Properties

Label 3240.1.bh.g
Level 32403240
Weight 11
Character orbit 3240.bh
Analytic conductor 1.6171.617
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -15
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(269,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 3240=23345 3240 = 2^{3} \cdot 3^{4} \cdot 5
Weight: k k == 1 1
Character orbit: [χ][\chi] == 3240.bh (of order 66, degree 22, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 1.616970640931.61697064093
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 1080)
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.27993600.2

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The qq-expansion and trace form are shown below.

f(q)f(q) == q+ζ125q2ζ124q4ζ125q5+ζ123q8+ζ124q10ζ122q16+(ζ125ζ12)q17+(ζ124ζ122)q19++ζ12q98+O(q100) q + \zeta_{12}^{5} q^{2} - \zeta_{12}^{4} q^{4} - \zeta_{12}^{5} q^{5} + \zeta_{12}^{3} q^{8} + \zeta_{12}^{4} q^{10} - \zeta_{12}^{2} q^{16} + (\zeta_{12}^{5} - \zeta_{12}) q^{17} + ( - \zeta_{12}^{4} - \zeta_{12}^{2}) q^{19} + \cdots + \zeta_{12} q^{98} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q42q102q16+2q252q31+6q34+2q40+6q462q49+6q614q646q76+2q796q85+O(q100) 4 q + 2 q^{4} - 2 q^{10} - 2 q^{16} + 2 q^{25} - 2 q^{31} + 6 q^{34} + 2 q^{40} + 6 q^{46} - 2 q^{49} + 6 q^{61} - 4 q^{64} - 6 q^{76} + 2 q^{79} - 6 q^{85}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/3240Z)×\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times.

nn 12971297 16211621 24312431 31613161
χ(n)\chi(n) 1-1 1-1 11 ζ122\zeta_{12}^{2}

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
269.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 0.866025 0.500000i 0 0 1.00000i 0 −0.500000 + 0.866025i
269.2 0.866025 0.500000i 0 0.500000 0.866025i −0.866025 + 0.500000i 0 0 1.00000i 0 −0.500000 + 0.866025i
1349.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.866025 + 0.500000i 0 0 1.00000i 0 −0.500000 0.866025i
1349.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i −0.866025 0.500000i 0 0 1.00000i 0 −0.500000 0.866025i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by Q(15)\Q(\sqrt{-15})
3.b odd 2 1 inner
5.b even 2 1 inner
72.j odd 6 1 inner
72.n even 6 1 inner
360.bh odd 6 1 inner
360.bk even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.1.bh.g 4
3.b odd 2 1 inner 3240.1.bh.g 4
5.b even 2 1 inner 3240.1.bh.g 4
8.b even 2 1 3240.1.bh.e 4
9.c even 3 1 1080.1.i.f 4
9.c even 3 1 3240.1.bh.e 4
9.d odd 6 1 1080.1.i.f 4
9.d odd 6 1 3240.1.bh.e 4
15.d odd 2 1 CM 3240.1.bh.g 4
24.h odd 2 1 3240.1.bh.e 4
40.f even 2 1 3240.1.bh.e 4
45.h odd 6 1 1080.1.i.f 4
45.h odd 6 1 3240.1.bh.e 4
45.j even 6 1 1080.1.i.f 4
45.j even 6 1 3240.1.bh.e 4
72.j odd 6 1 1080.1.i.f 4
72.j odd 6 1 inner 3240.1.bh.g 4
72.n even 6 1 1080.1.i.f 4
72.n even 6 1 inner 3240.1.bh.g 4
120.i odd 2 1 3240.1.bh.e 4
360.bh odd 6 1 1080.1.i.f 4
360.bh odd 6 1 inner 3240.1.bh.g 4
360.bk even 6 1 1080.1.i.f 4
360.bk even 6 1 inner 3240.1.bh.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.1.i.f 4 9.c even 3 1
1080.1.i.f 4 9.d odd 6 1
1080.1.i.f 4 45.h odd 6 1
1080.1.i.f 4 45.j even 6 1
1080.1.i.f 4 72.j odd 6 1
1080.1.i.f 4 72.n even 6 1
1080.1.i.f 4 360.bh odd 6 1
1080.1.i.f 4 360.bk even 6 1
3240.1.bh.e 4 8.b even 2 1
3240.1.bh.e 4 9.c even 3 1
3240.1.bh.e 4 9.d odd 6 1
3240.1.bh.e 4 24.h odd 2 1
3240.1.bh.e 4 40.f even 2 1
3240.1.bh.e 4 45.h odd 6 1
3240.1.bh.e 4 45.j even 6 1
3240.1.bh.e 4 120.i odd 2 1
3240.1.bh.g 4 1.a even 1 1 trivial
3240.1.bh.g 4 3.b odd 2 1 inner
3240.1.bh.g 4 5.b even 2 1 inner
3240.1.bh.g 4 15.d odd 2 1 CM
3240.1.bh.g 4 72.j odd 6 1 inner
3240.1.bh.g 4 72.n even 6 1 inner
3240.1.bh.g 4 360.bh odd 6 1 inner
3240.1.bh.g 4 360.bk even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(3240,[χ])S_{1}^{\mathrm{new}}(3240, [\chi]):

T7 T_{7} Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T13 T_{13} Copy content Toggle raw display
T1723 T_{17}^{2} - 3 Copy content Toggle raw display
T6123T61+3 T_{61}^{2} - 3T_{61} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
33 T4 T^{4} Copy content Toggle raw display
55 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
77 T4 T^{4} Copy content Toggle raw display
1111 T4 T^{4} Copy content Toggle raw display
1313 T4 T^{4} Copy content Toggle raw display
1717 (T23)2 (T^{2} - 3)^{2} Copy content Toggle raw display
1919 (T2+3)2 (T^{2} + 3)^{2} Copy content Toggle raw display
2323 T4+3T2+9 T^{4} + 3T^{2} + 9 Copy content Toggle raw display
2929 T4 T^{4} Copy content Toggle raw display
3131 (T2+T+1)2 (T^{2} + T + 1)^{2} Copy content Toggle raw display
3737 T4 T^{4} Copy content Toggle raw display
4141 T4 T^{4} Copy content Toggle raw display
4343 T4 T^{4} Copy content Toggle raw display
4747 T4 T^{4} Copy content Toggle raw display
5353 (T2+1)2 (T^{2} + 1)^{2} Copy content Toggle raw display
5959 T4 T^{4} Copy content Toggle raw display
6161 (T23T+3)2 (T^{2} - 3 T + 3)^{2} Copy content Toggle raw display
6767 T4 T^{4} Copy content Toggle raw display
7171 T4 T^{4} Copy content Toggle raw display
7373 T4 T^{4} Copy content Toggle raw display
7979 (T2T+1)2 (T^{2} - T + 1)^{2} Copy content Toggle raw display
8383 T4T2+1 T^{4} - T^{2} + 1 Copy content Toggle raw display
8989 T4 T^{4} Copy content Toggle raw display
9797 T4 T^{4} Copy content Toggle raw display
show more
show less