Properties

Label 3276.2.x.k.2557.1
Level $3276$
Weight $2$
Character 3276.2557
Analytic conductor $26.159$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [3276,2,Mod(2557,3276)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(3276, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("3276.2557");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 3276 = 2^{2} \cdot 3^{2} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 3276.x (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(26.1589917022\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 19 x^{16} - 16 x^{15} + 244 x^{14} - 181 x^{13} + 1600 x^{12} - 607 x^{11} + \cdots + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 2557.1
Root \(-0.520270 - 0.901135i\) of defining polynomial
Character \(\chi\) \(=\) 3276.2557
Dual form 3276.2.x.k.2629.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.59004 + 2.75404i) q^{5} +(2.63951 - 0.181658i) q^{7} +1.70494 q^{11} +(-2.78983 - 2.28404i) q^{13} +(-1.40001 + 2.42488i) q^{17} +5.48910 q^{19} +(2.73500 + 4.73716i) q^{23} +(-2.55648 - 4.42795i) q^{25} +(-3.81432 + 6.60660i) q^{29} +(1.25981 + 2.18206i) q^{31} +(-3.69664 + 7.55814i) q^{35} +(-3.95043 - 6.84235i) q^{37} +(4.19364 - 7.26359i) q^{41} +(5.61467 + 9.72490i) q^{43} +(3.12503 - 5.41272i) q^{47} +(6.93400 - 0.958974i) q^{49} +(-0.921060 - 1.59532i) q^{53} +(-2.71093 + 4.69547i) q^{55} +(-1.34710 + 2.33325i) q^{59} -6.77693 q^{61} +(10.7263 - 4.05157i) q^{65} +3.58333 q^{67} +(2.00501 + 3.47278i) q^{71} +(5.85146 + 10.1350i) q^{73} +(4.50020 - 0.309716i) q^{77} +(-6.62195 + 11.4695i) q^{79} -8.55336 q^{83} +(-4.45215 - 7.71134i) q^{85} +(0.105061 + 0.181971i) q^{89} +(-7.77869 - 5.52195i) q^{91} +(-8.72791 + 15.1172i) q^{95} +(6.33077 + 10.9652i) q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{7} + 4 q^{11} + 4 q^{13} + 6 q^{17} + 2 q^{19} - 6 q^{23} - 5 q^{25} - 2 q^{29} + 7 q^{31} + 3 q^{35} - 8 q^{37} - 7 q^{41} - 2 q^{43} + 12 q^{47} + 9 q^{49} - 13 q^{53} - q^{55} + 8 q^{59}+ \cdots - 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/3276\mathbb{Z}\right)^\times\).

\(n\) \(1639\) \(2017\) \(2341\) \(2549\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −1.59004 + 2.75404i −0.711089 + 1.23164i 0.253359 + 0.967372i \(0.418464\pi\)
−0.964449 + 0.264270i \(0.914869\pi\)
\(6\) 0 0
\(7\) 2.63951 0.181658i 0.997640 0.0686602i
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 1.70494 0.514059 0.257029 0.966404i \(-0.417256\pi\)
0.257029 + 0.966404i \(0.417256\pi\)
\(12\) 0 0
\(13\) −2.78983 2.28404i −0.773760 0.633479i
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.40001 + 2.42488i −0.339552 + 0.588121i −0.984348 0.176233i \(-0.943609\pi\)
0.644797 + 0.764354i \(0.276942\pi\)
\(18\) 0 0
\(19\) 5.48910 1.25929 0.629643 0.776885i \(-0.283201\pi\)
0.629643 + 0.776885i \(0.283201\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 2.73500 + 4.73716i 0.570287 + 0.987766i 0.996536 + 0.0831603i \(0.0265014\pi\)
−0.426249 + 0.904606i \(0.640165\pi\)
\(24\) 0 0
\(25\) −2.55648 4.42795i −0.511296 0.885590i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −3.81432 + 6.60660i −0.708302 + 1.22682i 0.257185 + 0.966362i \(0.417205\pi\)
−0.965487 + 0.260453i \(0.916128\pi\)
\(30\) 0 0
\(31\) 1.25981 + 2.18206i 0.226269 + 0.391909i 0.956699 0.291078i \(-0.0940140\pi\)
−0.730431 + 0.682987i \(0.760681\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) −3.69664 + 7.55814i −0.624846 + 1.27756i
\(36\) 0 0
\(37\) −3.95043 6.84235i −0.649447 1.12487i −0.983255 0.182234i \(-0.941667\pi\)
0.333808 0.942641i \(-0.391666\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.19364 7.26359i 0.654936 1.13438i −0.326974 0.945033i \(-0.606029\pi\)
0.981910 0.189349i \(-0.0606379\pi\)
\(42\) 0 0
\(43\) 5.61467 + 9.72490i 0.856230 + 1.48303i 0.875499 + 0.483219i \(0.160533\pi\)
−0.0192697 + 0.999814i \(0.506134\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 3.12503 5.41272i 0.455833 0.789526i −0.542903 0.839796i \(-0.682675\pi\)
0.998736 + 0.0502697i \(0.0160081\pi\)
\(48\) 0 0
\(49\) 6.93400 0.958974i 0.990572 0.136996i
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −0.921060 1.59532i −0.126517 0.219134i 0.795808 0.605549i \(-0.207047\pi\)
−0.922325 + 0.386415i \(0.873713\pi\)
\(54\) 0 0
\(55\) −2.71093 + 4.69547i −0.365542 + 0.633137i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −1.34710 + 2.33325i −0.175378 + 0.303764i −0.940292 0.340369i \(-0.889448\pi\)
0.764914 + 0.644132i \(0.222781\pi\)
\(60\) 0 0
\(61\) −6.77693 −0.867697 −0.433848 0.900986i \(-0.642845\pi\)
−0.433848 + 0.900986i \(0.642845\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 10.7263 4.05157i 1.33043 0.502536i
\(66\) 0 0
\(67\) 3.58333 0.437773 0.218887 0.975750i \(-0.429757\pi\)
0.218887 + 0.975750i \(0.429757\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 2.00501 + 3.47278i 0.237951 + 0.412143i 0.960126 0.279567i \(-0.0901909\pi\)
−0.722175 + 0.691710i \(0.756858\pi\)
\(72\) 0 0
\(73\) 5.85146 + 10.1350i 0.684862 + 1.18622i 0.973480 + 0.228771i \(0.0734709\pi\)
−0.288618 + 0.957444i \(0.593196\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 4.50020 0.309716i 0.512846 0.0352954i
\(78\) 0 0
\(79\) −6.62195 + 11.4695i −0.745027 + 1.29043i 0.205155 + 0.978730i \(0.434230\pi\)
−0.950182 + 0.311696i \(0.899103\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −8.55336 −0.938853 −0.469426 0.882972i \(-0.655539\pi\)
−0.469426 + 0.882972i \(0.655539\pi\)
\(84\) 0 0
\(85\) −4.45215 7.71134i −0.482903 0.836413i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0.105061 + 0.181971i 0.0111364 + 0.0192889i 0.871540 0.490325i \(-0.163122\pi\)
−0.860403 + 0.509613i \(0.829788\pi\)
\(90\) 0 0
\(91\) −7.77869 5.52195i −0.815429 0.578858i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −8.72791 + 15.1172i −0.895464 + 1.55099i
\(96\) 0 0
\(97\) 6.33077 + 10.9652i 0.642792 + 1.11335i 0.984807 + 0.173654i \(0.0555574\pi\)
−0.342015 + 0.939695i \(0.611109\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −11.5539 −1.14965 −0.574826 0.818276i \(-0.694930\pi\)
−0.574826 + 0.818276i \(0.694930\pi\)
\(102\) 0 0
\(103\) 6.10134 10.5678i 0.601183 1.04128i −0.391459 0.920195i \(-0.628030\pi\)
0.992642 0.121084i \(-0.0386370\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −1.13656 1.96858i −0.109875 0.190310i 0.805844 0.592128i \(-0.201712\pi\)
−0.915720 + 0.401818i \(0.868379\pi\)
\(108\) 0 0
\(109\) 2.42607 + 4.20208i 0.232376 + 0.402487i 0.958507 0.285070i \(-0.0920168\pi\)
−0.726131 + 0.687556i \(0.758683\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.333301 + 0.577294i 0.0313543 + 0.0543072i 0.881277 0.472601i \(-0.156685\pi\)
−0.849922 + 0.526908i \(0.823351\pi\)
\(114\) 0 0
\(115\) −17.3951 −1.62210
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −3.25483 + 6.65482i −0.298370 + 0.610046i
\(120\) 0 0
\(121\) −8.09318 −0.735743
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0.359215 0.0321292
\(126\) 0 0
\(127\) −9.03831 + 15.6548i −0.802020 + 1.38914i 0.116264 + 0.993218i \(0.462908\pi\)
−0.918284 + 0.395922i \(0.870425\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 9.35254 16.1991i 0.817135 1.41532i −0.0906496 0.995883i \(-0.528894\pi\)
0.907785 0.419437i \(-0.137772\pi\)
\(132\) 0 0
\(133\) 14.4885 0.997137i 1.25631 0.0864628i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −11.2574 + 19.4984i −0.961786 + 1.66586i −0.243775 + 0.969832i \(0.578386\pi\)
−0.718012 + 0.696031i \(0.754948\pi\)
\(138\) 0 0
\(139\) 3.61314 + 6.25815i 0.306463 + 0.530809i 0.977586 0.210537i \(-0.0675212\pi\)
−0.671123 + 0.741346i \(0.734188\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −4.75650 3.89415i −0.397758 0.325646i
\(144\) 0 0
\(145\) −12.1299 21.0096i −1.00733 1.74475i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 7.49862 0.614311 0.307155 0.951659i \(-0.400623\pi\)
0.307155 + 0.951659i \(0.400623\pi\)
\(150\) 0 0
\(151\) 0.992571 + 1.71918i 0.0807743 + 0.139905i 0.903583 0.428414i \(-0.140927\pi\)
−0.822808 + 0.568319i \(0.807594\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) −8.01261 −0.643589
\(156\) 0 0
\(157\) −2.01235 3.48549i −0.160603 0.278172i 0.774482 0.632596i \(-0.218010\pi\)
−0.935085 + 0.354424i \(0.884677\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 8.07960 + 12.0069i 0.636761 + 0.946279i
\(162\) 0 0
\(163\) −3.98715 −0.312298 −0.156149 0.987734i \(-0.549908\pi\)
−0.156149 + 0.987734i \(0.549908\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 1.98915 3.44532i 0.153925 0.266607i −0.778742 0.627345i \(-0.784142\pi\)
0.932667 + 0.360738i \(0.117475\pi\)
\(168\) 0 0
\(169\) 2.56631 + 12.7442i 0.197409 + 0.980321i
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −22.7206 −1.72741 −0.863706 0.503996i \(-0.831863\pi\)
−0.863706 + 0.503996i \(0.831863\pi\)
\(174\) 0 0
\(175\) −7.55222 11.2232i −0.570894 0.848395i
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 4.13020 0.308706 0.154353 0.988016i \(-0.450671\pi\)
0.154353 + 0.988016i \(0.450671\pi\)
\(180\) 0 0
\(181\) 2.63446 0.195818 0.0979091 0.995195i \(-0.468785\pi\)
0.0979091 + 0.995195i \(0.468785\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 25.1254 1.84726
\(186\) 0 0
\(187\) −2.38693 + 4.13428i −0.174550 + 0.302329i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 4.68011 0.338641 0.169320 0.985561i \(-0.445843\pi\)
0.169320 + 0.985561i \(0.445843\pi\)
\(192\) 0 0
\(193\) −17.9366 −1.29110 −0.645551 0.763717i \(-0.723372\pi\)
−0.645551 + 0.763717i \(0.723372\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −11.3526 + 19.6632i −0.808838 + 1.40095i 0.104832 + 0.994490i \(0.466570\pi\)
−0.913669 + 0.406458i \(0.866764\pi\)
\(198\) 0 0
\(199\) 3.97980 6.89322i 0.282121 0.488648i −0.689786 0.724013i \(-0.742295\pi\)
0.971907 + 0.235366i \(0.0756287\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −8.86779 + 18.1311i −0.622397 + 1.27255i
\(204\) 0 0
\(205\) 13.3361 + 23.0989i 0.931436 + 1.61329i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 9.35859 0.647347
\(210\) 0 0
\(211\) −5.08147 + 8.80136i −0.349823 + 0.605911i −0.986218 0.165453i \(-0.947092\pi\)
0.636395 + 0.771363i \(0.280425\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) −35.7103 −2.43542
\(216\) 0 0
\(217\) 3.72167 + 5.53070i 0.252643 + 0.375448i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 9.44432 3.56734i 0.635294 0.239965i
\(222\) 0 0
\(223\) 1.33387 2.31033i 0.0893224 0.154711i −0.817902 0.575357i \(-0.804863\pi\)
0.907225 + 0.420646i \(0.138197\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −12.5757 + 21.7817i −0.834677 + 1.44570i 0.0596159 + 0.998221i \(0.481012\pi\)
−0.894293 + 0.447482i \(0.852321\pi\)
\(228\) 0 0
\(229\) 6.15374 10.6586i 0.406651 0.704339i −0.587862 0.808962i \(-0.700030\pi\)
0.994512 + 0.104622i \(0.0333633\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −10.5720 + 18.3112i −0.692594 + 1.19961i 0.278391 + 0.960468i \(0.410199\pi\)
−0.970985 + 0.239141i \(0.923134\pi\)
\(234\) 0 0
\(235\) 9.93788 + 17.2129i 0.648276 + 1.12285i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 27.3984 1.77225 0.886127 0.463443i \(-0.153386\pi\)
0.886127 + 0.463443i \(0.153386\pi\)
\(240\) 0 0
\(241\) −8.57805 + 14.8576i −0.552561 + 0.957064i 0.445528 + 0.895268i \(0.353016\pi\)
−0.998089 + 0.0617955i \(0.980317\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −8.38432 + 20.6213i −0.535654 + 1.31745i
\(246\) 0 0
\(247\) −15.3137 12.5373i −0.974385 0.797731i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 13.4469 + 23.2907i 0.848759 + 1.47009i 0.882317 + 0.470656i \(0.155983\pi\)
−0.0335582 + 0.999437i \(0.510684\pi\)
\(252\) 0 0
\(253\) 4.66301 + 8.07658i 0.293161 + 0.507770i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −5.65006 9.78619i −0.352441 0.610446i 0.634235 0.773140i \(-0.281315\pi\)
−0.986677 + 0.162694i \(0.947982\pi\)
\(258\) 0 0
\(259\) −11.6702 17.3428i −0.725148 1.07763i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 0.997479 0.0615072 0.0307536 0.999527i \(-0.490209\pi\)
0.0307536 + 0.999527i \(0.490209\pi\)
\(264\) 0 0
\(265\) 5.85810 0.359860
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 6.56406 11.3693i 0.400218 0.693198i −0.593534 0.804809i \(-0.702268\pi\)
0.993752 + 0.111611i \(0.0356010\pi\)
\(270\) 0 0
\(271\) −3.22120 5.57928i −0.195674 0.338917i 0.751447 0.659793i \(-0.229356\pi\)
−0.947121 + 0.320876i \(0.896023\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −4.35864 7.54939i −0.262836 0.455246i
\(276\) 0 0
\(277\) 11.9907 20.7685i 0.720451 1.24786i −0.240369 0.970682i \(-0.577268\pi\)
0.960819 0.277175i \(-0.0893983\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 10.3602 0.618035 0.309018 0.951056i \(-0.400000\pi\)
0.309018 + 0.951056i \(0.400000\pi\)
\(282\) 0 0
\(283\) 29.9130 1.77814 0.889071 0.457769i \(-0.151351\pi\)
0.889071 + 0.457769i \(0.151351\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.74965 19.9341i 0.575504 1.17667i
\(288\) 0 0
\(289\) 4.57996 + 7.93272i 0.269409 + 0.466631i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.184399 0.319389i −0.0107727 0.0186589i 0.860589 0.509300i \(-0.170096\pi\)
−0.871362 + 0.490642i \(0.836762\pi\)
\(294\) 0 0
\(295\) −4.28391 7.41995i −0.249419 0.432006i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 3.18968 19.4627i 0.184464 1.12556i
\(300\) 0 0
\(301\) 16.5866 + 24.6490i 0.956034 + 1.42074i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 10.7756 18.6639i 0.617010 1.06869i
\(306\) 0 0
\(307\) −13.8684 −0.791511 −0.395756 0.918356i \(-0.629517\pi\)
−0.395756 + 0.918356i \(0.629517\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −0.590595 1.02294i −0.0334895 0.0580056i 0.848795 0.528722i \(-0.177329\pi\)
−0.882284 + 0.470717i \(0.843995\pi\)
\(312\) 0 0
\(313\) 5.29311 9.16793i 0.299184 0.518202i −0.676765 0.736199i \(-0.736619\pi\)
0.975950 + 0.217997i \(0.0699522\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 4.24444 7.35159i 0.238392 0.412906i −0.721861 0.692038i \(-0.756713\pi\)
0.960253 + 0.279131i \(0.0900465\pi\)
\(318\) 0 0
\(319\) −6.50319 + 11.2639i −0.364109 + 0.630655i
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −7.68478 + 13.3104i −0.427592 + 0.740612i
\(324\) 0 0
\(325\) −2.98148 + 18.1923i −0.165383 + 1.00913i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 7.26529 14.8546i 0.400548 0.818960i
\(330\) 0 0
\(331\) 4.34420 0.238779 0.119389 0.992848i \(-0.461906\pi\)
0.119389 + 0.992848i \(0.461906\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) −5.69765 + 9.86862i −0.311296 + 0.539180i
\(336\) 0 0
\(337\) 8.59397 0.468143 0.234072 0.972219i \(-0.424795\pi\)
0.234072 + 0.972219i \(0.424795\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 2.14790 + 3.72027i 0.116315 + 0.201464i
\(342\) 0 0
\(343\) 18.1281 3.79083i 0.978828 0.204686i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 10.4098 18.0304i 0.558829 0.967920i −0.438765 0.898602i \(-0.644584\pi\)
0.997595 0.0693188i \(-0.0220826\pi\)
\(348\) 0 0
\(349\) −0.115786 + 0.200546i −0.00619786 + 0.0107350i −0.869108 0.494623i \(-0.835306\pi\)
0.862910 + 0.505358i \(0.168640\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.1994 0.968659 0.484329 0.874886i \(-0.339064\pi\)
0.484329 + 0.874886i \(0.339064\pi\)
\(354\) 0 0
\(355\) −12.7522 −0.676817
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 2.27149 3.93434i 0.119885 0.207646i −0.799837 0.600217i \(-0.795081\pi\)
0.919722 + 0.392571i \(0.128414\pi\)
\(360\) 0 0
\(361\) 11.1302 0.585800
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) −37.2163 −1.94799
\(366\) 0 0
\(367\) 10.0228 0.523185 0.261592 0.965178i \(-0.415752\pi\)
0.261592 + 0.965178i \(0.415752\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −2.72095 4.04355i −0.141265 0.209931i
\(372\) 0 0
\(373\) 8.43135 0.436559 0.218279 0.975886i \(-0.429956\pi\)
0.218279 + 0.975886i \(0.429956\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 25.7311 9.71923i 1.32522 0.500566i
\(378\) 0 0
\(379\) −5.15804 + 8.93398i −0.264951 + 0.458908i −0.967551 0.252677i \(-0.918689\pi\)
0.702600 + 0.711585i \(0.252022\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 2.19625 0.112223 0.0561116 0.998425i \(-0.482130\pi\)
0.0561116 + 0.998425i \(0.482130\pi\)
\(384\) 0 0
\(385\) −6.30255 + 12.8862i −0.321208 + 0.656741i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −16.3977 28.4017i −0.831398 1.44002i −0.896930 0.442173i \(-0.854208\pi\)
0.0655315 0.997851i \(-0.479126\pi\)
\(390\) 0 0
\(391\) −15.3161 −0.774568
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −21.0584 36.4742i −1.05956 1.83521i
\(396\) 0 0
\(397\) −5.51695 −0.276888 −0.138444 0.990370i \(-0.544210\pi\)
−0.138444 + 0.990370i \(0.544210\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −9.66790 16.7453i −0.482792 0.836220i 0.517013 0.855977i \(-0.327044\pi\)
−0.999805 + 0.0197577i \(0.993711\pi\)
\(402\) 0 0
\(403\) 1.46925 8.96502i 0.0731884 0.446580i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −6.73525 11.6658i −0.333854 0.578252i
\(408\) 0 0
\(409\) 18.0322 31.2326i 0.891633 1.54435i 0.0537150 0.998556i \(-0.482894\pi\)
0.837918 0.545797i \(-0.183773\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −3.13184 + 6.40335i −0.154108 + 0.315088i
\(414\) 0 0
\(415\) 13.6002 23.5563i 0.667608 1.15633i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.22915 7.32510i 0.206607 0.357854i −0.744036 0.668139i \(-0.767091\pi\)
0.950644 + 0.310285i \(0.100424\pi\)
\(420\) 0 0
\(421\) −40.2697 −1.96262 −0.981312 0.192424i \(-0.938365\pi\)
−0.981312 + 0.192424i \(0.938365\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 14.3164 0.694445
\(426\) 0 0
\(427\) −17.8878 + 1.23108i −0.865649 + 0.0595762i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 13.0760 0.629847 0.314924 0.949117i \(-0.398021\pi\)
0.314924 + 0.949117i \(0.398021\pi\)
\(432\) 0 0
\(433\) 9.78438 + 16.9470i 0.470207 + 0.814423i 0.999420 0.0340664i \(-0.0108458\pi\)
−0.529212 + 0.848490i \(0.677512\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 15.0127 + 26.0027i 0.718154 + 1.24388i
\(438\) 0 0
\(439\) −7.19768 12.4667i −0.343527 0.595006i 0.641558 0.767074i \(-0.278288\pi\)
−0.985085 + 0.172069i \(0.944955\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 4.31882 7.48041i 0.205193 0.355405i −0.745001 0.667063i \(-0.767551\pi\)
0.950194 + 0.311658i \(0.100884\pi\)
\(444\) 0 0
\(445\) −0.668206 −0.0316760
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 11.4447 + 19.8228i 0.540110 + 0.935498i 0.998897 + 0.0469519i \(0.0149507\pi\)
−0.458787 + 0.888546i \(0.651716\pi\)
\(450\) 0 0
\(451\) 7.14990 12.3840i 0.336676 0.583140i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 27.5761 12.6427i 1.29279 0.592697i
\(456\) 0 0
\(457\) 12.9024 + 22.3476i 0.603548 + 1.04538i 0.992279 + 0.124024i \(0.0395800\pi\)
−0.388732 + 0.921351i \(0.627087\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 3.84106 + 6.65291i 0.178896 + 0.309857i 0.941503 0.337005i \(-0.109414\pi\)
−0.762607 + 0.646862i \(0.776081\pi\)
\(462\) 0 0
\(463\) 7.95930 0.369900 0.184950 0.982748i \(-0.440788\pi\)
0.184950 + 0.982748i \(0.440788\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.7578 18.6330i 0.497810 0.862233i −0.502186 0.864759i \(-0.667471\pi\)
0.999997 + 0.00252639i \(0.000804175\pi\)
\(468\) 0 0
\(469\) 9.45822 0.650939i 0.436740 0.0300576i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 9.57269 + 16.5804i 0.440153 + 0.762367i
\(474\) 0 0
\(475\) −14.0328 24.3055i −0.643867 1.11521i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −33.5009 −1.53070 −0.765348 0.643617i \(-0.777433\pi\)
−0.765348 + 0.643617i \(0.777433\pi\)
\(480\) 0 0
\(481\) −4.60717 + 28.1119i −0.210069 + 1.28179i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −40.2648 −1.82833
\(486\) 0 0
\(487\) −7.62298 + 13.2034i −0.345430 + 0.598303i −0.985432 0.170071i \(-0.945600\pi\)
0.640001 + 0.768374i \(0.278934\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −10.9575 + 18.9790i −0.494507 + 0.856510i −0.999980 0.00633175i \(-0.997985\pi\)
0.505473 + 0.862842i \(0.331318\pi\)
\(492\) 0 0
\(493\) −10.6802 18.4986i −0.481010 0.833134i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 5.92310 + 8.80220i 0.265687 + 0.394833i
\(498\) 0 0
\(499\) 18.1564 31.4478i 0.812791 1.40780i −0.0981123 0.995175i \(-0.531280\pi\)
0.910903 0.412620i \(-0.135386\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −13.2906 23.0199i −0.592597 1.02641i −0.993881 0.110454i \(-0.964769\pi\)
0.401285 0.915953i \(-0.368564\pi\)
\(504\) 0 0
\(505\) 18.3711 31.8198i 0.817505 1.41596i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 17.5859 + 30.4597i 0.779483 + 1.35010i 0.932240 + 0.361841i \(0.117852\pi\)
−0.152757 + 0.988264i \(0.548815\pi\)
\(510\) 0 0
\(511\) 17.2861 + 25.6885i 0.764692 + 1.13639i
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 19.4028 + 33.6066i 0.854989 + 1.48089i
\(516\) 0 0
\(517\) 5.32800 9.22836i 0.234325 0.405863i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 3.80745 + 6.59470i 0.166807 + 0.288919i 0.937296 0.348535i \(-0.113321\pi\)
−0.770488 + 0.637454i \(0.779988\pi\)
\(522\) 0 0
\(523\) −19.0037 32.9154i −0.830975 1.43929i −0.897266 0.441490i \(-0.854450\pi\)
0.0662915 0.997800i \(-0.478883\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −7.05497 −0.307319
\(528\) 0 0
\(529\) −3.46046 + 5.99369i −0.150455 + 0.260595i
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −28.2899 + 10.6858i −1.22537 + 0.462852i
\(534\) 0 0
\(535\) 7.22872 0.312525
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 11.8221 1.63499i 0.509212 0.0704242i
\(540\) 0 0
\(541\) 4.45613 7.71824i 0.191584 0.331833i −0.754191 0.656655i \(-0.771971\pi\)
0.945775 + 0.324822i \(0.105304\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −15.4303 −0.660960
\(546\) 0 0
\(547\) −16.7066 −0.714321 −0.357161 0.934043i \(-0.616255\pi\)
−0.357161 + 0.934043i \(0.616255\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −20.9372 + 36.2643i −0.891955 + 1.54491i
\(552\) 0 0
\(553\) −15.3951 + 31.4769i −0.654668 + 1.33853i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 36.6524 1.55301 0.776507 0.630109i \(-0.216990\pi\)
0.776507 + 0.630109i \(0.216990\pi\)
\(558\) 0 0
\(559\) 6.54808 39.9550i 0.276954 1.68992i
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −1.96094 + 3.39646i −0.0826440 + 0.143144i −0.904385 0.426718i \(-0.859670\pi\)
0.821741 + 0.569861i \(0.193003\pi\)
\(564\) 0 0
\(565\) −2.11985 −0.0891828
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.00915 1.74790i −0.0423058 0.0732757i 0.844097 0.536190i \(-0.180137\pi\)
−0.886403 + 0.462914i \(0.846804\pi\)
\(570\) 0 0
\(571\) −2.78183 4.81827i −0.116416 0.201639i 0.801929 0.597420i \(-0.203807\pi\)
−0.918345 + 0.395781i \(0.870474\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 13.9839 24.2209i 0.583171 1.01008i
\(576\) 0 0
\(577\) 0.540691 + 0.936505i 0.0225093 + 0.0389872i 0.877061 0.480380i \(-0.159501\pi\)
−0.854551 + 0.519367i \(0.826168\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −22.5766 + 1.55378i −0.936637 + 0.0644618i
\(582\) 0 0
\(583\) −1.57035 2.71993i −0.0650374 0.112648i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 11.3515 19.6613i 0.468526 0.811510i −0.530827 0.847480i \(-0.678119\pi\)
0.999353 + 0.0359699i \(0.0114520\pi\)
\(588\) 0 0
\(589\) 6.91522 + 11.9775i 0.284937 + 0.493525i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 11.0275 19.1002i 0.452846 0.784352i −0.545716 0.837970i \(-0.683742\pi\)
0.998561 + 0.0536184i \(0.0170755\pi\)
\(594\) 0 0
\(595\) −13.1523 19.5454i −0.539192 0.801282i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 3.08142 + 5.33717i 0.125903 + 0.218071i 0.922086 0.386986i \(-0.126484\pi\)
−0.796182 + 0.605057i \(0.793150\pi\)
\(600\) 0 0
\(601\) −9.13735 + 15.8264i −0.372720 + 0.645571i −0.989983 0.141187i \(-0.954908\pi\)
0.617263 + 0.786757i \(0.288242\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 12.8685 22.2889i 0.523179 0.906173i
\(606\) 0 0
\(607\) 14.9078 0.605088 0.302544 0.953135i \(-0.402164\pi\)
0.302544 + 0.953135i \(0.402164\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −21.0812 + 7.96286i −0.852853 + 0.322143i
\(612\) 0 0
\(613\) 4.64348 0.187548 0.0937742 0.995593i \(-0.470107\pi\)
0.0937742 + 0.995593i \(0.470107\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 5.34393 + 9.25597i 0.215139 + 0.372631i 0.953315 0.301976i \(-0.0976463\pi\)
−0.738177 + 0.674607i \(0.764313\pi\)
\(618\) 0 0
\(619\) 10.2913 + 17.8250i 0.413642 + 0.716448i 0.995285 0.0969957i \(-0.0309233\pi\)
−0.581643 + 0.813444i \(0.697590\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0.310366 + 0.461229i 0.0124345 + 0.0184787i
\(624\) 0 0
\(625\) 12.2112 21.1505i 0.488449 0.846019i
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 22.1225 0.882083
\(630\) 0 0
\(631\) −21.9750 38.0619i −0.874812 1.51522i −0.856963 0.515379i \(-0.827651\pi\)
−0.0178498 0.999841i \(-0.505682\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) −28.7426 49.7837i −1.14062 1.97560i
\(636\) 0 0
\(637\) −21.5350 13.1622i −0.853249 0.521504i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 24.3981 42.2587i 0.963666 1.66912i 0.250509 0.968114i \(-0.419402\pi\)
0.713157 0.701005i \(-0.247265\pi\)
\(642\) 0 0
\(643\) −2.08350 3.60873i −0.0821653 0.142315i 0.822014 0.569467i \(-0.192850\pi\)
−0.904180 + 0.427152i \(0.859517\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −16.2616 −0.639310 −0.319655 0.947534i \(-0.603567\pi\)
−0.319655 + 0.947534i \(0.603567\pi\)
\(648\) 0 0
\(649\) −2.29673 + 3.97806i −0.0901546 + 0.156152i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 3.91378 + 6.77886i 0.153158 + 0.265277i 0.932387 0.361462i \(-0.117722\pi\)
−0.779229 + 0.626740i \(0.784389\pi\)
\(654\) 0 0
\(655\) 29.7419 + 51.5145i 1.16211 + 2.01284i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −20.3114 35.1805i −0.791221 1.37044i −0.925211 0.379453i \(-0.876112\pi\)
0.133990 0.990983i \(-0.457221\pi\)
\(660\) 0 0
\(661\) −30.8684 −1.20064 −0.600320 0.799760i \(-0.704960\pi\)
−0.600320 + 0.799760i \(0.704960\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −20.2912 + 41.4874i −0.786860 + 1.60881i
\(666\) 0 0
\(667\) −41.7287 −1.61574
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11.5543 −0.446047
\(672\) 0 0
\(673\) −13.5310 + 23.4364i −0.521581 + 0.903405i 0.478104 + 0.878303i \(0.341324\pi\)
−0.999685 + 0.0251020i \(0.992009\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.42360 14.5901i 0.323745 0.560743i −0.657512 0.753444i \(-0.728391\pi\)
0.981258 + 0.192701i \(0.0617246\pi\)
\(678\) 0 0
\(679\) 18.7020 + 27.7927i 0.717718 + 1.06659i
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 9.89038 17.1306i 0.378445 0.655486i −0.612391 0.790555i \(-0.709792\pi\)
0.990836 + 0.135069i \(0.0431256\pi\)
\(684\) 0 0
\(685\) −35.7996 62.0067i −1.36783 2.36915i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −1.07418 + 6.55442i −0.0409230 + 0.249704i
\(690\) 0 0
\(691\) 4.64021 + 8.03707i 0.176522 + 0.305745i 0.940687 0.339276i \(-0.110182\pi\)
−0.764165 + 0.645021i \(0.776849\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −22.9802 −0.871690
\(696\) 0 0
\(697\) 11.7422 + 20.3382i 0.444769 + 0.770363i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) −34.6015 −1.30688 −0.653441 0.756977i \(-0.726675\pi\)
−0.653441 + 0.756977i \(0.726675\pi\)
\(702\) 0 0
\(703\) −21.6843 37.5583i −0.817839 1.41654i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −30.4965 + 2.09885i −1.14694 + 0.0789353i
\(708\) 0 0
\(709\) −15.1165 −0.567711 −0.283855 0.958867i \(-0.591614\pi\)
−0.283855 + 0.958867i \(0.591614\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −6.89116 + 11.9358i −0.258076 + 0.447001i
\(714\) 0 0
\(715\) 18.2877 6.90769i 0.683920 0.258333i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 21.2760 0.793460 0.396730 0.917935i \(-0.370145\pi\)
0.396730 + 0.917935i \(0.370145\pi\)
\(720\) 0 0
\(721\) 14.1848 29.0022i 0.528270 1.08010i
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 39.0049 1.44861
\(726\) 0 0
\(727\) 10.5609 0.391684 0.195842 0.980635i \(-0.437256\pi\)
0.195842 + 0.980635i \(0.437256\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −31.4423 −1.16294
\(732\) 0 0
\(733\) −4.40828 + 7.63536i −0.162824 + 0.282019i −0.935880 0.352318i \(-0.885393\pi\)
0.773057 + 0.634337i \(0.218727\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 6.10936 0.225041
\(738\) 0 0
\(739\) 29.0768 1.06961 0.534803 0.844977i \(-0.320386\pi\)
0.534803 + 0.844977i \(0.320386\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 19.3225 33.4675i 0.708872 1.22780i −0.256404 0.966570i \(-0.582538\pi\)
0.965276 0.261233i \(-0.0841290\pi\)
\(744\) 0 0
\(745\) −11.9231 + 20.6515i −0.436830 + 0.756611i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) −3.35757 4.98962i −0.122683 0.182317i
\(750\) 0 0
\(751\) 20.1942 + 34.9775i 0.736898 + 1.27635i 0.953885 + 0.300171i \(0.0970437\pi\)
−0.216987 + 0.976174i \(0.569623\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −6.31293 −0.229751
\(756\) 0 0
\(757\) 11.2192 19.4322i 0.407768 0.706275i −0.586871 0.809680i \(-0.699641\pi\)
0.994639 + 0.103405i \(0.0329739\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 17.1650 0.622231 0.311115 0.950372i \(-0.399297\pi\)
0.311115 + 0.950372i \(0.399297\pi\)
\(762\) 0 0
\(763\) 7.16698 + 10.6507i 0.259462 + 0.385582i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 9.08744 3.43254i 0.328128 0.123942i
\(768\) 0 0
\(769\) 21.4658 37.1798i 0.774076 1.34074i −0.161236 0.986916i \(-0.551548\pi\)
0.935312 0.353823i \(-0.115119\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 3.36534 5.82893i 0.121043 0.209652i −0.799136 0.601150i \(-0.794710\pi\)
0.920179 + 0.391498i \(0.128043\pi\)
\(774\) 0 0
\(775\) 6.44136 11.1568i 0.231380 0.400762i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 23.0193 39.8706i 0.824752 1.42851i
\(780\) 0 0
\(781\) 3.41842 + 5.92088i 0.122321 + 0.211866i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 12.7989 0.456811
\(786\) 0 0
\(787\) −19.1240 + 33.1238i −0.681699 + 1.18074i 0.292764 + 0.956185i \(0.405425\pi\)
−0.974462 + 0.224552i \(0.927908\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0.984620 + 1.46323i 0.0350091 + 0.0520263i
\(792\) 0 0
\(793\) 18.9065 + 15.4788i 0.671389 + 0.549668i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 21.3120 + 36.9134i 0.754909 + 1.30754i 0.945420 + 0.325855i \(0.105652\pi\)
−0.190511 + 0.981685i \(0.561015\pi\)
\(798\) 0 0
\(799\) 8.75014 + 15.1557i 0.309558 + 0.536170i
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 9.97640 + 17.2796i 0.352059 + 0.609785i
\(804\) 0 0
\(805\) −45.9145 + 3.15995i −1.61827 + 0.111374i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 37.4897 1.31807 0.659033 0.752114i \(-0.270966\pi\)
0.659033 + 0.752114i \(0.270966\pi\)
\(810\) 0 0
\(811\) −25.4069 −0.892156 −0.446078 0.894994i \(-0.647180\pi\)
−0.446078 + 0.894994i \(0.647180\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 6.33975 10.9808i 0.222072 0.384640i
\(816\) 0 0
\(817\) 30.8195 + 53.3809i 1.07824 + 1.86756i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.0406154 0.0703480i −0.00141749 0.00245516i 0.865316 0.501227i \(-0.167118\pi\)
−0.866733 + 0.498772i \(0.833785\pi\)
\(822\) 0 0
\(823\) 0.624767 1.08213i 0.0217780 0.0377206i −0.854931 0.518742i \(-0.826401\pi\)
0.876709 + 0.481021i \(0.159734\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −32.9535 −1.14591 −0.572954 0.819588i \(-0.694202\pi\)
−0.572954 + 0.819588i \(0.694202\pi\)
\(828\) 0 0
\(829\) −17.2241 −0.598218 −0.299109 0.954219i \(-0.596689\pi\)
−0.299109 + 0.954219i \(0.596689\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −7.38225 + 18.1567i −0.255780 + 0.629093i
\(834\) 0 0
\(835\) 6.32569 + 10.9564i 0.218909 + 0.379162i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −14.7357 25.5229i −0.508731 0.881149i −0.999949 0.0101117i \(-0.996781\pi\)
0.491217 0.871037i \(-0.336552\pi\)
\(840\) 0 0
\(841\) −14.5981 25.2847i −0.503383 0.871886i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −39.1785 13.1961i −1.34778 0.453959i
\(846\) 0 0
\(847\) −21.3620 + 1.47019i −0.734007 + 0.0505163i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 21.6089 37.4276i 0.740742 1.28300i
\(852\) 0 0
\(853\) 17.8668 0.611747 0.305873 0.952072i \(-0.401052\pi\)
0.305873 + 0.952072i \(0.401052\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 10.0807 + 17.4603i 0.344351 + 0.596433i 0.985236 0.171204i \(-0.0547657\pi\)
−0.640885 + 0.767637i \(0.721432\pi\)
\(858\) 0 0
\(859\) −5.98669 + 10.3692i −0.204263 + 0.353794i −0.949898 0.312561i \(-0.898813\pi\)
0.745635 + 0.666355i \(0.232146\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 19.8505 34.3821i 0.675719 1.17038i −0.300540 0.953769i \(-0.597167\pi\)
0.976258 0.216610i \(-0.0694999\pi\)
\(864\) 0 0
\(865\) 36.1267 62.5732i 1.22834 2.12755i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.2900 + 19.5549i −0.382988 + 0.663355i
\(870\) 0 0
\(871\) −9.99688 8.18447i −0.338731 0.277320i
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0.948152 0.0652543i 0.0320534 0.00220600i
\(876\) 0 0
\(877\) −45.6656 −1.54202 −0.771010 0.636823i \(-0.780248\pi\)
−0.771010 + 0.636823i \(0.780248\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 16.6420 28.8249i 0.560685 0.971134i −0.436752 0.899582i \(-0.643871\pi\)
0.997437 0.0715523i \(-0.0227953\pi\)
\(882\) 0 0
\(883\) 32.3115 1.08737 0.543685 0.839289i \(-0.317029\pi\)
0.543685 + 0.839289i \(0.317029\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −16.7530 29.0170i −0.562509 0.974295i −0.997277 0.0737520i \(-0.976503\pi\)
0.434767 0.900543i \(-0.356831\pi\)
\(888\) 0 0
\(889\) −21.0129 + 42.9629i −0.704749 + 1.44093i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 17.1536 29.7109i 0.574024 0.994239i
\(894\) 0 0
\(895\) −6.56721 + 11.3747i −0.219517 + 0.380215i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −19.2213 −0.641066
\(900\) 0 0
\(901\) 5.15796 0.171837
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −4.18891 + 7.25541i −0.139244 + 0.241178i
\(906\) 0 0
\(907\) −38.8901 −1.29133 −0.645663 0.763623i \(-0.723419\pi\)
−0.645663 + 0.763623i \(0.723419\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 41.0133 1.35883 0.679415 0.733754i \(-0.262234\pi\)
0.679415 + 0.733754i \(0.262234\pi\)
\(912\) 0 0
\(913\) −14.5830 −0.482626
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.7434 44.4565i 0.718031 1.46808i
\(918\) 0 0
\(919\) 23.9148 0.788875 0.394438 0.918923i \(-0.370939\pi\)
0.394438 + 0.918923i \(0.370939\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 2.33833 14.2680i 0.0769671 0.469637i
\(924\) 0 0
\(925\) −20.1984 + 34.9846i −0.664119 + 1.15029i
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 15.4825 0.507964 0.253982 0.967209i \(-0.418260\pi\)
0.253982 + 0.967209i \(0.418260\pi\)
\(930\) 0 0
\(931\) 38.0614 5.26390i 1.24741 0.172517i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −7.59064 13.1474i −0.248241 0.429965i
\(936\) 0 0
\(937\) 38.8172 1.26810 0.634052 0.773290i \(-0.281391\pi\)
0.634052 + 0.773290i \(0.281391\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −2.64172 4.57560i −0.0861177 0.149160i 0.819749 0.572723i \(-0.194113\pi\)
−0.905867 + 0.423562i \(0.860779\pi\)
\(942\) 0 0
\(943\) 45.8784 1.49401
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.98486 + 6.90198i 0.129491 + 0.224284i 0.923479 0.383648i \(-0.125332\pi\)
−0.793989 + 0.607932i \(0.791999\pi\)
\(948\) 0 0
\(949\) 6.82424 41.6400i 0.221524 1.35169i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 8.48138 + 14.6902i 0.274739 + 0.475862i 0.970069 0.242829i \(-0.0780752\pi\)
−0.695330 + 0.718690i \(0.744742\pi\)
\(954\) 0 0
\(955\) −7.44157 + 12.8892i −0.240804 + 0.417084i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −26.1720 + 53.5112i −0.845138 + 1.72797i
\(960\) 0 0
\(961\) 12.3258 21.3488i 0.397605 0.688672i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 28.5199 49.3980i 0.918089 1.59018i
\(966\) 0 0
\(967\) 21.4177 0.688746 0.344373 0.938833i \(-0.388092\pi\)
0.344373 + 0.938833i \(0.388092\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 16.9302 0.543318 0.271659 0.962394i \(-0.412428\pi\)
0.271659 + 0.962394i \(0.412428\pi\)
\(972\) 0 0
\(973\) 10.6738 + 15.8621i 0.342185 + 0.508515i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −40.8774 −1.30778 −0.653891 0.756588i \(-0.726865\pi\)
−0.653891 + 0.756588i \(0.726865\pi\)
\(978\) 0 0
\(979\) 0.179123 + 0.310250i 0.00572479 + 0.00991562i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −4.26867 7.39355i −0.136149 0.235817i 0.789887 0.613253i \(-0.210139\pi\)
−0.926036 + 0.377435i \(0.876806\pi\)
\(984\) 0 0
\(985\) −36.1022 62.5308i −1.15031 1.99240i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −30.7123 + 53.1952i −0.976593 + 1.69151i
\(990\) 0 0
\(991\) 35.1748 1.11736 0.558682 0.829382i \(-0.311307\pi\)
0.558682 + 0.829382i \(0.311307\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 12.6561 + 21.9211i 0.401226 + 0.694944i
\(996\) 0 0
\(997\) 20.3109 35.1795i 0.643252 1.11414i −0.341450 0.939900i \(-0.610918\pi\)
0.984702 0.174245i \(-0.0557485\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 3276.2.x.k.2557.1 18
3.2 odd 2 364.2.l.a.9.3 yes 18
7.4 even 3 3276.2.u.k.1621.1 18
13.3 even 3 3276.2.u.k.289.1 18
21.2 odd 6 2548.2.k.h.1569.7 18
21.5 even 6 2548.2.k.i.1569.3 18
21.11 odd 6 364.2.i.a.165.7 18
21.17 even 6 2548.2.i.n.165.3 18
21.20 even 2 2548.2.l.n.373.7 18
39.29 odd 6 364.2.i.a.289.7 yes 18
91.81 even 3 inner 3276.2.x.k.2629.1 18
273.68 even 6 2548.2.k.i.393.3 18
273.107 odd 6 2548.2.k.h.393.7 18
273.146 even 6 2548.2.i.n.1745.3 18
273.185 even 6 2548.2.l.n.1537.7 18
273.263 odd 6 364.2.l.a.81.3 yes 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.i.a.165.7 18 21.11 odd 6
364.2.i.a.289.7 yes 18 39.29 odd 6
364.2.l.a.9.3 yes 18 3.2 odd 2
364.2.l.a.81.3 yes 18 273.263 odd 6
2548.2.i.n.165.3 18 21.17 even 6
2548.2.i.n.1745.3 18 273.146 even 6
2548.2.k.h.393.7 18 273.107 odd 6
2548.2.k.h.1569.7 18 21.2 odd 6
2548.2.k.i.393.3 18 273.68 even 6
2548.2.k.i.1569.3 18 21.5 even 6
2548.2.l.n.373.7 18 21.20 even 2
2548.2.l.n.1537.7 18 273.185 even 6
3276.2.u.k.289.1 18 13.3 even 3
3276.2.u.k.1621.1 18 7.4 even 3
3276.2.x.k.2557.1 18 1.1 even 1 trivial
3276.2.x.k.2629.1 18 91.81 even 3 inner