Properties

Label 3276.2.bi.f
Level 32763276
Weight 22
Character orbit 3276.bi
Analytic conductor 26.15926.159
Analytic rank 00
Dimension 3232
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(1945,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.1945");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 3276=2232713 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13
Weight: k k == 2 2
Character orbit: [χ][\chi] == 3276.bi (of order 44, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 26.158991702226.1589917022
Analytic rank: 00
Dimension: 3232
Relative dimension: 1616 over Q(i)\Q(i)
Twist minimal: yes
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 32q+8q772q3732q67+8q79+56q85+32q91+O(q100) 32 q + 8 q^{7} - 72 q^{37} - 32 q^{67} + 8 q^{79} + 56 q^{85} + 32 q^{91}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1945.1 0 0 0 −3.01582 + 3.01582i 0 −2.64107 + 0.157253i 0 0 0
1945.2 0 0 0 −3.01582 + 3.01582i 0 −0.157253 + 2.64107i 0 0 0
1945.3 0 0 0 −2.09589 + 2.09589i 0 2.62729 + 0.311986i 0 0 0
1945.4 0 0 0 −2.09589 + 2.09589i 0 −0.311986 2.62729i 0 0 0
1945.5 0 0 0 −1.55781 + 1.55781i 0 −2.36531 1.18546i 0 0 0
1945.6 0 0 0 −1.55781 + 1.55781i 0 1.18546 + 2.36531i 0 0 0
1945.7 0 0 0 −0.765058 + 0.765058i 0 2.21332 1.44956i 0 0 0
1945.8 0 0 0 −0.765058 + 0.765058i 0 1.44956 2.21332i 0 0 0
1945.9 0 0 0 0.765058 0.765058i 0 1.44956 2.21332i 0 0 0
1945.10 0 0 0 0.765058 0.765058i 0 2.21332 1.44956i 0 0 0
1945.11 0 0 0 1.55781 1.55781i 0 1.18546 + 2.36531i 0 0 0
1945.12 0 0 0 1.55781 1.55781i 0 −2.36531 1.18546i 0 0 0
1945.13 0 0 0 2.09589 2.09589i 0 −0.311986 2.62729i 0 0 0
1945.14 0 0 0 2.09589 2.09589i 0 2.62729 + 0.311986i 0 0 0
1945.15 0 0 0 3.01582 3.01582i 0 −0.157253 + 2.64107i 0 0 0
1945.16 0 0 0 3.01582 3.01582i 0 −2.64107 + 0.157253i 0 0 0
2449.1 0 0 0 −3.01582 3.01582i 0 −2.64107 0.157253i 0 0 0
2449.2 0 0 0 −3.01582 3.01582i 0 −0.157253 2.64107i 0 0 0
2449.3 0 0 0 −2.09589 2.09589i 0 2.62729 0.311986i 0 0 0
2449.4 0 0 0 −2.09589 2.09589i 0 −0.311986 + 2.62729i 0 0 0
See all 32 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1945.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
7.b odd 2 1 inner
13.d odd 4 1 inner
21.c even 2 1 inner
39.f even 4 1 inner
91.i even 4 1 inner
273.o odd 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 3276.2.bi.f 32
3.b odd 2 1 inner 3276.2.bi.f 32
7.b odd 2 1 inner 3276.2.bi.f 32
13.d odd 4 1 inner 3276.2.bi.f 32
21.c even 2 1 inner 3276.2.bi.f 32
39.f even 4 1 inner 3276.2.bi.f 32
91.i even 4 1 inner 3276.2.bi.f 32
273.o odd 4 1 inner 3276.2.bi.f 32
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
3276.2.bi.f 32 1.a even 1 1 trivial
3276.2.bi.f 32 3.b odd 2 1 inner
3276.2.bi.f 32 7.b odd 2 1 inner
3276.2.bi.f 32 13.d odd 4 1 inner
3276.2.bi.f 32 21.c even 2 1 inner
3276.2.bi.f 32 39.f even 4 1 inner
3276.2.bi.f 32 91.i even 4 1 inner
3276.2.bi.f 32 273.o odd 4 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(3276,[χ])S_{2}^{\mathrm{new}}(3276, [\chi]):

T516+433T512+35744T58+649808T54+824464 T_{5}^{16} + 433T_{5}^{12} + 35744T_{5}^{8} + 649808T_{5}^{4} + 824464 Copy content Toggle raw display
T1916+1977T1912+364432T198+83200T194+1024 T_{19}^{16} + 1977T_{19}^{12} + 364432T_{19}^{8} + 83200T_{19}^{4} + 1024 Copy content Toggle raw display