Properties

Label 3240.1.bh.c.269.1
Level 32403240
Weight 11
Character 3240.269
Analytic conductor 1.6171.617
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -120
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(269,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3240=23345 3240 = 2^{3} \cdot 3^{4} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3240.bh (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.616970640931.61697064093
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1080)
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.1080.1
Artin image: C6×S3C_6\times S_3
Artin field: Galois closure of Q[x]/(x12)\mathbb{Q}[x]/(x^{12} - \cdots)

Embedding invariants

Embedding label 269.1
Root 0.5000000.866025i0.500000 - 0.866025i of defining polynomial
Character χ\chi == 3240.269
Dual form 3240.1.bh.c.1349.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q2+(0.5000000.866025i)q4+(0.5000000.866025i)q51.00000q81.00000q10+(0.5000000.866025i)q11+(0.5000000.866025i)q13+(0.500000+0.866025i)q16+1.00000q17+(0.500000+0.866025i)q20+(0.5000000.866025i)q22+(0.5000000.866025i)q23+(0.500000+0.866025i)q251.00000q26+(0.5000000.866025i)q29+(0.500000+0.866025i)q31+(0.500000+0.866025i)q32+(0.5000000.866025i)q342.00000q37+(0.500000+0.866025i)q40+(0.500000+0.866025i)q431.00000q441.00000q46+(0.500000+0.866025i)q47+(0.5000000.866025i)q49+(0.500000+0.866025i)q50+(0.500000+0.866025i)q521.00000q55+(0.5000000.866025i)q58+(1.000001.73205i)q59+1.00000q62+1.00000q64+(0.500000+0.866025i)q65+(1.00000+1.73205i)q67+(0.5000000.866025i)q68+(1.00000+1.73205i)q74+(0.5000000.866025i)q79+1.00000q80+(0.5000000.866025i)q85+(0.500000+0.866025i)q86+(0.500000+0.866025i)q88+(0.500000+0.866025i)q92+(0.500000+0.866025i)q941.00000q98+O(q100)q+(0.500000 - 0.866025i) q^{2} +(-0.500000 - 0.866025i) q^{4} +(-0.500000 - 0.866025i) q^{5} -1.00000 q^{8} -1.00000 q^{10} +(0.500000 - 0.866025i) q^{11} +(-0.500000 - 0.866025i) q^{13} +(-0.500000 + 0.866025i) q^{16} +1.00000 q^{17} +(-0.500000 + 0.866025i) q^{20} +(-0.500000 - 0.866025i) q^{22} +(-0.500000 - 0.866025i) q^{23} +(-0.500000 + 0.866025i) q^{25} -1.00000 q^{26} +(0.500000 - 0.866025i) q^{29} +(0.500000 + 0.866025i) q^{31} +(0.500000 + 0.866025i) q^{32} +(0.500000 - 0.866025i) q^{34} -2.00000 q^{37} +(0.500000 + 0.866025i) q^{40} +(-0.500000 + 0.866025i) q^{43} -1.00000 q^{44} -1.00000 q^{46} +(-0.500000 + 0.866025i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(0.500000 + 0.866025i) q^{50} +(-0.500000 + 0.866025i) q^{52} -1.00000 q^{55} +(-0.500000 - 0.866025i) q^{58} +(-1.00000 - 1.73205i) q^{59} +1.00000 q^{62} +1.00000 q^{64} +(-0.500000 + 0.866025i) q^{65} +(1.00000 + 1.73205i) q^{67} +(-0.500000 - 0.866025i) q^{68} +(-1.00000 + 1.73205i) q^{74} +(0.500000 - 0.866025i) q^{79} +1.00000 q^{80} +(-0.500000 - 0.866025i) q^{85} +(0.500000 + 0.866025i) q^{86} +(-0.500000 + 0.866025i) q^{88} +(-0.500000 + 0.866025i) q^{92} +(0.500000 + 0.866025i) q^{94} -1.00000 q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+q2q4q52q82q10+q11q13q16+2q17q20q22q23q252q26+q29+q31+q32+q344q37+q40+2q98+O(q100) 2 q + q^{2} - q^{4} - q^{5} - 2 q^{8} - 2 q^{10} + q^{11} - q^{13} - q^{16} + 2 q^{17} - q^{20} - q^{22} - q^{23} - q^{25} - 2 q^{26} + q^{29} + q^{31} + q^{32} + q^{34} - 4 q^{37} + q^{40}+ \cdots - 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3240Z)×\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times.

nn 12971297 16211621 24312431 31613161
χ(n)\chi(n) 1-1 1-1 11 e(16)e\left(\frac{1}{6}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 0.866025i 0.500000 0.866025i
33 0 0
44 −0.500000 0.866025i −0.500000 0.866025i
55 −0.500000 0.866025i −0.500000 0.866025i
66 0 0
77 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
88 −1.00000 −1.00000
99 0 0
1010 −1.00000 −1.00000
1111 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
1212 0 0
1313 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
1414 0 0
1515 0 0
1616 −0.500000 + 0.866025i −0.500000 + 0.866025i
1717 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1818 0 0
1919 0 0 1.00000 00
−1.00000 π\pi
2020 −0.500000 + 0.866025i −0.500000 + 0.866025i
2121 0 0
2222 −0.500000 0.866025i −0.500000 0.866025i
2323 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
2424 0 0
2525 −0.500000 + 0.866025i −0.500000 + 0.866025i
2626 −1.00000 −1.00000
2727 0 0
2828 0 0
2929 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
3030 0 0
3131 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
3232 0.500000 + 0.866025i 0.500000 + 0.866025i
3333 0 0
3434 0.500000 0.866025i 0.500000 0.866025i
3535 0 0
3636 0 0
3737 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
3838 0 0
3939 0 0
4040 0.500000 + 0.866025i 0.500000 + 0.866025i
4141 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4242 0 0
4343 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
4444 −1.00000 −1.00000
4545 0 0
4646 −1.00000 −1.00000
4747 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
4848 0 0
4949 −0.500000 0.866025i −0.500000 0.866025i
5050 0.500000 + 0.866025i 0.500000 + 0.866025i
5151 0 0
5252 −0.500000 + 0.866025i −0.500000 + 0.866025i
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −1.00000 −1.00000
5656 0 0
5757 0 0
5858 −0.500000 0.866025i −0.500000 0.866025i
5959 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
6060 0 0
6161 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
6262 1.00000 1.00000
6363 0 0
6464 1.00000 1.00000
6565 −0.500000 + 0.866025i −0.500000 + 0.866025i
6666 0 0
6767 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 −0.500000 0.866025i −0.500000 0.866025i
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 −1.00000 + 1.73205i −1.00000 + 1.73205i
7575 0 0
7676 0 0
7777 0 0
7878 0 0
7979 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
8080 1.00000 1.00000
8181 0 0
8282 0 0
8383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
8484 0 0
8585 −0.500000 0.866025i −0.500000 0.866025i
8686 0.500000 + 0.866025i 0.500000 + 0.866025i
8787 0 0
8888 −0.500000 + 0.866025i −0.500000 + 0.866025i
8989 0 0 1.00000 00
−1.00000 π\pi
9090 0 0
9191 0 0
9292 −0.500000 + 0.866025i −0.500000 + 0.866025i
9393 0 0
9494 0.500000 + 0.866025i 0.500000 + 0.866025i
9595 0 0
9696 0 0
9797 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 −1.00000 −1.00000
9999 0 0
100100 1.00000 1.00000
101101 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
102102 0 0
103103 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
104104 0.500000 + 0.866025i 0.500000 + 0.866025i
105105 0 0
106106 0 0
107107 0 0 1.00000 00
−1.00000 π\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 −0.500000 + 0.866025i −0.500000 + 0.866025i
111111 0 0
112112 0 0
113113 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
114114 0 0
115115 −0.500000 + 0.866025i −0.500000 + 0.866025i
116116 −1.00000 −1.00000
117117 0 0
118118 −2.00000 −2.00000
119119 0 0
120120 0 0
121121 0 0
122122 0 0
123123 0 0
124124 0.500000 0.866025i 0.500000 0.866025i
125125 1.00000 1.00000
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 0.500000 0.866025i 0.500000 0.866025i
129129 0 0
130130 0.500000 + 0.866025i 0.500000 + 0.866025i
131131 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 0 0
134134 2.00000 2.00000
135135 0 0
136136 −1.00000 −1.00000
137137 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
138138 0 0
139139 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
140140 0 0
141141 0 0
142142 0 0
143143 −1.00000 −1.00000
144144 0 0
145145 −1.00000 −1.00000
146146 0 0
147147 0 0
148148 1.00000 + 1.73205i 1.00000 + 1.73205i
149149 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
152152 0 0
153153 0 0
154154 0 0
155155 0.500000 0.866025i 0.500000 0.866025i
156156 0 0
157157 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
158158 −0.500000 0.866025i −0.500000 0.866025i
159159 0 0
160160 0.500000 0.866025i 0.500000 0.866025i
161161 0 0
162162 0 0
163163 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
164164 0 0
165165 0 0
166166 0 0
167167 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 0 0
169169 0 0
170170 −1.00000 −1.00000
171171 0 0
172172 1.00000 1.00000
173173 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
174174 0 0
175175 0 0
176176 0.500000 + 0.866025i 0.500000 + 0.866025i
177177 0 0
178178 0 0
179179 2.00000 2.00000 1.00000 00
1.00000 00
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0.500000 + 0.866025i 0.500000 + 0.866025i
185185 1.00000 + 1.73205i 1.00000 + 1.73205i
186186 0 0
187187 0.500000 0.866025i 0.500000 0.866025i
188188 1.00000 1.00000
189189 0 0
190190 0 0
191191 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0 0
193193 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
194194 0 0
195195 0 0
196196 −0.500000 + 0.866025i −0.500000 + 0.866025i
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0.500000 0.866025i 0.500000 0.866025i
201201 0 0
202202 −0.500000 0.866025i −0.500000 0.866025i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 1.00000 1.00000
209209 0 0
210210 0 0
211211 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 0 0
213213 0 0
214214 0 0
215215 1.00000 1.00000
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0.500000 + 0.866025i 0.500000 + 0.866025i
221221 −0.500000 0.866025i −0.500000 0.866025i
222222 0 0
223223 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
224224 0 0
225225 0 0
226226 −1.00000 −1.00000
227227 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
228228 0 0
229229 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
230230 0.500000 + 0.866025i 0.500000 + 0.866025i
231231 0 0
232232 −0.500000 + 0.866025i −0.500000 + 0.866025i
233233 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
234234 0 0
235235 1.00000 1.00000
236236 −1.00000 + 1.73205i −1.00000 + 1.73205i
237237 0 0
238238 0 0
239239 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
240240 0 0
241241 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
242242 0 0
243243 0 0
244244 0 0
245245 −0.500000 + 0.866025i −0.500000 + 0.866025i
246246 0 0
247247 0 0
248248 −0.500000 0.866025i −0.500000 0.866025i
249249 0 0
250250 0.500000 0.866025i 0.500000 0.866025i
251251 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
252252 0 0
253253 −1.00000 −1.00000
254254 0 0
255255 0 0
256256 −0.500000 0.866025i −0.500000 0.866025i
257257 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
258258 0 0
259259 0 0
260260 1.00000 1.00000
261261 0 0
262262 1.00000 1.00000
263263 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 1.00000 1.73205i 1.00000 1.73205i
269269 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
270270 0 0
271271 2.00000 2.00000 1.00000 00
1.00000 00
272272 −0.500000 + 0.866025i −0.500000 + 0.866025i
273273 0 0
274274 −1.00000 1.73205i −1.00000 1.73205i
275275 0.500000 + 0.866025i 0.500000 + 0.866025i
276276 0 0
277277 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
278278 0 0
279279 0 0
280280 0 0
281281 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
282282 0 0
283283 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
284284 0 0
285285 0 0
286286 −0.500000 + 0.866025i −0.500000 + 0.866025i
287287 0 0
288288 0 0
289289 0 0
290290 −0.500000 + 0.866025i −0.500000 + 0.866025i
291291 0 0
292292 0 0
293293 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
294294 0 0
295295 −1.00000 + 1.73205i −1.00000 + 1.73205i
296296 2.00000 2.00000
297297 0 0
298298 1.00000 1.00000
299299 −0.500000 + 0.866025i −0.500000 + 0.866025i
300300 0 0
301301 0 0
302302 −0.500000 0.866025i −0.500000 0.866025i
303303 0 0
304304 0 0
305305 0 0
306306 0 0
307307 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
308308 0 0
309309 0 0
310310 −0.500000 0.866025i −0.500000 0.866025i
311311 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
312312 0 0
313313 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
314314 −1.00000 −1.00000
315315 0 0
316316 −1.00000 −1.00000
317317 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
318318 0 0
319319 −0.500000 0.866025i −0.500000 0.866025i
320320 −0.500000 0.866025i −0.500000 0.866025i
321321 0 0
322322 0 0
323323 0 0
324324 0 0
325325 1.00000 1.00000
326326 0.500000 0.866025i 0.500000 0.866025i
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 0 0
333333 0 0
334334 2.00000 2.00000
335335 1.00000 1.73205i 1.00000 1.73205i
336336 0 0
337337 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
338338 0 0
339339 0 0
340340 −0.500000 + 0.866025i −0.500000 + 0.866025i
341341 1.00000 1.00000
342342 0 0
343343 0 0
344344 0.500000 0.866025i 0.500000 0.866025i
345345 0 0
346346 0 0
347347 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
348348 0 0
349349 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 0 0
352352 1.00000 1.00000
353353 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
354354 0 0
355355 0 0
356356 0 0
357357 0 0
358358 1.00000 1.73205i 1.00000 1.73205i
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 1.00000 1.00000
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
368368 1.00000 1.00000
369369 0 0
370370 2.00000 2.00000
371371 0 0
372372 0 0
373373 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
374374 −0.500000 0.866025i −0.500000 0.866025i
375375 0 0
376376 0.500000 0.866025i 0.500000 0.866025i
377377 −1.00000 −1.00000
378378 0 0
379379 0 0 1.00000 00
−1.00000 π\pi
380380 0 0
381381 0 0
382382 0 0
383383 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
384384 0 0
385385 0 0
386386 0 0
387387 0 0
388388 0 0
389389 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
390390 0 0
391391 −0.500000 0.866025i −0.500000 0.866025i
392392 0.500000 + 0.866025i 0.500000 + 0.866025i
393393 0 0
394394 0 0
395395 −1.00000 −1.00000
396396 0 0
397397 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
398398 −0.500000 + 0.866025i −0.500000 + 0.866025i
399399 0 0
400400 −0.500000 0.866025i −0.500000 0.866025i
401401 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
402402 0 0
403403 0.500000 0.866025i 0.500000 0.866025i
404404 −1.00000 −1.00000
405405 0 0
406406 0 0
407407 −1.00000 + 1.73205i −1.00000 + 1.73205i
408408 0 0
409409 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0.500000 0.866025i 0.500000 0.866025i
417417 0 0
418418 0 0
419419 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
420420 0 0
421421 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
422422 0 0
423423 0 0
424424 0 0
425425 −0.500000 + 0.866025i −0.500000 + 0.866025i
426426 0 0
427427 0 0
428428 0 0
429429 0 0
430430 0.500000 0.866025i 0.500000 0.866025i
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
440440 1.00000 1.00000
441441 0 0
442442 −1.00000 −1.00000
443443 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 0 0 1.00000 00
−1.00000 π\pi
450450 0 0
451451 0 0
452452 −0.500000 + 0.866025i −0.500000 + 0.866025i
453453 0 0
454454 0 0
455455 0 0
456456 0 0
457457 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 0 0
459459 0 0
460460 1.00000 1.00000
461461 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
462462 0 0
463463 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 0.500000 + 0.866025i 0.500000 + 0.866025i
465465 0 0
466466 −1.00000 + 1.73205i −1.00000 + 1.73205i
467467 0 0 1.00000 00
−1.00000 π\pi
468468 0 0
469469 0 0
470470 0.500000 0.866025i 0.500000 0.866025i
471471 0 0
472472 1.00000 + 1.73205i 1.00000 + 1.73205i
473473 0.500000 + 0.866025i 0.500000 + 0.866025i
474474 0 0
475475 0 0
476476 0 0
477477 0 0
478478 0 0
479479 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
480480 0 0
481481 1.00000 + 1.73205i 1.00000 + 1.73205i
482482 −0.500000 0.866025i −0.500000 0.866025i
483483 0 0
484484 0 0
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0.500000 + 0.866025i 0.500000 + 0.866025i
491491 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
492492 0 0
493493 0.500000 0.866025i 0.500000 0.866025i
494494 0 0
495495 0 0
496496 −1.00000 −1.00000
497497 0 0
498498 0 0
499499 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
500500 −0.500000 0.866025i −0.500000 0.866025i
501501 0 0
502502 −0.500000 + 0.866025i −0.500000 + 0.866025i
503503 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
504504 0 0
505505 −1.00000 −1.00000
506506 −0.500000 + 0.866025i −0.500000 + 0.866025i
507507 0 0
508508 0 0
509509 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 −1.00000 −1.00000
515515 0 0
516516 0 0
517517 0.500000 + 0.866025i 0.500000 + 0.866025i
518518 0 0
519519 0 0
520520 0.500000 0.866025i 0.500000 0.866025i
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
524524 0.500000 0.866025i 0.500000 0.866025i
525525 0 0
526526 −1.00000 1.73205i −1.00000 1.73205i
527527 0.500000 + 0.866025i 0.500000 + 0.866025i
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 −1.00000 1.73205i −1.00000 1.73205i
537537 0 0
538538 −0.500000 + 0.866025i −0.500000 + 0.866025i
539539 −1.00000 −1.00000
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 1.00000 1.73205i 1.00000 1.73205i
543543 0 0
544544 0.500000 + 0.866025i 0.500000 + 0.866025i
545545 0 0
546546 0 0
547547 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
548548 −2.00000 −2.00000
549549 0 0
550550 1.00000 1.00000
551551 0 0
552552 0 0
553553 0 0
554554 −1.00000 1.73205i −1.00000 1.73205i
555555 0 0
556556 0 0
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 1.00000 1.00000
560560 0 0
561561 0 0
562562 0 0
563563 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
564564 0 0
565565 −0.500000 + 0.866025i −0.500000 + 0.866025i
566566 2.00000 2.00000
567567 0 0
568568 0 0
569569 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 0 0
571571 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
572572 0.500000 + 0.866025i 0.500000 + 0.866025i
573573 0 0
574574 0 0
575575 1.00000 1.00000
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0 0
579579 0 0
580580 0.500000 + 0.866025i 0.500000 + 0.866025i
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 0 0
587587 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0 0
589589 0 0
590590 1.00000 + 1.73205i 1.00000 + 1.73205i
591591 0 0
592592 1.00000 1.73205i 1.00000 1.73205i
593593 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
594594 0 0
595595 0 0
596596 0.500000 0.866025i 0.500000 0.866025i
597597 0 0
598598 0.500000 + 0.866025i 0.500000 + 0.866025i
599599 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 0 0
601601 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
602602 0 0
603603 0 0
604604 −1.00000 −1.00000
605605 0 0
606606 0 0
607607 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
608608 0 0
609609 0 0
610610 0 0
611611 1.00000 1.00000
612612 0 0
613613 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 0.500000 0.866025i 0.500000 0.866025i
615615 0 0
616616 0 0
617617 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
618618 0 0
619619 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 −1.00000 −1.00000
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 −0.500000 0.866025i −0.500000 0.866025i
626626 0 0
627627 0 0
628628 −0.500000 + 0.866025i −0.500000 + 0.866025i
629629 −2.00000 −2.00000
630630 0 0
631631 2.00000 2.00000 1.00000 00
1.00000 00
632632 −0.500000 + 0.866025i −0.500000 + 0.866025i
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 −0.500000 + 0.866025i −0.500000 + 0.866025i
638638 −1.00000 −1.00000
639639 0 0
640640 −1.00000 −1.00000
641641 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
642642 0 0
643643 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
648648 0 0
649649 −2.00000 −2.00000
650650 0.500000 0.866025i 0.500000 0.866025i
651651 0 0
652652 −0.500000 0.866025i −0.500000 0.866025i
653653 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
654654 0 0
655655 0.500000 0.866025i 0.500000 0.866025i
656656 0 0
657657 0 0
658658 0 0
659659 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 −1.00000 −1.00000
668668 1.00000 1.73205i 1.00000 1.73205i
669669 0 0
670670 −1.00000 1.73205i −1.00000 1.73205i
671671 0 0
672672 0 0
673673 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
674674 0 0
675675 0 0
676676 0 0
677677 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 0 0
679679 0 0
680680 0.500000 + 0.866025i 0.500000 + 0.866025i
681681 0 0
682682 0.500000 0.866025i 0.500000 0.866025i
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 −2.00000 −2.00000
686686 0 0
687687 0 0
688688 −0.500000 0.866025i −0.500000 0.866025i
689689 0 0
690690 0 0
691691 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0 0
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 0 0
701701 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
702702 0 0
703703 0 0
704704 0.500000 0.866025i 0.500000 0.866025i
705705 0 0
706706 0.500000 + 0.866025i 0.500000 + 0.866025i
707707 0 0
708708 0 0
709709 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
710710 0 0
711711 0 0
712712 0 0
713713 0.500000 0.866025i 0.500000 0.866025i
714714 0 0
715715 0.500000 + 0.866025i 0.500000 + 0.866025i
716716 −1.00000 1.73205i −1.00000 1.73205i
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 0.500000 0.866025i 0.500000 0.866025i
723723 0 0
724724 0 0
725725 0.500000 + 0.866025i 0.500000 + 0.866025i
726726 0 0
727727 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
728728 0 0
729729 0 0
730730 0 0
731731 −0.500000 + 0.866025i −0.500000 + 0.866025i
732732 0 0
733733 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
734734 0 0
735735 0 0
736736 0.500000 0.866025i 0.500000 0.866025i
737737 2.00000 2.00000
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 1.00000 1.73205i 1.00000 1.73205i
741741 0 0
742742 0 0
743743 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
744744 0 0
745745 0.500000 0.866025i 0.500000 0.866025i
746746 −1.00000 −1.00000
747747 0 0
748748 −1.00000 −1.00000
749749 0 0
750750 0 0
751751 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 −0.500000 0.866025i −0.500000 0.866025i
753753 0 0
754754 −0.500000 + 0.866025i −0.500000 + 0.866025i
755755 −1.00000 −1.00000
756756 0 0
757757 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 −1.00000 −1.00000
767767 −1.00000 + 1.73205i −1.00000 + 1.73205i
768768 0 0
769769 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
770770 0 0
771771 0 0
772772 0 0
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 −1.00000 −1.00000
776776 0 0
777777 0 0
778778 −0.500000 0.866025i −0.500000 0.866025i
779779 0 0
780780 0 0
781781 0 0
782782 −1.00000 −1.00000
783783 0 0
784784 1.00000 1.00000
785785 −0.500000 + 0.866025i −0.500000 + 0.866025i
786786 0 0
787787 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
788788 0 0
789789 0 0
790790 −0.500000 + 0.866025i −0.500000 + 0.866025i
791791 0 0
792792 0 0
793793 0 0
794794 0.500000 0.866025i 0.500000 0.866025i
795795 0 0
796796 0.500000 + 0.866025i 0.500000 + 0.866025i
797797 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
798798 0 0
799799 −0.500000 + 0.866025i −0.500000 + 0.866025i
800800 −1.00000 −1.00000
801801 0 0
802802 0 0
803803 0 0
804804 0 0
805805 0 0
806806 −0.500000 0.866025i −0.500000 0.866025i
807807 0 0
808808 −0.500000 + 0.866025i −0.500000 + 0.866025i
809809 0 0 1.00000 00
−1.00000 π\pi
810810 0 0
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 1.00000 + 1.73205i 1.00000 + 1.73205i
815815 −0.500000 0.866025i −0.500000 0.866025i
816816 0 0
817817 0 0
818818 1.00000 1.00000
819819 0 0
820820 0 0
821821 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
822822 0 0
823823 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
824824 0 0
825825 0 0
826826 0 0
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 −0.500000 0.866025i −0.500000 0.866025i
833833 −0.500000 0.866025i −0.500000 0.866025i
834834 0 0
835835 1.00000 1.73205i 1.00000 1.73205i
836836 0 0
837837 0 0
838838 1.00000 1.00000
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 0 0
841841 0 0
842842 0 0
843843 0 0
844844 0 0
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 0.500000 + 0.866025i 0.500000 + 0.866025i
851851 1.00000 + 1.73205i 1.00000 + 1.73205i
852852 0 0
853853 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
854854 0 0
855855 0 0
856856 0 0
857857 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
858858 0 0
859859 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
860860 −0.500000 0.866025i −0.500000 0.866025i
861861 0 0
862862 0 0
863863 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
864864 0 0
865865 0 0
866866 0 0
867867 0 0
868868 0 0
869869 −0.500000 0.866025i −0.500000 0.866025i
870870 0 0
871871 1.00000 1.73205i 1.00000 1.73205i
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
878878 1.00000 + 1.73205i 1.00000 + 1.73205i
879879 0 0
880880 0.500000 0.866025i 0.500000 0.866025i
881881 0 0 1.00000 00
−1.00000 π\pi
882882 0 0
883883 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
884884 −0.500000 + 0.866025i −0.500000 + 0.866025i
885885 0 0
886886 0 0
887887 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 −1.00000 1.73205i −1.00000 1.73205i
896896 0 0
897897 0 0
898898 0 0
899899 1.00000 1.00000
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 0.500000 + 0.866025i 0.500000 + 0.866025i
905905 0 0
906906 0 0
907907 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
908908 0 0
909909 0 0
910910 0 0
911911 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
912912 0 0
913913 0 0
914914 0 0
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
920920 0.500000 0.866025i 0.500000 0.866025i
921921 0 0
922922 1.00000 + 1.73205i 1.00000 + 1.73205i
923923 0 0
924924 0 0
925925 1.00000 1.73205i 1.00000 1.73205i
926926 0 0
927927 0 0
928928 1.00000 1.00000
929929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
930930 0 0
931931 0 0
932932 1.00000 + 1.73205i 1.00000 + 1.73205i
933933 0 0
934934 0 0
935935 −1.00000 −1.00000
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 −0.500000 0.866025i −0.500000 0.866025i
941941 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
942942 0 0
943943 0 0
944944 2.00000 2.00000
945945 0 0
946946 1.00000 1.00000
947947 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
948948 0 0
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 0 0
962962 2.00000 2.00000
963963 0 0
964964 −1.00000 −1.00000
965965 0 0
966966 0 0
967967 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
968968 0 0
969969 0 0
970970 0 0
971971 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
978978 0 0
979979 0 0
980980 1.00000 1.00000
981981 0 0
982982 −2.00000 −2.00000
983983 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
984984 0 0
985985 0 0
986986 −0.500000 0.866025i −0.500000 0.866025i
987987 0 0
988988 0 0
989989 1.00000 1.00000
990990 0 0
991991 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 −0.500000 + 0.866025i −0.500000 + 0.866025i
993993 0 0
994994 0 0
995995 0.500000 + 0.866025i 0.500000 + 0.866025i
996996 0 0
997997 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3240.1.bh.c.269.1 2
3.2 odd 2 3240.1.bh.b.269.1 2
5.4 even 2 3240.1.bh.a.269.1 2
8.5 even 2 3240.1.bh.d.269.1 2
9.2 odd 6 1080.1.i.c.269.1 yes 1
9.4 even 3 inner 3240.1.bh.c.1349.1 2
9.5 odd 6 3240.1.bh.b.1349.1 2
9.7 even 3 1080.1.i.b.269.1 yes 1
15.14 odd 2 3240.1.bh.d.269.1 2
24.5 odd 2 3240.1.bh.a.269.1 2
40.29 even 2 3240.1.bh.b.269.1 2
45.4 even 6 3240.1.bh.a.1349.1 2
45.14 odd 6 3240.1.bh.d.1349.1 2
45.29 odd 6 1080.1.i.a.269.1 1
45.34 even 6 1080.1.i.d.269.1 yes 1
72.5 odd 6 3240.1.bh.a.1349.1 2
72.13 even 6 3240.1.bh.d.1349.1 2
72.29 odd 6 1080.1.i.d.269.1 yes 1
72.61 even 6 1080.1.i.a.269.1 1
120.29 odd 2 CM 3240.1.bh.c.269.1 2
360.29 odd 6 1080.1.i.b.269.1 yes 1
360.149 odd 6 inner 3240.1.bh.c.1349.1 2
360.229 even 6 3240.1.bh.b.1349.1 2
360.349 even 6 1080.1.i.c.269.1 yes 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1080.1.i.a.269.1 1 45.29 odd 6
1080.1.i.a.269.1 1 72.61 even 6
1080.1.i.b.269.1 yes 1 9.7 even 3
1080.1.i.b.269.1 yes 1 360.29 odd 6
1080.1.i.c.269.1 yes 1 9.2 odd 6
1080.1.i.c.269.1 yes 1 360.349 even 6
1080.1.i.d.269.1 yes 1 45.34 even 6
1080.1.i.d.269.1 yes 1 72.29 odd 6
3240.1.bh.a.269.1 2 5.4 even 2
3240.1.bh.a.269.1 2 24.5 odd 2
3240.1.bh.a.1349.1 2 45.4 even 6
3240.1.bh.a.1349.1 2 72.5 odd 6
3240.1.bh.b.269.1 2 3.2 odd 2
3240.1.bh.b.269.1 2 40.29 even 2
3240.1.bh.b.1349.1 2 9.5 odd 6
3240.1.bh.b.1349.1 2 360.229 even 6
3240.1.bh.c.269.1 2 1.1 even 1 trivial
3240.1.bh.c.269.1 2 120.29 odd 2 CM
3240.1.bh.c.1349.1 2 9.4 even 3 inner
3240.1.bh.c.1349.1 2 360.149 odd 6 inner
3240.1.bh.d.269.1 2 8.5 even 2
3240.1.bh.d.269.1 2 15.14 odd 2
3240.1.bh.d.1349.1 2 45.14 odd 6
3240.1.bh.d.1349.1 2 72.13 even 6