Properties

Label 3264.2.c.j
Level $3264$
Weight $2$
Character orbit 3264.c
Analytic conductor $26.063$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3264,2,Mod(577,3264)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3264, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3264.577");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0631712197\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 102)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - i q^{3} + 2 i q^{5} + 2 i q^{7} - q^{9} + 6 q^{13} + 2 q^{15} + ( - 4 i - 1) q^{17} + 2 q^{21} - 6 i q^{23} + q^{25} + i q^{27} - 6 i q^{29} + 10 i q^{31} - 4 q^{35} - 2 i q^{37} - 6 i q^{39} - 4 q^{43} + \cdots + 12 i q^{97} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{9} + 12 q^{13} + 4 q^{15} - 2 q^{17} + 4 q^{21} + 2 q^{25} - 8 q^{35} - 8 q^{43} + 16 q^{47} + 6 q^{49} - 8 q^{51} + 12 q^{53} - 16 q^{67} - 12 q^{69} + 2 q^{81} + 32 q^{83} + 16 q^{85} - 12 q^{87}+ \cdots + 20 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3264\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(2177\) \(2245\) \(2689\)
\(\chi(n)\) \(1\) \(1\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
577.1
1.00000i
1.00000i
0 1.00000i 0 2.00000i 0 2.00000i 0 −1.00000 0
577.2 0 1.00000i 0 2.00000i 0 2.00000i 0 −1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
17.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3264.2.c.j 2
4.b odd 2 1 3264.2.c.i 2
8.b even 2 1 102.2.b.a 2
8.d odd 2 1 816.2.c.a 2
17.b even 2 1 inner 3264.2.c.j 2
24.f even 2 1 2448.2.c.a 2
24.h odd 2 1 306.2.b.a 2
40.f even 2 1 2550.2.c.f 2
40.i odd 4 1 2550.2.f.e 2
40.i odd 4 1 2550.2.f.j 2
68.d odd 2 1 3264.2.c.i 2
136.e odd 2 1 816.2.c.a 2
136.h even 2 1 102.2.b.a 2
136.i even 4 1 1734.2.a.d 1
136.i even 4 1 1734.2.a.e 1
136.o even 8 4 1734.2.f.h 4
408.b odd 2 1 306.2.b.a 2
408.h even 2 1 2448.2.c.a 2
408.t odd 4 1 5202.2.a.h 1
408.t odd 4 1 5202.2.a.n 1
680.h even 2 1 2550.2.c.f 2
680.bi odd 4 1 2550.2.f.e 2
680.bi odd 4 1 2550.2.f.j 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
102.2.b.a 2 8.b even 2 1
102.2.b.a 2 136.h even 2 1
306.2.b.a 2 24.h odd 2 1
306.2.b.a 2 408.b odd 2 1
816.2.c.a 2 8.d odd 2 1
816.2.c.a 2 136.e odd 2 1
1734.2.a.d 1 136.i even 4 1
1734.2.a.e 1 136.i even 4 1
1734.2.f.h 4 136.o even 8 4
2448.2.c.a 2 24.f even 2 1
2448.2.c.a 2 408.h even 2 1
2550.2.c.f 2 40.f even 2 1
2550.2.c.f 2 680.h even 2 1
2550.2.f.e 2 40.i odd 4 1
2550.2.f.e 2 680.bi odd 4 1
2550.2.f.j 2 40.i odd 4 1
2550.2.f.j 2 680.bi odd 4 1
3264.2.c.i 2 4.b odd 2 1
3264.2.c.i 2 68.d odd 2 1
3264.2.c.j 2 1.a even 1 1 trivial
3264.2.c.j 2 17.b even 2 1 inner
5202.2.a.h 1 408.t odd 4 1
5202.2.a.n 1 408.t odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3264, [\chi])\):

\( T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{13} - 6 \) Copy content Toggle raw display
\( T_{19} \) Copy content Toggle raw display
\( T_{43} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 1 \) Copy content Toggle raw display
$5$ \( T^{2} + 4 \) Copy content Toggle raw display
$7$ \( T^{2} + 4 \) Copy content Toggle raw display
$11$ \( T^{2} \) Copy content Toggle raw display
$13$ \( (T - 6)^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 2T + 17 \) Copy content Toggle raw display
$19$ \( T^{2} \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} + 36 \) Copy content Toggle raw display
$31$ \( T^{2} + 100 \) Copy content Toggle raw display
$37$ \( T^{2} + 4 \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( (T + 4)^{2} \) Copy content Toggle raw display
$47$ \( (T - 8)^{2} \) Copy content Toggle raw display
$53$ \( (T - 6)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} \) Copy content Toggle raw display
$61$ \( T^{2} + 100 \) Copy content Toggle raw display
$67$ \( (T + 8)^{2} \) Copy content Toggle raw display
$71$ \( T^{2} + 100 \) Copy content Toggle raw display
$73$ \( T^{2} + 256 \) Copy content Toggle raw display
$79$ \( T^{2} + 36 \) Copy content Toggle raw display
$83$ \( (T - 16)^{2} \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( T^{2} + 144 \) Copy content Toggle raw display
show more
show less