Properties

Label 4225.2.a.z.1.2
Level $4225$
Weight $2$
Character 4225.1
Self dual yes
Analytic conductor $33.737$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [4225,2,Mod(1,4225)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(4225, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("4225.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 4225 = 5^{2} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 4225.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.7367948540\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 325)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 4225.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.41421 q^{2} +2.82843 q^{3} +3.82843 q^{4} +6.82843 q^{6} +2.41421 q^{7} +4.41421 q^{8} +5.00000 q^{9} -6.41421 q^{11} +10.8284 q^{12} +5.82843 q^{14} +3.00000 q^{16} +3.82843 q^{17} +12.0711 q^{18} +3.65685 q^{19} +6.82843 q^{21} -15.4853 q^{22} +3.17157 q^{23} +12.4853 q^{24} +5.65685 q^{27} +9.24264 q^{28} -0.171573 q^{29} -1.24264 q^{31} -1.58579 q^{32} -18.1421 q^{33} +9.24264 q^{34} +19.1421 q^{36} -6.00000 q^{37} +8.82843 q^{38} +5.65685 q^{41} +16.4853 q^{42} -0.828427 q^{43} -24.5563 q^{44} +7.65685 q^{46} +3.58579 q^{47} +8.48528 q^{48} -1.17157 q^{49} +10.8284 q^{51} -3.00000 q^{53} +13.6569 q^{54} +10.6569 q^{56} +10.3431 q^{57} -0.414214 q^{58} -13.2426 q^{59} +1.00000 q^{61} -3.00000 q^{62} +12.0711 q^{63} -9.82843 q^{64} -43.7990 q^{66} -2.75736 q^{67} +14.6569 q^{68} +8.97056 q^{69} +9.31371 q^{71} +22.0711 q^{72} -6.00000 q^{73} -14.4853 q^{74} +14.0000 q^{76} -15.4853 q^{77} -6.00000 q^{79} +1.00000 q^{81} +13.6569 q^{82} +6.89949 q^{83} +26.1421 q^{84} -2.00000 q^{86} -0.485281 q^{87} -28.3137 q^{88} +8.48528 q^{89} +12.1421 q^{92} -3.51472 q^{93} +8.65685 q^{94} -4.48528 q^{96} -0.828427 q^{97} -2.82843 q^{98} -32.0711 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} + 2 q^{4} + 8 q^{6} + 2 q^{7} + 6 q^{8} + 10 q^{9} - 10 q^{11} + 16 q^{12} + 6 q^{14} + 6 q^{16} + 2 q^{17} + 10 q^{18} - 4 q^{19} + 8 q^{21} - 14 q^{22} + 12 q^{23} + 8 q^{24} + 10 q^{28}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.41421 1.70711 0.853553 0.521005i \(-0.174443\pi\)
0.853553 + 0.521005i \(0.174443\pi\)
\(3\) 2.82843 1.63299 0.816497 0.577350i \(-0.195913\pi\)
0.816497 + 0.577350i \(0.195913\pi\)
\(4\) 3.82843 1.91421
\(5\) 0 0
\(6\) 6.82843 2.78769
\(7\) 2.41421 0.912487 0.456243 0.889855i \(-0.349195\pi\)
0.456243 + 0.889855i \(0.349195\pi\)
\(8\) 4.41421 1.56066
\(9\) 5.00000 1.66667
\(10\) 0 0
\(11\) −6.41421 −1.93396 −0.966979 0.254856i \(-0.917972\pi\)
−0.966979 + 0.254856i \(0.917972\pi\)
\(12\) 10.8284 3.12590
\(13\) 0 0
\(14\) 5.82843 1.55771
\(15\) 0 0
\(16\) 3.00000 0.750000
\(17\) 3.82843 0.928530 0.464265 0.885696i \(-0.346319\pi\)
0.464265 + 0.885696i \(0.346319\pi\)
\(18\) 12.0711 2.84518
\(19\) 3.65685 0.838940 0.419470 0.907769i \(-0.362216\pi\)
0.419470 + 0.907769i \(0.362216\pi\)
\(20\) 0 0
\(21\) 6.82843 1.49008
\(22\) −15.4853 −3.30147
\(23\) 3.17157 0.661319 0.330659 0.943750i \(-0.392729\pi\)
0.330659 + 0.943750i \(0.392729\pi\)
\(24\) 12.4853 2.54855
\(25\) 0 0
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 9.24264 1.74669
\(29\) −0.171573 −0.0318603 −0.0159301 0.999873i \(-0.505071\pi\)
−0.0159301 + 0.999873i \(0.505071\pi\)
\(30\) 0 0
\(31\) −1.24264 −0.223185 −0.111592 0.993754i \(-0.535595\pi\)
−0.111592 + 0.993754i \(0.535595\pi\)
\(32\) −1.58579 −0.280330
\(33\) −18.1421 −3.15814
\(34\) 9.24264 1.58510
\(35\) 0 0
\(36\) 19.1421 3.19036
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 8.82843 1.43216
\(39\) 0 0
\(40\) 0 0
\(41\) 5.65685 0.883452 0.441726 0.897150i \(-0.354366\pi\)
0.441726 + 0.897150i \(0.354366\pi\)
\(42\) 16.4853 2.54373
\(43\) −0.828427 −0.126334 −0.0631670 0.998003i \(-0.520120\pi\)
−0.0631670 + 0.998003i \(0.520120\pi\)
\(44\) −24.5563 −3.70201
\(45\) 0 0
\(46\) 7.65685 1.12894
\(47\) 3.58579 0.523041 0.261520 0.965198i \(-0.415776\pi\)
0.261520 + 0.965198i \(0.415776\pi\)
\(48\) 8.48528 1.22474
\(49\) −1.17157 −0.167368
\(50\) 0 0
\(51\) 10.8284 1.51628
\(52\) 0 0
\(53\) −3.00000 −0.412082 −0.206041 0.978543i \(-0.566058\pi\)
−0.206041 + 0.978543i \(0.566058\pi\)
\(54\) 13.6569 1.85846
\(55\) 0 0
\(56\) 10.6569 1.42408
\(57\) 10.3431 1.36998
\(58\) −0.414214 −0.0543889
\(59\) −13.2426 −1.72404 −0.862022 0.506870i \(-0.830802\pi\)
−0.862022 + 0.506870i \(0.830802\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) −3.00000 −0.381000
\(63\) 12.0711 1.52081
\(64\) −9.82843 −1.22855
\(65\) 0 0
\(66\) −43.7990 −5.39128
\(67\) −2.75736 −0.336865 −0.168433 0.985713i \(-0.553871\pi\)
−0.168433 + 0.985713i \(0.553871\pi\)
\(68\) 14.6569 1.77740
\(69\) 8.97056 1.07993
\(70\) 0 0
\(71\) 9.31371 1.10533 0.552667 0.833402i \(-0.313610\pi\)
0.552667 + 0.833402i \(0.313610\pi\)
\(72\) 22.0711 2.60110
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) −14.4853 −1.68388
\(75\) 0 0
\(76\) 14.0000 1.60591
\(77\) −15.4853 −1.76471
\(78\) 0 0
\(79\) −6.00000 −0.675053 −0.337526 0.941316i \(-0.609590\pi\)
−0.337526 + 0.941316i \(0.609590\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 13.6569 1.50815
\(83\) 6.89949 0.757318 0.378659 0.925536i \(-0.376385\pi\)
0.378659 + 0.925536i \(0.376385\pi\)
\(84\) 26.1421 2.85234
\(85\) 0 0
\(86\) −2.00000 −0.215666
\(87\) −0.485281 −0.0520276
\(88\) −28.3137 −3.01825
\(89\) 8.48528 0.899438 0.449719 0.893170i \(-0.351524\pi\)
0.449719 + 0.893170i \(0.351524\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 12.1421 1.26591
\(93\) −3.51472 −0.364459
\(94\) 8.65685 0.892886
\(95\) 0 0
\(96\) −4.48528 −0.457777
\(97\) −0.828427 −0.0841140 −0.0420570 0.999115i \(-0.513391\pi\)
−0.0420570 + 0.999115i \(0.513391\pi\)
\(98\) −2.82843 −0.285714
\(99\) −32.0711 −3.22326
\(100\) 0 0
\(101\) −6.65685 −0.662382 −0.331191 0.943564i \(-0.607450\pi\)
−0.331191 + 0.943564i \(0.607450\pi\)
\(102\) 26.1421 2.58846
\(103\) −13.6569 −1.34565 −0.672825 0.739802i \(-0.734919\pi\)
−0.672825 + 0.739802i \(0.734919\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −7.24264 −0.703467
\(107\) −16.1421 −1.56052 −0.780260 0.625456i \(-0.784913\pi\)
−0.780260 + 0.625456i \(0.784913\pi\)
\(108\) 21.6569 2.08393
\(109\) 16.4853 1.57900 0.789502 0.613748i \(-0.210339\pi\)
0.789502 + 0.613748i \(0.210339\pi\)
\(110\) 0 0
\(111\) −16.9706 −1.61077
\(112\) 7.24264 0.684365
\(113\) 11.6569 1.09658 0.548292 0.836287i \(-0.315278\pi\)
0.548292 + 0.836287i \(0.315278\pi\)
\(114\) 24.9706 2.33871
\(115\) 0 0
\(116\) −0.656854 −0.0609874
\(117\) 0 0
\(118\) −31.9706 −2.94313
\(119\) 9.24264 0.847271
\(120\) 0 0
\(121\) 30.1421 2.74019
\(122\) 2.41421 0.218573
\(123\) 16.0000 1.44267
\(124\) −4.75736 −0.427223
\(125\) 0 0
\(126\) 29.1421 2.59619
\(127\) 3.65685 0.324493 0.162247 0.986750i \(-0.448126\pi\)
0.162247 + 0.986750i \(0.448126\pi\)
\(128\) −20.5563 −1.81694
\(129\) −2.34315 −0.206302
\(130\) 0 0
\(131\) 8.48528 0.741362 0.370681 0.928760i \(-0.379124\pi\)
0.370681 + 0.928760i \(0.379124\pi\)
\(132\) −69.4558 −6.04536
\(133\) 8.82843 0.765522
\(134\) −6.65685 −0.575065
\(135\) 0 0
\(136\) 16.8995 1.44912
\(137\) 2.82843 0.241649 0.120824 0.992674i \(-0.461446\pi\)
0.120824 + 0.992674i \(0.461446\pi\)
\(138\) 21.6569 1.84355
\(139\) −18.4853 −1.56790 −0.783951 0.620823i \(-0.786798\pi\)
−0.783951 + 0.620823i \(0.786798\pi\)
\(140\) 0 0
\(141\) 10.1421 0.854122
\(142\) 22.4853 1.88692
\(143\) 0 0
\(144\) 15.0000 1.25000
\(145\) 0 0
\(146\) −14.4853 −1.19881
\(147\) −3.31371 −0.273310
\(148\) −22.9706 −1.88817
\(149\) −8.82843 −0.723253 −0.361626 0.932323i \(-0.617778\pi\)
−0.361626 + 0.932323i \(0.617778\pi\)
\(150\) 0 0
\(151\) 8.75736 0.712664 0.356332 0.934359i \(-0.384027\pi\)
0.356332 + 0.934359i \(0.384027\pi\)
\(152\) 16.1421 1.30930
\(153\) 19.1421 1.54755
\(154\) −37.3848 −3.01255
\(155\) 0 0
\(156\) 0 0
\(157\) −23.4853 −1.87433 −0.937165 0.348887i \(-0.886560\pi\)
−0.937165 + 0.348887i \(0.886560\pi\)
\(158\) −14.4853 −1.15239
\(159\) −8.48528 −0.672927
\(160\) 0 0
\(161\) 7.65685 0.603445
\(162\) 2.41421 0.189679
\(163\) 10.0000 0.783260 0.391630 0.920123i \(-0.371911\pi\)
0.391630 + 0.920123i \(0.371911\pi\)
\(164\) 21.6569 1.69112
\(165\) 0 0
\(166\) 16.6569 1.29282
\(167\) −5.31371 −0.411187 −0.205594 0.978637i \(-0.565912\pi\)
−0.205594 + 0.978637i \(0.565912\pi\)
\(168\) 30.1421 2.32552
\(169\) 0 0
\(170\) 0 0
\(171\) 18.2843 1.39823
\(172\) −3.17157 −0.241830
\(173\) −18.6569 −1.41845 −0.709227 0.704980i \(-0.750956\pi\)
−0.709227 + 0.704980i \(0.750956\pi\)
\(174\) −1.17157 −0.0888167
\(175\) 0 0
\(176\) −19.2426 −1.45047
\(177\) −37.4558 −2.81535
\(178\) 20.4853 1.53544
\(179\) 0.686292 0.0512958 0.0256479 0.999671i \(-0.491835\pi\)
0.0256479 + 0.999671i \(0.491835\pi\)
\(180\) 0 0
\(181\) −17.4853 −1.29967 −0.649835 0.760075i \(-0.725162\pi\)
−0.649835 + 0.760075i \(0.725162\pi\)
\(182\) 0 0
\(183\) 2.82843 0.209083
\(184\) 14.0000 1.03209
\(185\) 0 0
\(186\) −8.48528 −0.622171
\(187\) −24.5563 −1.79574
\(188\) 13.7279 1.00121
\(189\) 13.6569 0.993390
\(190\) 0 0
\(191\) 25.3137 1.83164 0.915818 0.401594i \(-0.131544\pi\)
0.915818 + 0.401594i \(0.131544\pi\)
\(192\) −27.7990 −2.00622
\(193\) 1.65685 0.119263 0.0596315 0.998220i \(-0.481007\pi\)
0.0596315 + 0.998220i \(0.481007\pi\)
\(194\) −2.00000 −0.143592
\(195\) 0 0
\(196\) −4.48528 −0.320377
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) −77.4264 −5.50246
\(199\) 10.0000 0.708881 0.354441 0.935079i \(-0.384671\pi\)
0.354441 + 0.935079i \(0.384671\pi\)
\(200\) 0 0
\(201\) −7.79899 −0.550098
\(202\) −16.0711 −1.13076
\(203\) −0.414214 −0.0290721
\(204\) 41.4558 2.90249
\(205\) 0 0
\(206\) −32.9706 −2.29717
\(207\) 15.8579 1.10220
\(208\) 0 0
\(209\) −23.4558 −1.62247
\(210\) 0 0
\(211\) 17.7990 1.22533 0.612666 0.790342i \(-0.290097\pi\)
0.612666 + 0.790342i \(0.290097\pi\)
\(212\) −11.4853 −0.788812
\(213\) 26.3431 1.80500
\(214\) −38.9706 −2.66397
\(215\) 0 0
\(216\) 24.9706 1.69903
\(217\) −3.00000 −0.203653
\(218\) 39.7990 2.69553
\(219\) −16.9706 −1.14676
\(220\) 0 0
\(221\) 0 0
\(222\) −40.9706 −2.74976
\(223\) −10.9706 −0.734643 −0.367322 0.930094i \(-0.619725\pi\)
−0.367322 + 0.930094i \(0.619725\pi\)
\(224\) −3.82843 −0.255798
\(225\) 0 0
\(226\) 28.1421 1.87199
\(227\) −8.89949 −0.590680 −0.295340 0.955392i \(-0.595433\pi\)
−0.295340 + 0.955392i \(0.595433\pi\)
\(228\) 39.5980 2.62244
\(229\) 4.82843 0.319071 0.159536 0.987192i \(-0.449000\pi\)
0.159536 + 0.987192i \(0.449000\pi\)
\(230\) 0 0
\(231\) −43.7990 −2.88176
\(232\) −0.757359 −0.0497231
\(233\) −20.6274 −1.35135 −0.675674 0.737201i \(-0.736147\pi\)
−0.675674 + 0.737201i \(0.736147\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −50.6985 −3.30019
\(237\) −16.9706 −1.10236
\(238\) 22.3137 1.44638
\(239\) −23.5858 −1.52564 −0.762819 0.646612i \(-0.776185\pi\)
−0.762819 + 0.646612i \(0.776185\pi\)
\(240\) 0 0
\(241\) −4.97056 −0.320182 −0.160091 0.987102i \(-0.551179\pi\)
−0.160091 + 0.987102i \(0.551179\pi\)
\(242\) 72.7696 4.67780
\(243\) −14.1421 −0.907218
\(244\) 3.82843 0.245090
\(245\) 0 0
\(246\) 38.6274 2.46279
\(247\) 0 0
\(248\) −5.48528 −0.348316
\(249\) 19.5147 1.23670
\(250\) 0 0
\(251\) −5.65685 −0.357057 −0.178529 0.983935i \(-0.557134\pi\)
−0.178529 + 0.983935i \(0.557134\pi\)
\(252\) 46.2132 2.91116
\(253\) −20.3431 −1.27896
\(254\) 8.82843 0.553945
\(255\) 0 0
\(256\) −29.9706 −1.87316
\(257\) 6.65685 0.415243 0.207622 0.978209i \(-0.433428\pi\)
0.207622 + 0.978209i \(0.433428\pi\)
\(258\) −5.65685 −0.352180
\(259\) −14.4853 −0.900072
\(260\) 0 0
\(261\) −0.857864 −0.0531005
\(262\) 20.4853 1.26558
\(263\) 26.1421 1.61199 0.805997 0.591920i \(-0.201630\pi\)
0.805997 + 0.591920i \(0.201630\pi\)
\(264\) −80.0833 −4.92878
\(265\) 0 0
\(266\) 21.3137 1.30683
\(267\) 24.0000 1.46878
\(268\) −10.5563 −0.644832
\(269\) 15.1421 0.923232 0.461616 0.887080i \(-0.347270\pi\)
0.461616 + 0.887080i \(0.347270\pi\)
\(270\) 0 0
\(271\) 25.7279 1.56286 0.781430 0.623993i \(-0.214491\pi\)
0.781430 + 0.623993i \(0.214491\pi\)
\(272\) 11.4853 0.696397
\(273\) 0 0
\(274\) 6.82843 0.412520
\(275\) 0 0
\(276\) 34.3431 2.06721
\(277\) −9.31371 −0.559607 −0.279803 0.960057i \(-0.590269\pi\)
−0.279803 + 0.960057i \(0.590269\pi\)
\(278\) −44.6274 −2.67657
\(279\) −6.21320 −0.371975
\(280\) 0 0
\(281\) −4.82843 −0.288040 −0.144020 0.989575i \(-0.546003\pi\)
−0.144020 + 0.989575i \(0.546003\pi\)
\(282\) 24.4853 1.45808
\(283\) 22.4853 1.33661 0.668306 0.743887i \(-0.267020\pi\)
0.668306 + 0.743887i \(0.267020\pi\)
\(284\) 35.6569 2.11585
\(285\) 0 0
\(286\) 0 0
\(287\) 13.6569 0.806139
\(288\) −7.92893 −0.467217
\(289\) −2.34315 −0.137832
\(290\) 0 0
\(291\) −2.34315 −0.137358
\(292\) −22.9706 −1.34425
\(293\) 8.82843 0.515762 0.257881 0.966177i \(-0.416976\pi\)
0.257881 + 0.966177i \(0.416976\pi\)
\(294\) −8.00000 −0.466569
\(295\) 0 0
\(296\) −26.4853 −1.53943
\(297\) −36.2843 −2.10543
\(298\) −21.3137 −1.23467
\(299\) 0 0
\(300\) 0 0
\(301\) −2.00000 −0.115278
\(302\) 21.1421 1.21659
\(303\) −18.8284 −1.08166
\(304\) 10.9706 0.629205
\(305\) 0 0
\(306\) 46.2132 2.64183
\(307\) −9.31371 −0.531561 −0.265781 0.964034i \(-0.585630\pi\)
−0.265781 + 0.964034i \(0.585630\pi\)
\(308\) −59.2843 −3.37803
\(309\) −38.6274 −2.19744
\(310\) 0 0
\(311\) 9.51472 0.539530 0.269765 0.962926i \(-0.413054\pi\)
0.269765 + 0.962926i \(0.413054\pi\)
\(312\) 0 0
\(313\) −2.85786 −0.161536 −0.0807680 0.996733i \(-0.525737\pi\)
−0.0807680 + 0.996733i \(0.525737\pi\)
\(314\) −56.6985 −3.19968
\(315\) 0 0
\(316\) −22.9706 −1.29220
\(317\) 20.1421 1.13130 0.565648 0.824647i \(-0.308626\pi\)
0.565648 + 0.824647i \(0.308626\pi\)
\(318\) −20.4853 −1.14876
\(319\) 1.10051 0.0616165
\(320\) 0 0
\(321\) −45.6569 −2.54832
\(322\) 18.4853 1.03014
\(323\) 14.0000 0.778981
\(324\) 3.82843 0.212690
\(325\) 0 0
\(326\) 24.1421 1.33711
\(327\) 46.6274 2.57850
\(328\) 24.9706 1.37877
\(329\) 8.65685 0.477268
\(330\) 0 0
\(331\) −27.6569 −1.52016 −0.760079 0.649831i \(-0.774840\pi\)
−0.760079 + 0.649831i \(0.774840\pi\)
\(332\) 26.4142 1.44967
\(333\) −30.0000 −1.64399
\(334\) −12.8284 −0.701940
\(335\) 0 0
\(336\) 20.4853 1.11756
\(337\) 20.7990 1.13299 0.566497 0.824064i \(-0.308298\pi\)
0.566497 + 0.824064i \(0.308298\pi\)
\(338\) 0 0
\(339\) 32.9706 1.79072
\(340\) 0 0
\(341\) 7.97056 0.431630
\(342\) 44.1421 2.38693
\(343\) −19.7279 −1.06521
\(344\) −3.65685 −0.197164
\(345\) 0 0
\(346\) −45.0416 −2.42145
\(347\) 19.4558 1.04444 0.522222 0.852809i \(-0.325103\pi\)
0.522222 + 0.852809i \(0.325103\pi\)
\(348\) −1.85786 −0.0995920
\(349\) −35.4558 −1.89791 −0.948954 0.315415i \(-0.897856\pi\)
−0.948954 + 0.315415i \(0.897856\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 10.1716 0.542147
\(353\) 26.1421 1.39141 0.695703 0.718330i \(-0.255093\pi\)
0.695703 + 0.718330i \(0.255093\pi\)
\(354\) −90.4264 −4.80611
\(355\) 0 0
\(356\) 32.4853 1.72172
\(357\) 26.1421 1.38359
\(358\) 1.65685 0.0875675
\(359\) −21.3848 −1.12865 −0.564323 0.825554i \(-0.690863\pi\)
−0.564323 + 0.825554i \(0.690863\pi\)
\(360\) 0 0
\(361\) −5.62742 −0.296180
\(362\) −42.2132 −2.21868
\(363\) 85.2548 4.47472
\(364\) 0 0
\(365\) 0 0
\(366\) 6.82843 0.356928
\(367\) 34.8284 1.81803 0.909015 0.416764i \(-0.136836\pi\)
0.909015 + 0.416764i \(0.136836\pi\)
\(368\) 9.51472 0.495989
\(369\) 28.2843 1.47242
\(370\) 0 0
\(371\) −7.24264 −0.376019
\(372\) −13.4558 −0.697653
\(373\) −1.14214 −0.0591375 −0.0295688 0.999563i \(-0.509413\pi\)
−0.0295688 + 0.999563i \(0.509413\pi\)
\(374\) −59.2843 −3.06552
\(375\) 0 0
\(376\) 15.8284 0.816289
\(377\) 0 0
\(378\) 32.9706 1.69582
\(379\) 31.8701 1.63705 0.818527 0.574467i \(-0.194791\pi\)
0.818527 + 0.574467i \(0.194791\pi\)
\(380\) 0 0
\(381\) 10.3431 0.529895
\(382\) 61.1127 3.12680
\(383\) 27.6569 1.41320 0.706600 0.707614i \(-0.250228\pi\)
0.706600 + 0.707614i \(0.250228\pi\)
\(384\) −58.1421 −2.96705
\(385\) 0 0
\(386\) 4.00000 0.203595
\(387\) −4.14214 −0.210557
\(388\) −3.17157 −0.161012
\(389\) 28.6274 1.45147 0.725734 0.687976i \(-0.241500\pi\)
0.725734 + 0.687976i \(0.241500\pi\)
\(390\) 0 0
\(391\) 12.1421 0.614054
\(392\) −5.17157 −0.261204
\(393\) 24.0000 1.21064
\(394\) −28.9706 −1.45952
\(395\) 0 0
\(396\) −122.782 −6.17001
\(397\) 7.65685 0.384286 0.192143 0.981367i \(-0.438456\pi\)
0.192143 + 0.981367i \(0.438456\pi\)
\(398\) 24.1421 1.21014
\(399\) 24.9706 1.25009
\(400\) 0 0
\(401\) 3.85786 0.192653 0.0963263 0.995350i \(-0.469291\pi\)
0.0963263 + 0.995350i \(0.469291\pi\)
\(402\) −18.8284 −0.939077
\(403\) 0 0
\(404\) −25.4853 −1.26794
\(405\) 0 0
\(406\) −1.00000 −0.0496292
\(407\) 38.4853 1.90764
\(408\) 47.7990 2.36640
\(409\) 10.8284 0.535431 0.267716 0.963498i \(-0.413731\pi\)
0.267716 + 0.963498i \(0.413731\pi\)
\(410\) 0 0
\(411\) 8.00000 0.394611
\(412\) −52.2843 −2.57586
\(413\) −31.9706 −1.57317
\(414\) 38.2843 1.88157
\(415\) 0 0
\(416\) 0 0
\(417\) −52.2843 −2.56037
\(418\) −56.6274 −2.76974
\(419\) 22.8284 1.11524 0.557621 0.830096i \(-0.311714\pi\)
0.557621 + 0.830096i \(0.311714\pi\)
\(420\) 0 0
\(421\) 16.9706 0.827095 0.413547 0.910483i \(-0.364290\pi\)
0.413547 + 0.910483i \(0.364290\pi\)
\(422\) 42.9706 2.09177
\(423\) 17.9289 0.871735
\(424\) −13.2426 −0.643119
\(425\) 0 0
\(426\) 63.5980 3.08133
\(427\) 2.41421 0.116832
\(428\) −61.7990 −2.98717
\(429\) 0 0
\(430\) 0 0
\(431\) 8.34315 0.401875 0.200938 0.979604i \(-0.435601\pi\)
0.200938 + 0.979604i \(0.435601\pi\)
\(432\) 16.9706 0.816497
\(433\) −16.3431 −0.785401 −0.392701 0.919666i \(-0.628459\pi\)
−0.392701 + 0.919666i \(0.628459\pi\)
\(434\) −7.24264 −0.347658
\(435\) 0 0
\(436\) 63.1127 3.02255
\(437\) 11.5980 0.554807
\(438\) −40.9706 −1.95765
\(439\) 14.0000 0.668184 0.334092 0.942541i \(-0.391570\pi\)
0.334092 + 0.942541i \(0.391570\pi\)
\(440\) 0 0
\(441\) −5.85786 −0.278946
\(442\) 0 0
\(443\) 29.7990 1.41579 0.707896 0.706316i \(-0.249644\pi\)
0.707896 + 0.706316i \(0.249644\pi\)
\(444\) −64.9706 −3.08337
\(445\) 0 0
\(446\) −26.4853 −1.25411
\(447\) −24.9706 −1.18107
\(448\) −23.7279 −1.12104
\(449\) 5.17157 0.244062 0.122031 0.992526i \(-0.461059\pi\)
0.122031 + 0.992526i \(0.461059\pi\)
\(450\) 0 0
\(451\) −36.2843 −1.70856
\(452\) 44.6274 2.09910
\(453\) 24.7696 1.16378
\(454\) −21.4853 −1.00835
\(455\) 0 0
\(456\) 45.6569 2.13808
\(457\) 8.48528 0.396925 0.198462 0.980109i \(-0.436405\pi\)
0.198462 + 0.980109i \(0.436405\pi\)
\(458\) 11.6569 0.544689
\(459\) 21.6569 1.01086
\(460\) 0 0
\(461\) 19.4558 0.906149 0.453074 0.891473i \(-0.350327\pi\)
0.453074 + 0.891473i \(0.350327\pi\)
\(462\) −105.740 −4.91948
\(463\) 28.5563 1.32713 0.663563 0.748120i \(-0.269043\pi\)
0.663563 + 0.748120i \(0.269043\pi\)
\(464\) −0.514719 −0.0238952
\(465\) 0 0
\(466\) −49.7990 −2.30689
\(467\) −31.1127 −1.43972 −0.719862 0.694117i \(-0.755795\pi\)
−0.719862 + 0.694117i \(0.755795\pi\)
\(468\) 0 0
\(469\) −6.65685 −0.307385
\(470\) 0 0
\(471\) −66.4264 −3.06077
\(472\) −58.4558 −2.69065
\(473\) 5.31371 0.244325
\(474\) −40.9706 −1.88184
\(475\) 0 0
\(476\) 35.3848 1.62186
\(477\) −15.0000 −0.686803
\(478\) −56.9411 −2.60443
\(479\) −14.2721 −0.652108 −0.326054 0.945351i \(-0.605719\pi\)
−0.326054 + 0.945351i \(0.605719\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) −12.0000 −0.546585
\(483\) 21.6569 0.985421
\(484\) 115.397 5.24532
\(485\) 0 0
\(486\) −34.1421 −1.54872
\(487\) −42.2132 −1.91286 −0.956431 0.291957i \(-0.905694\pi\)
−0.956431 + 0.291957i \(0.905694\pi\)
\(488\) 4.41421 0.199822
\(489\) 28.2843 1.27906
\(490\) 0 0
\(491\) 11.1716 0.504166 0.252083 0.967706i \(-0.418884\pi\)
0.252083 + 0.967706i \(0.418884\pi\)
\(492\) 61.2548 2.76158
\(493\) −0.656854 −0.0295832
\(494\) 0 0
\(495\) 0 0
\(496\) −3.72792 −0.167389
\(497\) 22.4853 1.00860
\(498\) 47.1127 2.11117
\(499\) −2.55635 −0.114438 −0.0572190 0.998362i \(-0.518223\pi\)
−0.0572190 + 0.998362i \(0.518223\pi\)
\(500\) 0 0
\(501\) −15.0294 −0.671466
\(502\) −13.6569 −0.609535
\(503\) 14.6274 0.652204 0.326102 0.945335i \(-0.394265\pi\)
0.326102 + 0.945335i \(0.394265\pi\)
\(504\) 53.2843 2.37347
\(505\) 0 0
\(506\) −49.1127 −2.18333
\(507\) 0 0
\(508\) 14.0000 0.621150
\(509\) −14.6274 −0.648349 −0.324174 0.945997i \(-0.605086\pi\)
−0.324174 + 0.945997i \(0.605086\pi\)
\(510\) 0 0
\(511\) −14.4853 −0.640791
\(512\) −31.2426 −1.38074
\(513\) 20.6863 0.913322
\(514\) 16.0711 0.708864
\(515\) 0 0
\(516\) −8.97056 −0.394907
\(517\) −23.0000 −1.01154
\(518\) −34.9706 −1.53652
\(519\) −52.7696 −2.31633
\(520\) 0 0
\(521\) 0.343146 0.0150335 0.00751674 0.999972i \(-0.497607\pi\)
0.00751674 + 0.999972i \(0.497607\pi\)
\(522\) −2.07107 −0.0906482
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 32.4853 1.41913
\(525\) 0 0
\(526\) 63.1127 2.75184
\(527\) −4.75736 −0.207234
\(528\) −54.4264 −2.36861
\(529\) −12.9411 −0.562658
\(530\) 0 0
\(531\) −66.2132 −2.87341
\(532\) 33.7990 1.46537
\(533\) 0 0
\(534\) 57.9411 2.50736
\(535\) 0 0
\(536\) −12.1716 −0.525732
\(537\) 1.94113 0.0837657
\(538\) 36.5563 1.57606
\(539\) 7.51472 0.323682
\(540\) 0 0
\(541\) −33.7990 −1.45313 −0.726566 0.687097i \(-0.758885\pi\)
−0.726566 + 0.687097i \(0.758885\pi\)
\(542\) 62.1127 2.66797
\(543\) −49.4558 −2.12235
\(544\) −6.07107 −0.260295
\(545\) 0 0
\(546\) 0 0
\(547\) −28.4853 −1.21794 −0.608971 0.793192i \(-0.708418\pi\)
−0.608971 + 0.793192i \(0.708418\pi\)
\(548\) 10.8284 0.462567
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) −0.627417 −0.0267289
\(552\) 39.5980 1.68540
\(553\) −14.4853 −0.615977
\(554\) −22.4853 −0.955308
\(555\) 0 0
\(556\) −70.7696 −3.00130
\(557\) 27.3137 1.15732 0.578659 0.815569i \(-0.303576\pi\)
0.578659 + 0.815569i \(0.303576\pi\)
\(558\) −15.0000 −0.635001
\(559\) 0 0
\(560\) 0 0
\(561\) −69.4558 −2.93243
\(562\) −11.6569 −0.491715
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 38.8284 1.63497
\(565\) 0 0
\(566\) 54.2843 2.28174
\(567\) 2.41421 0.101387
\(568\) 41.1127 1.72505
\(569\) −35.2843 −1.47919 −0.739597 0.673050i \(-0.764984\pi\)
−0.739597 + 0.673050i \(0.764984\pi\)
\(570\) 0 0
\(571\) −2.00000 −0.0836974 −0.0418487 0.999124i \(-0.513325\pi\)
−0.0418487 + 0.999124i \(0.513325\pi\)
\(572\) 0 0
\(573\) 71.5980 2.99105
\(574\) 32.9706 1.37616
\(575\) 0 0
\(576\) −49.1421 −2.04759
\(577\) −7.17157 −0.298556 −0.149278 0.988795i \(-0.547695\pi\)
−0.149278 + 0.988795i \(0.547695\pi\)
\(578\) −5.65685 −0.235294
\(579\) 4.68629 0.194756
\(580\) 0 0
\(581\) 16.6569 0.691043
\(582\) −5.65685 −0.234484
\(583\) 19.2426 0.796949
\(584\) −26.4853 −1.09597
\(585\) 0 0
\(586\) 21.3137 0.880461
\(587\) 14.4142 0.594938 0.297469 0.954731i \(-0.403857\pi\)
0.297469 + 0.954731i \(0.403857\pi\)
\(588\) −12.6863 −0.523174
\(589\) −4.54416 −0.187239
\(590\) 0 0
\(591\) −33.9411 −1.39615
\(592\) −18.0000 −0.739795
\(593\) 19.6569 0.807210 0.403605 0.914933i \(-0.367757\pi\)
0.403605 + 0.914933i \(0.367757\pi\)
\(594\) −87.5980 −3.59419
\(595\) 0 0
\(596\) −33.7990 −1.38446
\(597\) 28.2843 1.15760
\(598\) 0 0
\(599\) −3.51472 −0.143608 −0.0718038 0.997419i \(-0.522876\pi\)
−0.0718038 + 0.997419i \(0.522876\pi\)
\(600\) 0 0
\(601\) 13.8284 0.564073 0.282037 0.959404i \(-0.408990\pi\)
0.282037 + 0.959404i \(0.408990\pi\)
\(602\) −4.82843 −0.196792
\(603\) −13.7868 −0.561442
\(604\) 33.5269 1.36419
\(605\) 0 0
\(606\) −45.4558 −1.84652
\(607\) 21.5147 0.873255 0.436628 0.899642i \(-0.356173\pi\)
0.436628 + 0.899642i \(0.356173\pi\)
\(608\) −5.79899 −0.235180
\(609\) −1.17157 −0.0474745
\(610\) 0 0
\(611\) 0 0
\(612\) 73.2843 2.96234
\(613\) −12.8284 −0.518135 −0.259068 0.965859i \(-0.583415\pi\)
−0.259068 + 0.965859i \(0.583415\pi\)
\(614\) −22.4853 −0.907432
\(615\) 0 0
\(616\) −68.3553 −2.75412
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) −93.2548 −3.75126
\(619\) −22.9706 −0.923265 −0.461632 0.887071i \(-0.652736\pi\)
−0.461632 + 0.887071i \(0.652736\pi\)
\(620\) 0 0
\(621\) 17.9411 0.719953
\(622\) 22.9706 0.921036
\(623\) 20.4853 0.820725
\(624\) 0 0
\(625\) 0 0
\(626\) −6.89949 −0.275759
\(627\) −66.3431 −2.64949
\(628\) −89.9117 −3.58787
\(629\) −22.9706 −0.915896
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) −26.4853 −1.05353
\(633\) 50.3431 2.00096
\(634\) 48.6274 1.93124
\(635\) 0 0
\(636\) −32.4853 −1.28813
\(637\) 0 0
\(638\) 2.65685 0.105186
\(639\) 46.5685 1.84222
\(640\) 0 0
\(641\) 28.1127 1.11038 0.555192 0.831722i \(-0.312645\pi\)
0.555192 + 0.831722i \(0.312645\pi\)
\(642\) −110.225 −4.35025
\(643\) −1.02944 −0.0405970 −0.0202985 0.999794i \(-0.506462\pi\)
−0.0202985 + 0.999794i \(0.506462\pi\)
\(644\) 29.3137 1.15512
\(645\) 0 0
\(646\) 33.7990 1.32980
\(647\) −18.8284 −0.740222 −0.370111 0.928988i \(-0.620680\pi\)
−0.370111 + 0.928988i \(0.620680\pi\)
\(648\) 4.41421 0.173407
\(649\) 84.9411 3.33423
\(650\) 0 0
\(651\) −8.48528 −0.332564
\(652\) 38.2843 1.49933
\(653\) 22.4558 0.878765 0.439383 0.898300i \(-0.355197\pi\)
0.439383 + 0.898300i \(0.355197\pi\)
\(654\) 112.569 4.40178
\(655\) 0 0
\(656\) 16.9706 0.662589
\(657\) −30.0000 −1.17041
\(658\) 20.8995 0.814747
\(659\) −8.62742 −0.336076 −0.168038 0.985780i \(-0.553743\pi\)
−0.168038 + 0.985780i \(0.553743\pi\)
\(660\) 0 0
\(661\) 6.82843 0.265595 0.132798 0.991143i \(-0.457604\pi\)
0.132798 + 0.991143i \(0.457604\pi\)
\(662\) −66.7696 −2.59507
\(663\) 0 0
\(664\) 30.4558 1.18192
\(665\) 0 0
\(666\) −72.4264 −2.80647
\(667\) −0.544156 −0.0210698
\(668\) −20.3431 −0.787100
\(669\) −31.0294 −1.19967
\(670\) 0 0
\(671\) −6.41421 −0.247618
\(672\) −10.8284 −0.417716
\(673\) −24.4558 −0.942704 −0.471352 0.881945i \(-0.656234\pi\)
−0.471352 + 0.881945i \(0.656234\pi\)
\(674\) 50.2132 1.93414
\(675\) 0 0
\(676\) 0 0
\(677\) 41.3137 1.58781 0.793907 0.608039i \(-0.208043\pi\)
0.793907 + 0.608039i \(0.208043\pi\)
\(678\) 79.5980 3.05694
\(679\) −2.00000 −0.0767530
\(680\) 0 0
\(681\) −25.1716 −0.964577
\(682\) 19.2426 0.736839
\(683\) 21.5858 0.825957 0.412979 0.910741i \(-0.364488\pi\)
0.412979 + 0.910741i \(0.364488\pi\)
\(684\) 70.0000 2.67652
\(685\) 0 0
\(686\) −47.6274 −1.81842
\(687\) 13.6569 0.521041
\(688\) −2.48528 −0.0947505
\(689\) 0 0
\(690\) 0 0
\(691\) −8.89949 −0.338553 −0.169276 0.985569i \(-0.554143\pi\)
−0.169276 + 0.985569i \(0.554143\pi\)
\(692\) −71.4264 −2.71522
\(693\) −77.4264 −2.94119
\(694\) 46.9706 1.78298
\(695\) 0 0
\(696\) −2.14214 −0.0811974
\(697\) 21.6569 0.820312
\(698\) −85.5980 −3.23993
\(699\) −58.3431 −2.20674
\(700\) 0 0
\(701\) −15.8284 −0.597831 −0.298916 0.954280i \(-0.596625\pi\)
−0.298916 + 0.954280i \(0.596625\pi\)
\(702\) 0 0
\(703\) −21.9411 −0.827525
\(704\) 63.0416 2.37597
\(705\) 0 0
\(706\) 63.1127 2.37528
\(707\) −16.0711 −0.604415
\(708\) −143.397 −5.38919
\(709\) 49.2548 1.84980 0.924902 0.380205i \(-0.124147\pi\)
0.924902 + 0.380205i \(0.124147\pi\)
\(710\) 0 0
\(711\) −30.0000 −1.12509
\(712\) 37.4558 1.40372
\(713\) −3.94113 −0.147596
\(714\) 63.1127 2.36193
\(715\) 0 0
\(716\) 2.62742 0.0981912
\(717\) −66.7107 −2.49136
\(718\) −51.6274 −1.92672
\(719\) −49.4558 −1.84439 −0.922196 0.386723i \(-0.873607\pi\)
−0.922196 + 0.386723i \(0.873607\pi\)
\(720\) 0 0
\(721\) −32.9706 −1.22789
\(722\) −13.5858 −0.505611
\(723\) −14.0589 −0.522855
\(724\) −66.9411 −2.48785
\(725\) 0 0
\(726\) 205.823 7.63882
\(727\) −16.6863 −0.618860 −0.309430 0.950922i \(-0.600138\pi\)
−0.309430 + 0.950922i \(0.600138\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) −3.17157 −0.117305
\(732\) 10.8284 0.400230
\(733\) −35.7990 −1.32227 −0.661133 0.750269i \(-0.729924\pi\)
−0.661133 + 0.750269i \(0.729924\pi\)
\(734\) 84.0833 3.10357
\(735\) 0 0
\(736\) −5.02944 −0.185388
\(737\) 17.6863 0.651483
\(738\) 68.2843 2.51358
\(739\) 27.7279 1.01999 0.509994 0.860178i \(-0.329648\pi\)
0.509994 + 0.860178i \(0.329648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) −17.4853 −0.641905
\(743\) −14.6985 −0.539235 −0.269618 0.962967i \(-0.586897\pi\)
−0.269618 + 0.962967i \(0.586897\pi\)
\(744\) −15.5147 −0.568797
\(745\) 0 0
\(746\) −2.75736 −0.100954
\(747\) 34.4975 1.26220
\(748\) −94.0122 −3.43743
\(749\) −38.9706 −1.42395
\(750\) 0 0
\(751\) 31.4558 1.14784 0.573920 0.818911i \(-0.305422\pi\)
0.573920 + 0.818911i \(0.305422\pi\)
\(752\) 10.7574 0.392281
\(753\) −16.0000 −0.583072
\(754\) 0 0
\(755\) 0 0
\(756\) 52.2843 1.90156
\(757\) 16.3137 0.592932 0.296466 0.955043i \(-0.404192\pi\)
0.296466 + 0.955043i \(0.404192\pi\)
\(758\) 76.9411 2.79463
\(759\) −57.5391 −2.08854
\(760\) 0 0
\(761\) 21.7990 0.790213 0.395106 0.918635i \(-0.370708\pi\)
0.395106 + 0.918635i \(0.370708\pi\)
\(762\) 24.9706 0.904588
\(763\) 39.7990 1.44082
\(764\) 96.9117 3.50614
\(765\) 0 0
\(766\) 66.7696 2.41248
\(767\) 0 0
\(768\) −84.7696 −3.05886
\(769\) −4.97056 −0.179243 −0.0896215 0.995976i \(-0.528566\pi\)
−0.0896215 + 0.995976i \(0.528566\pi\)
\(770\) 0 0
\(771\) 18.8284 0.678089
\(772\) 6.34315 0.228295
\(773\) −5.79899 −0.208575 −0.104288 0.994547i \(-0.533256\pi\)
−0.104288 + 0.994547i \(0.533256\pi\)
\(774\) −10.0000 −0.359443
\(775\) 0 0
\(776\) −3.65685 −0.131273
\(777\) −40.9706 −1.46981
\(778\) 69.1127 2.47781
\(779\) 20.6863 0.741163
\(780\) 0 0
\(781\) −59.7401 −2.13767
\(782\) 29.3137 1.04826
\(783\) −0.970563 −0.0346851
\(784\) −3.51472 −0.125526
\(785\) 0 0
\(786\) 57.9411 2.06669
\(787\) 38.7574 1.38155 0.690775 0.723069i \(-0.257269\pi\)
0.690775 + 0.723069i \(0.257269\pi\)
\(788\) −45.9411 −1.63658
\(789\) 73.9411 2.63237
\(790\) 0 0
\(791\) 28.1421 1.00062
\(792\) −141.569 −5.03042
\(793\) 0 0
\(794\) 18.4853 0.656018
\(795\) 0 0
\(796\) 38.2843 1.35695
\(797\) 11.4853 0.406830 0.203415 0.979093i \(-0.434796\pi\)
0.203415 + 0.979093i \(0.434796\pi\)
\(798\) 60.2843 2.13404
\(799\) 13.7279 0.485659
\(800\) 0 0
\(801\) 42.4264 1.49906
\(802\) 9.31371 0.328878
\(803\) 38.4853 1.35812
\(804\) −29.8579 −1.05301
\(805\) 0 0
\(806\) 0 0
\(807\) 42.8284 1.50763
\(808\) −29.3848 −1.03375
\(809\) 17.3137 0.608718 0.304359 0.952557i \(-0.401558\pi\)
0.304359 + 0.952557i \(0.401558\pi\)
\(810\) 0 0
\(811\) −9.58579 −0.336602 −0.168301 0.985736i \(-0.553828\pi\)
−0.168301 + 0.985736i \(0.553828\pi\)
\(812\) −1.58579 −0.0556502
\(813\) 72.7696 2.55214
\(814\) 92.9117 3.25655
\(815\) 0 0
\(816\) 32.4853 1.13721
\(817\) −3.02944 −0.105987
\(818\) 26.1421 0.914038
\(819\) 0 0
\(820\) 0 0
\(821\) 20.8284 0.726917 0.363459 0.931610i \(-0.381596\pi\)
0.363459 + 0.931610i \(0.381596\pi\)
\(822\) 19.3137 0.673643
\(823\) 20.2843 0.707065 0.353533 0.935422i \(-0.384980\pi\)
0.353533 + 0.935422i \(0.384980\pi\)
\(824\) −60.2843 −2.10010
\(825\) 0 0
\(826\) −77.1838 −2.68557
\(827\) −32.3553 −1.12511 −0.562553 0.826761i \(-0.690181\pi\)
−0.562553 + 0.826761i \(0.690181\pi\)
\(828\) 60.7107 2.10984
\(829\) 7.97056 0.276829 0.138415 0.990374i \(-0.455799\pi\)
0.138415 + 0.990374i \(0.455799\pi\)
\(830\) 0 0
\(831\) −26.3431 −0.913834
\(832\) 0 0
\(833\) −4.48528 −0.155406
\(834\) −126.225 −4.37083
\(835\) 0 0
\(836\) −89.7990 −3.10576
\(837\) −7.02944 −0.242973
\(838\) 55.1127 1.90384
\(839\) 1.02944 0.0355401 0.0177701 0.999842i \(-0.494343\pi\)
0.0177701 + 0.999842i \(0.494343\pi\)
\(840\) 0 0
\(841\) −28.9706 −0.998985
\(842\) 40.9706 1.41194
\(843\) −13.6569 −0.470367
\(844\) 68.1421 2.34555
\(845\) 0 0
\(846\) 43.2843 1.48814
\(847\) 72.7696 2.50039
\(848\) −9.00000 −0.309061
\(849\) 63.5980 2.18268
\(850\) 0 0
\(851\) −19.0294 −0.652321
\(852\) 100.853 3.45516
\(853\) −42.4264 −1.45265 −0.726326 0.687350i \(-0.758774\pi\)
−0.726326 + 0.687350i \(0.758774\pi\)
\(854\) 5.82843 0.199445
\(855\) 0 0
\(856\) −71.2548 −2.43544
\(857\) 4.62742 0.158070 0.0790348 0.996872i \(-0.474816\pi\)
0.0790348 + 0.996872i \(0.474816\pi\)
\(858\) 0 0
\(859\) 24.1421 0.823719 0.411860 0.911247i \(-0.364879\pi\)
0.411860 + 0.911247i \(0.364879\pi\)
\(860\) 0 0
\(861\) 38.6274 1.31642
\(862\) 20.1421 0.686044
\(863\) 29.1838 0.993427 0.496713 0.867915i \(-0.334540\pi\)
0.496713 + 0.867915i \(0.334540\pi\)
\(864\) −8.97056 −0.305185
\(865\) 0 0
\(866\) −39.4558 −1.34076
\(867\) −6.62742 −0.225079
\(868\) −11.4853 −0.389836
\(869\) 38.4853 1.30552
\(870\) 0 0
\(871\) 0 0
\(872\) 72.7696 2.46429
\(873\) −4.14214 −0.140190
\(874\) 28.0000 0.947114
\(875\) 0 0
\(876\) −64.9706 −2.19515
\(877\) −15.7990 −0.533494 −0.266747 0.963767i \(-0.585949\pi\)
−0.266747 + 0.963767i \(0.585949\pi\)
\(878\) 33.7990 1.14066
\(879\) 24.9706 0.842236
\(880\) 0 0
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) −14.1421 −0.476190
\(883\) −32.9706 −1.10955 −0.554774 0.832001i \(-0.687195\pi\)
−0.554774 + 0.832001i \(0.687195\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 71.9411 2.41691
\(887\) −8.62742 −0.289680 −0.144840 0.989455i \(-0.546267\pi\)
−0.144840 + 0.989455i \(0.546267\pi\)
\(888\) −74.9117 −2.51387
\(889\) 8.82843 0.296096
\(890\) 0 0
\(891\) −6.41421 −0.214884
\(892\) −42.0000 −1.40626
\(893\) 13.1127 0.438800
\(894\) −60.2843 −2.01621
\(895\) 0 0
\(896\) −49.6274 −1.65794
\(897\) 0 0
\(898\) 12.4853 0.416639
\(899\) 0.213203 0.00711073
\(900\) 0 0
\(901\) −11.4853 −0.382630
\(902\) −87.5980 −2.91669
\(903\) −5.65685 −0.188248
\(904\) 51.4558 1.71140
\(905\) 0 0
\(906\) 59.7990 1.98669
\(907\) 24.0000 0.796907 0.398453 0.917189i \(-0.369547\pi\)
0.398453 + 0.917189i \(0.369547\pi\)
\(908\) −34.0711 −1.13069
\(909\) −33.2843 −1.10397
\(910\) 0 0
\(911\) 6.00000 0.198789 0.0993944 0.995048i \(-0.468309\pi\)
0.0993944 + 0.995048i \(0.468309\pi\)
\(912\) 31.0294 1.02749
\(913\) −44.2548 −1.46462
\(914\) 20.4853 0.677593
\(915\) 0 0
\(916\) 18.4853 0.610771
\(917\) 20.4853 0.676484
\(918\) 52.2843 1.72564
\(919\) −18.9706 −0.625781 −0.312891 0.949789i \(-0.601297\pi\)
−0.312891 + 0.949789i \(0.601297\pi\)
\(920\) 0 0
\(921\) −26.3431 −0.868036
\(922\) 46.9706 1.54689
\(923\) 0 0
\(924\) −167.681 −5.51631
\(925\) 0 0
\(926\) 68.9411 2.26555
\(927\) −68.2843 −2.24275
\(928\) 0.272078 0.00893140
\(929\) −30.2843 −0.993595 −0.496797 0.867867i \(-0.665491\pi\)
−0.496797 + 0.867867i \(0.665491\pi\)
\(930\) 0 0
\(931\) −4.28427 −0.140411
\(932\) −78.9706 −2.58677
\(933\) 26.9117 0.881049
\(934\) −75.1127 −2.45776
\(935\) 0 0
\(936\) 0 0
\(937\) −1.97056 −0.0643755 −0.0321877 0.999482i \(-0.510247\pi\)
−0.0321877 + 0.999482i \(0.510247\pi\)
\(938\) −16.0711 −0.524739
\(939\) −8.08326 −0.263787
\(940\) 0 0
\(941\) 35.6569 1.16238 0.581190 0.813768i \(-0.302587\pi\)
0.581190 + 0.813768i \(0.302587\pi\)
\(942\) −160.368 −5.22506
\(943\) 17.9411 0.584243
\(944\) −39.7279 −1.29303
\(945\) 0 0
\(946\) 12.8284 0.417088
\(947\) −26.4142 −0.858347 −0.429173 0.903222i \(-0.641195\pi\)
−0.429173 + 0.903222i \(0.641195\pi\)
\(948\) −64.9706 −2.11015
\(949\) 0 0
\(950\) 0 0
\(951\) 56.9706 1.84740
\(952\) 40.7990 1.32230
\(953\) 47.3431 1.53359 0.766797 0.641889i \(-0.221849\pi\)
0.766797 + 0.641889i \(0.221849\pi\)
\(954\) −36.2132 −1.17245
\(955\) 0 0
\(956\) −90.2965 −2.92040
\(957\) 3.11270 0.100619
\(958\) −34.4558 −1.11322
\(959\) 6.82843 0.220501
\(960\) 0 0
\(961\) −29.4558 −0.950189
\(962\) 0 0
\(963\) −80.7107 −2.60087
\(964\) −19.0294 −0.612897
\(965\) 0 0
\(966\) 52.2843 1.68222
\(967\) 43.7279 1.40620 0.703098 0.711093i \(-0.251800\pi\)
0.703098 + 0.711093i \(0.251800\pi\)
\(968\) 133.054 4.27651
\(969\) 39.5980 1.27207
\(970\) 0 0
\(971\) 36.8284 1.18188 0.590940 0.806715i \(-0.298757\pi\)
0.590940 + 0.806715i \(0.298757\pi\)
\(972\) −54.1421 −1.73661
\(973\) −44.6274 −1.43069
\(974\) −101.912 −3.26546
\(975\) 0 0
\(976\) 3.00000 0.0960277
\(977\) −8.48528 −0.271468 −0.135734 0.990745i \(-0.543339\pi\)
−0.135734 + 0.990745i \(0.543339\pi\)
\(978\) 68.2843 2.18349
\(979\) −54.4264 −1.73948
\(980\) 0 0
\(981\) 82.4264 2.63167
\(982\) 26.9706 0.860665
\(983\) 26.6985 0.851549 0.425775 0.904829i \(-0.360002\pi\)
0.425775 + 0.904829i \(0.360002\pi\)
\(984\) 70.6274 2.25152
\(985\) 0 0
\(986\) −1.58579 −0.0505017
\(987\) 24.4853 0.779375
\(988\) 0 0
\(989\) −2.62742 −0.0835470
\(990\) 0 0
\(991\) −13.5147 −0.429309 −0.214655 0.976690i \(-0.568863\pi\)
−0.214655 + 0.976690i \(0.568863\pi\)
\(992\) 1.97056 0.0625654
\(993\) −78.2254 −2.48241
\(994\) 54.2843 1.72179
\(995\) 0 0
\(996\) 74.7107 2.36730
\(997\) −12.6569 −0.400847 −0.200423 0.979709i \(-0.564232\pi\)
−0.200423 + 0.979709i \(0.564232\pi\)
\(998\) −6.17157 −0.195358
\(999\) −33.9411 −1.07385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 4225.2.a.z.1.2 2
5.4 even 2 4225.2.a.s.1.1 2
13.12 even 2 325.2.a.f.1.1 2
39.38 odd 2 2925.2.a.bd.1.2 2
52.51 odd 2 5200.2.a.bt.1.1 2
65.12 odd 4 325.2.b.d.274.1 4
65.38 odd 4 325.2.b.d.274.4 4
65.64 even 2 325.2.a.h.1.2 yes 2
195.38 even 4 2925.2.c.q.2224.1 4
195.77 even 4 2925.2.c.q.2224.4 4
195.194 odd 2 2925.2.a.w.1.1 2
260.259 odd 2 5200.2.a.br.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.a.f.1.1 2 13.12 even 2
325.2.a.h.1.2 yes 2 65.64 even 2
325.2.b.d.274.1 4 65.12 odd 4
325.2.b.d.274.4 4 65.38 odd 4
2925.2.a.w.1.1 2 195.194 odd 2
2925.2.a.bd.1.2 2 39.38 odd 2
2925.2.c.q.2224.1 4 195.38 even 4
2925.2.c.q.2224.4 4 195.77 even 4
4225.2.a.s.1.1 2 5.4 even 2
4225.2.a.z.1.2 2 1.1 even 1 trivial
5200.2.a.br.1.2 2 260.259 odd 2
5200.2.a.bt.1.1 2 52.51 odd 2