \(-0.0637618\pi\)
−0.999958 + 0.00912584i \(0.997095\pi\)
\(984\) 0 0
\(985\) 8.92942 1.89801i 0.284515 0.0604755i
\(986\) 0 0
\(987\) −52.3799 48.3428i −1.66727 1.53877i
\(988\) 0 0
\(989\) −25.1098 43.4915i −0.798447 1.38295i
\(990\) 0 0
\(991\) −15.6844 + 27.1662i −0.498232 + 0.862963i −0.999998 0.00204044i \(-0.999351\pi\)
0.501766 + 0.865003i \(0.332684\pi\)
\(992\) 0 0
\(993\) 13.7642 + 10.0003i 0.436793 + 0.317349i
\(994\) 0 0
\(995\) −8.63682 + 26.5814i −0.273806 + 0.842687i
\(996\) 0 0
\(997\) −1.49816 14.2541i −0.0474473 0.451431i −0.992293 0.123915i \(-0.960455\pi\)
0.944846 0.327516i \(-0.106212\pi\)
\(998\) 0 0
\(999\) −32.0899 + 35.6394i −1.01528 + 1.12758i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.y.b.137.6 yes 48
7.2 even 3 inner 308.2.y.b.93.1 yes 48
11.9 even 5 inner 308.2.y.b.53.1 yes 48
77.9 even 15 inner 308.2.y.b.9.6 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.y.b.9.6 48 77.9 even 15 inner
308.2.y.b.53.1 yes 48 11.9 even 5 inner
308.2.y.b.93.1 yes 48 7.2 even 3 inner
308.2.y.b.137.6 yes 48 1.1 even 1 trivial