Properties

Label 5200.2.a.br.1.2
Level $5200$
Weight $2$
Character 5200.1
Self dual yes
Analytic conductor $41.522$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5200,2,Mod(1,5200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5200 = 2^{4} \cdot 5^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(41.5222090511\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 325)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 5200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843 q^{3} -2.41421 q^{7} +5.00000 q^{9} -6.41421 q^{11} +1.00000 q^{13} -3.82843 q^{17} +3.65685 q^{19} -6.82843 q^{21} +3.17157 q^{23} +5.65685 q^{27} -0.171573 q^{29} -1.24264 q^{31} -18.1421 q^{33} -6.00000 q^{37} +2.82843 q^{39} -5.65685 q^{41} -0.828427 q^{43} -3.58579 q^{47} -1.17157 q^{49} -10.8284 q^{51} +3.00000 q^{53} +10.3431 q^{57} -13.2426 q^{59} +1.00000 q^{61} -12.0711 q^{63} +2.75736 q^{67} +8.97056 q^{69} +9.31371 q^{71} -6.00000 q^{73} +15.4853 q^{77} +6.00000 q^{79} +1.00000 q^{81} -6.89949 q^{83} -0.485281 q^{87} -8.48528 q^{89} -2.41421 q^{91} -3.51472 q^{93} -0.828427 q^{97} -32.0711 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{7} + 10 q^{9} - 10 q^{11} + 2 q^{13} - 2 q^{17} - 4 q^{19} - 8 q^{21} + 12 q^{23} - 6 q^{29} + 6 q^{31} - 8 q^{33} - 12 q^{37} + 4 q^{43} - 10 q^{47} - 8 q^{49} - 16 q^{51} + 6 q^{53} + 32 q^{57}+ \cdots - 50 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.82843 1.63299 0.816497 0.577350i \(-0.195913\pi\)
0.816497 + 0.577350i \(0.195913\pi\)
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.41421 −0.912487 −0.456243 0.889855i \(-0.650805\pi\)
−0.456243 + 0.889855i \(0.650805\pi\)
\(8\) 0 0
\(9\) 5.00000 1.66667
\(10\) 0 0
\(11\) −6.41421 −1.93396 −0.966979 0.254856i \(-0.917972\pi\)
−0.966979 + 0.254856i \(0.917972\pi\)
\(12\) 0 0
\(13\) 1.00000 0.277350
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.82843 −0.928530 −0.464265 0.885696i \(-0.653681\pi\)
−0.464265 + 0.885696i \(0.653681\pi\)
\(18\) 0 0
\(19\) 3.65685 0.838940 0.419470 0.907769i \(-0.362216\pi\)
0.419470 + 0.907769i \(0.362216\pi\)
\(20\) 0 0
\(21\) −6.82843 −1.49008
\(22\) 0 0
\(23\) 3.17157 0.661319 0.330659 0.943750i \(-0.392729\pi\)
0.330659 + 0.943750i \(0.392729\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 5.65685 1.08866
\(28\) 0 0
\(29\) −0.171573 −0.0318603 −0.0159301 0.999873i \(-0.505071\pi\)
−0.0159301 + 0.999873i \(0.505071\pi\)
\(30\) 0 0
\(31\) −1.24264 −0.223185 −0.111592 0.993754i \(-0.535595\pi\)
−0.111592 + 0.993754i \(0.535595\pi\)
\(32\) 0 0
\(33\) −18.1421 −3.15814
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −6.00000 −0.986394 −0.493197 0.869918i \(-0.664172\pi\)
−0.493197 + 0.869918i \(0.664172\pi\)
\(38\) 0 0
\(39\) 2.82843 0.452911
\(40\) 0 0
\(41\) −5.65685 −0.883452 −0.441726 0.897150i \(-0.645634\pi\)
−0.441726 + 0.897150i \(0.645634\pi\)
\(42\) 0 0
\(43\) −0.828427 −0.126334 −0.0631670 0.998003i \(-0.520120\pi\)
−0.0631670 + 0.998003i \(0.520120\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −3.58579 −0.523041 −0.261520 0.965198i \(-0.584224\pi\)
−0.261520 + 0.965198i \(0.584224\pi\)
\(48\) 0 0
\(49\) −1.17157 −0.167368
\(50\) 0 0
\(51\) −10.8284 −1.51628
\(52\) 0 0
\(53\) 3.00000 0.412082 0.206041 0.978543i \(-0.433942\pi\)
0.206041 + 0.978543i \(0.433942\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 10.3431 1.36998
\(58\) 0 0
\(59\) −13.2426 −1.72404 −0.862022 0.506870i \(-0.830802\pi\)
−0.862022 + 0.506870i \(0.830802\pi\)
\(60\) 0 0
\(61\) 1.00000 0.128037 0.0640184 0.997949i \(-0.479608\pi\)
0.0640184 + 0.997949i \(0.479608\pi\)
\(62\) 0 0
\(63\) −12.0711 −1.52081
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.75736 0.336865 0.168433 0.985713i \(-0.446129\pi\)
0.168433 + 0.985713i \(0.446129\pi\)
\(68\) 0 0
\(69\) 8.97056 1.07993
\(70\) 0 0
\(71\) 9.31371 1.10533 0.552667 0.833402i \(-0.313610\pi\)
0.552667 + 0.833402i \(0.313610\pi\)
\(72\) 0 0
\(73\) −6.00000 −0.702247 −0.351123 0.936329i \(-0.614200\pi\)
−0.351123 + 0.936329i \(0.614200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 15.4853 1.76471
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) 0 0
\(81\) 1.00000 0.111111
\(82\) 0 0
\(83\) −6.89949 −0.757318 −0.378659 0.925536i \(-0.623615\pi\)
−0.378659 + 0.925536i \(0.623615\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) −0.485281 −0.0520276
\(88\) 0 0
\(89\) −8.48528 −0.899438 −0.449719 0.893170i \(-0.648476\pi\)
−0.449719 + 0.893170i \(0.648476\pi\)
\(90\) 0 0
\(91\) −2.41421 −0.253078
\(92\) 0 0
\(93\) −3.51472 −0.364459
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −0.828427 −0.0841140 −0.0420570 0.999115i \(-0.513391\pi\)
−0.0420570 + 0.999115i \(0.513391\pi\)
\(98\) 0 0
\(99\) −32.0711 −3.22326
\(100\) 0 0
\(101\) −6.65685 −0.662382 −0.331191 0.943564i \(-0.607450\pi\)
−0.331191 + 0.943564i \(0.607450\pi\)
\(102\) 0 0
\(103\) −13.6569 −1.34565 −0.672825 0.739802i \(-0.734919\pi\)
−0.672825 + 0.739802i \(0.734919\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −16.1421 −1.56052 −0.780260 0.625456i \(-0.784913\pi\)
−0.780260 + 0.625456i \(0.784913\pi\)
\(108\) 0 0
\(109\) −16.4853 −1.57900 −0.789502 0.613748i \(-0.789661\pi\)
−0.789502 + 0.613748i \(0.789661\pi\)
\(110\) 0 0
\(111\) −16.9706 −1.61077
\(112\) 0 0
\(113\) −11.6569 −1.09658 −0.548292 0.836287i \(-0.684722\pi\)
−0.548292 + 0.836287i \(0.684722\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 5.00000 0.462250
\(118\) 0 0
\(119\) 9.24264 0.847271
\(120\) 0 0
\(121\) 30.1421 2.74019
\(122\) 0 0
\(123\) −16.0000 −1.44267
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 3.65685 0.324493 0.162247 0.986750i \(-0.448126\pi\)
0.162247 + 0.986750i \(0.448126\pi\)
\(128\) 0 0
\(129\) −2.34315 −0.206302
\(130\) 0 0
\(131\) −8.48528 −0.741362 −0.370681 0.928760i \(-0.620876\pi\)
−0.370681 + 0.928760i \(0.620876\pi\)
\(132\) 0 0
\(133\) −8.82843 −0.765522
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 2.82843 0.241649 0.120824 0.992674i \(-0.461446\pi\)
0.120824 + 0.992674i \(0.461446\pi\)
\(138\) 0 0
\(139\) 18.4853 1.56790 0.783951 0.620823i \(-0.213202\pi\)
0.783951 + 0.620823i \(0.213202\pi\)
\(140\) 0 0
\(141\) −10.1421 −0.854122
\(142\) 0 0
\(143\) −6.41421 −0.536383
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −3.31371 −0.273310
\(148\) 0 0
\(149\) 8.82843 0.723253 0.361626 0.932323i \(-0.382222\pi\)
0.361626 + 0.932323i \(0.382222\pi\)
\(150\) 0 0
\(151\) 8.75736 0.712664 0.356332 0.934359i \(-0.384027\pi\)
0.356332 + 0.934359i \(0.384027\pi\)
\(152\) 0 0
\(153\) −19.1421 −1.54755
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) 23.4853 1.87433 0.937165 0.348887i \(-0.113440\pi\)
0.937165 + 0.348887i \(0.113440\pi\)
\(158\) 0 0
\(159\) 8.48528 0.672927
\(160\) 0 0
\(161\) −7.65685 −0.603445
\(162\) 0 0
\(163\) −10.0000 −0.783260 −0.391630 0.920123i \(-0.628089\pi\)
−0.391630 + 0.920123i \(0.628089\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 5.31371 0.411187 0.205594 0.978637i \(-0.434088\pi\)
0.205594 + 0.978637i \(0.434088\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 18.2843 1.39823
\(172\) 0 0
\(173\) 18.6569 1.41845 0.709227 0.704980i \(-0.249044\pi\)
0.709227 + 0.704980i \(0.249044\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −37.4558 −2.81535
\(178\) 0 0
\(179\) −0.686292 −0.0512958 −0.0256479 0.999671i \(-0.508165\pi\)
−0.0256479 + 0.999671i \(0.508165\pi\)
\(180\) 0 0
\(181\) −17.4853 −1.29967 −0.649835 0.760075i \(-0.725162\pi\)
−0.649835 + 0.760075i \(0.725162\pi\)
\(182\) 0 0
\(183\) 2.82843 0.209083
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 24.5563 1.79574
\(188\) 0 0
\(189\) −13.6569 −0.993390
\(190\) 0 0
\(191\) −25.3137 −1.83164 −0.915818 0.401594i \(-0.868456\pi\)
−0.915818 + 0.401594i \(0.868456\pi\)
\(192\) 0 0
\(193\) 1.65685 0.119263 0.0596315 0.998220i \(-0.481007\pi\)
0.0596315 + 0.998220i \(0.481007\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −12.0000 −0.854965 −0.427482 0.904024i \(-0.640599\pi\)
−0.427482 + 0.904024i \(0.640599\pi\)
\(198\) 0 0
\(199\) −10.0000 −0.708881 −0.354441 0.935079i \(-0.615329\pi\)
−0.354441 + 0.935079i \(0.615329\pi\)
\(200\) 0 0
\(201\) 7.79899 0.550098
\(202\) 0 0
\(203\) 0.414214 0.0290721
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 15.8579 1.10220
\(208\) 0 0
\(209\) −23.4558 −1.62247
\(210\) 0 0
\(211\) −17.7990 −1.22533 −0.612666 0.790342i \(-0.709903\pi\)
−0.612666 + 0.790342i \(0.709903\pi\)
\(212\) 0 0
\(213\) 26.3431 1.80500
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 3.00000 0.203653
\(218\) 0 0
\(219\) −16.9706 −1.14676
\(220\) 0 0
\(221\) −3.82843 −0.257528
\(222\) 0 0
\(223\) 10.9706 0.734643 0.367322 0.930094i \(-0.380275\pi\)
0.367322 + 0.930094i \(0.380275\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 8.89949 0.590680 0.295340 0.955392i \(-0.404567\pi\)
0.295340 + 0.955392i \(0.404567\pi\)
\(228\) 0 0
\(229\) −4.82843 −0.319071 −0.159536 0.987192i \(-0.551000\pi\)
−0.159536 + 0.987192i \(0.551000\pi\)
\(230\) 0 0
\(231\) 43.7990 2.88176
\(232\) 0 0
\(233\) 20.6274 1.35135 0.675674 0.737201i \(-0.263853\pi\)
0.675674 + 0.737201i \(0.263853\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 16.9706 1.10236
\(238\) 0 0
\(239\) −23.5858 −1.52564 −0.762819 0.646612i \(-0.776185\pi\)
−0.762819 + 0.646612i \(0.776185\pi\)
\(240\) 0 0
\(241\) 4.97056 0.320182 0.160091 0.987102i \(-0.448821\pi\)
0.160091 + 0.987102i \(0.448821\pi\)
\(242\) 0 0
\(243\) −14.1421 −0.907218
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 3.65685 0.232680
\(248\) 0 0
\(249\) −19.5147 −1.23670
\(250\) 0 0
\(251\) 5.65685 0.357057 0.178529 0.983935i \(-0.442866\pi\)
0.178529 + 0.983935i \(0.442866\pi\)
\(252\) 0 0
\(253\) −20.3431 −1.27896
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −6.65685 −0.415243 −0.207622 0.978209i \(-0.566572\pi\)
−0.207622 + 0.978209i \(0.566572\pi\)
\(258\) 0 0
\(259\) 14.4853 0.900072
\(260\) 0 0
\(261\) −0.857864 −0.0531005
\(262\) 0 0
\(263\) 26.1421 1.61199 0.805997 0.591920i \(-0.201630\pi\)
0.805997 + 0.591920i \(0.201630\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −24.0000 −1.46878
\(268\) 0 0
\(269\) 15.1421 0.923232 0.461616 0.887080i \(-0.347270\pi\)
0.461616 + 0.887080i \(0.347270\pi\)
\(270\) 0 0
\(271\) 25.7279 1.56286 0.781430 0.623993i \(-0.214491\pi\)
0.781430 + 0.623993i \(0.214491\pi\)
\(272\) 0 0
\(273\) −6.82843 −0.413275
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 9.31371 0.559607 0.279803 0.960057i \(-0.409731\pi\)
0.279803 + 0.960057i \(0.409731\pi\)
\(278\) 0 0
\(279\) −6.21320 −0.371975
\(280\) 0 0
\(281\) 4.82843 0.288040 0.144020 0.989575i \(-0.453997\pi\)
0.144020 + 0.989575i \(0.453997\pi\)
\(282\) 0 0
\(283\) 22.4853 1.33661 0.668306 0.743887i \(-0.267020\pi\)
0.668306 + 0.743887i \(0.267020\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 13.6569 0.806139
\(288\) 0 0
\(289\) −2.34315 −0.137832
\(290\) 0 0
\(291\) −2.34315 −0.137358
\(292\) 0 0
\(293\) 8.82843 0.515762 0.257881 0.966177i \(-0.416976\pi\)
0.257881 + 0.966177i \(0.416976\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −36.2843 −2.10543
\(298\) 0 0
\(299\) 3.17157 0.183417
\(300\) 0 0
\(301\) 2.00000 0.115278
\(302\) 0 0
\(303\) −18.8284 −1.08166
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 9.31371 0.531561 0.265781 0.964034i \(-0.414370\pi\)
0.265781 + 0.964034i \(0.414370\pi\)
\(308\) 0 0
\(309\) −38.6274 −2.19744
\(310\) 0 0
\(311\) −9.51472 −0.539530 −0.269765 0.962926i \(-0.586946\pi\)
−0.269765 + 0.962926i \(0.586946\pi\)
\(312\) 0 0
\(313\) 2.85786 0.161536 0.0807680 0.996733i \(-0.474263\pi\)
0.0807680 + 0.996733i \(0.474263\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 20.1421 1.13130 0.565648 0.824647i \(-0.308626\pi\)
0.565648 + 0.824647i \(0.308626\pi\)
\(318\) 0 0
\(319\) 1.10051 0.0616165
\(320\) 0 0
\(321\) −45.6569 −2.54832
\(322\) 0 0
\(323\) −14.0000 −0.778981
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −46.6274 −2.57850
\(328\) 0 0
\(329\) 8.65685 0.477268
\(330\) 0 0
\(331\) −27.6569 −1.52016 −0.760079 0.649831i \(-0.774840\pi\)
−0.760079 + 0.649831i \(0.774840\pi\)
\(332\) 0 0
\(333\) −30.0000 −1.64399
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −20.7990 −1.13299 −0.566497 0.824064i \(-0.691702\pi\)
−0.566497 + 0.824064i \(0.691702\pi\)
\(338\) 0 0
\(339\) −32.9706 −1.79072
\(340\) 0 0
\(341\) 7.97056 0.431630
\(342\) 0 0
\(343\) 19.7279 1.06521
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 19.4558 1.04444 0.522222 0.852809i \(-0.325103\pi\)
0.522222 + 0.852809i \(0.325103\pi\)
\(348\) 0 0
\(349\) 35.4558 1.89791 0.948954 0.315415i \(-0.102144\pi\)
0.948954 + 0.315415i \(0.102144\pi\)
\(350\) 0 0
\(351\) 5.65685 0.301941
\(352\) 0 0
\(353\) 26.1421 1.39141 0.695703 0.718330i \(-0.255093\pi\)
0.695703 + 0.718330i \(0.255093\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 26.1421 1.38359
\(358\) 0 0
\(359\) −21.3848 −1.12865 −0.564323 0.825554i \(-0.690863\pi\)
−0.564323 + 0.825554i \(0.690863\pi\)
\(360\) 0 0
\(361\) −5.62742 −0.296180
\(362\) 0 0
\(363\) 85.2548 4.47472
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 34.8284 1.81803 0.909015 0.416764i \(-0.136836\pi\)
0.909015 + 0.416764i \(0.136836\pi\)
\(368\) 0 0
\(369\) −28.2843 −1.47242
\(370\) 0 0
\(371\) −7.24264 −0.376019
\(372\) 0 0
\(373\) 1.14214 0.0591375 0.0295688 0.999563i \(-0.490587\pi\)
0.0295688 + 0.999563i \(0.490587\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −0.171573 −0.00883645
\(378\) 0 0
\(379\) 31.8701 1.63705 0.818527 0.574467i \(-0.194791\pi\)
0.818527 + 0.574467i \(0.194791\pi\)
\(380\) 0 0
\(381\) 10.3431 0.529895
\(382\) 0 0
\(383\) −27.6569 −1.41320 −0.706600 0.707614i \(-0.749772\pi\)
−0.706600 + 0.707614i \(0.749772\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −4.14214 −0.210557
\(388\) 0 0
\(389\) 28.6274 1.45147 0.725734 0.687976i \(-0.241500\pi\)
0.725734 + 0.687976i \(0.241500\pi\)
\(390\) 0 0
\(391\) −12.1421 −0.614054
\(392\) 0 0
\(393\) −24.0000 −1.21064
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 7.65685 0.384286 0.192143 0.981367i \(-0.438456\pi\)
0.192143 + 0.981367i \(0.438456\pi\)
\(398\) 0 0
\(399\) −24.9706 −1.25009
\(400\) 0 0
\(401\) −3.85786 −0.192653 −0.0963263 0.995350i \(-0.530709\pi\)
−0.0963263 + 0.995350i \(0.530709\pi\)
\(402\) 0 0
\(403\) −1.24264 −0.0619003
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 38.4853 1.90764
\(408\) 0 0
\(409\) −10.8284 −0.535431 −0.267716 0.963498i \(-0.586269\pi\)
−0.267716 + 0.963498i \(0.586269\pi\)
\(410\) 0 0
\(411\) 8.00000 0.394611
\(412\) 0 0
\(413\) 31.9706 1.57317
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 52.2843 2.56037
\(418\) 0 0
\(419\) −22.8284 −1.11524 −0.557621 0.830096i \(-0.688286\pi\)
−0.557621 + 0.830096i \(0.688286\pi\)
\(420\) 0 0
\(421\) −16.9706 −0.827095 −0.413547 0.910483i \(-0.635710\pi\)
−0.413547 + 0.910483i \(0.635710\pi\)
\(422\) 0 0
\(423\) −17.9289 −0.871735
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) −2.41421 −0.116832
\(428\) 0 0
\(429\) −18.1421 −0.875911
\(430\) 0 0
\(431\) 8.34315 0.401875 0.200938 0.979604i \(-0.435601\pi\)
0.200938 + 0.979604i \(0.435601\pi\)
\(432\) 0 0
\(433\) 16.3431 0.785401 0.392701 0.919666i \(-0.371541\pi\)
0.392701 + 0.919666i \(0.371541\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.5980 0.554807
\(438\) 0 0
\(439\) −14.0000 −0.668184 −0.334092 0.942541i \(-0.608430\pi\)
−0.334092 + 0.942541i \(0.608430\pi\)
\(440\) 0 0
\(441\) −5.85786 −0.278946
\(442\) 0 0
\(443\) 29.7990 1.41579 0.707896 0.706316i \(-0.249644\pi\)
0.707896 + 0.706316i \(0.249644\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 24.9706 1.18107
\(448\) 0 0
\(449\) −5.17157 −0.244062 −0.122031 0.992526i \(-0.538941\pi\)
−0.122031 + 0.992526i \(0.538941\pi\)
\(450\) 0 0
\(451\) 36.2843 1.70856
\(452\) 0 0
\(453\) 24.7696 1.16378
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 8.48528 0.396925 0.198462 0.980109i \(-0.436405\pi\)
0.198462 + 0.980109i \(0.436405\pi\)
\(458\) 0 0
\(459\) −21.6569 −1.01086
\(460\) 0 0
\(461\) −19.4558 −0.906149 −0.453074 0.891473i \(-0.649673\pi\)
−0.453074 + 0.891473i \(0.649673\pi\)
\(462\) 0 0
\(463\) −28.5563 −1.32713 −0.663563 0.748120i \(-0.730957\pi\)
−0.663563 + 0.748120i \(0.730957\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −31.1127 −1.43972 −0.719862 0.694117i \(-0.755795\pi\)
−0.719862 + 0.694117i \(0.755795\pi\)
\(468\) 0 0
\(469\) −6.65685 −0.307385
\(470\) 0 0
\(471\) 66.4264 3.06077
\(472\) 0 0
\(473\) 5.31371 0.244325
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 15.0000 0.686803
\(478\) 0 0
\(479\) −14.2721 −0.652108 −0.326054 0.945351i \(-0.605719\pi\)
−0.326054 + 0.945351i \(0.605719\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) −21.6569 −0.985421
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 42.2132 1.91286 0.956431 0.291957i \(-0.0943064\pi\)
0.956431 + 0.291957i \(0.0943064\pi\)
\(488\) 0 0
\(489\) −28.2843 −1.27906
\(490\) 0 0
\(491\) −11.1716 −0.504166 −0.252083 0.967706i \(-0.581116\pi\)
−0.252083 + 0.967706i \(0.581116\pi\)
\(492\) 0 0
\(493\) 0.656854 0.0295832
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −22.4853 −1.00860
\(498\) 0 0
\(499\) −2.55635 −0.114438 −0.0572190 0.998362i \(-0.518223\pi\)
−0.0572190 + 0.998362i \(0.518223\pi\)
\(500\) 0 0
\(501\) 15.0294 0.671466
\(502\) 0 0
\(503\) 14.6274 0.652204 0.326102 0.945335i \(-0.394265\pi\)
0.326102 + 0.945335i \(0.394265\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 2.82843 0.125615
\(508\) 0 0
\(509\) 14.6274 0.648349 0.324174 0.945997i \(-0.394914\pi\)
0.324174 + 0.945997i \(0.394914\pi\)
\(510\) 0 0
\(511\) 14.4853 0.640791
\(512\) 0 0
\(513\) 20.6863 0.913322
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 23.0000 1.01154
\(518\) 0 0
\(519\) 52.7696 2.31633
\(520\) 0 0
\(521\) 0.343146 0.0150335 0.00751674 0.999972i \(-0.497607\pi\)
0.00751674 + 0.999972i \(0.497607\pi\)
\(522\) 0 0
\(523\) −6.00000 −0.262362 −0.131181 0.991358i \(-0.541877\pi\)
−0.131181 + 0.991358i \(0.541877\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 4.75736 0.207234
\(528\) 0 0
\(529\) −12.9411 −0.562658
\(530\) 0 0
\(531\) −66.2132 −2.87341
\(532\) 0 0
\(533\) −5.65685 −0.245026
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) −1.94113 −0.0837657
\(538\) 0 0
\(539\) 7.51472 0.323682
\(540\) 0 0
\(541\) 33.7990 1.45313 0.726566 0.687097i \(-0.241115\pi\)
0.726566 + 0.687097i \(0.241115\pi\)
\(542\) 0 0
\(543\) −49.4558 −2.12235
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −28.4853 −1.21794 −0.608971 0.793192i \(-0.708418\pi\)
−0.608971 + 0.793192i \(0.708418\pi\)
\(548\) 0 0
\(549\) 5.00000 0.213395
\(550\) 0 0
\(551\) −0.627417 −0.0267289
\(552\) 0 0
\(553\) −14.4853 −0.615977
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 27.3137 1.15732 0.578659 0.815569i \(-0.303576\pi\)
0.578659 + 0.815569i \(0.303576\pi\)
\(558\) 0 0
\(559\) −0.828427 −0.0350387
\(560\) 0 0
\(561\) 69.4558 2.93243
\(562\) 0 0
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) −2.41421 −0.101387
\(568\) 0 0
\(569\) −35.2843 −1.47919 −0.739597 0.673050i \(-0.764984\pi\)
−0.739597 + 0.673050i \(0.764984\pi\)
\(570\) 0 0
\(571\) 2.00000 0.0836974 0.0418487 0.999124i \(-0.486675\pi\)
0.0418487 + 0.999124i \(0.486675\pi\)
\(572\) 0 0
\(573\) −71.5980 −2.99105
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −7.17157 −0.298556 −0.149278 0.988795i \(-0.547695\pi\)
−0.149278 + 0.988795i \(0.547695\pi\)
\(578\) 0 0
\(579\) 4.68629 0.194756
\(580\) 0 0
\(581\) 16.6569 0.691043
\(582\) 0 0
\(583\) −19.2426 −0.796949
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −14.4142 −0.594938 −0.297469 0.954731i \(-0.596143\pi\)
−0.297469 + 0.954731i \(0.596143\pi\)
\(588\) 0 0
\(589\) −4.54416 −0.187239
\(590\) 0 0
\(591\) −33.9411 −1.39615
\(592\) 0 0
\(593\) 19.6569 0.807210 0.403605 0.914933i \(-0.367757\pi\)
0.403605 + 0.914933i \(0.367757\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −28.2843 −1.15760
\(598\) 0 0
\(599\) 3.51472 0.143608 0.0718038 0.997419i \(-0.477124\pi\)
0.0718038 + 0.997419i \(0.477124\pi\)
\(600\) 0 0
\(601\) 13.8284 0.564073 0.282037 0.959404i \(-0.408990\pi\)
0.282037 + 0.959404i \(0.408990\pi\)
\(602\) 0 0
\(603\) 13.7868 0.561442
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) 21.5147 0.873255 0.436628 0.899642i \(-0.356173\pi\)
0.436628 + 0.899642i \(0.356173\pi\)
\(608\) 0 0
\(609\) 1.17157 0.0474745
\(610\) 0 0
\(611\) −3.58579 −0.145065
\(612\) 0 0
\(613\) −12.8284 −0.518135 −0.259068 0.965859i \(-0.583415\pi\)
−0.259068 + 0.965859i \(0.583415\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 6.00000 0.241551 0.120775 0.992680i \(-0.461462\pi\)
0.120775 + 0.992680i \(0.461462\pi\)
\(618\) 0 0
\(619\) −22.9706 −0.923265 −0.461632 0.887071i \(-0.652736\pi\)
−0.461632 + 0.887071i \(0.652736\pi\)
\(620\) 0 0
\(621\) 17.9411 0.719953
\(622\) 0 0
\(623\) 20.4853 0.820725
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) −66.3431 −2.64949
\(628\) 0 0
\(629\) 22.9706 0.915896
\(630\) 0 0
\(631\) −34.0000 −1.35352 −0.676759 0.736204i \(-0.736616\pi\)
−0.676759 + 0.736204i \(0.736616\pi\)
\(632\) 0 0
\(633\) −50.3431 −2.00096
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −1.17157 −0.0464194
\(638\) 0 0
\(639\) 46.5685 1.84222
\(640\) 0 0
\(641\) 28.1127 1.11038 0.555192 0.831722i \(-0.312645\pi\)
0.555192 + 0.831722i \(0.312645\pi\)
\(642\) 0 0
\(643\) 1.02944 0.0405970 0.0202985 0.999794i \(-0.493538\pi\)
0.0202985 + 0.999794i \(0.493538\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −18.8284 −0.740222 −0.370111 0.928988i \(-0.620680\pi\)
−0.370111 + 0.928988i \(0.620680\pi\)
\(648\) 0 0
\(649\) 84.9411 3.33423
\(650\) 0 0
\(651\) 8.48528 0.332564
\(652\) 0 0
\(653\) −22.4558 −0.878765 −0.439383 0.898300i \(-0.644803\pi\)
−0.439383 + 0.898300i \(0.644803\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) −30.0000 −1.17041
\(658\) 0 0
\(659\) 8.62742 0.336076 0.168038 0.985780i \(-0.446257\pi\)
0.168038 + 0.985780i \(0.446257\pi\)
\(660\) 0 0
\(661\) −6.82843 −0.265595 −0.132798 0.991143i \(-0.542396\pi\)
−0.132798 + 0.991143i \(0.542396\pi\)
\(662\) 0 0
\(663\) −10.8284 −0.420541
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −0.544156 −0.0210698
\(668\) 0 0
\(669\) 31.0294 1.19967
\(670\) 0 0
\(671\) −6.41421 −0.247618
\(672\) 0 0
\(673\) 24.4558 0.942704 0.471352 0.881945i \(-0.343766\pi\)
0.471352 + 0.881945i \(0.343766\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −41.3137 −1.58781 −0.793907 0.608039i \(-0.791957\pi\)
−0.793907 + 0.608039i \(0.791957\pi\)
\(678\) 0 0
\(679\) 2.00000 0.0767530
\(680\) 0 0
\(681\) 25.1716 0.964577
\(682\) 0 0
\(683\) −21.5858 −0.825957 −0.412979 0.910741i \(-0.635512\pi\)
−0.412979 + 0.910741i \(0.635512\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −13.6569 −0.521041
\(688\) 0 0
\(689\) 3.00000 0.114291
\(690\) 0 0
\(691\) −8.89949 −0.338553 −0.169276 0.985569i \(-0.554143\pi\)
−0.169276 + 0.985569i \(0.554143\pi\)
\(692\) 0 0
\(693\) 77.4264 2.94119
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 21.6569 0.820312
\(698\) 0 0
\(699\) 58.3431 2.20674
\(700\) 0 0
\(701\) −15.8284 −0.597831 −0.298916 0.954280i \(-0.596625\pi\)
−0.298916 + 0.954280i \(0.596625\pi\)
\(702\) 0 0
\(703\) −21.9411 −0.827525
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 16.0711 0.604415
\(708\) 0 0
\(709\) −49.2548 −1.84980 −0.924902 0.380205i \(-0.875853\pi\)
−0.924902 + 0.380205i \(0.875853\pi\)
\(710\) 0 0
\(711\) 30.0000 1.12509
\(712\) 0 0
\(713\) −3.94113 −0.147596
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −66.7107 −2.49136
\(718\) 0 0
\(719\) 49.4558 1.84439 0.922196 0.386723i \(-0.126393\pi\)
0.922196 + 0.386723i \(0.126393\pi\)
\(720\) 0 0
\(721\) 32.9706 1.22789
\(722\) 0 0
\(723\) 14.0589 0.522855
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −16.6863 −0.618860 −0.309430 0.950922i \(-0.600138\pi\)
−0.309430 + 0.950922i \(0.600138\pi\)
\(728\) 0 0
\(729\) −43.0000 −1.59259
\(730\) 0 0
\(731\) 3.17157 0.117305
\(732\) 0 0
\(733\) −35.7990 −1.32227 −0.661133 0.750269i \(-0.729924\pi\)
−0.661133 + 0.750269i \(0.729924\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −17.6863 −0.651483
\(738\) 0 0
\(739\) 27.7279 1.01999 0.509994 0.860178i \(-0.329648\pi\)
0.509994 + 0.860178i \(0.329648\pi\)
\(740\) 0 0
\(741\) 10.3431 0.379965
\(742\) 0 0
\(743\) 14.6985 0.539235 0.269618 0.962967i \(-0.413103\pi\)
0.269618 + 0.962967i \(0.413103\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −34.4975 −1.26220
\(748\) 0 0
\(749\) 38.9706 1.42395
\(750\) 0 0
\(751\) −31.4558 −1.14784 −0.573920 0.818911i \(-0.694578\pi\)
−0.573920 + 0.818911i \(0.694578\pi\)
\(752\) 0 0
\(753\) 16.0000 0.583072
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −16.3137 −0.592932 −0.296466 0.955043i \(-0.595808\pi\)
−0.296466 + 0.955043i \(0.595808\pi\)
\(758\) 0 0
\(759\) −57.5391 −2.08854
\(760\) 0 0
\(761\) −21.7990 −0.790213 −0.395106 0.918635i \(-0.629292\pi\)
−0.395106 + 0.918635i \(0.629292\pi\)
\(762\) 0 0
\(763\) 39.7990 1.44082
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −13.2426 −0.478164
\(768\) 0 0
\(769\) 4.97056 0.179243 0.0896215 0.995976i \(-0.471434\pi\)
0.0896215 + 0.995976i \(0.471434\pi\)
\(770\) 0 0
\(771\) −18.8284 −0.678089
\(772\) 0 0
\(773\) −5.79899 −0.208575 −0.104288 0.994547i \(-0.533256\pi\)
−0.104288 + 0.994547i \(0.533256\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 40.9706 1.46981
\(778\) 0 0
\(779\) −20.6863 −0.741163
\(780\) 0 0
\(781\) −59.7401 −2.13767
\(782\) 0 0
\(783\) −0.970563 −0.0346851
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) −38.7574 −1.38155 −0.690775 0.723069i \(-0.742731\pi\)
−0.690775 + 0.723069i \(0.742731\pi\)
\(788\) 0 0
\(789\) 73.9411 2.63237
\(790\) 0 0
\(791\) 28.1421 1.00062
\(792\) 0 0
\(793\) 1.00000 0.0355110
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −11.4853 −0.406830 −0.203415 0.979093i \(-0.565204\pi\)
−0.203415 + 0.979093i \(0.565204\pi\)
\(798\) 0 0
\(799\) 13.7279 0.485659
\(800\) 0 0
\(801\) −42.4264 −1.49906
\(802\) 0 0
\(803\) 38.4853 1.35812
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 42.8284 1.50763
\(808\) 0 0
\(809\) 17.3137 0.608718 0.304359 0.952557i \(-0.401558\pi\)
0.304359 + 0.952557i \(0.401558\pi\)
\(810\) 0 0
\(811\) −9.58579 −0.336602 −0.168301 0.985736i \(-0.553828\pi\)
−0.168301 + 0.985736i \(0.553828\pi\)
\(812\) 0 0
\(813\) 72.7696 2.55214
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −3.02944 −0.105987
\(818\) 0 0
\(819\) −12.0711 −0.421797
\(820\) 0 0
\(821\) −20.8284 −0.726917 −0.363459 0.931610i \(-0.618404\pi\)
−0.363459 + 0.931610i \(0.618404\pi\)
\(822\) 0 0
\(823\) 20.2843 0.707065 0.353533 0.935422i \(-0.384980\pi\)
0.353533 + 0.935422i \(0.384980\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 32.3553 1.12511 0.562553 0.826761i \(-0.309819\pi\)
0.562553 + 0.826761i \(0.309819\pi\)
\(828\) 0 0
\(829\) 7.97056 0.276829 0.138415 0.990374i \(-0.455799\pi\)
0.138415 + 0.990374i \(0.455799\pi\)
\(830\) 0 0
\(831\) 26.3431 0.913834
\(832\) 0 0
\(833\) 4.48528 0.155406
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) −7.02944 −0.242973
\(838\) 0 0
\(839\) 1.02944 0.0355401 0.0177701 0.999842i \(-0.494343\pi\)
0.0177701 + 0.999842i \(0.494343\pi\)
\(840\) 0 0
\(841\) −28.9706 −0.998985
\(842\) 0 0
\(843\) 13.6569 0.470367
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −72.7696 −2.50039
\(848\) 0 0
\(849\) 63.5980 2.18268
\(850\) 0 0
\(851\) −19.0294 −0.652321
\(852\) 0 0
\(853\) −42.4264 −1.45265 −0.726326 0.687350i \(-0.758774\pi\)
−0.726326 + 0.687350i \(0.758774\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −4.62742 −0.158070 −0.0790348 0.996872i \(-0.525184\pi\)
−0.0790348 + 0.996872i \(0.525184\pi\)
\(858\) 0 0
\(859\) −24.1421 −0.823719 −0.411860 0.911247i \(-0.635121\pi\)
−0.411860 + 0.911247i \(0.635121\pi\)
\(860\) 0 0
\(861\) 38.6274 1.31642
\(862\) 0 0
\(863\) −29.1838 −0.993427 −0.496713 0.867915i \(-0.665460\pi\)
−0.496713 + 0.867915i \(0.665460\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) −6.62742 −0.225079
\(868\) 0 0
\(869\) −38.4853 −1.30552
\(870\) 0 0
\(871\) 2.75736 0.0934296
\(872\) 0 0
\(873\) −4.14214 −0.140190
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −15.7990 −0.533494 −0.266747 0.963767i \(-0.585949\pi\)
−0.266747 + 0.963767i \(0.585949\pi\)
\(878\) 0 0
\(879\) 24.9706 0.842236
\(880\) 0 0
\(881\) −15.0000 −0.505363 −0.252681 0.967550i \(-0.581312\pi\)
−0.252681 + 0.967550i \(0.581312\pi\)
\(882\) 0 0
\(883\) −32.9706 −1.10955 −0.554774 0.832001i \(-0.687195\pi\)
−0.554774 + 0.832001i \(0.687195\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −8.62742 −0.289680 −0.144840 0.989455i \(-0.546267\pi\)
−0.144840 + 0.989455i \(0.546267\pi\)
\(888\) 0 0
\(889\) −8.82843 −0.296096
\(890\) 0 0
\(891\) −6.41421 −0.214884
\(892\) 0 0
\(893\) −13.1127 −0.438800
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 8.97056 0.299518
\(898\) 0 0
\(899\) 0.213203 0.00711073
\(900\) 0 0
\(901\) −11.4853 −0.382630
\(902\) 0 0
\(903\) 5.65685 0.188248
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 24.0000 0.796907 0.398453 0.917189i \(-0.369547\pi\)
0.398453 + 0.917189i \(0.369547\pi\)
\(908\) 0 0
\(909\) −33.2843 −1.10397
\(910\) 0 0
\(911\) −6.00000 −0.198789 −0.0993944 0.995048i \(-0.531691\pi\)
−0.0993944 + 0.995048i \(0.531691\pi\)
\(912\) 0 0
\(913\) 44.2548 1.46462
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 20.4853 0.676484
\(918\) 0 0
\(919\) 18.9706 0.625781 0.312891 0.949789i \(-0.398703\pi\)
0.312891 + 0.949789i \(0.398703\pi\)
\(920\) 0 0
\(921\) 26.3431 0.868036
\(922\) 0 0
\(923\) 9.31371 0.306564
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) −68.2843 −2.24275
\(928\) 0 0
\(929\) 30.2843 0.993595 0.496797 0.867867i \(-0.334509\pi\)
0.496797 + 0.867867i \(0.334509\pi\)
\(930\) 0 0
\(931\) −4.28427 −0.140411
\(932\) 0 0
\(933\) −26.9117 −0.881049
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 1.97056 0.0643755 0.0321877 0.999482i \(-0.489753\pi\)
0.0321877 + 0.999482i \(0.489753\pi\)
\(938\) 0 0
\(939\) 8.08326 0.263787
\(940\) 0 0
\(941\) −35.6569 −1.16238 −0.581190 0.813768i \(-0.697413\pi\)
−0.581190 + 0.813768i \(0.697413\pi\)
\(942\) 0 0
\(943\) −17.9411 −0.584243
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 26.4142 0.858347 0.429173 0.903222i \(-0.358805\pi\)
0.429173 + 0.903222i \(0.358805\pi\)
\(948\) 0 0
\(949\) −6.00000 −0.194768
\(950\) 0 0
\(951\) 56.9706 1.84740
\(952\) 0 0
\(953\) −47.3431 −1.53359 −0.766797 0.641889i \(-0.778151\pi\)
−0.766797 + 0.641889i \(0.778151\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 3.11270 0.100619
\(958\) 0 0
\(959\) −6.82843 −0.220501
\(960\) 0 0
\(961\) −29.4558 −0.950189
\(962\) 0 0
\(963\) −80.7107 −2.60087
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −43.7279 −1.40620 −0.703098 0.711093i \(-0.748200\pi\)
−0.703098 + 0.711093i \(0.748200\pi\)
\(968\) 0 0
\(969\) −39.5980 −1.27207
\(970\) 0 0
\(971\) −36.8284 −1.18188 −0.590940 0.806715i \(-0.701243\pi\)
−0.590940 + 0.806715i \(0.701243\pi\)
\(972\) 0 0
\(973\) −44.6274 −1.43069
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −8.48528 −0.271468 −0.135734 0.990745i \(-0.543339\pi\)
−0.135734 + 0.990745i \(0.543339\pi\)
\(978\) 0 0
\(979\) 54.4264 1.73948
\(980\) 0 0
\(981\) −82.4264 −2.63167
\(982\) 0 0
\(983\) −26.6985 −0.851549 −0.425775 0.904829i \(-0.639998\pi\)
−0.425775 + 0.904829i \(0.639998\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 24.4853 0.779375
\(988\) 0 0
\(989\) −2.62742 −0.0835470
\(990\) 0 0
\(991\) 13.5147 0.429309 0.214655 0.976690i \(-0.431137\pi\)
0.214655 + 0.976690i \(0.431137\pi\)
\(992\) 0 0
\(993\) −78.2254 −2.48241
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 12.6569 0.400847 0.200423 0.979709i \(-0.435768\pi\)
0.200423 + 0.979709i \(0.435768\pi\)
\(998\) 0 0
\(999\) −33.9411 −1.07385
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5200.2.a.br.1.2 2
4.3 odd 2 325.2.a.h.1.2 yes 2
5.4 even 2 5200.2.a.bt.1.1 2
12.11 even 2 2925.2.a.w.1.1 2
20.3 even 4 325.2.b.d.274.1 4
20.7 even 4 325.2.b.d.274.4 4
20.19 odd 2 325.2.a.f.1.1 2
52.51 odd 2 4225.2.a.s.1.1 2
60.23 odd 4 2925.2.c.q.2224.4 4
60.47 odd 4 2925.2.c.q.2224.1 4
60.59 even 2 2925.2.a.bd.1.2 2
260.259 odd 2 4225.2.a.z.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
325.2.a.f.1.1 2 20.19 odd 2
325.2.a.h.1.2 yes 2 4.3 odd 2
325.2.b.d.274.1 4 20.3 even 4
325.2.b.d.274.4 4 20.7 even 4
2925.2.a.w.1.1 2 12.11 even 2
2925.2.a.bd.1.2 2 60.59 even 2
2925.2.c.q.2224.1 4 60.47 odd 4
2925.2.c.q.2224.4 4 60.23 odd 4
4225.2.a.s.1.1 2 52.51 odd 2
4225.2.a.z.1.2 2 260.259 odd 2
5200.2.a.br.1.2 2 1.1 even 1 trivial
5200.2.a.bt.1.1 2 5.4 even 2