Properties

Label 325.2.a.h.1.2
Level $325$
Weight $2$
Character 325.1
Self dual yes
Analytic conductor $2.595$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [325,2,Mod(1,325)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(325, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("325.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 325 = 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 325.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(2.59513806569\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 325.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421 q^{2} -2.82843 q^{3} +3.82843 q^{4} -6.82843 q^{6} +2.41421 q^{7} +4.41421 q^{8} +5.00000 q^{9} +6.41421 q^{11} -10.8284 q^{12} +1.00000 q^{13} +5.82843 q^{14} +3.00000 q^{16} -3.82843 q^{17} +12.0711 q^{18} -3.65685 q^{19} -6.82843 q^{21} +15.4853 q^{22} -3.17157 q^{23} -12.4853 q^{24} +2.41421 q^{26} -5.65685 q^{27} +9.24264 q^{28} -0.171573 q^{29} +1.24264 q^{31} -1.58579 q^{32} -18.1421 q^{33} -9.24264 q^{34} +19.1421 q^{36} -6.00000 q^{37} -8.82843 q^{38} -2.82843 q^{39} -5.65685 q^{41} -16.4853 q^{42} +0.828427 q^{43} +24.5563 q^{44} -7.65685 q^{46} +3.58579 q^{47} -8.48528 q^{48} -1.17157 q^{49} +10.8284 q^{51} +3.82843 q^{52} +3.00000 q^{53} -13.6569 q^{54} +10.6569 q^{56} +10.3431 q^{57} -0.414214 q^{58} +13.2426 q^{59} +1.00000 q^{61} +3.00000 q^{62} +12.0711 q^{63} -9.82843 q^{64} -43.7990 q^{66} -2.75736 q^{67} -14.6569 q^{68} +8.97056 q^{69} -9.31371 q^{71} +22.0711 q^{72} -6.00000 q^{73} -14.4853 q^{74} -14.0000 q^{76} +15.4853 q^{77} -6.82843 q^{78} -6.00000 q^{79} +1.00000 q^{81} -13.6569 q^{82} +6.89949 q^{83} -26.1421 q^{84} +2.00000 q^{86} +0.485281 q^{87} +28.3137 q^{88} -8.48528 q^{89} +2.41421 q^{91} -12.1421 q^{92} -3.51472 q^{93} +8.65685 q^{94} +4.48528 q^{96} -0.828427 q^{97} -2.82843 q^{98} +32.0711 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} - 8 q^{6} + 2 q^{7} + 6 q^{8} + 10 q^{9} + 10 q^{11} - 16 q^{12} + 2 q^{13} + 6 q^{14} + 6 q^{16} - 2 q^{17} + 10 q^{18} + 4 q^{19} - 8 q^{21} + 14 q^{22} - 12 q^{23} - 8 q^{24}+ \cdots + 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421 1.70711 0.853553 0.521005i \(-0.174443\pi\)
0.853553 + 0.521005i \(0.174443\pi\)
\(3\) −2.82843 −1.63299 −0.816497 0.577350i \(-0.804087\pi\)
−0.816497 + 0.577350i \(0.804087\pi\)
\(4\) 3.82843 1.91421
\(5\) 0 0
\(6\) −6.82843 −2.78769
\(7\) 2.41421 0.912487 0.456243 0.889855i \(-0.349195\pi\)
0.456243 + 0.889855i \(0.349195\pi\)
\(8\) 4.41421 1.56066
\(9\) 5.00000 1.66667
\(10\) 0 0
\(11\) 6.41421 1.93396 0.966979 0.254856i \(-0.0820280\pi\)
0.966979 + 0.254856i \(0.0820280\pi\)
\(12\) −10.8284 −3.12590
\(13\) 1.00000 0.277350
\(14\) 5.82843 1.55771
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) −3.82843 −0.928530 −0.464265 0.885696i \(-0.653681\pi\)
−0.464265 + 0.885696i \(0.653681\pi\)
\(18\) 12.0711 2.84518
\(19\) −3.65685 −0.838940 −0.419470 0.907769i \(-0.637784\pi\)
−0.419470 + 0.907769i \(0.637784\pi\)
\(20\) 0 0
\(21\) −6.82843 −1.49008
\(22\) 15.4853 3.30147
\(23\) −3.17157 −0.661319 −0.330659 0.943750i \(-0.607271\pi\)
−0.330659 + 0.943750i \(0.607271\pi\)
\(24\) −12.4853 −2.54855
\(25\) 0 0
\(26\) 2.41421 0.473466
\(27\) −5.65685 −1.08866
\(28\) 9.24264 1.74669
\(29\) −0.171573 −0.0318603 −0.0159301 0.999873i \(-0.505071\pi\)
−0.0159301 + 0.999873i \(0.505071\pi\)
\(30\) 0 0
\(31\) 1.24264 0.223185 0.111592 0.993754i \(-0.464405\pi\)
0.111592 + 0.993754i \(0.464405\pi\)
\(32\) −1.58579 −0.280330
\(33\) −18.1421 −3.15814
\(34\) −9.24264 −1.58510
\(35\) 0 0
\(36\) 19.1421 3.19036
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) −8.82843 −1.43216
\(39\) −2.82843 −0.452911
\(40\) 0 0
\(41\) −5.65685 −0.883452 −0.441726 0.897150i \(-0.645634\pi\)
−0.441726 + 0.897150i \(0.645634\pi\)
\(42\) −16.4853 −2.54373
\(43\) 0.828427 0.126334 0.0631670 0.998003i \(-0.479880\pi\)
0.0631670 + 0.998003i \(0.479880\pi\)
\(44\) 24.5563 3.70201
\(45\) 0 0
\(46\) −7.65685 −1.12894
\(47\) 3.58579 0.523041 0.261520 0.965198i \(-0.415776\pi\)
0.261520 + 0.965198i \(0.415776\pi\)
\(48\) −8.48528 −1.22474
\(49\) −1.17157 −0.167368
\(50\) 0 0
\(51\) 10.8284 1.51628
\(52\) 3.82843 0.530907
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) −13.6569 −1.85846
\(55\) 0 0
\(56\) 10.6569 1.42408
\(57\) 10.3431 1.36998
\(58\) −0.414214 −0.0543889
\(59\) 13.2426 1.72404 0.862022 0.506870i \(-0.169198\pi\)
0.862022 + 0.506870i \(0.169198\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 3.00000 0.381000
\(63\) 12.0711 1.52081
\(64\) −9.82843 −1.22855
\(65\) 0 0
\(66\) −43.7990 −5.39128
\(67\) −2.75736 −0.336865 −0.168433 0.985713i \(-0.553871\pi\)
−0.168433 + 0.985713i \(0.553871\pi\)
\(68\) −14.6569 −1.77740
\(69\) 8.97056 1.07993
\(70\) 0 0
\(71\) −9.31371 −1.10533 −0.552667 0.833402i \(-0.686390\pi\)
−0.552667 + 0.833402i \(0.686390\pi\)
\(72\) 22.0711 2.60110
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) −14.4853 −1.68388
\(75\) 0 0
\(76\) −14.0000 −1.60591
\(77\) 15.4853 1.76471
\(78\) −6.82843 −0.773167
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) −13.6569 −1.50815
\(83\) 6.89949 0.757318 0.378659 0.925536i \(-0.376385\pi\)
0.378659 + 0.925536i \(0.376385\pi\)
\(84\) −26.1421 −2.85234
\(85\) 0 0
\(86\) 2.00000 0.215666
\(87\) 0.485281 0.0520276
\(88\) 28.3137 3.01825
\(89\) −8.48528 −0.899438 −0.449719 0.893170i \(-0.648476\pi\)
−0.449719 + 0.893170i \(0.648476\pi\)
\(90\) 0 0
\(91\) 2.41421 0.253078
\(92\) −12.1421 −1.26591
\(93\) −3.51472 −0.364459
\(94\) 8.65685 0.892886
\(95\) 0 0
\(96\) 4.48528 0.457777
\(97\) −0.828427 −0.0841140 −0.0420570 0.999115i \(-0.513391\pi\)
−0.0420570 + 0.999115i \(0.513391\pi\)
\(98\) −2.82843 −0.285714
\(99\) 32.0711 3.22326
\(100\) 0 0
\(101\) −6.65685 −0.662382 −0.331191 0.943564i \(-0.607450\pi\)
−0.331191 + 0.943564i \(0.607450\pi\)
\(102\) 26.1421 2.58846
\(103\) 13.6569 1.34565 0.672825 0.739802i \(-0.265081\pi\)
0.672825 + 0.739802i \(0.265081\pi\)
\(104\) 4.41421 0.432849
\(105\) 0 0
\(106\) 7.24264 0.703467
\(107\) 16.1421 1.56052 0.780260 0.625456i \(-0.215087\pi\)
0.780260 + 0.625456i \(0.215087\pi\)
\(108\) −21.6569 −2.08393
\(109\) −16.4853 −1.57900 −0.789502 0.613748i \(-0.789661\pi\)
−0.789502 + 0.613748i \(0.789661\pi\)
\(110\) 0 0
\(111\) 16.9706 1.61077
\(112\) 7.24264 0.684365
\(113\) −11.6569 −1.09658 −0.548292 0.836287i \(-0.684722\pi\)
−0.548292 + 0.836287i \(0.684722\pi\)
\(114\) 24.9706 2.33871
\(115\) 0 0
\(116\) −0.656854 −0.0609874
\(117\) 5.00000 0.462250
\(118\) 31.9706 2.94313
\(119\) −9.24264 −0.847271
\(120\) 0 0
\(121\) 30.1421 2.74019
\(122\) 2.41421 0.218573
\(123\) 16.0000 1.44267
\(124\) 4.75736 0.427223
\(125\) 0 0
\(126\) 29.1421 2.59619
\(127\) −3.65685 −0.324493 −0.162247 0.986750i \(-0.551874\pi\)
−0.162247 + 0.986750i \(0.551874\pi\)
\(128\) −20.5563 −1.81694
\(129\) −2.34315 −0.206302
\(130\) 0 0
\(131\) 8.48528 0.741362 0.370681 0.928760i \(-0.379124\pi\)
0.370681 + 0.928760i \(0.379124\pi\)
\(132\) −69.4558 −6.04536
\(133\) −8.82843 −0.765522
\(134\) −6.65685 −0.575065
\(135\) 0 0
\(136\) −16.8995 −1.44912
\(137\) 2.82843 0.241649 0.120824 0.992674i \(-0.461446\pi\)
0.120824 + 0.992674i \(0.461446\pi\)
\(138\) 21.6569 1.84355
\(139\) −18.4853 −1.56790 −0.783951 0.620823i \(-0.786798\pi\)
−0.783951 + 0.620823i \(0.786798\pi\)
\(140\) 0 0
\(141\) −10.1421 −0.854122
\(142\) −22.4853 −1.88692
\(143\) 6.41421 0.536383
\(144\) 15.0000 1.25000
\(145\) 0 0
\(146\) −14.4853 −1.19881
\(147\) 3.31371 0.273310
\(148\) −22.9706 −1.88817
\(149\) 8.82843 0.723253 0.361626 0.932323i \(-0.382222\pi\)
0.361626 + 0.932323i \(0.382222\pi\)
\(150\) 0 0
\(151\) −8.75736 −0.712664 −0.356332 0.934359i \(-0.615973\pi\)
−0.356332 + 0.934359i \(0.615973\pi\)
\(152\) −16.1421 −1.30930
\(153\) −19.1421 −1.54755
\(154\) 37.3848 3.01255
\(155\) 0 0
\(156\) −10.8284 −0.866968
\(157\) 23.4853 1.87433 0.937165 0.348887i \(-0.113440\pi\)
0.937165 + 0.348887i \(0.113440\pi\)
\(158\) −14.4853 −1.15239
\(159\) −8.48528 −0.672927
\(160\) 0 0
\(161\) −7.65685 −0.603445
\(162\) 2.41421 0.189679
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) −21.6569 −1.69112
\(165\) 0 0
\(166\) 16.6569 1.29282
\(167\) −5.31371 −0.411187 −0.205594 0.978637i \(-0.565912\pi\)
−0.205594 + 0.978637i \(0.565912\pi\)
\(168\) −30.1421 −2.32552
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) −18.2843 −1.39823
\(172\) 3.17157 0.241830
\(173\) 18.6569 1.41845 0.709227 0.704980i \(-0.249044\pi\)
0.709227 + 0.704980i \(0.249044\pi\)
\(174\) 1.17157 0.0888167
\(175\) 0 0
\(176\) 19.2426 1.45047
\(177\) −37.4558 −2.81535
\(178\) −20.4853 −1.53544
\(179\) 0.686292 0.0512958 0.0256479 0.999671i \(-0.491835\pi\)
0.0256479 + 0.999671i \(0.491835\pi\)
\(180\) 0 0
\(181\) −17.4853 −1.29967 −0.649835 0.760075i \(-0.725162\pi\)
−0.649835 + 0.760075i \(0.725162\pi\)
\(182\) 5.82843 0.432032
\(183\) −2.82843 −0.209083
\(184\) −14.0000 −1.03209
\(185\) 0 0
\(186\) −8.48528 −0.622171
\(187\) −24.5563 −1.79574
\(188\) 13.7279 1.00121
\(189\) −13.6569 −0.993390
\(190\) 0 0
\(191\) 25.3137 1.83164 0.915818 0.401594i \(-0.131544\pi\)
0.915818 + 0.401594i \(0.131544\pi\)
\(192\) 27.7990 2.00622
\(193\) 1.65685 0.119263 0.0596315 0.998220i \(-0.481007\pi\)
0.0596315 + 0.998220i \(0.481007\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −4.48528 −0.320377
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 77.4264 5.50246
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) 7.79899 0.550098
\(202\) −16.0711 −1.13076
\(203\) −0.414214 −0.0290721
\(204\) 41.4558 2.90249
\(205\) 0 0
\(206\) 32.9706 2.29717
\(207\) −15.8579 −1.10220
\(208\) 3.00000 0.208013
\(209\) −23.4558 −1.62247
\(210\) 0 0
\(211\) 17.7990 1.22533 0.612666 0.790342i \(-0.290097\pi\)
0.612666 + 0.790342i \(0.290097\pi\)
\(212\) 11.4853 0.788812
\(213\) 26.3431 1.80500
\(214\) 38.9706 2.66397
\(215\) 0 0
\(216\) −24.9706 −1.69903
\(217\) 3.00000 0.203653
\(218\) −39.7990 −2.69553
\(219\) 16.9706 1.14676
\(220\) 0 0
\(221\) −3.82843 −0.257528
\(222\) 40.9706 2.74976
\(223\) −10.9706 −0.734643 −0.367322 0.930094i \(-0.619725\pi\)
−0.367322 + 0.930094i \(0.619725\pi\)
\(224\) −3.82843 −0.255798
\(225\) 0 0
\(226\) −28.1421 −1.87199
\(227\) −8.89949 −0.590680 −0.295340 0.955392i \(-0.595433\pi\)
−0.295340 + 0.955392i \(0.595433\pi\)
\(228\) 39.5980 2.62244
\(229\) −4.82843 −0.319071 −0.159536 0.987192i \(-0.551000\pi\)
−0.159536 + 0.987192i \(0.551000\pi\)
\(230\) 0 0
\(231\) −43.7990 −2.88176
\(232\) −0.757359 −0.0497231
\(233\) 20.6274 1.35135 0.675674 0.737201i \(-0.263853\pi\)
0.675674 + 0.737201i \(0.263853\pi\)
\(234\) 12.0711 0.789110
\(235\) 0 0
\(236\) 50.6985 3.30019
\(237\) 16.9706 1.10236
\(238\) −22.3137 −1.44638
\(239\) 23.5858 1.52564 0.762819 0.646612i \(-0.223815\pi\)
0.762819 + 0.646612i \(0.223815\pi\)
\(240\) 0 0
\(241\) 4.97056 0.320182 0.160091 0.987102i \(-0.448821\pi\)
0.160091 + 0.987102i \(0.448821\pi\)
\(242\) 72.7696 4.67780
\(243\) 14.1421 0.907218
\(244\) 3.82843 0.245090
\(245\) 0 0
\(246\) 38.6274 2.46279
\(247\) −3.65685 −0.232680
\(248\) 5.48528 0.348316
\(249\) −19.5147 −1.23670
\(250\) 0 0
\(251\) −5.65685 −0.357057 −0.178529 0.983935i \(-0.557134\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(252\) 46.2132 2.91116
\(253\) −20.3431 −1.27896
\(254\) −8.82843 −0.553945
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) −6.65685 −0.415243 −0.207622 0.978209i \(-0.566572\pi\)
−0.207622 + 0.978209i \(0.566572\pi\)
\(258\) −5.65685 −0.352180
\(259\) −14.4853 −0.900072
\(260\) 0 0
\(261\) −0.857864 −0.0531005
\(262\) 20.4853 1.26558
\(263\) −26.1421 −1.61199 −0.805997 0.591920i \(-0.798370\pi\)
−0.805997 + 0.591920i \(0.798370\pi\)
\(264\) −80.0833 −4.92878
\(265\) 0 0
\(266\) −21.3137 −1.30683
\(267\) 24.0000 1.46878
\(268\) −10.5563 −0.644832
\(269\) 15.1421 0.923232 0.461616 0.887080i \(-0.347270\pi\)
0.461616 + 0.887080i \(0.347270\pi\)
\(270\) 0 0
\(271\) −25.7279 −1.56286 −0.781430 0.623993i \(-0.785509\pi\)
−0.781430 + 0.623993i \(0.785509\pi\)
\(272\) −11.4853 −0.696397
\(273\) −6.82843 −0.413275
\(274\) 6.82843 0.412520
\(275\) 0 0
\(276\) 34.3431 2.06721
\(277\) 9.31371 0.559607 0.279803 0.960057i \(-0.409731\pi\)
0.279803 + 0.960057i \(0.409731\pi\)
\(278\) −44.6274 −2.67657
\(279\) 6.21320 0.371975
\(280\) 0 0
\(281\) 4.82843 0.288040 0.144020 0.989575i \(-0.453997\pi\)
0.144020 + 0.989575i \(0.453997\pi\)
\(282\) −24.4853 −1.45808
\(283\) −22.4853 −1.33661 −0.668306 0.743887i \(-0.732980\pi\)
−0.668306 + 0.743887i \(0.732980\pi\)
\(284\) −35.6569 −2.11585
\(285\) 0 0
\(286\) 15.4853 0.915664
\(287\) −13.6569 −0.806139
\(288\) −7.92893 −0.467217
\(289\) −2.34315 −0.137832
\(290\) 0 0
\(291\) 2.34315 0.137358
\(292\) −22.9706 −1.34425
\(293\) 8.82843 0.515762 0.257881 0.966177i \(-0.416976\pi\)
0.257881 + 0.966177i \(0.416976\pi\)
\(294\) 8.00000 0.466569
\(295\) 0 0
\(296\) −26.4853 −1.53943
\(297\) −36.2843 −2.10543
\(298\) 21.3137 1.23467
\(299\) −3.17157 −0.183417
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) −21.1421 −1.21659
\(303\) 18.8284 1.08166
\(304\) −10.9706 −0.629205
\(305\) 0 0
\(306\) −46.2132 −2.64183
\(307\) −9.31371 −0.531561 −0.265781 0.964034i \(-0.585630\pi\)
−0.265781 + 0.964034i \(0.585630\pi\)
\(308\) 59.2843 3.37803
\(309\) −38.6274 −2.19744
\(310\) 0 0
\(311\) 9.51472 0.539530 0.269765 0.962926i \(-0.413054\pi\)
0.269765 + 0.962926i \(0.413054\pi\)
\(312\) −12.4853 −0.706840
\(313\) 2.85786 0.161536 0.0807680 0.996733i \(-0.474263\pi\)
0.0807680 + 0.996733i \(0.474263\pi\)
\(314\) 56.6985 3.19968
\(315\) 0 0
\(316\) −22.9706 −1.29220
\(317\) 20.1421 1.13130 0.565648 0.824647i \(-0.308626\pi\)
0.565648 + 0.824647i \(0.308626\pi\)
\(318\) −20.4853 −1.14876
\(319\) −1.10051 −0.0616165
\(320\) 0 0
\(321\) −45.6569 −2.54832
\(322\) −18.4853 −1.03014
\(323\) 14.0000 0.778981
\(324\) 3.82843 0.212690
\(325\) 0 0
\(326\) 24.1421 1.33711
\(327\) 46.6274 2.57850
\(328\) −24.9706 −1.37877
\(329\) 8.65685 0.477268
\(330\) 0 0
\(331\) 27.6569 1.52016 0.760079 0.649831i \(-0.225160\pi\)
0.760079 + 0.649831i \(0.225160\pi\)
\(332\) 26.4142 1.44967
\(333\) −30.0000 −1.64399
\(334\) −12.8284 −0.701940
\(335\) 0 0
\(336\) −20.4853 −1.11756
\(337\) −20.7990 −1.13299 −0.566497 0.824064i \(-0.691702\pi\)
−0.566497 + 0.824064i \(0.691702\pi\)
\(338\) 2.41421 0.131316
\(339\) 32.9706 1.79072
\(340\) 0 0
\(341\) 7.97056 0.431630
\(342\) −44.1421 −2.38693
\(343\) −19.7279 −1.06521
\(344\) 3.65685 0.197164
\(345\) 0 0
\(346\) 45.0416 2.42145
\(347\) −19.4558 −1.04444 −0.522222 0.852809i \(-0.674897\pi\)
−0.522222 + 0.852809i \(0.674897\pi\)
\(348\) 1.85786 0.0995920
\(349\) 35.4558 1.89791 0.948954 0.315415i \(-0.102144\pi\)
0.948954 + 0.315415i \(0.102144\pi\)
\(350\) 0 0
\(351\) −5.65685 −0.301941
\(352\) −10.1716 −0.542147
\(353\) 26.1421 1.39141 0.695703 0.718330i \(-0.255093\pi\)
0.695703 + 0.718330i \(0.255093\pi\)
\(354\) −90.4264 −4.80611
\(355\) 0 0
\(356\) −32.4853 −1.72172
\(357\) 26.1421 1.38359
\(358\) 1.65685 0.0875675
\(359\) 21.3848 1.12865 0.564323 0.825554i \(-0.309137\pi\)
0.564323 + 0.825554i \(0.309137\pi\)
\(360\) 0 0
\(361\) −5.62742 −0.296180
\(362\) −42.2132 −2.21868
\(363\) −85.2548 −4.47472
\(364\) 9.24264 0.484446
\(365\) 0 0
\(366\) −6.82843 −0.356928
\(367\) −34.8284 −1.81803 −0.909015 0.416764i \(-0.863164\pi\)
−0.909015 + 0.416764i \(0.863164\pi\)
\(368\) −9.51472 −0.495989
\(369\) −28.2843 −1.47242
\(370\) 0 0
\(371\) 7.24264 0.376019
\(372\) −13.4558 −0.697653
\(373\) 1.14214 0.0591375 0.0295688 0.999563i \(-0.490587\pi\)
0.0295688 + 0.999563i \(0.490587\pi\)
\(374\) −59.2843 −3.06552
\(375\) 0 0
\(376\) 15.8284 0.816289
\(377\) −0.171573 −0.00883645
\(378\) −32.9706 −1.69582
\(379\) −31.8701 −1.63705 −0.818527 0.574467i \(-0.805209\pi\)
−0.818527 + 0.574467i \(0.805209\pi\)
\(380\) 0 0
\(381\) 10.3431 0.529895
\(382\) 61.1127 3.12680
\(383\) 27.6569 1.41320 0.706600 0.707614i \(-0.250228\pi\)
0.706600 + 0.707614i \(0.250228\pi\)
\(384\) 58.1421 2.96705
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) 4.14214 0.210557
\(388\) −3.17157 −0.161012
\(389\) 28.6274 1.45147 0.725734 0.687976i \(-0.241500\pi\)
0.725734 + 0.687976i \(0.241500\pi\)
\(390\) 0 0
\(391\) 12.1421 0.614054
\(392\) −5.17157 −0.261204
\(393\) −24.0000 −1.21064
\(394\) −28.9706 −1.45952
\(395\) 0 0
\(396\) 122.782 6.17001
\(397\) 7.65685 0.384286 0.192143 0.981367i \(-0.438456\pi\)
0.192143 + 0.981367i \(0.438456\pi\)
\(398\) 24.1421 1.21014
\(399\) 24.9706 1.25009
\(400\) 0 0
\(401\) −3.85786 −0.192653 −0.0963263 0.995350i \(-0.530709\pi\)
−0.0963263 + 0.995350i \(0.530709\pi\)
\(402\) 18.8284 0.939077
\(403\) 1.24264 0.0619003
\(404\) −25.4853 −1.26794
\(405\) 0 0
\(406\) −1.00000 −0.0496292
\(407\) −38.4853 −1.90764
\(408\) 47.7990 2.36640
\(409\) −10.8284 −0.535431 −0.267716 0.963498i \(-0.586269\pi\)
−0.267716 + 0.963498i \(0.586269\pi\)
\(410\) 0 0
\(411\) −8.00000 −0.394611
\(412\) 52.2843 2.57586
\(413\) 31.9706 1.57317
\(414\) −38.2843 −1.88157
\(415\) 0 0
\(416\) −1.58579 −0.0777496
\(417\) 52.2843 2.56037
\(418\) −56.6274 −2.76974
\(419\) 22.8284 1.11524 0.557621 0.830096i \(-0.311714\pi\)
0.557621 + 0.830096i \(0.311714\pi\)
\(420\) 0 0
\(421\) −16.9706 −0.827095 −0.413547 0.910483i \(-0.635710\pi\)
−0.413547 + 0.910483i \(0.635710\pi\)
\(422\) 42.9706 2.09177
\(423\) 17.9289 0.871735
\(424\) 13.2426 0.643119
\(425\) 0 0
\(426\) 63.5980 3.08133
\(427\) 2.41421 0.116832
\(428\) 61.7990 2.98717
\(429\) −18.1421 −0.875911
\(430\) 0 0
\(431\) −8.34315 −0.401875 −0.200938 0.979604i \(-0.564399\pi\)
−0.200938 + 0.979604i \(0.564399\pi\)
\(432\) −16.9706 −0.816497
\(433\) 16.3431 0.785401 0.392701 0.919666i \(-0.371541\pi\)
0.392701 + 0.919666i \(0.371541\pi\)
\(434\) 7.24264 0.347658
\(435\) 0 0
\(436\) −63.1127 −3.02255
\(437\) 11.5980 0.554807
\(438\) 40.9706 1.95765
\(439\) 14.0000 0.668184 0.334092 0.942541i \(-0.391570\pi\)
0.334092 + 0.942541i \(0.391570\pi\)
\(440\) 0 0
\(441\) −5.85786 −0.278946
\(442\) −9.24264 −0.439628
\(443\) −29.7990 −1.41579 −0.707896 0.706316i \(-0.750356\pi\)
−0.707896 + 0.706316i \(0.750356\pi\)
\(444\) 64.9706 3.08337
\(445\) 0 0
\(446\) −26.4853 −1.25411
\(447\) −24.9706 −1.18107
\(448\) −23.7279 −1.12104
\(449\) −5.17157 −0.244062 −0.122031 0.992526i \(-0.538941\pi\)
−0.122031 + 0.992526i \(0.538941\pi\)
\(450\) 0 0
\(451\) −36.2843 −1.70856
\(452\) −44.6274 −2.09910
\(453\) 24.7696 1.16378
\(454\) −21.4853 −1.00835
\(455\) 0 0
\(456\) 45.6569 2.13808
\(457\) 8.48528 0.396925 0.198462 0.980109i \(-0.436405\pi\)
0.198462 + 0.980109i \(0.436405\pi\)
\(458\) −11.6569 −0.544689
\(459\) 21.6569 1.01086
\(460\) 0 0
\(461\) −19.4558 −0.906149 −0.453074 0.891473i \(-0.649673\pi\)
−0.453074 + 0.891473i \(0.649673\pi\)
\(462\) −105.740 −4.91948
\(463\) 28.5563 1.32713 0.663563 0.748120i \(-0.269043\pi\)
0.663563 + 0.748120i \(0.269043\pi\)
\(464\) −0.514719 −0.0238952
\(465\) 0 0
\(466\) 49.7990 2.30689
\(467\) 31.1127 1.43972 0.719862 0.694117i \(-0.244205\pi\)
0.719862 + 0.694117i \(0.244205\pi\)
\(468\) 19.1421 0.884846
\(469\) −6.65685 −0.307385
\(470\) 0 0
\(471\) −66.4264 −3.06077
\(472\) 58.4558 2.69065
\(473\) 5.31371 0.244325
\(474\) 40.9706 1.88184
\(475\) 0 0
\(476\) −35.3848 −1.62186
\(477\) 15.0000 0.686803
\(478\) 56.9411 2.60443
\(479\) 14.2721 0.652108 0.326054 0.945351i \(-0.394281\pi\)
0.326054 + 0.945351i \(0.394281\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 12.0000 0.546585
\(483\) 21.6569 0.985421
\(484\) 115.397 5.24532
\(485\) 0 0
\(486\) 34.1421 1.54872
\(487\) −42.2132 −1.91286 −0.956431 0.291957i \(-0.905694\pi\)
−0.956431 + 0.291957i \(0.905694\pi\)
\(488\) 4.41421 0.199822
\(489\) −28.2843 −1.27906
\(490\) 0 0
\(491\) 11.1716 0.504166 0.252083 0.967706i \(-0.418884\pi\)
0.252083 + 0.967706i \(0.418884\pi\)
\(492\) 61.2548 2.76158
\(493\) 0.656854 0.0295832
\(494\) −8.82843 −0.397210
\(495\) 0 0
\(496\) 3.72792 0.167389
\(497\) −22.4853 −1.00860
\(498\) −47.1127 −2.11117
\(499\) 2.55635 0.114438 0.0572190 0.998362i \(-0.481777\pi\)
0.0572190 + 0.998362i \(0.481777\pi\)
\(500\) 0 0
\(501\) 15.0294 0.671466
\(502\) −13.6569 −0.609535
\(503\) −14.6274 −0.652204 −0.326102 0.945335i \(-0.605735\pi\)
−0.326102 + 0.945335i \(0.605735\pi\)
\(504\) 53.2843 2.37347
\(505\) 0 0
\(506\) −49.1127 −2.18333
\(507\) −2.82843 −0.125615
\(508\) −14.0000 −0.621150
\(509\) 14.6274 0.648349 0.324174 0.945997i \(-0.394914\pi\)
0.324174 + 0.945997i \(0.394914\pi\)
\(510\) 0 0
\(511\) −14.4853 −0.640791
\(512\) −31.2426 −1.38074
\(513\) 20.6863 0.913322
\(514\) −16.0711 −0.708864
\(515\) 0 0
\(516\) −8.97056 −0.394907
\(517\) 23.0000 1.01154
\(518\) −34.9706 −1.53652
\(519\) −52.7696 −2.31633
\(520\) 0 0
\(521\) 0.343146 0.0150335 0.00751674 0.999972i \(-0.497607\pi\)
0.00751674 + 0.999972i \(0.497607\pi\)
\(522\) −2.07107 −0.0906482
\(523\) 6.00000 0.262362 0.131181 0.991358i \(-0.458123\pi\)
0.131181 + 0.991358i \(0.458123\pi\)
\(524\) 32.4853 1.41913
\(525\) 0 0
\(526\) −63.1127 −2.75184
\(527\) −4.75736 −0.207234
\(528\) −54.4264 −2.36861
\(529\) −12.9411 −0.562658
\(530\) 0 0
\(531\) 66.2132 2.87341
\(532\) −33.7990 −1.46537
\(533\) −5.65685 −0.245026
\(534\) 57.9411 2.50736
\(535\) 0 0
\(536\) −12.1716 −0.525732
\(537\) −1.94113 −0.0837657
\(538\) 36.5563 1.57606
\(539\) −7.51472 −0.323682
\(540\) 0 0
\(541\) 33.7990 1.45313 0.726566 0.687097i \(-0.241115\pi\)
0.726566 + 0.687097i \(0.241115\pi\)
\(542\) −62.1127 −2.66797
\(543\) 49.4558 2.12235
\(544\) 6.07107 0.260295
\(545\) 0 0
\(546\) −16.4853 −0.705505
\(547\) 28.4853 1.21794 0.608971 0.793192i \(-0.291582\pi\)
0.608971 + 0.793192i \(0.291582\pi\)
\(548\) 10.8284 0.462567
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) 0.627417 0.0267289
\(552\) 39.5980 1.68540
\(553\) −14.4853 −0.615977
\(554\) 22.4853 0.955308
\(555\) 0 0
\(556\) −70.7696 −3.00130
\(557\) 27.3137 1.15732 0.578659 0.815569i \(-0.303576\pi\)
0.578659 + 0.815569i \(0.303576\pi\)
\(558\) 15.0000 0.635001
\(559\) 0.828427 0.0350387
\(560\) 0 0
\(561\) 69.4558 2.93243
\(562\) 11.6569 0.491715
\(563\) −18.0000 −0.758610 −0.379305 0.925272i \(-0.623837\pi\)
−0.379305 + 0.925272i \(0.623837\pi\)
\(564\) −38.8284 −1.63497
\(565\) 0 0
\(566\) −54.2843 −2.28174
\(567\) 2.41421 0.101387
\(568\) −41.1127 −1.72505
\(569\) −35.2843 −1.47919 −0.739597 0.673050i \(-0.764984\pi\)
−0.739597 + 0.673050i \(0.764984\pi\)
\(570\) 0 0
\(571\) −2.00000 −0.0836974 −0.0418487 0.999124i \(-0.513325\pi\)
−0.0418487 + 0.999124i \(0.513325\pi\)
\(572\) 24.5563 1.02675
\(573\) −71.5980 −2.99105
\(574\) −32.9706 −1.37616
\(575\) 0 0
\(576\) −49.1421 −2.04759
\(577\) −7.17157 −0.298556 −0.149278 0.988795i \(-0.547695\pi\)
−0.149278 + 0.988795i \(0.547695\pi\)
\(578\) −5.65685 −0.235294
\(579\) −4.68629 −0.194756
\(580\) 0 0
\(581\) 16.6569 0.691043
\(582\) 5.65685 0.234484
\(583\) 19.2426 0.796949
\(584\) −26.4853 −1.09597
\(585\) 0 0
\(586\) 21.3137 0.880461
\(587\) 14.4142 0.594938 0.297469 0.954731i \(-0.403857\pi\)
0.297469 + 0.954731i \(0.403857\pi\)
\(588\) 12.6863 0.523174
\(589\) −4.54416 −0.187239
\(590\) 0 0
\(591\) 33.9411 1.39615
\(592\) −18.0000 −0.739795
\(593\) 19.6569 0.807210 0.403605 0.914933i \(-0.367757\pi\)
0.403605 + 0.914933i \(0.367757\pi\)
\(594\) −87.5980 −3.59419
\(595\) 0 0
\(596\) 33.7990 1.38446
\(597\) −28.2843 −1.15760
\(598\) −7.65685 −0.313112
\(599\) −3.51472 −0.143608 −0.0718038 0.997419i \(-0.522876\pi\)
−0.0718038 + 0.997419i \(0.522876\pi\)
\(600\) 0 0
\(601\) 13.8284 0.564073 0.282037 0.959404i \(-0.408990\pi\)
0.282037 + 0.959404i \(0.408990\pi\)
\(602\) 4.82843 0.196792
\(603\) −13.7868 −0.561442
\(604\) −33.5269 −1.36419
\(605\) 0 0
\(606\) 45.4558 1.84652
\(607\) −21.5147 −0.873255 −0.436628 0.899642i \(-0.643827\pi\)
−0.436628 + 0.899642i \(0.643827\pi\)
\(608\) 5.79899 0.235180
\(609\) 1.17157 0.0474745
\(610\) 0 0
\(611\) 3.58579 0.145065
\(612\) −73.2843 −2.96234
\(613\) −12.8284 −0.518135 −0.259068 0.965859i \(-0.583415\pi\)
−0.259068 + 0.965859i \(0.583415\pi\)
\(614\) −22.4853 −0.907432
\(615\) 0 0
\(616\) 68.3553 2.75412
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) −93.2548 −3.75126
\(619\) 22.9706 0.923265 0.461632 0.887071i \(-0.347264\pi\)
0.461632 + 0.887071i \(0.347264\pi\)
\(620\) 0 0
\(621\) 17.9411 0.719953
\(622\) 22.9706 0.921036
\(623\) −20.4853 −0.820725
\(624\) −8.48528 −0.339683
\(625\) 0 0
\(626\) 6.89949 0.275759
\(627\) 66.3431 2.64949
\(628\) 89.9117 3.58787
\(629\) 22.9706 0.915896
\(630\) 0 0
\(631\) 34.0000 1.35352 0.676759 0.736204i \(-0.263384\pi\)
0.676759 + 0.736204i \(0.263384\pi\)
\(632\) −26.4853 −1.05353
\(633\) −50.3431 −2.00096
\(634\) 48.6274 1.93124
\(635\) 0 0
\(636\) −32.4853 −1.28813
\(637\) −1.17157 −0.0464194
\(638\) −2.65685 −0.105186
\(639\) −46.5685 −1.84222
\(640\) 0 0
\(641\) 28.1127 1.11038 0.555192 0.831722i \(-0.312645\pi\)
0.555192 + 0.831722i \(0.312645\pi\)
\(642\) −110.225 −4.35025
\(643\) −1.02944 −0.0405970 −0.0202985 0.999794i \(-0.506462\pi\)
−0.0202985 + 0.999794i \(0.506462\pi\)
\(644\) −29.3137 −1.15512
\(645\) 0 0
\(646\) 33.7990 1.32980
\(647\) 18.8284 0.740222 0.370111 0.928988i \(-0.379320\pi\)
0.370111 + 0.928988i \(0.379320\pi\)
\(648\) 4.41421 0.173407
\(649\) 84.9411 3.33423
\(650\) 0 0
\(651\) −8.48528 −0.332564
\(652\) 38.2843 1.49933
\(653\) −22.4558 −0.878765 −0.439383 0.898300i \(-0.644803\pi\)
−0.439383 + 0.898300i \(0.644803\pi\)
\(654\) 112.569 4.40178
\(655\) 0 0
\(656\) −16.9706 −0.662589
\(657\) −30.0000 −1.17041
\(658\) 20.8995 0.814747
\(659\) −8.62742 −0.336076 −0.168038 0.985780i \(-0.553743\pi\)
−0.168038 + 0.985780i \(0.553743\pi\)
\(660\) 0 0
\(661\) −6.82843 −0.265595 −0.132798 0.991143i \(-0.542396\pi\)
−0.132798 + 0.991143i \(0.542396\pi\)
\(662\) 66.7696 2.59507
\(663\) 10.8284 0.420541
\(664\) 30.4558 1.18192
\(665\) 0 0
\(666\) −72.4264 −2.80647
\(667\) 0.544156 0.0210698
\(668\) −20.3431 −0.787100
\(669\) 31.0294 1.19967
\(670\) 0 0
\(671\) 6.41421 0.247618
\(672\) 10.8284 0.417716
\(673\) 24.4558 0.942704 0.471352 0.881945i \(-0.343766\pi\)
0.471352 + 0.881945i \(0.343766\pi\)
\(674\) −50.2132 −1.93414
\(675\) 0 0
\(676\) 3.82843 0.147247
\(677\) −41.3137 −1.58781 −0.793907 0.608039i \(-0.791957\pi\)
−0.793907 + 0.608039i \(0.791957\pi\)
\(678\) 79.5980 3.05694
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) 25.1716 0.964577
\(682\) 19.2426 0.736839
\(683\) 21.5858 0.825957 0.412979 0.910741i \(-0.364488\pi\)
0.412979 + 0.910741i \(0.364488\pi\)
\(684\) −70.0000 −2.67652
\(685\) 0 0
\(686\) −47.6274 −1.81842
\(687\) 13.6569 0.521041
\(688\) 2.48528 0.0947505
\(689\) 3.00000 0.114291
\(690\) 0 0
\(691\) 8.89949 0.338553 0.169276 0.985569i \(-0.445857\pi\)
0.169276 + 0.985569i \(0.445857\pi\)
\(692\) 71.4264 2.71522
\(693\) 77.4264 2.94119
\(694\) −46.9706 −1.78298
\(695\) 0 0
\(696\) 2.14214 0.0811974
\(697\) 21.6569 0.820312
\(698\) 85.5980 3.23993
\(699\) −58.3431 −2.20674
\(700\) 0 0
\(701\) −15.8284 −0.597831 −0.298916 0.954280i \(-0.596625\pi\)
−0.298916 + 0.954280i \(0.596625\pi\)
\(702\) −13.6569 −0.515445
\(703\) 21.9411 0.827525
\(704\) −63.0416 −2.37597
\(705\) 0 0
\(706\) 63.1127 2.37528
\(707\) −16.0711 −0.604415
\(708\) −143.397 −5.38919
\(709\) −49.2548 −1.84980 −0.924902 0.380205i \(-0.875853\pi\)
−0.924902 + 0.380205i \(0.875853\pi\)
\(710\) 0 0
\(711\) −30.0000 −1.12509
\(712\) −37.4558 −1.40372
\(713\) −3.94113 −0.147596
\(714\) 63.1127 2.36193
\(715\) 0 0
\(716\) 2.62742 0.0981912
\(717\) −66.7107 −2.49136
\(718\) 51.6274 1.92672
\(719\) −49.4558 −1.84439 −0.922196 0.386723i \(-0.873607\pi\)
−0.922196 + 0.386723i \(0.873607\pi\)
\(720\) 0 0
\(721\) 32.9706 1.22789
\(722\) −13.5858 −0.505611
\(723\) −14.0589 −0.522855
\(724\) −66.9411 −2.48785
\(725\) 0 0
\(726\) −205.823 −7.63882
\(727\) 16.6863 0.618860 0.309430 0.950922i \(-0.399862\pi\)
0.309430 + 0.950922i \(0.399862\pi\)
\(728\) 10.6569 0.394969
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) −3.17157 −0.117305
\(732\) −10.8284 −0.400230
\(733\) −35.7990 −1.32227 −0.661133 0.750269i \(-0.729924\pi\)
−0.661133 + 0.750269i \(0.729924\pi\)
\(734\) −84.0833 −3.10357
\(735\) 0 0
\(736\) 5.02944 0.185388
\(737\) −17.6863 −0.651483
\(738\) −68.2843 −2.51358
\(739\) −27.7279 −1.01999 −0.509994 0.860178i \(-0.670352\pi\)
−0.509994 + 0.860178i \(0.670352\pi\)
\(740\) 0 0
\(741\) 10.3431 0.379965
\(742\) 17.4853 0.641905
\(743\) −14.6985 −0.539235 −0.269618 0.962967i \(-0.586897\pi\)
−0.269618 + 0.962967i \(0.586897\pi\)
\(744\) −15.5147 −0.568797
\(745\) 0 0
\(746\) 2.75736 0.100954
\(747\) 34.4975 1.26220
\(748\) −94.0122 −3.43743
\(749\) 38.9706 1.42395
\(750\) 0 0
\(751\) 31.4558 1.14784 0.573920 0.818911i \(-0.305422\pi\)
0.573920 + 0.818911i \(0.305422\pi\)
\(752\) 10.7574 0.392281
\(753\) 16.0000 0.583072
\(754\) −0.414214 −0.0150848
\(755\) 0 0
\(756\) −52.2843 −1.90156
\(757\) −16.3137 −0.592932 −0.296466 0.955043i \(-0.595808\pi\)
−0.296466 + 0.955043i \(0.595808\pi\)
\(758\) −76.9411 −2.79463
\(759\) 57.5391 2.08854
\(760\) 0 0
\(761\) −21.7990 −0.790213 −0.395106 0.918635i \(-0.629292\pi\)
−0.395106 + 0.918635i \(0.629292\pi\)
\(762\) 24.9706 0.904588
\(763\) −39.7990 −1.44082
\(764\) 96.9117 3.50614
\(765\) 0 0
\(766\) 66.7696 2.41248
\(767\) 13.2426 0.478164
\(768\) 84.7696 3.05886
\(769\) 4.97056 0.179243 0.0896215 0.995976i \(-0.471434\pi\)
0.0896215 + 0.995976i \(0.471434\pi\)
\(770\) 0 0
\(771\) 18.8284 0.678089
\(772\) 6.34315 0.228295
\(773\) −5.79899 −0.208575 −0.104288 0.994547i \(-0.533256\pi\)
−0.104288 + 0.994547i \(0.533256\pi\)
\(774\) 10.0000 0.359443
\(775\) 0 0
\(776\) −3.65685 −0.131273
\(777\) 40.9706 1.46981
\(778\) 69.1127 2.47781
\(779\) 20.6863 0.741163
\(780\) 0 0
\(781\) −59.7401 −2.13767
\(782\) 29.3137 1.04826
\(783\) 0.970563 0.0346851
\(784\) −3.51472 −0.125526
\(785\) 0 0
\(786\) −57.9411 −2.06669
\(787\) 38.7574 1.38155 0.690775 0.723069i \(-0.257269\pi\)
0.690775 + 0.723069i \(0.257269\pi\)
\(788\) −45.9411 −1.63658
\(789\) 73.9411 2.63237
\(790\) 0 0
\(791\) −28.1421 −1.00062
\(792\) 141.569 5.03042
\(793\) 1.00000 0.0355110
\(794\) 18.4853 0.656018
\(795\) 0 0
\(796\) 38.2843 1.35695
\(797\) −11.4853 −0.406830 −0.203415 0.979093i \(-0.565204\pi\)
−0.203415 + 0.979093i \(0.565204\pi\)
\(798\) 60.2843 2.13404
\(799\) −13.7279 −0.485659
\(800\) 0 0
\(801\) −42.4264 −1.49906
\(802\) −9.31371 −0.328878
\(803\) −38.4853 −1.35812
\(804\) 29.8579 1.05301
\(805\) 0 0
\(806\) 3.00000 0.105670
\(807\) −42.8284 −1.50763
\(808\) −29.3848 −1.03375
\(809\) 17.3137 0.608718 0.304359 0.952557i \(-0.401558\pi\)
0.304359 + 0.952557i \(0.401558\pi\)
\(810\) 0 0
\(811\) 9.58579 0.336602 0.168301 0.985736i \(-0.446172\pi\)
0.168301 + 0.985736i \(0.446172\pi\)
\(812\) −1.58579 −0.0556502
\(813\) 72.7696 2.55214
\(814\) −92.9117 −3.25655
\(815\) 0 0
\(816\) 32.4853 1.13721
\(817\) −3.02944 −0.105987
\(818\) −26.1421 −0.914038
\(819\) 12.0711 0.421797
\(820\) 0 0
\(821\) −20.8284 −0.726917 −0.363459 0.931610i \(-0.618404\pi\)
−0.363459 + 0.931610i \(0.618404\pi\)
\(822\) −19.3137 −0.673643
\(823\) −20.2843 −0.707065 −0.353533 0.935422i \(-0.615020\pi\)
−0.353533 + 0.935422i \(0.615020\pi\)
\(824\) 60.2843 2.10010
\(825\) 0 0
\(826\) 77.1838 2.68557
\(827\) −32.3553 −1.12511 −0.562553 0.826761i \(-0.690181\pi\)
−0.562553 + 0.826761i \(0.690181\pi\)
\(828\) −60.7107 −2.10984
\(829\) 7.97056 0.276829 0.138415 0.990374i \(-0.455799\pi\)
0.138415 + 0.990374i \(0.455799\pi\)
\(830\) 0 0
\(831\) −26.3431 −0.913834
\(832\) −9.82843 −0.340739
\(833\) 4.48528 0.155406
\(834\) 126.225 4.37083
\(835\) 0 0
\(836\) −89.7990 −3.10576
\(837\) −7.02944 −0.242973
\(838\) 55.1127 1.90384
\(839\) −1.02944 −0.0355401 −0.0177701 0.999842i \(-0.505657\pi\)
−0.0177701 + 0.999842i \(0.505657\pi\)
\(840\) 0 0
\(841\) −28.9706 −0.998985
\(842\) −40.9706 −1.41194
\(843\) −13.6569 −0.470367
\(844\) 68.1421 2.34555
\(845\) 0 0
\(846\) 43.2843 1.48814
\(847\) 72.7696 2.50039
\(848\) 9.00000 0.309061
\(849\) 63.5980 2.18268
\(850\) 0 0
\(851\) 19.0294 0.652321
\(852\) 100.853 3.45516
\(853\) −42.4264 −1.45265 −0.726326 0.687350i \(-0.758774\pi\)
−0.726326 + 0.687350i \(0.758774\pi\)
\(854\) 5.82843 0.199445
\(855\) 0 0
\(856\) 71.2548 2.43544
\(857\) −4.62742 −0.158070 −0.0790348 0.996872i \(-0.525184\pi\)
−0.0790348 + 0.996872i \(0.525184\pi\)
\(858\) −43.7990 −1.49527
\(859\) 24.1421 0.823719 0.411860 0.911247i \(-0.364879\pi\)
0.411860 + 0.911247i \(0.364879\pi\)
\(860\) 0 0
\(861\) 38.6274 1.31642
\(862\) −20.1421 −0.686044
\(863\) 29.1838 0.993427 0.496713 0.867915i \(-0.334540\pi\)
0.496713 + 0.867915i \(0.334540\pi\)
\(864\) 8.97056 0.305185
\(865\) 0 0
\(866\) 39.4558 1.34076
\(867\) 6.62742 0.225079
\(868\) 11.4853 0.389836
\(869\) −38.4853 −1.30552
\(870\) 0 0
\(871\) −2.75736 −0.0934296
\(872\) −72.7696 −2.46429
\(873\) −4.14214 −0.140190
\(874\) 28.0000 0.947114
\(875\) 0 0
\(876\) 64.9706 2.19515
\(877\) −15.7990 −0.533494 −0.266747 0.963767i \(-0.585949\pi\)
−0.266747 + 0.963767i \(0.585949\pi\)
\(878\) 33.7990 1.14066
\(879\) −24.9706 −0.842236
\(880\) 0 0
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) −14.1421 −0.476190
\(883\) 32.9706 1.10955 0.554774 0.832001i \(-0.312805\pi\)
0.554774 + 0.832001i \(0.312805\pi\)
\(884\) −14.6569 −0.492963
\(885\) 0 0
\(886\) −71.9411 −2.41691
\(887\) 8.62742 0.289680 0.144840 0.989455i \(-0.453733\pi\)
0.144840 + 0.989455i \(0.453733\pi\)
\(888\) 74.9117 2.51387
\(889\) −8.82843 −0.296096
\(890\) 0 0
\(891\) 6.41421 0.214884
\(892\) −42.0000 −1.40626
\(893\) −13.1127 −0.438800
\(894\) −60.2843 −2.01621
\(895\) 0 0
\(896\) −49.6274 −1.65794
\(897\) 8.97056 0.299518
\(898\) −12.4853 −0.416639
\(899\) −0.213203 −0.00711073
\(900\) 0 0
\(901\) −11.4853 −0.382630
\(902\) −87.5980 −2.91669
\(903\) −5.65685 −0.188248
\(904\) −51.4558 −1.71140
\(905\) 0 0
\(906\) 59.7990 1.98669
\(907\) −24.0000 −0.796907 −0.398453 0.917189i \(-0.630453\pi\)
−0.398453 + 0.917189i \(0.630453\pi\)
\(908\) −34.0711 −1.13069
\(909\) −33.2843 −1.10397
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 31.0294 1.02749
\(913\) 44.2548 1.46462
\(914\) 20.4853 0.677593
\(915\) 0 0
\(916\) −18.4853 −0.610771
\(917\) 20.4853 0.676484
\(918\) 52.2843 1.72564
\(919\) −18.9706 −0.625781 −0.312891 0.949789i \(-0.601297\pi\)
−0.312891 + 0.949789i \(0.601297\pi\)
\(920\) 0 0
\(921\) 26.3431 0.868036
\(922\) −46.9706 −1.54689
\(923\) −9.31371 −0.306564
\(924\) −167.681 −5.51631
\(925\) 0 0
\(926\) 68.9411 2.26555
\(927\) 68.2843 2.24275
\(928\) 0.272078 0.00893140
\(929\) 30.2843 0.993595 0.496797 0.867867i \(-0.334509\pi\)
0.496797 + 0.867867i \(0.334509\pi\)
\(930\) 0 0
\(931\) 4.28427 0.140411
\(932\) 78.9706 2.58677
\(933\) −26.9117 −0.881049
\(934\) 75.1127 2.45776
\(935\) 0 0
\(936\) 22.0711 0.721415
\(937\) 1.97056 0.0643755 0.0321877 0.999482i \(-0.489753\pi\)
0.0321877 + 0.999482i \(0.489753\pi\)
\(938\) −16.0711 −0.524739
\(939\) −8.08326 −0.263787
\(940\) 0 0
\(941\) −35.6569 −1.16238 −0.581190 0.813768i \(-0.697413\pi\)
−0.581190 + 0.813768i \(0.697413\pi\)
\(942\) −160.368 −5.22506
\(943\) 17.9411 0.584243
\(944\) 39.7279 1.29303
\(945\) 0 0
\(946\) 12.8284 0.417088
\(947\) −26.4142 −0.858347 −0.429173 0.903222i \(-0.641195\pi\)
−0.429173 + 0.903222i \(0.641195\pi\)
\(948\) 64.9706 2.11015
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) −56.9706 −1.84740
\(952\) −40.7990 −1.32230
\(953\) −47.3431 −1.53359 −0.766797 0.641889i \(-0.778151\pi\)
−0.766797 + 0.641889i \(0.778151\pi\)
\(954\) 36.2132 1.17245
\(955\) 0 0
\(956\) 90.2965 2.92040
\(957\) 3.11270 0.100619
\(958\) 34.4558 1.11322
\(959\) 6.82843 0.220501
\(960\) 0 0
\(961\) −29.4558 −0.950189
\(962\) −14.4853 −0.467024
\(963\) 80.7107 2.60087
\(964\) 19.0294 0.612897
\(965\) 0 0
\(966\) 52.2843 1.68222
\(967\) 43.7279 1.40620 0.703098 0.711093i \(-0.251800\pi\)
0.703098 + 0.711093i \(0.251800\pi\)
\(968\) 133.054 4.27651
\(969\) −39.5980 −1.27207
\(970\) 0 0
\(971\) 36.8284 1.18188 0.590940 0.806715i \(-0.298757\pi\)
0.590940 + 0.806715i \(0.298757\pi\)
\(972\) 54.1421 1.73661
\(973\) −44.6274 −1.43069
\(974\) −101.912 −3.26546
\(975\) 0 0
\(976\) 3.00000 0.0960277
\(977\) −8.48528 −0.271468 −0.135734 0.990745i \(-0.543339\pi\)
−0.135734 + 0.990745i \(0.543339\pi\)
\(978\) −68.2843 −2.18349
\(979\) −54.4264 −1.73948
\(980\) 0 0
\(981\) −82.4264 −2.63167
\(982\) 26.9706 0.860665
\(983\) 26.6985 0.851549 0.425775 0.904829i \(-0.360002\pi\)
0.425775 + 0.904829i \(0.360002\pi\)
\(984\) 70.6274 2.25152
\(985\) 0 0
\(986\) 1.58579 0.0505017
\(987\) −24.4853 −0.779375
\(988\) −14.0000 −0.445399
\(989\) −2.62742 −0.0835470
\(990\) 0 0
\(991\) −13.5147 −0.429309 −0.214655 0.976690i \(-0.568863\pi\)
−0.214655 + 0.976690i \(0.568863\pi\)
\(992\) −1.97056 −0.0625654
\(993\) −78.2254 −2.48241
\(994\) −54.2843 −1.72179
\(995\) 0 0
\(996\) −74.7107 −2.36730
\(997\) 12.6569 0.400847 0.200423 0.979709i \(-0.435768\pi\)
0.200423 + 0.979709i \(0.435768\pi\)
\(998\) 6.17157 0.195358
\(999\) 33.9411 1.07385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 325.2.a.h.1.2 yes 2
3.2 odd 2 2925.2.a.w.1.1 2
4.3 odd 2 5200.2.a.br.1.2 2
5.2 odd 4 325.2.b.d.274.4 4
5.3 odd 4 325.2.b.d.274.1 4
5.4 even 2 325.2.a.f.1.1 2
13.12 even 2 4225.2.a.s.1.1 2
15.2 even 4 2925.2.c.q.2224.1 4
15.8 even 4 2925.2.c.q.2224.4 4
15.14 odd 2 2925.2.a.bd.1.2 2
20.19 odd 2 5200.2.a.bt.1.1 2
65.64 even 2 4225.2.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.a.f.1.1 2 5.4 even 2
325.2.a.h.1.2 yes 2 1.1 even 1 trivial
325.2.b.d.274.1 4 5.3 odd 4
325.2.b.d.274.4 4 5.2 odd 4
2925.2.a.w.1.1 2 3.2 odd 2
2925.2.a.bd.1.2 2 15.14 odd 2
2925.2.c.q.2224.1 4 15.2 even 4
2925.2.c.q.2224.4 4 15.8 even 4
4225.2.a.s.1.1 2 13.12 even 2
4225.2.a.z.1.2 2 65.64 even 2
5200.2.a.br.1.2 2 4.3 odd 2
5200.2.a.bt.1.1 2 20.19 odd 2