Properties

Label 3240.1.bh.g
Level $3240$
Weight $1$
Character orbit 3240.bh
Analytic conductor $1.617$
Analytic rank $0$
Dimension $4$
Projective image $D_{6}$
CM discriminant -15
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3240,1,Mod(269,3240)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3240, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 1, 3]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3240.269");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3240 = 2^{3} \cdot 3^{4} \cdot 5 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 3240.bh (of order \(6\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.61697064093\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1080)
Projective image: \(D_{6}\)
Projective field: Galois closure of 6.0.27993600.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

The \(q\)-expansion and trace form are shown below.

\(f(q)\) \(=\) \( q + \zeta_{12}^{5} q^{2} - \zeta_{12}^{4} q^{4} - \zeta_{12}^{5} q^{5} + \zeta_{12}^{3} q^{8} + \zeta_{12}^{4} q^{10} - \zeta_{12}^{2} q^{16} + (\zeta_{12}^{5} - \zeta_{12}) q^{17} + ( - \zeta_{12}^{4} - \zeta_{12}^{2}) q^{19} + \cdots + \zeta_{12} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} - 2 q^{10} - 2 q^{16} + 2 q^{25} - 2 q^{31} + 6 q^{34} + 2 q^{40} + 6 q^{46} - 2 q^{49} + 6 q^{61} - 4 q^{64} - 6 q^{76} + 2 q^{79} - 6 q^{85}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3240\mathbb{Z}\right)^\times\).

\(n\) \(1297\) \(1621\) \(2431\) \(3161\)
\(\chi(n)\) \(-1\) \(-1\) \(1\) \(\zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
269.1
0.866025 + 0.500000i
−0.866025 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 0.866025 0.500000i 0 0 1.00000i 0 −0.500000 + 0.866025i
269.2 0.866025 0.500000i 0 0.500000 0.866025i −0.866025 + 0.500000i 0 0 1.00000i 0 −0.500000 + 0.866025i
1349.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 0.866025 + 0.500000i 0 0 1.00000i 0 −0.500000 0.866025i
1349.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i −0.866025 0.500000i 0 0 1.00000i 0 −0.500000 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
15.d odd 2 1 CM by \(\Q(\sqrt{-15}) \)
3.b odd 2 1 inner
5.b even 2 1 inner
72.j odd 6 1 inner
72.n even 6 1 inner
360.bh odd 6 1 inner
360.bk even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3240.1.bh.g 4
3.b odd 2 1 inner 3240.1.bh.g 4
5.b even 2 1 inner 3240.1.bh.g 4
8.b even 2 1 3240.1.bh.e 4
9.c even 3 1 1080.1.i.f 4
9.c even 3 1 3240.1.bh.e 4
9.d odd 6 1 1080.1.i.f 4
9.d odd 6 1 3240.1.bh.e 4
15.d odd 2 1 CM 3240.1.bh.g 4
24.h odd 2 1 3240.1.bh.e 4
40.f even 2 1 3240.1.bh.e 4
45.h odd 6 1 1080.1.i.f 4
45.h odd 6 1 3240.1.bh.e 4
45.j even 6 1 1080.1.i.f 4
45.j even 6 1 3240.1.bh.e 4
72.j odd 6 1 1080.1.i.f 4
72.j odd 6 1 inner 3240.1.bh.g 4
72.n even 6 1 1080.1.i.f 4
72.n even 6 1 inner 3240.1.bh.g 4
120.i odd 2 1 3240.1.bh.e 4
360.bh odd 6 1 1080.1.i.f 4
360.bh odd 6 1 inner 3240.1.bh.g 4
360.bk even 6 1 1080.1.i.f 4
360.bk even 6 1 inner 3240.1.bh.g 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1080.1.i.f 4 9.c even 3 1
1080.1.i.f 4 9.d odd 6 1
1080.1.i.f 4 45.h odd 6 1
1080.1.i.f 4 45.j even 6 1
1080.1.i.f 4 72.j odd 6 1
1080.1.i.f 4 72.n even 6 1
1080.1.i.f 4 360.bh odd 6 1
1080.1.i.f 4 360.bk even 6 1
3240.1.bh.e 4 8.b even 2 1
3240.1.bh.e 4 9.c even 3 1
3240.1.bh.e 4 9.d odd 6 1
3240.1.bh.e 4 24.h odd 2 1
3240.1.bh.e 4 40.f even 2 1
3240.1.bh.e 4 45.h odd 6 1
3240.1.bh.e 4 45.j even 6 1
3240.1.bh.e 4 120.i odd 2 1
3240.1.bh.g 4 1.a even 1 1 trivial
3240.1.bh.g 4 3.b odd 2 1 inner
3240.1.bh.g 4 5.b even 2 1 inner
3240.1.bh.g 4 15.d odd 2 1 CM
3240.1.bh.g 4 72.j odd 6 1 inner
3240.1.bh.g 4 72.n even 6 1 inner
3240.1.bh.g 4 360.bh odd 6 1 inner
3240.1.bh.g 4 360.bk even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(3240, [\chi])\):

\( T_{7} \) Copy content Toggle raw display
\( T_{11} \) Copy content Toggle raw display
\( T_{13} \) Copy content Toggle raw display
\( T_{17}^{2} - 3 \) Copy content Toggle raw display
\( T_{61}^{2} - 3T_{61} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$7$ \( T^{4} \) Copy content Toggle raw display
$11$ \( T^{4} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 3)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} + 3T^{2} + 9 \) Copy content Toggle raw display
$29$ \( T^{4} \) Copy content Toggle raw display
$31$ \( (T^{2} + T + 1)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} \) Copy content Toggle raw display
$41$ \( T^{4} \) Copy content Toggle raw display
$43$ \( T^{4} \) Copy content Toggle raw display
$47$ \( T^{4} \) Copy content Toggle raw display
$53$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} \) Copy content Toggle raw display
$61$ \( (T^{2} - 3 T + 3)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} \) Copy content Toggle raw display
$73$ \( T^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - T + 1)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$89$ \( T^{4} \) Copy content Toggle raw display
$97$ \( T^{4} \) Copy content Toggle raw display
show more
show less