Properties

Label 308.2.y.b.9.6
Level $308$
Weight $2$
Character 308.9
Analytic conductor $2.459$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [308,2,Mod(9,308)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(308, base_ring=CyclotomicField(30))
 
chi = DirichletCharacter(H, H._module([0, 10, 18]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("308.9");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 308 = 2^{2} \cdot 7 \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 308.y (of order \(15\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(2.45939238226\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{15})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{15}]$

Embedding invariants

Embedding label 9.6
Character \(\chi\) \(=\) 308.9
Dual form 308.2.y.b.137.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.61762 + 1.16544i) q^{3} +(1.05782 + 0.224846i) q^{5} +(-2.30739 - 1.29459i) q^{7} +(3.48627 + 3.87190i) q^{9} +(2.91378 - 1.58426i) q^{11} +(-0.192953 + 0.593849i) q^{13} +(2.50691 + 1.82138i) q^{15} +(-1.85116 + 2.05593i) q^{17} +(-0.231015 - 2.19796i) q^{19} +(-4.53108 - 6.07786i) q^{21} +(-3.41468 + 5.91439i) q^{23} +(-3.49931 - 1.55799i) q^{25} +(1.95696 + 6.02289i) q^{27} +(-5.64552 - 4.10171i) q^{29} +(3.26747 - 0.694522i) q^{31} +(9.47352 - 0.751145i) q^{33} +(-2.14971 - 1.88825i) q^{35} +(-6.91813 + 3.08015i) q^{37} +(-1.19717 + 1.32959i) q^{39} +(3.27666 - 2.38063i) q^{41} +7.35350 q^{43} +(2.81726 + 4.87963i) q^{45} +(-0.982812 - 9.35083i) q^{47} +(3.64805 + 5.97425i) q^{49} +(-7.24169 + 3.22421i) q^{51} +(7.85012 - 1.66859i) q^{53} +(3.43846 - 1.02070i) q^{55} +(1.95688 - 6.02265i) q^{57} +(0.875795 - 8.33264i) q^{59} +(-14.0206 - 2.98017i) q^{61} +(-3.03164 - 13.4473i) q^{63} +(-0.337633 + 0.584798i) q^{65} +(3.06689 + 5.31200i) q^{67} +(-15.8312 + 11.5020i) q^{69} +(-1.03776 - 3.19390i) q^{71} +(-1.44942 + 13.7903i) q^{73} +(-7.34410 - 8.15645i) q^{75} +(-8.77419 - 0.116675i) q^{77} +(2.66452 + 2.95925i) q^{79} +(-0.262916 + 2.50148i) q^{81} +(-0.270229 - 0.831680i) q^{83} +(-2.42046 + 1.75857i) q^{85} +(-9.99752 - 17.3162i) q^{87} +(0.189410 - 0.328068i) q^{89} +(1.21401 - 1.12044i) q^{91} +(9.36240 + 1.99004i) q^{93} +(0.249831 - 2.37698i) q^{95} +(-1.69834 + 5.22696i) q^{97} +(16.2923 + 5.75872i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q - q^{3} + 7 q^{5} - 7 q^{7} + 13 q^{9} - 5 q^{11} - 8 q^{13} - 48 q^{15} + 19 q^{17} + 13 q^{19} - 22 q^{21} - 30 q^{23} - 7 q^{25} + 26 q^{27} - 12 q^{29} + 3 q^{31} - 28 q^{33} + 37 q^{35} + 19 q^{37}+ \cdots + 140 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/308\mathbb{Z}\right)^\times\).

\(n\) \(45\) \(57\) \(155\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{3}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.61762 + 1.16544i 1.51128 + 0.672866i 0.984218 0.176960i \(-0.0566265\pi\)
0.527063 + 0.849826i \(0.323293\pi\)
\(4\) 0 0
\(5\) 1.05782 + 0.224846i 0.473070 + 0.100554i 0.438276 0.898840i \(-0.355589\pi\)
0.0347938 + 0.999395i \(0.488923\pi\)
\(6\) 0 0
\(7\) −2.30739 1.29459i −0.872110 0.489311i
\(8\) 0 0
\(9\) 3.48627 + 3.87190i 1.16209 + 1.29063i
\(10\) 0 0
\(11\) 2.91378 1.58426i 0.878539 0.477672i
\(12\) 0 0
\(13\) −0.192953 + 0.593849i −0.0535156 + 0.164704i −0.974242 0.225504i \(-0.927597\pi\)
0.920727 + 0.390208i \(0.127597\pi\)
\(14\) 0 0
\(15\) 2.50691 + 1.82138i 0.647282 + 0.470278i
\(16\) 0 0
\(17\) −1.85116 + 2.05593i −0.448973 + 0.498636i −0.924562 0.381033i \(-0.875569\pi\)
0.475588 + 0.879668i \(0.342235\pi\)
\(18\) 0 0
\(19\) −0.231015 2.19796i −0.0529985 0.504247i −0.988532 0.151010i \(-0.951748\pi\)
0.935534 0.353237i \(-0.114919\pi\)
\(20\) 0 0
\(21\) −4.53108 6.07786i −0.988762 1.32630i
\(22\) 0 0
\(23\) −3.41468 + 5.91439i −0.712009 + 1.23324i 0.252092 + 0.967703i \(0.418881\pi\)
−0.964102 + 0.265533i \(0.914452\pi\)
\(24\) 0 0
\(25\) −3.49931 1.55799i −0.699862 0.311598i
\(26\) 0 0
\(27\) 1.95696 + 6.02289i 0.376616 + 1.15911i
\(28\) 0 0
\(29\) −5.64552 4.10171i −1.04835 0.761669i −0.0764495 0.997073i \(-0.524358\pi\)
−0.971897 + 0.235405i \(0.924358\pi\)
\(30\) 0 0
\(31\) 3.26747 0.694522i 0.586855 0.124740i 0.0950911 0.995469i \(-0.469686\pi\)
0.491764 + 0.870729i \(0.336352\pi\)
\(32\) 0 0
\(33\) 9.47352 0.751145i 1.64913 0.130758i
\(34\) 0 0
\(35\) −2.14971 1.88825i −0.363367 0.319172i
\(36\) 0 0
\(37\) −6.91813 + 3.08015i −1.13733 + 0.506373i −0.886992 0.461784i \(-0.847209\pi\)
−0.250341 + 0.968158i \(0.580543\pi\)
\(38\) 0 0
\(39\) −1.19717 + 1.32959i −0.191701 + 0.212905i
\(40\) 0 0
\(41\) 3.27666 2.38063i 0.511729 0.371793i −0.301750 0.953387i \(-0.597571\pi\)
0.813479 + 0.581594i \(0.197571\pi\)
\(42\) 0 0
\(43\) 7.35350 1.12140 0.560699 0.828019i \(-0.310532\pi\)
0.560699 + 0.828019i \(0.310532\pi\)
\(44\) 0 0
\(45\) 2.81726 + 4.87963i 0.419972 + 0.727413i
\(46\) 0 0
\(47\) −0.982812 9.35083i −0.143358 1.36396i −0.795542 0.605899i \(-0.792814\pi\)
0.652184 0.758061i \(-0.273853\pi\)
\(48\) 0 0
\(49\) 3.64805 + 5.97425i 0.521150 + 0.853465i
\(50\) 0 0
\(51\) −7.24169 + 3.22421i −1.01404 + 0.451480i
\(52\) 0 0
\(53\) 7.85012 1.66859i 1.07830 0.229199i 0.365671 0.930744i \(-0.380839\pi\)
0.712625 + 0.701545i \(0.247506\pi\)
\(54\) 0 0
\(55\) 3.43846 1.02070i 0.463642 0.137631i
\(56\) 0 0
\(57\) 1.95688 6.02265i 0.259195 0.797720i
\(58\) 0 0
\(59\) 0.875795 8.33264i 0.114019 1.08482i −0.776577 0.630022i \(-0.783046\pi\)
0.890596 0.454795i \(-0.150287\pi\)
\(60\) 0 0
\(61\) −14.0206 2.98017i −1.79515 0.381572i −0.814945 0.579539i \(-0.803233\pi\)
−0.980209 + 0.197967i \(0.936566\pi\)
\(62\) 0 0
\(63\) −3.03164 13.4473i −0.381951 1.69420i
\(64\) 0 0
\(65\) −0.337633 + 0.584798i −0.0418783 + 0.0725353i
\(66\) 0 0
\(67\) 3.06689 + 5.31200i 0.374680 + 0.648964i 0.990279 0.139095i \(-0.0444193\pi\)
−0.615599 + 0.788059i \(0.711086\pi\)
\(68\) 0 0
\(69\) −15.8312 + 11.5020i −1.90585 + 1.38468i
\(70\) 0 0
\(71\) −1.03776 3.19390i −0.123160 0.379046i 0.870402 0.492342i \(-0.163859\pi\)
−0.993561 + 0.113296i \(0.963859\pi\)
\(72\) 0 0
\(73\) −1.44942 + 13.7903i −0.169641 + 1.61403i 0.496387 + 0.868101i \(0.334660\pi\)
−0.666028 + 0.745927i \(0.732007\pi\)
\(74\) 0 0
\(75\) −7.34410 8.15645i −0.848024 0.941826i
\(76\) 0 0
\(77\) −8.77419 0.116675i −0.999912 0.0132963i
\(78\) 0 0
\(79\) 2.66452 + 2.95925i 0.299782 + 0.332942i 0.874150 0.485655i \(-0.161419\pi\)
−0.574368 + 0.818597i \(0.694752\pi\)
\(80\) 0 0
\(81\) −0.262916 + 2.50148i −0.0292129 + 0.277942i
\(82\) 0 0
\(83\) −0.270229 0.831680i −0.0296615 0.0912887i 0.935130 0.354305i \(-0.115283\pi\)
−0.964791 + 0.263017i \(0.915283\pi\)
\(84\) 0 0
\(85\) −2.42046 + 1.75857i −0.262536 + 0.190743i
\(86\) 0 0
\(87\) −9.99752 17.3162i −1.07185 1.85649i
\(88\) 0 0
\(89\) 0.189410 0.328068i 0.0200774 0.0347751i −0.855812 0.517287i \(-0.826942\pi\)
0.875890 + 0.482512i \(0.160275\pi\)
\(90\) 0 0
\(91\) 1.21401 1.12044i 0.127263 0.117454i
\(92\) 0 0
\(93\) 9.36240 + 1.99004i 0.970836 + 0.206357i
\(94\) 0 0
\(95\) 0.249831 2.37698i 0.0256321 0.243873i
\(96\) 0 0
\(97\) −1.69834 + 5.22696i −0.172440 + 0.530717i −0.999507 0.0313863i \(-0.990008\pi\)
0.827067 + 0.562104i \(0.190008\pi\)
\(98\) 0 0
\(99\) 16.2923 + 5.75872i 1.63744 + 0.578773i
\(100\) 0 0
\(101\) −2.80661 + 0.596564i −0.279268 + 0.0593603i −0.345417 0.938449i \(-0.612262\pi\)
0.0661481 + 0.997810i \(0.478929\pi\)
\(102\) 0 0
\(103\) 10.1639 4.52528i 1.00148 0.445889i 0.160550 0.987028i \(-0.448673\pi\)
0.840933 + 0.541139i \(0.182007\pi\)
\(104\) 0 0
\(105\) −3.42647 7.44806i −0.334389 0.726856i
\(106\) 0 0
\(107\) −1.65570 15.7530i −0.160063 1.52290i −0.719773 0.694209i \(-0.755754\pi\)
0.559710 0.828688i \(-0.310912\pi\)
\(108\) 0 0
\(109\) 5.48591 + 9.50187i 0.525455 + 0.910114i 0.999560 + 0.0296463i \(0.00943810\pi\)
−0.474106 + 0.880468i \(0.657229\pi\)
\(110\) 0 0
\(111\) −21.6987 −2.05955
\(112\) 0 0
\(113\) −16.0077 + 11.6303i −1.50588 + 1.09409i −0.537918 + 0.842997i \(0.680789\pi\)
−0.967964 + 0.251090i \(0.919211\pi\)
\(114\) 0 0
\(115\) −4.94193 + 5.48857i −0.460837 + 0.511812i
\(116\) 0 0
\(117\) −2.97201 + 1.32322i −0.274763 + 0.122332i
\(118\) 0 0
\(119\) 6.93294 2.34731i 0.635542 0.215177i
\(120\) 0 0
\(121\) 5.98026 9.23236i 0.543660 0.839306i
\(122\) 0 0
\(123\) 11.3515 2.41284i 1.02353 0.217559i
\(124\) 0 0
\(125\) −7.72587 5.61317i −0.691023 0.502057i
\(126\) 0 0
\(127\) 3.50835 + 10.7976i 0.311316 + 0.958132i 0.977244 + 0.212116i \(0.0680356\pi\)
−0.665928 + 0.746016i \(0.731964\pi\)
\(128\) 0 0
\(129\) 19.2486 + 8.57005i 1.69475 + 0.754551i
\(130\) 0 0
\(131\) −7.06364 + 12.2346i −0.617153 + 1.06894i 0.372850 + 0.927892i \(0.378381\pi\)
−0.990003 + 0.141048i \(0.954953\pi\)
\(132\) 0 0
\(133\) −2.31243 + 5.37062i −0.200513 + 0.465691i
\(134\) 0 0
\(135\) 0.715878 + 6.81113i 0.0616130 + 0.586208i
\(136\) 0 0
\(137\) 0.193381 0.214771i 0.0165216 0.0183491i −0.734827 0.678254i \(-0.762737\pi\)
0.751349 + 0.659905i \(0.229404\pi\)
\(138\) 0 0
\(139\) −5.68353 4.12933i −0.482071 0.350245i 0.320056 0.947399i \(-0.396298\pi\)
−0.802127 + 0.597154i \(0.796298\pi\)
\(140\) 0 0
\(141\) 8.32519 25.6223i 0.701107 2.15779i
\(142\) 0 0
\(143\) 0.378586 + 2.03603i 0.0316589 + 0.170262i
\(144\) 0 0
\(145\) −5.04967 5.60823i −0.419352 0.465738i
\(146\) 0 0
\(147\) 2.58658 + 19.8899i 0.213337 + 1.64049i
\(148\) 0 0
\(149\) 21.5988 + 4.59097i 1.76944 + 0.376107i 0.973397 0.229126i \(-0.0735869\pi\)
0.796048 + 0.605233i \(0.206920\pi\)
\(150\) 0 0
\(151\) 18.6690 + 8.31197i 1.51926 + 0.676418i 0.985571 0.169262i \(-0.0541384\pi\)
0.533690 + 0.845680i \(0.320805\pi\)
\(152\) 0 0
\(153\) −14.4140 −1.16530
\(154\) 0 0
\(155\) 3.61254 0.290166
\(156\) 0 0
\(157\) 7.50995 + 3.34364i 0.599359 + 0.266852i 0.683909 0.729567i \(-0.260279\pi\)
−0.0845500 + 0.996419i \(0.526945\pi\)
\(158\) 0 0
\(159\) 22.4932 + 4.78108i 1.78383 + 0.379165i
\(160\) 0 0
\(161\) 15.5357 9.22616i 1.22439 0.727124i
\(162\) 0 0
\(163\) 2.55077 + 2.83291i 0.199791 + 0.221891i 0.834712 0.550686i \(-0.185634\pi\)
−0.634921 + 0.772577i \(0.718967\pi\)
\(164\) 0 0
\(165\) 10.1901 + 1.33551i 0.793301 + 0.103969i
\(166\) 0 0
\(167\) −2.19769 + 6.76380i −0.170063 + 0.523399i −0.999374 0.0353886i \(-0.988733\pi\)
0.829311 + 0.558787i \(0.188733\pi\)
\(168\) 0 0
\(169\) 10.2018 + 7.41204i 0.784753 + 0.570157i
\(170\) 0 0
\(171\) 7.70491 8.55717i 0.589209 0.654383i
\(172\) 0 0
\(173\) −0.435280 4.14141i −0.0330937 0.314866i −0.998529 0.0542223i \(-0.982732\pi\)
0.965435 0.260643i \(-0.0839346\pi\)
\(174\) 0 0
\(175\) 6.05728 + 8.12507i 0.457888 + 0.614198i
\(176\) 0 0
\(177\) 12.0037 20.7910i 0.902251 1.56274i
\(178\) 0 0
\(179\) 17.6638 + 7.86443i 1.32025 + 0.587815i 0.941291 0.337597i \(-0.109614\pi\)
0.378963 + 0.925412i \(0.376281\pi\)
\(180\) 0 0
\(181\) 4.89387 + 15.0618i 0.363759 + 1.11953i 0.950755 + 0.309944i \(0.100310\pi\)
−0.586996 + 0.809590i \(0.699690\pi\)
\(182\) 0 0
\(183\) −33.2273 24.1411i −2.45624 1.78456i
\(184\) 0 0
\(185\) −8.01067 + 1.70272i −0.588956 + 0.125186i
\(186\) 0 0
\(187\) −2.13678 + 8.92325i −0.156256 + 0.652532i
\(188\) 0 0
\(189\) 3.28175 16.4306i 0.238712 1.19515i
\(190\) 0 0
\(191\) −7.17410 + 3.19412i −0.519100 + 0.231118i −0.649525 0.760340i \(-0.725032\pi\)
0.130425 + 0.991458i \(0.458366\pi\)
\(192\) 0 0
\(193\) −7.54687 + 8.38165i −0.543235 + 0.603324i −0.950782 0.309860i \(-0.899718\pi\)
0.407547 + 0.913184i \(0.366384\pi\)
\(194\) 0 0
\(195\) −1.56534 + 1.13729i −0.112096 + 0.0814428i
\(196\) 0 0
\(197\) 8.44137 0.601423 0.300711 0.953715i \(-0.402776\pi\)
0.300711 + 0.953715i \(0.402776\pi\)
\(198\) 0 0
\(199\) −12.9222 22.3819i −0.916028 1.58661i −0.805389 0.592747i \(-0.798043\pi\)
−0.110640 0.993861i \(-0.535290\pi\)
\(200\) 0 0
\(201\) 1.83712 + 17.4790i 0.129581 + 1.23288i
\(202\) 0 0
\(203\) 7.71634 + 16.7729i 0.541581 + 1.17723i
\(204\) 0 0
\(205\) 4.00138 1.78153i 0.279469 0.124427i
\(206\) 0 0
\(207\) −34.8045 + 7.39791i −2.41908 + 0.514191i
\(208\) 0 0
\(209\) −4.15526 6.03840i −0.287426 0.417685i
\(210\) 0 0
\(211\) −7.12826 + 21.9385i −0.490730 + 1.51031i 0.332777 + 0.943005i \(0.392014\pi\)
−0.823507 + 0.567306i \(0.807986\pi\)
\(212\) 0 0
\(213\) 1.00583 9.56985i 0.0689185 0.655715i
\(214\) 0 0
\(215\) 7.77866 + 1.65340i 0.530500 + 0.112761i
\(216\) 0 0
\(217\) −8.43843 2.62752i −0.572838 0.178367i
\(218\) 0 0
\(219\) −19.8657 + 34.4084i −1.34240 + 2.32510i
\(220\) 0 0
\(221\) −0.863722 1.49601i −0.0581002 0.100633i
\(222\) 0 0
\(223\) 0.109862 0.0798192i 0.00735689 0.00534509i −0.584101 0.811681i \(-0.698553\pi\)
0.591458 + 0.806336i \(0.298553\pi\)
\(224\) 0 0
\(225\) −6.16716 18.9806i −0.411144 1.26537i
\(226\) 0 0
\(227\) 0.184923 1.75942i 0.0122738 0.116777i −0.986670 0.162737i \(-0.947968\pi\)
0.998943 + 0.0459597i \(0.0146346\pi\)
\(228\) 0 0
\(229\) −18.6209 20.6807i −1.23051 1.36662i −0.907408 0.420251i \(-0.861942\pi\)
−0.323099 0.946365i \(-0.604725\pi\)
\(230\) 0 0
\(231\) −22.8315 10.5312i −1.50220 0.692901i
\(232\) 0 0
\(233\) −10.1703 11.2952i −0.666275 0.739974i 0.311357 0.950293i \(-0.399216\pi\)
−0.977633 + 0.210319i \(0.932550\pi\)
\(234\) 0 0
\(235\) 1.06286 10.1124i 0.0693334 0.659663i
\(236\) 0 0
\(237\) 3.52587 + 10.8515i 0.229030 + 0.704881i
\(238\) 0 0
\(239\) 0.203662 0.147969i 0.0131738 0.00957133i −0.581179 0.813776i \(-0.697408\pi\)
0.594353 + 0.804205i \(0.297408\pi\)
\(240\) 0 0
\(241\) −7.50249 12.9947i −0.483278 0.837062i 0.516538 0.856265i \(-0.327221\pi\)
−0.999816 + 0.0192024i \(0.993887\pi\)
\(242\) 0 0
\(243\) 5.89573 10.2117i 0.378211 0.655081i
\(244\) 0 0
\(245\) 2.51568 + 7.13991i 0.160721 + 0.456152i
\(246\) 0 0
\(247\) 1.34983 + 0.286916i 0.0858878 + 0.0182560i
\(248\) 0 0
\(249\) 0.261915 2.49195i 0.0165982 0.157921i
\(250\) 0 0
\(251\) 4.24511 13.0651i 0.267949 0.824662i −0.723050 0.690795i \(-0.757261\pi\)
0.990999 0.133867i \(-0.0427395\pi\)
\(252\) 0 0
\(253\) −0.579705 + 22.6430i −0.0364458 + 1.42355i
\(254\) 0 0
\(255\) −8.38533 + 1.78236i −0.525110 + 0.111616i
\(256\) 0 0
\(257\) 6.96286 3.10007i 0.434332 0.193377i −0.177911 0.984046i \(-0.556934\pi\)
0.612243 + 0.790670i \(0.290267\pi\)
\(258\) 0 0
\(259\) 19.9503 + 1.84908i 1.23965 + 0.114896i
\(260\) 0 0
\(261\) −3.80042 36.1586i −0.235240 2.23816i
\(262\) 0 0
\(263\) 0.0803943 + 0.139247i 0.00495732 + 0.00858634i 0.868493 0.495701i \(-0.165089\pi\)
−0.863536 + 0.504287i \(0.831755\pi\)
\(264\) 0 0
\(265\) 8.67916 0.533156
\(266\) 0 0
\(267\) 0.878144 0.638009i 0.0537416 0.0390455i
\(268\) 0 0
\(269\) −6.90790 + 7.67200i −0.421182 + 0.467770i −0.915972 0.401243i \(-0.868578\pi\)
0.494790 + 0.869013i \(0.335245\pi\)
\(270\) 0 0
\(271\) −15.9244 + 7.09000i −0.967339 + 0.430687i −0.828723 0.559659i \(-0.810932\pi\)
−0.138616 + 0.990346i \(0.544265\pi\)
\(272\) 0 0
\(273\) 4.48362 1.51803i 0.271361 0.0918755i
\(274\) 0 0
\(275\) −12.6645 + 1.00415i −0.763697 + 0.0605527i
\(276\) 0 0
\(277\) 4.25426 0.904270i 0.255613 0.0543323i −0.0783225 0.996928i \(-0.524956\pi\)
0.333936 + 0.942596i \(0.391623\pi\)
\(278\) 0 0
\(279\) 14.0804 + 10.2300i 0.842972 + 0.612455i
\(280\) 0 0
\(281\) −3.74325 11.5206i −0.223304 0.687259i −0.998459 0.0554880i \(-0.982329\pi\)
0.775156 0.631770i \(-0.217671\pi\)
\(282\) 0 0
\(283\) 28.2298 + 12.5687i 1.67809 + 0.747133i 0.999925 + 0.0122218i \(0.00389043\pi\)
0.678163 + 0.734911i \(0.262776\pi\)
\(284\) 0 0
\(285\) 3.42419 5.93087i 0.202831 0.351314i
\(286\) 0 0
\(287\) −10.6425 + 1.25109i −0.628206 + 0.0738496i
\(288\) 0 0
\(289\) 0.976960 + 9.29515i 0.0574682 + 0.546774i
\(290\) 0 0
\(291\) −10.5373 + 11.7029i −0.617708 + 0.686034i
\(292\) 0 0
\(293\) 4.20555 + 3.05551i 0.245691 + 0.178505i 0.703815 0.710383i \(-0.251478\pi\)
−0.458124 + 0.888888i \(0.651478\pi\)
\(294\) 0 0
\(295\) 2.79999 8.61748i 0.163022 0.501729i
\(296\) 0 0
\(297\) 15.2440 + 14.4491i 0.884544 + 0.838420i
\(298\) 0 0
\(299\) −2.85338 3.16900i −0.165015 0.183268i
\(300\) 0 0
\(301\) −16.9674 9.51980i −0.977983 0.548712i
\(302\) 0 0
\(303\) −8.04189 1.70936i −0.461995 0.0982000i
\(304\) 0 0
\(305\) −14.1611 6.30494i −0.810864 0.361020i
\(306\) 0 0
\(307\) 17.9401 1.02389 0.511947 0.859017i \(-0.328924\pi\)
0.511947 + 0.859017i \(0.328924\pi\)
\(308\) 0 0
\(309\) 31.8792 1.81355
\(310\) 0 0
\(311\) −1.98048 0.881768i −0.112303 0.0500005i 0.349816 0.936818i \(-0.386244\pi\)
−0.462119 + 0.886818i \(0.652911\pi\)
\(312\) 0 0
\(313\) −18.8173 3.99975i −1.06362 0.226079i −0.357312 0.933985i \(-0.616307\pi\)
−0.706307 + 0.707906i \(0.749640\pi\)
\(314\) 0 0
\(315\) −0.183353 14.9064i −0.0103308 0.839881i
\(316\) 0 0
\(317\) 10.3050 + 11.4449i 0.578787 + 0.642808i 0.959441 0.281909i \(-0.0909678\pi\)
−0.380654 + 0.924718i \(0.624301\pi\)
\(318\) 0 0
\(319\) −22.9480 3.00754i −1.28484 0.168390i
\(320\) 0 0
\(321\) 14.0251 43.1649i 0.782805 2.40923i
\(322\) 0 0
\(323\) 4.94650 + 3.59384i 0.275230 + 0.199967i
\(324\) 0 0
\(325\) 1.60041 1.77744i 0.0887750 0.0985946i
\(326\) 0 0
\(327\) 3.28616 + 31.2657i 0.181725 + 1.72900i
\(328\) 0 0
\(329\) −9.83781 + 22.8483i −0.542376 + 1.25967i
\(330\) 0 0
\(331\) 2.96884 5.14219i 0.163182 0.282640i −0.772826 0.634618i \(-0.781157\pi\)
0.936008 + 0.351978i \(0.114491\pi\)
\(332\) 0 0
\(333\) −36.0445 16.0481i −1.97523 0.879428i
\(334\) 0 0
\(335\) 2.04982 + 6.30870i 0.111994 + 0.344681i
\(336\) 0 0
\(337\) 4.17284 + 3.03174i 0.227309 + 0.165150i 0.695611 0.718419i \(-0.255134\pi\)
−0.468302 + 0.883569i \(0.655134\pi\)
\(338\) 0 0
\(339\) −55.4565 + 11.7876i −3.01198 + 0.640217i
\(340\) 0 0
\(341\) 8.42039 7.20020i 0.455990 0.389913i
\(342\) 0 0
\(343\) −0.683225 18.5077i −0.0368907 0.999319i
\(344\) 0 0
\(345\) −19.3327 + 8.60745i −1.04083 + 0.463410i
\(346\) 0 0
\(347\) 17.8855 19.8639i 0.960145 1.06635i −0.0376040 0.999293i \(-0.511973\pi\)
0.997749 0.0670565i \(-0.0213608\pi\)
\(348\) 0 0
\(349\) 10.6247 7.71930i 0.568728 0.413205i −0.265915 0.963996i \(-0.585674\pi\)
0.834643 + 0.550792i \(0.185674\pi\)
\(350\) 0 0
\(351\) −3.95429 −0.211064
\(352\) 0 0
\(353\) 16.2404 + 28.1292i 0.864390 + 1.49717i 0.867652 + 0.497172i \(0.165628\pi\)
−0.00326199 + 0.999995i \(0.501038\pi\)
\(354\) 0 0
\(355\) −0.379626 3.61190i −0.0201484 0.191700i
\(356\) 0 0
\(357\) 20.8834 + 1.93556i 1.10527 + 0.102441i
\(358\) 0 0
\(359\) 9.25795 4.12190i 0.488616 0.217546i −0.147615 0.989045i \(-0.547160\pi\)
0.636230 + 0.771499i \(0.280493\pi\)
\(360\) 0 0
\(361\) 13.8071 2.93480i 0.726691 0.154463i
\(362\) 0 0
\(363\) 26.4138 17.1972i 1.38636 0.902617i
\(364\) 0 0
\(365\) −4.63390 + 14.2617i −0.242549 + 0.746490i
\(366\) 0 0
\(367\) 2.24832 21.3913i 0.117361 1.11662i −0.764341 0.644812i \(-0.776936\pi\)
0.881703 0.471806i \(-0.156398\pi\)
\(368\) 0 0
\(369\) 20.6409 + 4.38736i 1.07452 + 0.228397i
\(370\) 0 0
\(371\) −20.2734 6.31263i −1.05254 0.327735i
\(372\) 0 0
\(373\) −3.85835 + 6.68285i −0.199778 + 0.346025i −0.948456 0.316908i \(-0.897355\pi\)
0.748679 + 0.662933i \(0.230689\pi\)
\(374\) 0 0
\(375\) −13.6816 23.6971i −0.706512 1.22372i
\(376\) 0 0
\(377\) 3.52512 2.56115i 0.181553 0.131906i
\(378\) 0 0
\(379\) 2.43418 + 7.49164i 0.125035 + 0.384820i 0.993908 0.110217i \(-0.0351546\pi\)
−0.868872 + 0.495037i \(0.835155\pi\)
\(380\) 0 0
\(381\) −3.40041 + 32.3527i −0.174208 + 1.65748i
\(382\) 0 0
\(383\) −1.91749 2.12959i −0.0979794 0.108817i 0.692161 0.721743i \(-0.256659\pi\)
−0.790140 + 0.612926i \(0.789992\pi\)
\(384\) 0 0
\(385\) −9.25525 2.09626i −0.471691 0.106835i
\(386\) 0 0
\(387\) 25.6363 + 28.4720i 1.30317 + 1.44731i
\(388\) 0 0
\(389\) 1.86307 17.7259i 0.0944612 0.898738i −0.839979 0.542619i \(-0.817433\pi\)
0.934440 0.356120i \(-0.115900\pi\)
\(390\) 0 0
\(391\) −5.83843 17.9688i −0.295262 0.908724i
\(392\) 0 0
\(393\) −32.7485 + 23.7932i −1.65194 + 1.20021i
\(394\) 0 0
\(395\) 2.15320 + 3.72945i 0.108339 + 0.187649i
\(396\) 0 0
\(397\) −2.80186 + 4.85296i −0.140621 + 0.243563i −0.927731 0.373250i \(-0.878243\pi\)
0.787109 + 0.616813i \(0.211577\pi\)
\(398\) 0 0
\(399\) −12.3122 + 11.3632i −0.616379 + 0.568872i
\(400\) 0 0
\(401\) −21.1008 4.48512i −1.05373 0.223976i −0.351689 0.936117i \(-0.614392\pi\)
−0.702037 + 0.712141i \(0.747726\pi\)
\(402\) 0 0
\(403\) −0.218027 + 2.07439i −0.0108607 + 0.103333i
\(404\) 0 0
\(405\) −0.840564 + 2.58699i −0.0417680 + 0.128549i
\(406\) 0 0
\(407\) −15.2782 + 19.9350i −0.757311 + 0.988140i
\(408\) 0 0
\(409\) −27.3816 + 5.82014i −1.35393 + 0.287787i −0.827039 0.562144i \(-0.809977\pi\)
−0.526893 + 0.849931i \(0.676643\pi\)
\(410\) 0 0
\(411\) 0.756498 0.336815i 0.0373153 0.0166138i
\(412\) 0 0
\(413\) −12.8082 + 18.0928i −0.630249 + 0.890289i
\(414\) 0 0
\(415\) −0.0988531 0.940524i −0.00485251 0.0461685i
\(416\) 0 0
\(417\) −10.0648 17.4328i −0.492877 0.853688i
\(418\) 0 0
\(419\) −13.2229 −0.645981 −0.322990 0.946402i \(-0.604688\pi\)
−0.322990 + 0.946402i \(0.604688\pi\)
\(420\) 0 0
\(421\) 8.84984 6.42979i 0.431315 0.313369i −0.350860 0.936428i \(-0.614111\pi\)
0.782174 + 0.623059i \(0.214111\pi\)
\(422\) 0 0
\(423\) 32.7791 36.4049i 1.59378 1.77007i
\(424\) 0 0
\(425\) 9.68091 4.31022i 0.469593 0.209076i
\(426\) 0 0
\(427\) 28.4928 + 25.0274i 1.37886 + 1.21116i
\(428\) 0 0
\(429\) −1.38188 + 5.77077i −0.0667177 + 0.278616i
\(430\) 0 0
\(431\) −3.28136 + 0.697475i −0.158058 + 0.0335962i −0.286261 0.958152i \(-0.592412\pi\)
0.128203 + 0.991748i \(0.459079\pi\)
\(432\) 0 0
\(433\) −8.56499 6.22283i −0.411607 0.299050i 0.362645 0.931927i \(-0.381874\pi\)
−0.774252 + 0.632877i \(0.781874\pi\)
\(434\) 0 0
\(435\) −6.68206 20.5653i −0.320380 0.986029i
\(436\) 0 0
\(437\) 13.7885 + 6.13902i 0.659591 + 0.293669i
\(438\) 0 0
\(439\) 5.41795 9.38416i 0.258584 0.447881i −0.707278 0.706935i \(-0.750077\pi\)
0.965863 + 0.259054i \(0.0834106\pi\)
\(440\) 0 0
\(441\) −10.4136 + 34.9528i −0.495886 + 1.66442i
\(442\) 0 0
\(443\) −1.94808 18.5348i −0.0925563 0.880614i −0.938020 0.346581i \(-0.887343\pi\)
0.845464 0.534033i \(-0.179324\pi\)
\(444\) 0 0
\(445\) 0.274125 0.304447i 0.0129948 0.0144322i
\(446\) 0 0
\(447\) 51.1869 + 37.1895i 2.42106 + 1.75900i
\(448\) 0 0
\(449\) 11.0012 33.8582i 0.519179 1.59787i −0.256370 0.966579i \(-0.582526\pi\)
0.775548 0.631288i \(-0.217474\pi\)
\(450\) 0 0
\(451\) 5.77594 12.1277i 0.271979 0.571072i
\(452\) 0 0
\(453\) 39.1812 + 43.5151i 1.84089 + 2.04452i
\(454\) 0 0
\(455\) 1.53613 0.912257i 0.0720147 0.0427672i
\(456\) 0 0
\(457\) −16.9287 3.59830i −0.791890 0.168321i −0.205828 0.978588i \(-0.565989\pi\)
−0.586061 + 0.810267i \(0.699322\pi\)
\(458\) 0 0
\(459\) −16.0053 7.12601i −0.747062 0.332613i
\(460\) 0 0
\(461\) 18.2705 0.850942 0.425471 0.904972i \(-0.360108\pi\)
0.425471 + 0.904972i \(0.360108\pi\)
\(462\) 0 0
\(463\) −11.1967 −0.520357 −0.260178 0.965561i \(-0.583781\pi\)
−0.260178 + 0.965561i \(0.583781\pi\)
\(464\) 0 0
\(465\) 9.45625 + 4.21019i 0.438523 + 0.195243i
\(466\) 0 0
\(467\) −35.8944 7.62960i −1.66100 0.353056i −0.720656 0.693293i \(-0.756159\pi\)
−0.940340 + 0.340237i \(0.889493\pi\)
\(468\) 0 0
\(469\) −0.199600 16.2272i −0.00921665 0.749303i
\(470\) 0 0
\(471\) 15.7613 + 17.5047i 0.726244 + 0.806576i
\(472\) 0 0
\(473\) 21.4265 11.6498i 0.985192 0.535660i
\(474\) 0 0
\(475\) −2.61601 + 8.05126i −0.120031 + 0.369417i
\(476\) 0 0
\(477\) 33.8283 + 24.5777i 1.54889 + 1.12534i
\(478\) 0 0
\(479\) −14.5731 + 16.1850i −0.665860 + 0.739513i −0.977557 0.210669i \(-0.932436\pi\)
0.311697 + 0.950181i \(0.399102\pi\)
\(480\) 0 0
\(481\) −0.494268 4.70265i −0.0225367 0.214422i
\(482\) 0 0
\(483\) 51.4191 6.04464i 2.33965 0.275041i
\(484\) 0 0
\(485\) −2.97179 + 5.14730i −0.134942 + 0.233727i
\(486\) 0 0
\(487\) 18.2284 + 8.11579i 0.826006 + 0.367762i 0.775801 0.630977i \(-0.217346\pi\)
0.0502050 + 0.998739i \(0.484013\pi\)
\(488\) 0 0
\(489\) 3.37534 + 10.3882i 0.152638 + 0.469772i
\(490\) 0 0
\(491\) −15.1747 11.0251i −0.684826 0.497555i 0.190129 0.981759i \(-0.439109\pi\)
−0.874955 + 0.484204i \(0.839109\pi\)
\(492\) 0 0
\(493\) 18.8836 4.01383i 0.850475 0.180774i
\(494\) 0 0
\(495\) 15.9395 + 9.75493i 0.716426 + 0.438452i
\(496\) 0 0
\(497\) −1.74029 + 8.71304i −0.0780627 + 0.390833i
\(498\) 0 0
\(499\) −12.5181 + 5.57341i −0.560386 + 0.249500i −0.667326 0.744765i \(-0.732561\pi\)
0.106940 + 0.994265i \(0.465895\pi\)
\(500\) 0 0
\(501\) −13.6355 + 15.1438i −0.609189 + 0.676573i
\(502\) 0 0
\(503\) 30.2095 21.9485i 1.34697 0.978633i 0.347817 0.937563i \(-0.386923\pi\)
0.999156 0.0410704i \(-0.0130768\pi\)
\(504\) 0 0
\(505\) −3.10302 −0.138082
\(506\) 0 0
\(507\) 18.0661 + 31.2914i 0.802344 + 1.38970i
\(508\) 0 0
\(509\) 2.35307 + 22.3880i 0.104298 + 0.992330i 0.914062 + 0.405575i \(0.132929\pi\)
−0.809764 + 0.586756i \(0.800405\pi\)
\(510\) 0 0
\(511\) 21.1972 29.9430i 0.937707 1.32460i
\(512\) 0 0
\(513\) 12.7860 5.69269i 0.564516 0.251339i
\(514\) 0 0
\(515\) 11.7691 2.50159i 0.518607 0.110233i
\(516\) 0 0
\(517\) −17.6778 25.6893i −0.777470 1.12981i
\(518\) 0 0
\(519\) 3.68716 11.3479i 0.161848 0.498118i
\(520\) 0 0
\(521\) 2.97144 28.2713i 0.130181 1.23859i −0.713079 0.701084i \(-0.752700\pi\)
0.843260 0.537506i \(-0.180634\pi\)
\(522\) 0 0
\(523\) −29.2253 6.21204i −1.27794 0.271633i −0.481547 0.876420i \(-0.659925\pi\)
−0.796388 + 0.604787i \(0.793258\pi\)
\(524\) 0 0
\(525\) 6.38637 + 28.3277i 0.278724 + 1.23632i
\(526\) 0 0
\(527\) −4.62074 + 8.00335i −0.201282 + 0.348631i
\(528\) 0 0
\(529\) −11.8200 20.4729i −0.513915 0.890127i
\(530\) 0 0
\(531\) 35.3164 25.6589i 1.53260 1.11350i
\(532\) 0 0
\(533\) 0.781495 + 2.40519i 0.0338503 + 0.104180i
\(534\) 0 0
\(535\) 1.79056 17.0360i 0.0774126 0.736532i
\(536\) 0 0
\(537\) 37.0715 + 41.1721i 1.59975 + 1.77671i
\(538\) 0 0
\(539\) 20.0944 + 11.6282i 0.865526 + 0.500863i
\(540\) 0 0
\(541\) 4.19838 + 4.66277i 0.180502 + 0.200468i 0.826605 0.562782i \(-0.190269\pi\)
−0.646103 + 0.763250i \(0.723602\pi\)
\(542\) 0 0
\(543\) −4.74330 + 45.1295i −0.203554 + 1.93669i
\(544\) 0 0
\(545\) 3.66663 + 11.2847i 0.157061 + 0.483384i
\(546\) 0 0
\(547\) −29.0569 + 21.1110i −1.24238 + 0.902643i −0.997755 0.0669745i \(-0.978665\pi\)
−0.244627 + 0.969617i \(0.578665\pi\)
\(548\) 0 0
\(549\) −37.3407 64.6760i −1.59366 2.76031i
\(550\) 0 0
\(551\) −7.71120 + 13.3562i −0.328508 + 0.568993i
\(552\) 0 0
\(553\) −2.31705 10.2776i −0.0985308 0.437048i
\(554\) 0 0
\(555\) −22.9533 4.87887i −0.974312 0.207096i
\(556\) 0 0
\(557\) −2.31337 + 22.0102i −0.0980206 + 0.932604i 0.829418 + 0.558629i \(0.188672\pi\)
−0.927439 + 0.373975i \(0.877994\pi\)
\(558\) 0 0
\(559\) −1.41888 + 4.36687i −0.0600123 + 0.184699i
\(560\) 0 0
\(561\) −15.9927 + 20.8673i −0.675214 + 0.881020i
\(562\) 0 0
\(563\) −43.3867 + 9.22212i −1.82853 + 0.388666i −0.988170 0.153363i \(-0.950990\pi\)
−0.840360 + 0.542029i \(0.817656\pi\)
\(564\) 0 0
\(565\) −19.5483 + 8.70345i −0.822402 + 0.366157i
\(566\) 0 0
\(567\) 3.84505 5.43151i 0.161477 0.228102i
\(568\) 0 0
\(569\) −2.03990 19.4083i −0.0855170 0.813640i −0.950267 0.311437i \(-0.899190\pi\)
0.864750 0.502203i \(-0.167477\pi\)
\(570\) 0 0
\(571\) −9.23702 15.9990i −0.386557 0.669537i 0.605427 0.795901i \(-0.293002\pi\)
−0.991984 + 0.126364i \(0.959669\pi\)
\(572\) 0 0
\(573\) −22.5016 −0.940017
\(574\) 0 0
\(575\) 21.1636 15.3762i 0.882583 0.641234i
\(576\) 0 0
\(577\) 24.4557 27.1608i 1.01810 1.13072i 0.0267312 0.999643i \(-0.491490\pi\)
0.991372 0.131076i \(-0.0418431\pi\)
\(578\) 0 0
\(579\) −29.5231 + 13.1445i −1.22694 + 0.546268i
\(580\) 0 0
\(581\) −0.453165 + 2.26884i −0.0188005 + 0.0941274i
\(582\) 0 0
\(583\) 20.2300 17.2985i 0.837843 0.716432i
\(584\) 0 0
\(585\) −3.44136 + 0.731485i −0.142283 + 0.0302432i
\(586\) 0 0
\(587\) −4.41680 3.20899i −0.182301 0.132449i 0.492892 0.870090i \(-0.335940\pi\)
−0.675193 + 0.737641i \(0.735940\pi\)
\(588\) 0 0
\(589\) −2.28137 7.02133i −0.0940021 0.289309i
\(590\) 0 0
\(591\) 22.0963 + 9.83789i 0.908919 + 0.404677i
\(592\) 0 0
\(593\) 21.1055 36.5557i 0.866697 1.50116i 0.00134483 0.999999i \(-0.499572\pi\)
0.865352 0.501164i \(-0.167095\pi\)
\(594\) 0 0
\(595\) 7.86156 0.924178i 0.322293 0.0378876i
\(596\) 0 0
\(597\) −7.74062 73.6471i −0.316803 3.01417i
\(598\) 0 0
\(599\) −29.4761 + 32.7365i −1.20436 + 1.33758i −0.278167 + 0.960533i \(0.589727\pi\)
−0.926195 + 0.377046i \(0.876940\pi\)
\(600\) 0 0
\(601\) −18.8729 13.7120i −0.769841 0.559322i 0.132072 0.991240i \(-0.457837\pi\)
−0.901913 + 0.431918i \(0.857837\pi\)
\(602\) 0 0
\(603\) −9.87554 + 30.3938i −0.402163 + 1.23773i
\(604\) 0 0
\(605\) 8.40187 8.42151i 0.341585 0.342383i
\(606\) 0 0
\(607\) 1.97877 + 2.19764i 0.0803156 + 0.0891995i 0.781963 0.623325i \(-0.214219\pi\)
−0.701647 + 0.712524i \(0.747552\pi\)
\(608\) 0 0
\(609\) 0.650660 + 52.8979i 0.0263661 + 2.14353i
\(610\) 0 0
\(611\) 5.74262 + 1.22063i 0.232322 + 0.0493815i
\(612\) 0 0
\(613\) −18.3618 8.17522i −0.741628 0.330194i 0.000908552 1.00000i \(-0.499711\pi\)
−0.742537 + 0.669806i \(0.766377\pi\)
\(614\) 0 0
\(615\) 12.5503 0.506079
\(616\) 0 0
\(617\) 0.715487 0.0288044 0.0144022 0.999896i \(-0.495415\pi\)
0.0144022 + 0.999896i \(0.495415\pi\)
\(618\) 0 0
\(619\) −28.2158 12.5625i −1.13409 0.504929i −0.248146 0.968723i \(-0.579821\pi\)
−0.885943 + 0.463794i \(0.846488\pi\)
\(620\) 0 0
\(621\) −42.3041 8.99202i −1.69761 0.360837i
\(622\) 0 0
\(623\) −0.861756 + 0.511769i −0.0345255 + 0.0205036i
\(624\) 0 0
\(625\) 5.90497 + 6.55813i 0.236199 + 0.262325i
\(626\) 0 0
\(627\) −3.83951 20.6489i −0.153335 0.824638i
\(628\) 0 0
\(629\) 6.47403 19.9250i 0.258137 0.794463i
\(630\) 0 0
\(631\) −17.2828 12.5567i −0.688016 0.499873i 0.187991 0.982171i \(-0.439802\pi\)
−0.876007 + 0.482298i \(0.839802\pi\)
\(632\) 0 0
\(633\) −44.2271 + 49.1191i −1.75787 + 1.95231i
\(634\) 0 0
\(635\) 1.28340 + 12.2107i 0.0509301 + 0.484568i
\(636\) 0 0
\(637\) −4.25171 + 1.01364i −0.168459 + 0.0401619i
\(638\) 0 0
\(639\) 8.74855 15.1529i 0.346087 0.599440i
\(640\) 0 0
\(641\) −10.1661 4.52624i −0.401537 0.178776i 0.196024 0.980599i \(-0.437197\pi\)
−0.597561 + 0.801823i \(0.703863\pi\)
\(642\) 0 0
\(643\) 1.54329 + 4.74975i 0.0608613 + 0.187312i 0.976865 0.213859i \(-0.0686033\pi\)
−0.916003 + 0.401171i \(0.868603\pi\)
\(644\) 0 0
\(645\) 18.4346 + 13.3935i 0.725861 + 0.527369i
\(646\) 0 0
\(647\) −7.14680 + 1.51910i −0.280970 + 0.0597220i −0.346241 0.938146i \(-0.612542\pi\)
0.0652712 + 0.997868i \(0.479209\pi\)
\(648\) 0 0
\(649\) −10.6492 25.6670i −0.418016 1.00752i
\(650\) 0 0
\(651\) −19.0264 16.7123i −0.745702 0.655007i
\(652\) 0 0
\(653\) 7.15803 3.18696i 0.280116 0.124715i −0.261870 0.965103i \(-0.584339\pi\)
0.541986 + 0.840388i \(0.317673\pi\)
\(654\) 0 0
\(655\) −10.2229 + 11.3537i −0.399443 + 0.443626i
\(656\) 0 0
\(657\) −58.4476 + 42.4647i −2.28026 + 1.65670i
\(658\) 0 0
\(659\) 0.307551 0.0119805 0.00599025 0.999982i \(-0.498093\pi\)
0.00599025 + 0.999982i \(0.498093\pi\)
\(660\) 0 0
\(661\) 0.967431 + 1.67564i 0.0376287 + 0.0651748i 0.884226 0.467058i \(-0.154686\pi\)
−0.846598 + 0.532233i \(0.821353\pi\)
\(662\) 0 0
\(663\) −0.517385 4.92259i −0.0200936 0.191178i
\(664\) 0 0
\(665\) −3.65368 + 5.16119i −0.141684 + 0.200142i
\(666\) 0 0
\(667\) 43.5368 19.3838i 1.68575 0.750544i
\(668\) 0 0
\(669\) 0.380600 0.0808991i 0.0147149 0.00312774i
\(670\) 0 0
\(671\) −45.5743 + 13.5287i −1.75938 + 0.522268i
\(672\) 0 0
\(673\) −5.58936 + 17.2023i −0.215454 + 0.663099i 0.783667 + 0.621181i \(0.213347\pi\)
−0.999121 + 0.0419181i \(0.986653\pi\)
\(674\) 0 0
\(675\) 2.53563 24.1249i 0.0975963 0.928567i
\(676\) 0 0
\(677\) 26.8330 + 5.70352i 1.03127 + 0.219204i 0.692314 0.721597i \(-0.256591\pi\)
0.338960 + 0.940801i \(0.389925\pi\)
\(678\) 0 0
\(679\) 10.6855 9.86194i 0.410073 0.378467i
\(680\) 0 0
\(681\) 2.53455 4.38998i 0.0971243 0.168224i
\(682\) 0 0
\(683\) 11.3231 + 19.6121i 0.433265 + 0.750437i 0.997152 0.0754148i \(-0.0240281\pi\)
−0.563887 + 0.825852i \(0.690695\pi\)
\(684\) 0 0
\(685\) 0.252851 0.183707i 0.00966096 0.00701910i
\(686\) 0 0
\(687\) −24.6405 75.8356i −0.940092 2.89331i
\(688\) 0 0
\(689\) −0.523812 + 4.98374i −0.0199557 + 0.189865i
\(690\) 0 0
\(691\) 10.3283 + 11.4707i 0.392906 + 0.436366i 0.906847 0.421459i \(-0.138482\pi\)
−0.513942 + 0.857825i \(0.671815\pi\)
\(692\) 0 0
\(693\) −30.1375 34.3795i −1.14483 1.30597i
\(694\) 0 0
\(695\) −5.08367 5.64599i −0.192835 0.214165i
\(696\) 0 0
\(697\) −1.17123 + 11.1435i −0.0443636 + 0.422091i
\(698\) 0 0
\(699\) −13.4580 41.4193i −0.509026 1.56662i
\(700\) 0 0
\(701\) −5.95134 + 4.32390i −0.224779 + 0.163312i −0.694475 0.719517i \(-0.744363\pi\)
0.469696 + 0.882828i \(0.344363\pi\)
\(702\) 0 0
\(703\) 8.36824 + 14.4942i 0.315614 + 0.546660i
\(704\) 0 0
\(705\) 14.5676 25.2318i 0.548647 0.950285i
\(706\) 0 0
\(707\) 7.24824 + 2.25692i 0.272598 + 0.0848803i
\(708\) 0 0
\(709\) 21.5521 + 4.58105i 0.809408 + 0.172045i 0.593985 0.804476i \(-0.297554\pi\)
0.215422 + 0.976521i \(0.430887\pi\)
\(710\) 0 0
\(711\) −2.16867 + 20.6335i −0.0813315 + 0.773817i
\(712\) 0 0
\(713\) −7.04968 + 21.6967i −0.264012 + 0.812547i
\(714\) 0 0
\(715\) −0.0573196 + 2.23887i −0.00214363 + 0.0837291i
\(716\) 0 0
\(717\) 0.705558 0.149971i 0.0263495 0.00560077i
\(718\) 0 0
\(719\) 13.3285 5.93421i 0.497067 0.221309i −0.142862 0.989743i \(-0.545630\pi\)
0.639929 + 0.768434i \(0.278964\pi\)
\(720\) 0 0
\(721\) −29.3105 2.71662i −1.09158 0.101172i
\(722\) 0 0
\(723\) −4.49413 42.7588i −0.167139 1.59022i
\(724\) 0 0
\(725\) 13.3650 + 23.1488i 0.496363 + 0.859726i
\(726\) 0 0
\(727\) −1.06804 −0.0396116 −0.0198058 0.999804i \(-0.506305\pi\)
−0.0198058 + 0.999804i \(0.506305\pi\)
\(728\) 0 0
\(729\) 33.4385 24.2945i 1.23846 0.899797i
\(730\) 0 0
\(731\) −13.6125 + 15.1183i −0.503478 + 0.559169i
\(732\) 0 0
\(733\) −37.6755 + 16.7742i −1.39158 + 0.619570i −0.959356 0.282198i \(-0.908937\pi\)
−0.432221 + 0.901768i \(0.642270\pi\)
\(734\) 0 0
\(735\) −1.73603 + 21.6214i −0.0640345 + 0.797518i
\(736\) 0 0
\(737\) 17.3518 + 10.6193i 0.639162 + 0.391166i
\(738\) 0 0
\(739\) 34.2805 7.28654i 1.26103 0.268040i 0.471561 0.881833i \(-0.343691\pi\)
0.789467 + 0.613794i \(0.210357\pi\)
\(740\) 0 0
\(741\) 3.19896 + 2.32418i 0.117517 + 0.0853809i
\(742\) 0 0
\(743\) 2.26608 + 6.97427i 0.0831343 + 0.255861i 0.983980 0.178278i \(-0.0570526\pi\)
−0.900846 + 0.434139i \(0.857053\pi\)
\(744\) 0 0
\(745\) 21.8153 + 9.71281i 0.799252 + 0.355850i
\(746\) 0 0
\(747\) 2.27809 3.94576i 0.0833509 0.144368i
\(748\) 0 0
\(749\) −16.5734 + 38.4917i −0.605578 + 1.40645i
\(750\) 0 0
\(751\) −2.57657 24.5145i −0.0940205 0.894546i −0.935279 0.353912i \(-0.884851\pi\)
0.841258 0.540634i \(-0.181815\pi\)
\(752\) 0 0
\(753\) 26.3386 29.2520i 0.959833 1.06600i
\(754\) 0 0
\(755\) 17.8794 + 12.9902i 0.650700 + 0.472761i
\(756\) 0 0
\(757\) −1.90247 + 5.85521i −0.0691466 + 0.212811i −0.979659 0.200671i \(-0.935688\pi\)
0.910512 + 0.413483i \(0.135688\pi\)
\(758\) 0 0
\(759\) −27.9064 + 58.5950i −1.01294 + 2.12686i
\(760\) 0 0
\(761\) −1.64073 1.82222i −0.0594766 0.0660554i 0.712672 0.701497i \(-0.247485\pi\)
−0.772149 + 0.635442i \(0.780818\pi\)
\(762\) 0 0
\(763\) −0.357035 29.0265i −0.0129255 1.05083i
\(764\) 0 0
\(765\) −15.2474 3.24093i −0.551270 0.117176i
\(766\) 0 0
\(767\) 4.77934 + 2.12790i 0.172572 + 0.0768340i
\(768\) 0 0
\(769\) 20.3699 0.734557 0.367279 0.930111i \(-0.380290\pi\)
0.367279 + 0.930111i \(0.380290\pi\)
\(770\) 0 0
\(771\) 21.8390 0.786514
\(772\) 0 0
\(773\) 0.500541 + 0.222855i 0.0180032 + 0.00801554i 0.415718 0.909493i \(-0.363530\pi\)
−0.397715 + 0.917509i \(0.630197\pi\)
\(774\) 0 0
\(775\) −12.5159 2.66034i −0.449586 0.0955624i
\(776\) 0 0
\(777\) 50.0673 + 28.0910i 1.79615 + 1.00776i
\(778\) 0 0
\(779\) −5.98950 6.65202i −0.214596 0.238333i
\(780\) 0 0
\(781\) −8.08377 7.66225i −0.289260 0.274177i
\(782\) 0 0
\(783\) 13.6561 42.0292i 0.488030 1.50200i
\(784\) 0 0
\(785\) 7.19234 + 5.22554i 0.256706 + 0.186508i
\(786\) 0 0
\(787\) 22.0796 24.5218i 0.787051 0.874109i −0.207513 0.978232i \(-0.566537\pi\)
0.994564 + 0.104123i \(0.0332036\pi\)
\(788\) 0 0
\(789\) 0.0481577 + 0.458190i 0.00171446 + 0.0163120i
\(790\) 0 0
\(791\) 51.9926 6.11206i 1.84864 0.217320i
\(792\) 0 0
\(793\) 4.47509 7.75108i 0.158915 0.275249i
\(794\) 0 0
\(795\) 22.7187 + 10.1150i 0.805749 + 0.358743i
\(796\) 0 0
\(797\) −12.8643 39.5924i −0.455678 1.40243i −0.870337 0.492456i \(-0.836099\pi\)
0.414659 0.909977i \(-0.363901\pi\)
\(798\) 0 0
\(799\) 21.0440 + 15.2893i 0.744482 + 0.540898i
\(800\) 0 0
\(801\) 1.93058 0.410357i 0.0682137 0.0144993i
\(802\) 0 0
\(803\) 17.6240 + 42.4781i 0.621939 + 1.49902i
\(804\) 0 0
\(805\) 18.5084 6.26645i 0.652335 0.220863i
\(806\) 0 0
\(807\) −27.0235 + 12.0316i −0.951271 + 0.423533i
\(808\) 0 0
\(809\) 5.12310 5.68978i 0.180119 0.200042i −0.646324 0.763063i \(-0.723694\pi\)
0.826442 + 0.563021i \(0.190361\pi\)
\(810\) 0 0
\(811\) −24.2505 + 17.6190i −0.851550 + 0.618687i −0.925573 0.378569i \(-0.876416\pi\)
0.0740232 + 0.997257i \(0.476416\pi\)
\(812\) 0 0
\(813\) −49.9469 −1.75171
\(814\) 0 0
\(815\) 2.06127 + 3.57023i 0.0722033 + 0.125060i
\(816\) 0 0
\(817\) −1.69877 16.1627i −0.0594325 0.565462i
\(818\) 0 0
\(819\) 8.57061 + 0.794360i 0.299482 + 0.0277572i
\(820\) 0 0
\(821\) −31.6455 + 14.0895i −1.10444 + 0.491727i −0.876234 0.481887i \(-0.839952\pi\)
−0.228203 + 0.973614i \(0.573285\pi\)
\(822\) 0 0
\(823\) −1.84848 + 0.392906i −0.0644338 + 0.0136958i −0.240016 0.970769i \(-0.577153\pi\)
0.175582 + 0.984465i \(0.443819\pi\)
\(824\) 0 0
\(825\) −34.3210 12.1312i −1.19490 0.422353i
\(826\) 0 0
\(827\) −0.0291606 + 0.0897472i −0.00101401 + 0.00312082i −0.951562 0.307456i \(-0.900522\pi\)
0.950548 + 0.310577i \(0.100522\pi\)
\(828\) 0 0
\(829\) 2.34473 22.3086i 0.0814360 0.774811i −0.875246 0.483677i \(-0.839301\pi\)
0.956682 0.291134i \(-0.0940325\pi\)
\(830\) 0 0
\(831\) 12.1899 + 2.59104i 0.422862 + 0.0898821i
\(832\) 0 0
\(833\) −19.0358 3.55920i −0.659551 0.123319i
\(834\) 0 0
\(835\) −3.84557 + 6.66072i −0.133081 + 0.230504i
\(836\) 0 0
\(837\) 10.5773 + 18.3205i 0.365606 + 0.633248i
\(838\) 0 0
\(839\) −27.8840 + 20.2589i −0.962664 + 0.699416i −0.953768 0.300544i \(-0.902832\pi\)
−0.00889603 + 0.999960i \(0.502832\pi\)
\(840\) 0 0
\(841\) 6.08638 + 18.7320i 0.209875 + 0.645929i
\(842\) 0 0
\(843\) 3.62808 34.5189i 0.124958 1.18889i
\(844\) 0 0
\(845\) 9.12506 + 10.1344i 0.313912 + 0.348634i
\(846\) 0 0
\(847\) −25.7509 + 13.5606i −0.884812 + 0.465948i
\(848\) 0 0
\(849\) 59.2467 + 65.8002i 2.03334 + 2.25826i
\(850\) 0 0
\(851\) 5.40596 51.4343i 0.185314 1.76314i
\(852\) 0 0
\(853\) 10.6963 + 32.9197i 0.366233 + 1.12715i 0.949205 + 0.314657i \(0.101890\pi\)
−0.582972 + 0.812492i \(0.698110\pi\)
\(854\) 0 0
\(855\) 10.0744 7.31950i 0.344538 0.250321i
\(856\) 0 0
\(857\) −5.24449 9.08372i −0.179148 0.310294i 0.762441 0.647058i \(-0.224001\pi\)
−0.941589 + 0.336764i \(0.890668\pi\)
\(858\) 0 0
\(859\) 15.7529 27.2849i 0.537483 0.930948i −0.461556 0.887111i \(-0.652709\pi\)
0.999039 0.0438365i \(-0.0139581\pi\)
\(860\) 0 0
\(861\) −29.3160 9.12826i −0.999086 0.311090i
\(862\) 0 0
\(863\) −24.9347 5.30003i −0.848787 0.180415i −0.237071 0.971492i \(-0.576187\pi\)
−0.611716 + 0.791077i \(0.709521\pi\)
\(864\) 0 0
\(865\) 0.470733 4.47872i 0.0160054 0.152281i
\(866\) 0 0
\(867\) −8.27561 + 25.4697i −0.281055 + 0.864997i
\(868\) 0 0
\(869\) 12.4520 + 4.40132i 0.422407 + 0.149305i
\(870\) 0 0
\(871\) −3.74629 + 0.796299i −0.126938 + 0.0269816i
\(872\) 0 0
\(873\) −26.1592 + 11.6468i −0.885353 + 0.394185i
\(874\) 0 0
\(875\) 10.5598 + 22.9536i 0.356985 + 0.775974i
\(876\) 0 0
\(877\) 5.26481 + 50.0913i 0.177780 + 1.69146i 0.612159 + 0.790734i \(0.290301\pi\)
−0.434379 + 0.900730i \(0.643032\pi\)
\(878\) 0 0
\(879\) 7.44750 + 12.8995i 0.251198 + 0.435088i
\(880\) 0 0
\(881\) 35.1829 1.18534 0.592672 0.805444i \(-0.298073\pi\)
0.592672 + 0.805444i \(0.298073\pi\)
\(882\) 0 0
\(883\) −20.1316 + 14.6265i −0.677483 + 0.492220i −0.872522 0.488575i \(-0.837517\pi\)
0.195039 + 0.980796i \(0.437517\pi\)
\(884\) 0 0
\(885\) 17.3724 19.2940i 0.583968 0.648562i
\(886\) 0 0
\(887\) 51.8290 23.0757i 1.74025 0.774808i 0.746216 0.665704i \(-0.231869\pi\)
0.994030 0.109104i \(-0.0347980\pi\)
\(888\) 0 0
\(889\) 5.88339 29.4561i 0.197323 0.987926i
\(890\) 0 0
\(891\) 3.19691 + 7.70530i 0.107100 + 0.258137i
\(892\) 0 0
\(893\) −20.3257 + 4.32037i −0.680175 + 0.144576i
\(894\) 0 0
\(895\) 16.9168 + 12.2908i 0.565465 + 0.410835i
\(896\) 0 0
\(897\) −3.77579 11.6207i −0.126070 0.388003i
\(898\) 0 0
\(899\) −21.2953 9.48127i −0.710238 0.316218i
\(900\) 0 0
\(901\) −11.1014 + 19.2281i −0.369840 + 0.640581i
\(902\) 0 0
\(903\) −33.3193 44.6936i −1.10880 1.48731i
\(904\) 0 0
\(905\) 1.79024 + 17.0330i 0.0595095 + 0.566195i
\(906\) 0 0
\(907\) −25.8493 + 28.7086i −0.858313 + 0.953253i −0.999324 0.0367547i \(-0.988298\pi\)
0.141011 + 0.990008i \(0.454965\pi\)
\(908\) 0 0
\(909\) −12.0945 8.78714i −0.401148 0.291451i
\(910\) 0 0
\(911\) −3.28333 + 10.1051i −0.108782 + 0.334796i −0.990599 0.136795i \(-0.956320\pi\)
0.881818 + 0.471590i \(0.156320\pi\)
\(912\) 0 0
\(913\) −2.10498 1.99522i −0.0696648 0.0660322i
\(914\) 0 0
\(915\) −29.7204 33.0078i −0.982526 1.09121i
\(916\) 0 0
\(917\) 32.1373 19.0853i 1.06127 0.630253i
\(918\) 0 0
\(919\) 21.1400 + 4.49344i 0.697344 + 0.148225i 0.542926 0.839781i \(-0.317316\pi\)
0.154418 + 0.988006i \(0.450650\pi\)
\(920\) 0 0
\(921\) 46.9602 + 20.9080i 1.54739 + 0.688943i
\(922\) 0 0
\(923\) 2.09693 0.0690214
\(924\) 0 0
\(925\) 29.0075 0.953761
\(926\) 0 0
\(927\) 52.9557 + 23.5774i 1.73929 + 0.774384i
\(928\) 0 0
\(929\) 17.8382 + 3.79163i 0.585253 + 0.124399i 0.491016 0.871150i \(-0.336626\pi\)
0.0942370 + 0.995550i \(0.469959\pi\)
\(930\) 0 0
\(931\) 12.2884 9.39842i 0.402737 0.308021i
\(932\) 0 0
\(933\) −4.15650 4.61626i −0.136078 0.151130i
\(934\) 0 0
\(935\) −4.26667 + 8.95871i −0.139535 + 0.292981i
\(936\) 0 0
\(937\) −11.7970 + 36.3075i −0.385392 + 1.18611i 0.550803 + 0.834635i \(0.314321\pi\)
−0.936195 + 0.351480i \(0.885679\pi\)
\(938\) 0 0
\(939\) −44.5951 32.4002i −1.45531 1.05734i
\(940\) 0 0
\(941\) 27.4236 30.4570i 0.893984 0.992870i −0.106015 0.994365i \(-0.533809\pi\)
0.999999 + 0.00149461i \(0.000475749\pi\)
\(942\) 0 0
\(943\) 2.89127 + 27.5086i 0.0941526 + 0.895802i
\(944\) 0 0
\(945\) 7.16584 16.6427i 0.233105 0.541386i
\(946\) 0 0
\(947\) 0.136090 0.235715i 0.00442233 0.00765970i −0.863806 0.503825i \(-0.831926\pi\)
0.868228 + 0.496165i \(0.165259\pi\)
\(948\) 0 0
\(949\) −7.90966 3.52161i −0.256759 0.114316i
\(950\) 0 0
\(951\) 13.6363 + 41.9681i 0.442186 + 1.36091i
\(952\) 0 0
\(953\) −5.11089 3.71328i −0.165558 0.120285i 0.501921 0.864913i \(-0.332627\pi\)
−0.667479 + 0.744628i \(0.732627\pi\)
\(954\) 0 0
\(955\) −8.30707 + 1.76572i −0.268810 + 0.0571374i
\(956\) 0 0
\(957\) −56.5639 34.6170i −1.82845 1.11901i
\(958\) 0 0
\(959\) −0.724245 + 0.245210i −0.0233871 + 0.00791824i
\(960\) 0 0
\(961\) −18.1259 + 8.07018i −0.584707 + 0.260328i
\(962\) 0 0
\(963\) 55.2217 61.3299i 1.77950 1.97633i
\(964\) 0 0
\(965\) −9.86778 + 7.16936i −0.317655 + 0.230790i
\(966\) 0 0
\(967\) 18.9704 0.610046 0.305023 0.952345i \(-0.401336\pi\)
0.305023 + 0.952345i \(0.401336\pi\)
\(968\) 0 0
\(969\) 8.75963 + 15.1721i 0.281400 + 0.487399i
\(970\) 0 0
\(971\) −2.39840 22.8192i −0.0769682 0.732304i −0.963150 0.268966i \(-0.913318\pi\)
0.886182 0.463338i \(-0.153348\pi\)
\(972\) 0 0
\(973\) 7.76830 + 16.8858i 0.249040 + 0.541335i
\(974\) 0 0
\(975\) 6.26077 2.78747i 0.200505 0.0892706i
\(976\) 0 0
\(977\) −16.6141 + 3.53143i −0.531532 + 0.112981i −0.465856 0.884860i \(-0.654254\pi\)
−0.0656756 + 0.997841i \(0.520920\pi\)
\(978\) 0 0
\(979\) 0.0321559 1.25599i 0.00102771 0.0401417i
\(980\) 0 0
\(981\) −17.6649 + 54.3670i −0.563997 + 1.73581i
\(982\) 0 0
\(983\) −0.625618 + 5.95236i −0.0199541 + 0.189851i −0.999958 0.00912584i \(-0.997095\pi\)
0.980004 + 0.198977i \(0.0637618\pi\)
\(984\) 0 0
\(985\) 8.92942 + 1.89801i 0.284515 + 0.0604755i
\(986\) 0 0
\(987\) −52.3799 + 48.3428i −1.66727 + 1.53877i
\(988\) 0 0
\(989\) −25.1098 + 43.4915i −0.798447 + 1.38295i
\(990\) 0 0
\(991\) −15.6844 27.1662i −0.498232 0.862963i 0.501766 0.865003i \(-0.332684\pi\)
−0.999998 + 0.00204044i \(0.999351\pi\)
\(992\) 0 0
\(993\) 13.7642 10.0003i 0.436793 0.317349i
\(994\) 0 0
\(995\) −8.63682 26.5814i −0.273806 0.842687i
\(996\) 0 0
\(997\) −1.49816 + 14.2541i −0.0474473 + 0.451431i 0.944846 + 0.327516i \(0.106212\pi\)
−0.992293 + 0.123915i \(0.960455\pi\)
\(998\) 0 0
\(999\) −32.0899 35.6394i −1.01528 1.12758i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 308.2.y.b.9.6 48
7.4 even 3 inner 308.2.y.b.53.1 yes 48
11.5 even 5 inner 308.2.y.b.93.1 yes 48
77.60 even 15 inner 308.2.y.b.137.6 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
308.2.y.b.9.6 48 1.1 even 1 trivial
308.2.y.b.53.1 yes 48 7.4 even 3 inner
308.2.y.b.93.1 yes 48 11.5 even 5 inner
308.2.y.b.137.6 yes 48 77.60 even 15 inner