Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [315,2,Mod(89,315)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(315, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("315.89");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 315 = 3^{2} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 315.bb (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(2.51528766367\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
89.1 | −1.28469 | + | 2.22514i | 0 | −2.30084 | − | 3.98517i | 1.33613 | + | 1.79297i | 0 | 2.64140 | − | 0.151755i | 6.68468 | 0 | −5.70613 | + | 0.669669i | ||||||||
89.2 | −1.28469 | + | 2.22514i | 0 | −2.30084 | − | 3.98517i | 2.22083 | + | 0.260635i | 0 | −2.64140 | + | 0.151755i | 6.68468 | 0 | −3.43302 | + | 4.60682i | ||||||||
89.3 | −0.956572 | + | 1.65683i | 0 | −0.830062 | − | 1.43771i | −2.17319 | − | 0.526555i | 0 | −1.11878 | − | 2.39757i | −0.650234 | 0 | 2.95122 | − | 3.09692i | ||||||||
89.4 | −0.956572 | + | 1.65683i | 0 | −0.830062 | − | 1.43771i | −1.54260 | − | 1.61876i | 0 | 1.11878 | + | 2.39757i | −0.650234 | 0 | 4.15762 | − | 1.00738i | ||||||||
89.5 | −0.659204 | + | 1.14177i | 0 | 0.130901 | + | 0.226727i | −0.729935 | + | 2.11357i | 0 | −2.12635 | − | 1.57437i | −2.98198 | 0 | −1.93205 | − | 2.22670i | ||||||||
89.6 | −0.659204 | + | 1.14177i | 0 | 0.130901 | + | 0.226727i | 1.46544 | − | 1.68893i | 0 | 2.12635 | + | 1.57437i | −2.98198 | 0 | 0.962352 | + | 2.78655i | ||||||||
89.7 | 0.659204 | − | 1.14177i | 0 | 0.130901 | + | 0.226727i | −1.46544 | + | 1.68893i | 0 | 2.12635 | + | 1.57437i | 2.98198 | 0 | 0.962352 | + | 2.78655i | ||||||||
89.8 | 0.659204 | − | 1.14177i | 0 | 0.130901 | + | 0.226727i | 0.729935 | − | 2.11357i | 0 | −2.12635 | − | 1.57437i | 2.98198 | 0 | −1.93205 | − | 2.22670i | ||||||||
89.9 | 0.956572 | − | 1.65683i | 0 | −0.830062 | − | 1.43771i | 1.54260 | + | 1.61876i | 0 | 1.11878 | + | 2.39757i | 0.650234 | 0 | 4.15762 | − | 1.00738i | ||||||||
89.10 | 0.956572 | − | 1.65683i | 0 | −0.830062 | − | 1.43771i | 2.17319 | + | 0.526555i | 0 | −1.11878 | − | 2.39757i | 0.650234 | 0 | 2.95122 | − | 3.09692i | ||||||||
89.11 | 1.28469 | − | 2.22514i | 0 | −2.30084 | − | 3.98517i | −2.22083 | − | 0.260635i | 0 | −2.64140 | + | 0.151755i | −6.68468 | 0 | −3.43302 | + | 4.60682i | ||||||||
89.12 | 1.28469 | − | 2.22514i | 0 | −2.30084 | − | 3.98517i | −1.33613 | − | 1.79297i | 0 | 2.64140 | − | 0.151755i | −6.68468 | 0 | −5.70613 | + | 0.669669i | ||||||||
269.1 | −1.28469 | − | 2.22514i | 0 | −2.30084 | + | 3.98517i | 1.33613 | − | 1.79297i | 0 | 2.64140 | + | 0.151755i | 6.68468 | 0 | −5.70613 | − | 0.669669i | ||||||||
269.2 | −1.28469 | − | 2.22514i | 0 | −2.30084 | + | 3.98517i | 2.22083 | − | 0.260635i | 0 | −2.64140 | − | 0.151755i | 6.68468 | 0 | −3.43302 | − | 4.60682i | ||||||||
269.3 | −0.956572 | − | 1.65683i | 0 | −0.830062 | + | 1.43771i | −2.17319 | + | 0.526555i | 0 | −1.11878 | + | 2.39757i | −0.650234 | 0 | 2.95122 | + | 3.09692i | ||||||||
269.4 | −0.956572 | − | 1.65683i | 0 | −0.830062 | + | 1.43771i | −1.54260 | + | 1.61876i | 0 | 1.11878 | − | 2.39757i | −0.650234 | 0 | 4.15762 | + | 1.00738i | ||||||||
269.5 | −0.659204 | − | 1.14177i | 0 | 0.130901 | − | 0.226727i | −0.729935 | − | 2.11357i | 0 | −2.12635 | + | 1.57437i | −2.98198 | 0 | −1.93205 | + | 2.22670i | ||||||||
269.6 | −0.659204 | − | 1.14177i | 0 | 0.130901 | − | 0.226727i | 1.46544 | + | 1.68893i | 0 | 2.12635 | − | 1.57437i | −2.98198 | 0 | 0.962352 | − | 2.78655i | ||||||||
269.7 | 0.659204 | + | 1.14177i | 0 | 0.130901 | − | 0.226727i | −1.46544 | − | 1.68893i | 0 | 2.12635 | − | 1.57437i | 2.98198 | 0 | 0.962352 | − | 2.78655i | ||||||||
269.8 | 0.659204 | + | 1.14177i | 0 | 0.130901 | − | 0.226727i | 0.729935 | + | 2.11357i | 0 | −2.12635 | + | 1.57437i | 2.98198 | 0 | −1.93205 | + | 2.22670i | ||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
7.d | odd | 6 | 1 | inner |
15.d | odd | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
35.i | odd | 6 | 1 | inner |
105.p | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 315.2.bb.b | ✓ | 24 |
3.b | odd | 2 | 1 | inner | 315.2.bb.b | ✓ | 24 |
5.b | even | 2 | 1 | inner | 315.2.bb.b | ✓ | 24 |
5.c | odd | 4 | 2 | 1575.2.bk.i | 24 | ||
7.c | even | 3 | 1 | 2205.2.g.b | 24 | ||
7.d | odd | 6 | 1 | inner | 315.2.bb.b | ✓ | 24 |
7.d | odd | 6 | 1 | 2205.2.g.b | 24 | ||
15.d | odd | 2 | 1 | inner | 315.2.bb.b | ✓ | 24 |
15.e | even | 4 | 2 | 1575.2.bk.i | 24 | ||
21.g | even | 6 | 1 | inner | 315.2.bb.b | ✓ | 24 |
21.g | even | 6 | 1 | 2205.2.g.b | 24 | ||
21.h | odd | 6 | 1 | 2205.2.g.b | 24 | ||
35.i | odd | 6 | 1 | inner | 315.2.bb.b | ✓ | 24 |
35.i | odd | 6 | 1 | 2205.2.g.b | 24 | ||
35.j | even | 6 | 1 | 2205.2.g.b | 24 | ||
35.k | even | 12 | 2 | 1575.2.bk.i | 24 | ||
105.o | odd | 6 | 1 | 2205.2.g.b | 24 | ||
105.p | even | 6 | 1 | inner | 315.2.bb.b | ✓ | 24 |
105.p | even | 6 | 1 | 2205.2.g.b | 24 | ||
105.w | odd | 12 | 2 | 1575.2.bk.i | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
315.2.bb.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
315.2.bb.b | ✓ | 24 | 3.b | odd | 2 | 1 | inner |
315.2.bb.b | ✓ | 24 | 5.b | even | 2 | 1 | inner |
315.2.bb.b | ✓ | 24 | 7.d | odd | 6 | 1 | inner |
315.2.bb.b | ✓ | 24 | 15.d | odd | 2 | 1 | inner |
315.2.bb.b | ✓ | 24 | 21.g | even | 6 | 1 | inner |
315.2.bb.b | ✓ | 24 | 35.i | odd | 6 | 1 | inner |
315.2.bb.b | ✓ | 24 | 105.p | even | 6 | 1 | inner |
1575.2.bk.i | 24 | 5.c | odd | 4 | 2 | ||
1575.2.bk.i | 24 | 15.e | even | 4 | 2 | ||
1575.2.bk.i | 24 | 35.k | even | 12 | 2 | ||
1575.2.bk.i | 24 | 105.w | odd | 12 | 2 | ||
2205.2.g.b | 24 | 7.c | even | 3 | 1 | ||
2205.2.g.b | 24 | 7.d | odd | 6 | 1 | ||
2205.2.g.b | 24 | 21.g | even | 6 | 1 | ||
2205.2.g.b | 24 | 21.h | odd | 6 | 1 | ||
2205.2.g.b | 24 | 35.i | odd | 6 | 1 | ||
2205.2.g.b | 24 | 35.j | even | 6 | 1 | ||
2205.2.g.b | 24 | 105.o | odd | 6 | 1 | ||
2205.2.g.b | 24 | 105.p | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 12T_{2}^{10} + 102T_{2}^{8} + 420T_{2}^{6} + 1260T_{2}^{4} + 1764T_{2}^{2} + 1764 \)
acting on \(S_{2}^{\mathrm{new}}(315, [\chi])\).