Properties

Label 3264.2.l.c
Level $3264$
Weight $2$
Character orbit 3264.l
Analytic conductor $26.063$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3264,2,Mod(2209,3264)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3264, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3264.2209");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3264 = 2^{6} \cdot 3 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3264.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.0631712197\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: 8.0.303595776.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{19}]\)
Coefficient ring index: \( 2^{7} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + \beta_{2} q^{5} + (\beta_{6} + \beta_1) q^{7} + q^{9} + ( - \beta_{3} + 3) q^{11} + (\beta_{6} - 2 \beta_1) q^{13} - \beta_{2} q^{15} + (\beta_{4} - \beta_{3}) q^{17} + (\beta_{5} - \beta_{4}) q^{19}+ \cdots + ( - \beta_{3} + 3) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 8 q^{3} + 8 q^{9} + 28 q^{11} + 4 q^{17} - 12 q^{25} - 8 q^{27} - 28 q^{33} - 40 q^{49} - 4 q^{51} + 12 q^{75} + 8 q^{81} + 16 q^{89} - 24 q^{91} + 28 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} + 5x^{6} + 16x^{4} + 45x^{2} + 81 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( -\nu^{6} + 4\nu^{4} + 20\nu^{2} + 27 ) / 36 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{7} + 5\nu^{5} + 16\nu^{3} + 18\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( \nu^{6} + 5\nu^{4} + 7\nu^{2} + 18 ) / 9 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( \nu^{7} + 5\nu^{5} + 16\nu^{3} + 72\nu ) / 27 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( -5\nu^{7} - 16\nu^{5} - 8\nu^{3} - 81\nu ) / 108 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( \nu^{6} + 2\nu^{4} + 10\nu^{2} + 21 ) / 6 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( -2\nu^{7} - \nu^{5} - 14\nu^{3} - 27\nu ) / 27 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{4} - \beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{6} - \beta_{3} + 2\beta _1 - 3 ) / 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{7} + 4\beta_{5} + 3\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -3\beta_{6} + 5\beta_{3} + 2\beta _1 - 1 ) / 2 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( 8\beta_{7} - 8\beta_{5} - \beta_{4} + 7\beta_{2} ) / 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( 4\beta_{6} - 12\beta _1 - 5 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( -24\beta_{7} - 24\beta_{5} - 13\beta_{4} - 11\beta_{2} ) / 2 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3264\mathbb{Z}\right)^\times\).

\(n\) \(511\) \(2177\) \(2245\) \(2689\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
2209.1
1.26217 1.18614i
1.26217 + 1.18614i
0.396143 1.68614i
0.396143 + 1.68614i
−0.396143 + 1.68614i
−0.396143 1.68614i
−1.26217 + 1.18614i
−1.26217 1.18614i
0 −1.00000 0 −2.52434 0 3.46410i 0 1.00000 0
2209.2 0 −1.00000 0 −2.52434 0 3.46410i 0 1.00000 0
2209.3 0 −1.00000 0 −0.792287 0 3.46410i 0 1.00000 0
2209.4 0 −1.00000 0 −0.792287 0 3.46410i 0 1.00000 0
2209.5 0 −1.00000 0 0.792287 0 3.46410i 0 1.00000 0
2209.6 0 −1.00000 0 0.792287 0 3.46410i 0 1.00000 0
2209.7 0 −1.00000 0 2.52434 0 3.46410i 0 1.00000 0
2209.8 0 −1.00000 0 2.52434 0 3.46410i 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 2209.8
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
68.d odd 2 1 inner
136.h even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3264.2.l.c 8
4.b odd 2 1 3264.2.l.d yes 8
8.b even 2 1 3264.2.l.d yes 8
8.d odd 2 1 inner 3264.2.l.c 8
17.b even 2 1 3264.2.l.d yes 8
68.d odd 2 1 inner 3264.2.l.c 8
136.e odd 2 1 3264.2.l.d yes 8
136.h even 2 1 inner 3264.2.l.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3264.2.l.c 8 1.a even 1 1 trivial
3264.2.l.c 8 8.d odd 2 1 inner
3264.2.l.c 8 68.d odd 2 1 inner
3264.2.l.c 8 136.h even 2 1 inner
3264.2.l.d yes 8 4.b odd 2 1
3264.2.l.d yes 8 8.b even 2 1
3264.2.l.d yes 8 17.b even 2 1
3264.2.l.d yes 8 136.e odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(3264, [\chi])\):

\( T_{5}^{4} - 7T_{5}^{2} + 4 \) Copy content Toggle raw display
\( T_{11}^{2} - 7T_{11} + 4 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} \) Copy content Toggle raw display
$3$ \( (T + 1)^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} - 7 T^{2} + 4)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 12)^{4} \) Copy content Toggle raw display
$11$ \( (T^{2} - 7 T + 4)^{4} \) Copy content Toggle raw display
$13$ \( (T^{4} + 51 T^{2} + 576)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} - 2 T^{3} + \cdots + 289)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 29 T^{2} + 4)^{2} \) Copy content Toggle raw display
$23$ \( (T^{4} + 7 T^{2} + 4)^{2} \) Copy content Toggle raw display
$29$ \( (T^{4} - 76 T^{2} + 256)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} + 44)^{4} \) Copy content Toggle raw display
$37$ \( (T^{2} - 12)^{4} \) Copy content Toggle raw display
$41$ \( (T^{4} + 153 T^{2} + 5184)^{2} \) Copy content Toggle raw display
$43$ \( (T^{4} + 21 T^{2} + 36)^{2} \) Copy content Toggle raw display
$47$ \( (T^{4} - 76 T^{2} + 256)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 172 T^{2} + 4096)^{2} \) Copy content Toggle raw display
$59$ \( (T^{4} + 84 T^{2} + 576)^{2} \) Copy content Toggle raw display
$61$ \( (T^{4} - 184 T^{2} + 16)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} + 116 T^{2} + 64)^{2} \) Copy content Toggle raw display
$71$ \( (T^{4} + 184 T^{2} + 16)^{2} \) Copy content Toggle raw display
$73$ \( (T^{4} + 164 T^{2} + 256)^{2} \) Copy content Toggle raw display
$79$ \( (T^{4} + 28 T^{2} + 64)^{2} \) Copy content Toggle raw display
$83$ \( (T^{4} + 296 T^{2} + 13456)^{2} \) Copy content Toggle raw display
$89$ \( (T - 2)^{8} \) Copy content Toggle raw display
$97$ \( (T^{2} + 64)^{4} \) Copy content Toggle raw display
show more
show less