Properties

Label 2548.2.l.n.1537.7
Level $2548$
Weight $2$
Character 2548.1537
Analytic conductor $20.346$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(373,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 4]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.373");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.l (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 19 x^{16} - 16 x^{15} + 244 x^{14} - 181 x^{13} + 1600 x^{12} - 607 x^{11} + \cdots + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1537.7
Root \(-0.520270 - 0.901135i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1537
Dual form 2548.2.l.n.373.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.04054 q^{3} +(-1.59004 - 2.75404i) q^{5} -1.91727 q^{9} -1.70494 q^{11} +(2.78983 - 2.28404i) q^{13} +(-1.65451 - 2.86569i) q^{15} +(-1.40001 - 2.42488i) q^{17} -5.48910 q^{19} +(-2.73500 + 4.73716i) q^{23} +(-2.55648 + 4.42795i) q^{25} -5.11663 q^{27} +(3.81432 + 6.60660i) q^{29} +(-1.25981 + 2.18206i) q^{31} -1.77406 q^{33} +(-3.95043 + 6.84235i) q^{37} +(2.90293 - 2.37664i) q^{39} +(4.19364 + 7.26359i) q^{41} +(5.61467 - 9.72490i) q^{43} +(3.04855 + 5.28024i) q^{45} +(3.12503 + 5.41272i) q^{47} +(-1.45676 - 2.52319i) q^{51} +(0.921060 - 1.59532i) q^{53} +(2.71093 + 4.69547i) q^{55} -5.71163 q^{57} +(-1.34710 - 2.33325i) q^{59} +6.77693 q^{61} +(-10.7263 - 4.05157i) q^{65} +3.58333 q^{67} +(-2.84588 + 4.92921i) q^{69} +(-2.00501 + 3.47278i) q^{71} +(-5.85146 + 10.1350i) q^{73} +(-2.66012 + 4.60746i) q^{75} +(-6.62195 - 11.4695i) q^{79} +0.427766 q^{81} -8.55336 q^{83} +(-4.45215 + 7.71134i) q^{85} +(3.96896 + 6.87444i) q^{87} +(0.105061 - 0.181971i) q^{89} +(-1.31088 + 2.27052i) q^{93} +(8.72791 + 15.1172i) q^{95} +(-6.33077 + 10.9652i) q^{97} +3.26884 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 2 q^{3} + 20 q^{9} - 4 q^{11} - 4 q^{13} - 10 q^{15} + 6 q^{17} - 2 q^{19} + 6 q^{23} - 5 q^{25} + 4 q^{27} + 2 q^{29} - 7 q^{31} - 28 q^{33} - 8 q^{37} + 17 q^{39} - 7 q^{41} - 2 q^{43} + 10 q^{45}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.04054 0.600757 0.300378 0.953820i \(-0.402887\pi\)
0.300378 + 0.953820i \(0.402887\pi\)
\(4\) 0 0
\(5\) −1.59004 2.75404i −0.711089 1.23164i −0.964449 0.264270i \(-0.914869\pi\)
0.253359 0.967372i \(-0.418464\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) −1.91727 −0.639092
\(10\) 0 0
\(11\) −1.70494 −0.514059 −0.257029 0.966404i \(-0.582744\pi\)
−0.257029 + 0.966404i \(0.582744\pi\)
\(12\) 0 0
\(13\) 2.78983 2.28404i 0.773760 0.633479i
\(14\) 0 0
\(15\) −1.65451 2.86569i −0.427192 0.739917i
\(16\) 0 0
\(17\) −1.40001 2.42488i −0.339552 0.588121i 0.644797 0.764354i \(-0.276942\pi\)
−0.984348 + 0.176233i \(0.943609\pi\)
\(18\) 0 0
\(19\) −5.48910 −1.25929 −0.629643 0.776885i \(-0.716799\pi\)
−0.629643 + 0.776885i \(0.716799\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.73500 + 4.73716i −0.570287 + 0.987766i 0.426249 + 0.904606i \(0.359835\pi\)
−0.996536 + 0.0831603i \(0.973499\pi\)
\(24\) 0 0
\(25\) −2.55648 + 4.42795i −0.511296 + 0.885590i
\(26\) 0 0
\(27\) −5.11663 −0.984695
\(28\) 0 0
\(29\) 3.81432 + 6.60660i 0.708302 + 1.22682i 0.965487 + 0.260453i \(0.0838718\pi\)
−0.257185 + 0.966362i \(0.582795\pi\)
\(30\) 0 0
\(31\) −1.25981 + 2.18206i −0.226269 + 0.391909i −0.956699 0.291078i \(-0.905986\pi\)
0.730431 + 0.682987i \(0.239319\pi\)
\(32\) 0 0
\(33\) −1.77406 −0.308824
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.95043 + 6.84235i −0.649447 + 1.12487i 0.333808 + 0.942641i \(0.391666\pi\)
−0.983255 + 0.182234i \(0.941667\pi\)
\(38\) 0 0
\(39\) 2.90293 2.37664i 0.464841 0.380567i
\(40\) 0 0
\(41\) 4.19364 + 7.26359i 0.654936 + 1.13438i 0.981910 + 0.189349i \(0.0606379\pi\)
−0.326974 + 0.945033i \(0.606029\pi\)
\(42\) 0 0
\(43\) 5.61467 9.72490i 0.856230 1.48303i −0.0192697 0.999814i \(-0.506134\pi\)
0.875499 0.483219i \(-0.160533\pi\)
\(44\) 0 0
\(45\) 3.04855 + 5.28024i 0.454451 + 0.787132i
\(46\) 0 0
\(47\) 3.12503 + 5.41272i 0.455833 + 0.789526i 0.998736 0.0502697i \(-0.0160081\pi\)
−0.542903 + 0.839796i \(0.682675\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) −1.45676 2.52319i −0.203988 0.353317i
\(52\) 0 0
\(53\) 0.921060 1.59532i 0.126517 0.219134i −0.795808 0.605549i \(-0.792953\pi\)
0.922325 + 0.386415i \(0.126287\pi\)
\(54\) 0 0
\(55\) 2.71093 + 4.69547i 0.365542 + 0.633137i
\(56\) 0 0
\(57\) −5.71163 −0.756524
\(58\) 0 0
\(59\) −1.34710 2.33325i −0.175378 0.303764i 0.764914 0.644132i \(-0.222781\pi\)
−0.940292 + 0.340369i \(0.889448\pi\)
\(60\) 0 0
\(61\) 6.77693 0.867697 0.433848 0.900986i \(-0.357155\pi\)
0.433848 + 0.900986i \(0.357155\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −10.7263 4.05157i −1.33043 0.502536i
\(66\) 0 0
\(67\) 3.58333 0.437773 0.218887 0.975750i \(-0.429757\pi\)
0.218887 + 0.975750i \(0.429757\pi\)
\(68\) 0 0
\(69\) −2.84588 + 4.92921i −0.342604 + 0.593407i
\(70\) 0 0
\(71\) −2.00501 + 3.47278i −0.237951 + 0.412143i −0.960126 0.279567i \(-0.909809\pi\)
0.722175 + 0.691710i \(0.243142\pi\)
\(72\) 0 0
\(73\) −5.85146 + 10.1350i −0.684862 + 1.18622i 0.288618 + 0.957444i \(0.406804\pi\)
−0.973480 + 0.228771i \(0.926529\pi\)
\(74\) 0 0
\(75\) −2.66012 + 4.60746i −0.307164 + 0.532024i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −6.62195 11.4695i −0.745027 1.29043i −0.950182 0.311696i \(-0.899103\pi\)
0.205155 0.978730i \(-0.434230\pi\)
\(80\) 0 0
\(81\) 0.427766 0.0475296
\(82\) 0 0
\(83\) −8.55336 −0.938853 −0.469426 0.882972i \(-0.655539\pi\)
−0.469426 + 0.882972i \(0.655539\pi\)
\(84\) 0 0
\(85\) −4.45215 + 7.71134i −0.482903 + 0.836413i
\(86\) 0 0
\(87\) 3.96896 + 6.87444i 0.425517 + 0.737017i
\(88\) 0 0
\(89\) 0.105061 0.181971i 0.0111364 0.0192889i −0.860403 0.509613i \(-0.829788\pi\)
0.871540 + 0.490325i \(0.163122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.31088 + 2.27052i −0.135932 + 0.235442i
\(94\) 0 0
\(95\) 8.72791 + 15.1172i 0.895464 + 1.55099i
\(96\) 0 0
\(97\) −6.33077 + 10.9652i −0.642792 + 1.11335i 0.342015 + 0.939695i \(0.388891\pi\)
−0.984807 + 0.173654i \(0.944443\pi\)
\(98\) 0 0
\(99\) 3.26884 0.328531
\(100\) 0 0
\(101\) −11.5539 −1.14965 −0.574826 0.818276i \(-0.694930\pi\)
−0.574826 + 0.818276i \(0.694930\pi\)
\(102\) 0 0
\(103\) −6.10134 10.5678i −0.601183 1.04128i −0.992642 0.121084i \(-0.961363\pi\)
0.391459 0.920195i \(-0.371970\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.13656 1.96858i 0.109875 0.190310i −0.805844 0.592128i \(-0.798288\pi\)
0.915720 + 0.401818i \(0.131621\pi\)
\(108\) 0 0
\(109\) 2.42607 4.20208i 0.232376 0.402487i −0.726131 0.687556i \(-0.758683\pi\)
0.958507 + 0.285070i \(0.0920168\pi\)
\(110\) 0 0
\(111\) −4.11058 + 7.11974i −0.390159 + 0.675776i
\(112\) 0 0
\(113\) −0.333301 + 0.577294i −0.0313543 + 0.0543072i −0.881277 0.472601i \(-0.843315\pi\)
0.849922 + 0.526908i \(0.176649\pi\)
\(114\) 0 0
\(115\) 17.3951 1.62210
\(116\) 0 0
\(117\) −5.34887 + 4.37913i −0.494503 + 0.404851i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −8.09318 −0.735743
\(122\) 0 0
\(123\) 4.36365 + 7.55807i 0.393457 + 0.681488i
\(124\) 0 0
\(125\) 0.359215 0.0321292
\(126\) 0 0
\(127\) −9.03831 15.6548i −0.802020 1.38914i −0.918284 0.395922i \(-0.870425\pi\)
0.116264 0.993218i \(-0.462908\pi\)
\(128\) 0 0
\(129\) 5.84230 10.1192i 0.514386 0.890942i
\(130\) 0 0
\(131\) 9.35254 + 16.1991i 0.817135 + 1.41532i 0.907785 + 0.419437i \(0.137772\pi\)
−0.0906496 + 0.995883i \(0.528894\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 8.13566 + 14.0914i 0.700206 + 1.21279i
\(136\) 0 0
\(137\) 11.2574 + 19.4984i 0.961786 + 1.66586i 0.718012 + 0.696031i \(0.245052\pi\)
0.243775 + 0.969832i \(0.421614\pi\)
\(138\) 0 0
\(139\) −3.61314 + 6.25815i −0.306463 + 0.530809i −0.977586 0.210537i \(-0.932479\pi\)
0.671123 + 0.741346i \(0.265812\pi\)
\(140\) 0 0
\(141\) 3.25173 + 5.63215i 0.273845 + 0.474313i
\(142\) 0 0
\(143\) −4.75650 + 3.89415i −0.397758 + 0.325646i
\(144\) 0 0
\(145\) 12.1299 21.0096i 1.00733 1.74475i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) −7.49862 −0.614311 −0.307155 0.951659i \(-0.599377\pi\)
−0.307155 + 0.951659i \(0.599377\pi\)
\(150\) 0 0
\(151\) 0.992571 1.71918i 0.0807743 0.139905i −0.822808 0.568319i \(-0.807594\pi\)
0.903583 + 0.428414i \(0.140927\pi\)
\(152\) 0 0
\(153\) 2.68420 + 4.64917i 0.217005 + 0.375863i
\(154\) 0 0
\(155\) 8.01261 0.643589
\(156\) 0 0
\(157\) 2.01235 3.48549i 0.160603 0.278172i −0.774482 0.632596i \(-0.781990\pi\)
0.935085 + 0.354424i \(0.115323\pi\)
\(158\) 0 0
\(159\) 0.958401 1.66000i 0.0760061 0.131646i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) −3.98715 −0.312298 −0.156149 0.987734i \(-0.549908\pi\)
−0.156149 + 0.987734i \(0.549908\pi\)
\(164\) 0 0
\(165\) 2.82083 + 4.88583i 0.219602 + 0.380361i
\(166\) 0 0
\(167\) 1.98915 + 3.44532i 0.153925 + 0.266607i 0.932667 0.360738i \(-0.117475\pi\)
−0.778742 + 0.627345i \(0.784142\pi\)
\(168\) 0 0
\(169\) 2.56631 12.7442i 0.197409 0.980321i
\(170\) 0 0
\(171\) 10.5241 0.804799
\(172\) 0 0
\(173\) −22.7206 −1.72741 −0.863706 0.503996i \(-0.831863\pi\)
−0.863706 + 0.503996i \(0.831863\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) −1.40172 2.42784i −0.105359 0.182488i
\(178\) 0 0
\(179\) −4.13020 −0.308706 −0.154353 0.988016i \(-0.549329\pi\)
−0.154353 + 0.988016i \(0.549329\pi\)
\(180\) 0 0
\(181\) −2.63446 −0.195818 −0.0979091 0.995195i \(-0.531215\pi\)
−0.0979091 + 0.995195i \(0.531215\pi\)
\(182\) 0 0
\(183\) 7.05167 0.521274
\(184\) 0 0
\(185\) 25.1254 1.84726
\(186\) 0 0
\(187\) 2.38693 + 4.13428i 0.174550 + 0.302329i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −4.68011 −0.338641 −0.169320 0.985561i \(-0.554157\pi\)
−0.169320 + 0.985561i \(0.554157\pi\)
\(192\) 0 0
\(193\) −17.9366 −1.29110 −0.645551 0.763717i \(-0.723372\pi\)
−0.645551 + 0.763717i \(0.723372\pi\)
\(194\) 0 0
\(195\) −11.1611 4.21583i −0.799266 0.301902i
\(196\) 0 0
\(197\) 11.3526 + 19.6632i 0.808838 + 1.40095i 0.913669 + 0.406458i \(0.133236\pi\)
−0.104832 + 0.994490i \(0.533430\pi\)
\(198\) 0 0
\(199\) −3.97980 6.89322i −0.282121 0.488648i 0.689786 0.724013i \(-0.257705\pi\)
−0.971907 + 0.235366i \(0.924371\pi\)
\(200\) 0 0
\(201\) 3.72860 0.262995
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 13.3361 23.0989i 0.931436 1.61329i
\(206\) 0 0
\(207\) 5.24375 9.08244i 0.364466 0.631273i
\(208\) 0 0
\(209\) 9.35859 0.647347
\(210\) 0 0
\(211\) −5.08147 8.80136i −0.349823 0.605911i 0.636395 0.771363i \(-0.280425\pi\)
−0.986218 + 0.165453i \(0.947092\pi\)
\(212\) 0 0
\(213\) −2.08629 + 3.61357i −0.142951 + 0.247598i
\(214\) 0 0
\(215\) −35.7103 −2.43542
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.08869 + 10.5459i −0.411435 + 0.712627i
\(220\) 0 0
\(221\) −9.44432 3.56734i −0.635294 0.239965i
\(222\) 0 0
\(223\) −1.33387 2.31033i −0.0893224 0.154711i 0.817902 0.575357i \(-0.195137\pi\)
−0.907225 + 0.420646i \(0.861803\pi\)
\(224\) 0 0
\(225\) 4.90147 8.48960i 0.326765 0.565973i
\(226\) 0 0
\(227\) −12.5757 21.7817i −0.834677 1.44570i −0.894293 0.447482i \(-0.852321\pi\)
0.0596159 0.998221i \(-0.481012\pi\)
\(228\) 0 0
\(229\) −6.15374 10.6586i −0.406651 0.704339i 0.587862 0.808962i \(-0.299970\pi\)
−0.994512 + 0.104622i \(0.966637\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 10.5720 + 18.3112i 0.692594 + 1.19961i 0.970985 + 0.239141i \(0.0768657\pi\)
−0.278391 + 0.960468i \(0.589801\pi\)
\(234\) 0 0
\(235\) 9.93788 17.2129i 0.648276 1.12285i
\(236\) 0 0
\(237\) −6.89041 11.9345i −0.447580 0.775231i
\(238\) 0 0
\(239\) −27.3984 −1.77225 −0.886127 0.463443i \(-0.846614\pi\)
−0.886127 + 0.463443i \(0.846614\pi\)
\(240\) 0 0
\(241\) 8.57805 + 14.8576i 0.552561 + 0.957064i 0.998089 + 0.0617955i \(0.0196827\pi\)
−0.445528 + 0.895268i \(0.646984\pi\)
\(242\) 0 0
\(243\) 15.7950 1.01325
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −15.3137 + 12.5373i −0.974385 + 0.797731i
\(248\) 0 0
\(249\) −8.90012 −0.564022
\(250\) 0 0
\(251\) 13.4469 23.2907i 0.848759 1.47009i −0.0335582 0.999437i \(-0.510684\pi\)
0.882317 0.470656i \(-0.155983\pi\)
\(252\) 0 0
\(253\) 4.66301 8.07658i 0.293161 0.507770i
\(254\) 0 0
\(255\) −4.63264 + 8.02397i −0.290107 + 0.502480i
\(256\) 0 0
\(257\) −5.65006 + 9.78619i −0.352441 + 0.610446i −0.986677 0.162694i \(-0.947982\pi\)
0.634235 + 0.773140i \(0.281315\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) −7.31310 12.6667i −0.452670 0.784047i
\(262\) 0 0
\(263\) −0.997479 −0.0615072 −0.0307536 0.999527i \(-0.509791\pi\)
−0.0307536 + 0.999527i \(0.509791\pi\)
\(264\) 0 0
\(265\) −5.85810 −0.359860
\(266\) 0 0
\(267\) 0.109320 0.189348i 0.00669029 0.0115879i
\(268\) 0 0
\(269\) 6.56406 + 11.3693i 0.400218 + 0.693198i 0.993752 0.111611i \(-0.0356010\pi\)
−0.593534 + 0.804809i \(0.702268\pi\)
\(270\) 0 0
\(271\) 3.22120 5.57928i 0.195674 0.338917i −0.751447 0.659793i \(-0.770644\pi\)
0.947121 + 0.320876i \(0.103977\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.35864 7.54939i 0.262836 0.455246i
\(276\) 0 0
\(277\) 11.9907 + 20.7685i 0.720451 + 1.24786i 0.960819 + 0.277175i \(0.0893983\pi\)
−0.240369 + 0.970682i \(0.577268\pi\)
\(278\) 0 0
\(279\) 2.41540 4.18360i 0.144606 0.250466i
\(280\) 0 0
\(281\) −10.3602 −0.618035 −0.309018 0.951056i \(-0.600000\pi\)
−0.309018 + 0.951056i \(0.600000\pi\)
\(282\) 0 0
\(283\) −29.9130 −1.77814 −0.889071 0.457769i \(-0.848649\pi\)
−0.889071 + 0.457769i \(0.848649\pi\)
\(284\) 0 0
\(285\) 9.08174 + 15.7300i 0.537956 + 0.931767i
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.57996 7.93272i 0.269409 0.466631i
\(290\) 0 0
\(291\) −6.58742 + 11.4098i −0.386162 + 0.668852i
\(292\) 0 0
\(293\) −0.184399 + 0.319389i −0.0107727 + 0.0186589i −0.871362 0.490642i \(-0.836762\pi\)
0.860589 + 0.509300i \(0.170096\pi\)
\(294\) 0 0
\(295\) −4.28391 + 7.41995i −0.249419 + 0.432006i
\(296\) 0 0
\(297\) 8.72354 0.506191
\(298\) 0 0
\(299\) 3.18968 + 19.4627i 0.184464 + 1.12556i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) −12.0223 −0.690661
\(304\) 0 0
\(305\) −10.7756 18.6639i −0.617010 1.06869i
\(306\) 0 0
\(307\) 13.8684 0.791511 0.395756 0.918356i \(-0.370483\pi\)
0.395756 + 0.918356i \(0.370483\pi\)
\(308\) 0 0
\(309\) −6.34869 10.9963i −0.361165 0.625555i
\(310\) 0 0
\(311\) −0.590595 + 1.02294i −0.0334895 + 0.0580056i −0.882284 0.470717i \(-0.843995\pi\)
0.848795 + 0.528722i \(0.177329\pi\)
\(312\) 0 0
\(313\) −5.29311 9.16793i −0.299184 0.518202i 0.676765 0.736199i \(-0.263381\pi\)
−0.975950 + 0.217997i \(0.930048\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −4.24444 7.35159i −0.238392 0.412906i 0.721861 0.692038i \(-0.243287\pi\)
−0.960253 + 0.279131i \(0.909953\pi\)
\(318\) 0 0
\(319\) −6.50319 11.2639i −0.364109 0.630655i
\(320\) 0 0
\(321\) 1.18264 2.04839i 0.0660084 0.114330i
\(322\) 0 0
\(323\) 7.68478 + 13.3104i 0.427592 + 0.740612i
\(324\) 0 0
\(325\) 2.98148 + 18.1923i 0.165383 + 1.00913i
\(326\) 0 0
\(327\) 2.52443 4.37244i 0.139601 0.241796i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 4.34420 0.238779 0.119389 0.992848i \(-0.461906\pi\)
0.119389 + 0.992848i \(0.461906\pi\)
\(332\) 0 0
\(333\) 7.57406 13.1187i 0.415056 0.718898i
\(334\) 0 0
\(335\) −5.69765 9.86862i −0.311296 0.539180i
\(336\) 0 0
\(337\) 8.59397 0.468143 0.234072 0.972219i \(-0.424795\pi\)
0.234072 + 0.972219i \(0.424795\pi\)
\(338\) 0 0
\(339\) −0.346813 + 0.600698i −0.0188363 + 0.0326254i
\(340\) 0 0
\(341\) 2.14790 3.72027i 0.116315 0.201464i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 18.1003 0.974487
\(346\) 0 0
\(347\) −10.4098 18.0304i −0.558829 0.967920i −0.997595 0.0693188i \(-0.977917\pi\)
0.438765 0.898602i \(-0.355416\pi\)
\(348\) 0 0
\(349\) 0.115786 + 0.200546i 0.00619786 + 0.0107350i 0.869108 0.494623i \(-0.164694\pi\)
−0.862910 + 0.505358i \(0.831360\pi\)
\(350\) 0 0
\(351\) −14.2745 + 11.6866i −0.761917 + 0.623784i
\(352\) 0 0
\(353\) 18.1994 0.968659 0.484329 0.874886i \(-0.339064\pi\)
0.484329 + 0.874886i \(0.339064\pi\)
\(354\) 0 0
\(355\) 12.7522 0.676817
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.27149 3.93434i −0.119885 0.207646i 0.799837 0.600217i \(-0.204919\pi\)
−0.919722 + 0.392571i \(0.871586\pi\)
\(360\) 0 0
\(361\) 11.1302 0.585800
\(362\) 0 0
\(363\) −8.42128 −0.442003
\(364\) 0 0
\(365\) 37.2163 1.94799
\(366\) 0 0
\(367\) −10.0228 −0.523185 −0.261592 0.965178i \(-0.584248\pi\)
−0.261592 + 0.965178i \(0.584248\pi\)
\(368\) 0 0
\(369\) −8.04036 13.9263i −0.418564 0.724974i
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 8.43135 0.436559 0.218279 0.975886i \(-0.429956\pi\)
0.218279 + 0.975886i \(0.429956\pi\)
\(374\) 0 0
\(375\) 0.373778 0.0193018
\(376\) 0 0
\(377\) 25.7311 + 9.71923i 1.32522 + 0.500566i
\(378\) 0 0
\(379\) −5.15804 8.93398i −0.264951 0.458908i 0.702600 0.711585i \(-0.252022\pi\)
−0.967551 + 0.252677i \(0.918689\pi\)
\(380\) 0 0
\(381\) −9.40473 16.2895i −0.481819 0.834535i
\(382\) 0 0
\(383\) 2.19625 0.112223 0.0561116 0.998425i \(-0.482130\pi\)
0.0561116 + 0.998425i \(0.482130\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.7649 + 18.6453i −0.547209 + 0.947794i
\(388\) 0 0
\(389\) 16.3977 28.4017i 0.831398 1.44002i −0.0655315 0.997851i \(-0.520874\pi\)
0.896930 0.442173i \(-0.145792\pi\)
\(390\) 0 0
\(391\) 15.3161 0.774568
\(392\) 0 0
\(393\) 9.73170 + 16.8558i 0.490899 + 0.850262i
\(394\) 0 0
\(395\) −21.0584 + 36.4742i −1.05956 + 1.83521i
\(396\) 0 0
\(397\) 5.51695 0.276888 0.138444 0.990370i \(-0.455790\pi\)
0.138444 + 0.990370i \(0.455790\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.66790 16.7453i 0.482792 0.836220i −0.517013 0.855977i \(-0.672956\pi\)
0.999805 + 0.0197577i \(0.00628949\pi\)
\(402\) 0 0
\(403\) 1.46925 + 8.96502i 0.0731884 + 0.446580i
\(404\) 0 0
\(405\) −0.680167 1.17808i −0.0337978 0.0585395i
\(406\) 0 0
\(407\) 6.73525 11.6658i 0.333854 0.578252i
\(408\) 0 0
\(409\) −18.0322 31.2326i −0.891633 1.54435i −0.837918 0.545797i \(-0.816227\pi\)
−0.0537150 0.998556i \(-0.517106\pi\)
\(410\) 0 0
\(411\) 11.7138 + 20.2889i 0.577799 + 1.00078i
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) 13.6002 + 23.5563i 0.667608 + 1.15633i
\(416\) 0 0
\(417\) −3.75962 + 6.51186i −0.184110 + 0.318887i
\(418\) 0 0
\(419\) 4.22915 + 7.32510i 0.206607 + 0.357854i 0.950644 0.310285i \(-0.100424\pi\)
−0.744036 + 0.668139i \(0.767091\pi\)
\(420\) 0 0
\(421\) −40.2697 −1.96262 −0.981312 0.192424i \(-0.938365\pi\)
−0.981312 + 0.192424i \(0.938365\pi\)
\(422\) 0 0
\(423\) −5.99155 10.3777i −0.291319 0.504579i
\(424\) 0 0
\(425\) 14.3164 0.694445
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −4.94933 + 4.05203i −0.238956 + 0.195634i
\(430\) 0 0
\(431\) −13.0760 −0.629847 −0.314924 0.949117i \(-0.601979\pi\)
−0.314924 + 0.949117i \(0.601979\pi\)
\(432\) 0 0
\(433\) −9.78438 + 16.9470i −0.470207 + 0.814423i −0.999420 0.0340664i \(-0.989154\pi\)
0.529212 + 0.848490i \(0.322488\pi\)
\(434\) 0 0
\(435\) 12.6216 21.8613i 0.605161 1.04817i
\(436\) 0 0
\(437\) 15.0127 26.0027i 0.718154 1.24388i
\(438\) 0 0
\(439\) 7.19768 12.4667i 0.343527 0.595006i −0.641558 0.767074i \(-0.721712\pi\)
0.985085 + 0.172069i \(0.0550451\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −4.31882 7.48041i −0.205193 0.355405i 0.745001 0.667063i \(-0.232449\pi\)
−0.950194 + 0.311658i \(0.899116\pi\)
\(444\) 0 0
\(445\) −0.668206 −0.0316760
\(446\) 0 0
\(447\) −7.80262 −0.369051
\(448\) 0 0
\(449\) −11.4447 + 19.8228i −0.540110 + 0.935498i 0.458787 + 0.888546i \(0.348284\pi\)
−0.998897 + 0.0469519i \(0.985049\pi\)
\(450\) 0 0
\(451\) −7.14990 12.3840i −0.336676 0.583140i
\(452\) 0 0
\(453\) 1.03281 1.78888i 0.0485257 0.0840490i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.9024 22.3476i 0.603548 1.04538i −0.388732 0.921351i \(-0.627087\pi\)
0.992279 0.124024i \(-0.0395800\pi\)
\(458\) 0 0
\(459\) 7.16331 + 12.4072i 0.334355 + 0.579119i
\(460\) 0 0
\(461\) 3.84106 6.65291i 0.178896 0.309857i −0.762607 0.646862i \(-0.776081\pi\)
0.941503 + 0.337005i \(0.109414\pi\)
\(462\) 0 0
\(463\) 7.95930 0.369900 0.184950 0.982748i \(-0.440788\pi\)
0.184950 + 0.982748i \(0.440788\pi\)
\(464\) 0 0
\(465\) 8.33745 0.386640
\(466\) 0 0
\(467\) 10.7578 + 18.6330i 0.497810 + 0.862233i 0.999997 0.00252639i \(-0.000804175\pi\)
−0.502186 + 0.864759i \(0.667471\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.09393 3.62679i 0.0964831 0.167114i
\(472\) 0 0
\(473\) −9.57269 + 16.5804i −0.440153 + 0.762367i
\(474\) 0 0
\(475\) 14.0328 24.3055i 0.643867 1.11521i
\(476\) 0 0
\(477\) −1.76593 + 3.05867i −0.0808562 + 0.140047i
\(478\) 0 0
\(479\) −33.5009 −1.53070 −0.765348 0.643617i \(-0.777433\pi\)
−0.765348 + 0.643617i \(0.777433\pi\)
\(480\) 0 0
\(481\) 4.60717 + 28.1119i 0.210069 + 1.28179i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 40.2648 1.82833
\(486\) 0 0
\(487\) −7.62298 13.2034i −0.345430 0.598303i 0.640001 0.768374i \(-0.278934\pi\)
−0.985432 + 0.170071i \(0.945600\pi\)
\(488\) 0 0
\(489\) −4.14880 −0.187615
\(490\) 0 0
\(491\) 10.9575 + 18.9790i 0.494507 + 0.856510i 0.999980 0.00633175i \(-0.00201547\pi\)
−0.505473 + 0.862842i \(0.668682\pi\)
\(492\) 0 0
\(493\) 10.6802 18.4986i 0.481010 0.833134i
\(494\) 0 0
\(495\) −5.19760 9.00250i −0.233615 0.404632i
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 18.1564 + 31.4478i 0.812791 + 1.40780i 0.910903 + 0.412620i \(0.135386\pi\)
−0.0981123 + 0.995175i \(0.531280\pi\)
\(500\) 0 0
\(501\) 2.06980 + 3.58499i 0.0924717 + 0.160166i
\(502\) 0 0
\(503\) −13.2906 + 23.0199i −0.592597 + 1.02641i 0.401285 + 0.915953i \(0.368564\pi\)
−0.993881 + 0.110454i \(0.964769\pi\)
\(504\) 0 0
\(505\) 18.3711 + 31.8198i 0.817505 + 1.41596i
\(506\) 0 0
\(507\) 2.67035 13.2608i 0.118595 0.588934i
\(508\) 0 0
\(509\) 17.5859 30.4597i 0.779483 1.35010i −0.152757 0.988264i \(-0.548815\pi\)
0.932240 0.361841i \(-0.117852\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 28.0857 1.24001
\(514\) 0 0
\(515\) −19.4028 + 33.6066i −0.854989 + 1.48089i
\(516\) 0 0
\(517\) −5.32800 9.22836i −0.234325 0.405863i
\(518\) 0 0
\(519\) −23.6417 −1.03775
\(520\) 0 0
\(521\) 3.80745 6.59470i 0.166807 0.288919i −0.770488 0.637454i \(-0.779988\pi\)
0.937296 + 0.348535i \(0.113321\pi\)
\(522\) 0 0
\(523\) 19.0037 32.9154i 0.830975 1.43929i −0.0662915 0.997800i \(-0.521117\pi\)
0.897266 0.441490i \(-0.145550\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 7.05497 0.307319
\(528\) 0 0
\(529\) −3.46046 5.99369i −0.150455 0.260595i
\(530\) 0 0
\(531\) 2.58277 + 4.47349i 0.112083 + 0.194133i
\(532\) 0 0
\(533\) 28.2899 + 10.6858i 1.22537 + 0.462852i
\(534\) 0 0
\(535\) −7.22872 −0.312525
\(536\) 0 0
\(537\) −4.29765 −0.185457
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 4.45613 + 7.71824i 0.191584 + 0.331833i 0.945775 0.324822i \(-0.105304\pi\)
−0.754191 + 0.656655i \(0.771971\pi\)
\(542\) 0 0
\(543\) −2.74127 −0.117639
\(544\) 0 0
\(545\) −15.4303 −0.660960
\(546\) 0 0
\(547\) −16.7066 −0.714321 −0.357161 0.934043i \(-0.616255\pi\)
−0.357161 + 0.934043i \(0.616255\pi\)
\(548\) 0 0
\(549\) −12.9932 −0.554538
\(550\) 0 0
\(551\) −20.9372 36.2643i −0.891955 1.54491i
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 26.1440 1.10975
\(556\) 0 0
\(557\) −36.6524 −1.55301 −0.776507 0.630109i \(-0.783010\pi\)
−0.776507 + 0.630109i \(0.783010\pi\)
\(558\) 0 0
\(559\) −6.54808 39.9550i −0.276954 1.68992i
\(560\) 0 0
\(561\) 2.48370 + 4.30189i 0.104862 + 0.181626i
\(562\) 0 0
\(563\) −1.96094 3.39646i −0.0826440 0.143144i 0.821741 0.569861i \(-0.193003\pi\)
−0.904385 + 0.426718i \(0.859670\pi\)
\(564\) 0 0
\(565\) 2.11985 0.0891828
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.00915 1.74790i 0.0423058 0.0732757i −0.844097 0.536190i \(-0.819863\pi\)
0.886403 + 0.462914i \(0.153196\pi\)
\(570\) 0 0
\(571\) −2.78183 + 4.81827i −0.116416 + 0.201639i −0.918345 0.395781i \(-0.870474\pi\)
0.801929 + 0.597420i \(0.203807\pi\)
\(572\) 0 0
\(573\) −4.86984 −0.203441
\(574\) 0 0
\(575\) −13.9839 24.2209i −0.583171 1.01008i
\(576\) 0 0
\(577\) −0.540691 + 0.936505i −0.0225093 + 0.0389872i −0.877061 0.480380i \(-0.840499\pi\)
0.854551 + 0.519367i \(0.173832\pi\)
\(578\) 0 0
\(579\) −18.6637 −0.775638
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.57035 + 2.71993i −0.0650374 + 0.112648i
\(584\) 0 0
\(585\) 20.5652 + 7.76798i 0.850268 + 0.321166i
\(586\) 0 0
\(587\) 11.3515 + 19.6613i 0.468526 + 0.811510i 0.999353 0.0359699i \(-0.0114520\pi\)
−0.530827 + 0.847480i \(0.678119\pi\)
\(588\) 0 0
\(589\) 6.91522 11.9775i 0.284937 0.493525i
\(590\) 0 0
\(591\) 11.8128 + 20.4604i 0.485915 + 0.841629i
\(592\) 0 0
\(593\) 11.0275 + 19.1002i 0.452846 + 0.784352i 0.998561 0.0536184i \(-0.0170755\pi\)
−0.545716 + 0.837970i \(0.683742\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −4.14115 7.17268i −0.169486 0.293558i
\(598\) 0 0
\(599\) −3.08142 + 5.33717i −0.125903 + 0.218071i −0.922086 0.386986i \(-0.873516\pi\)
0.796182 + 0.605057i \(0.206850\pi\)
\(600\) 0 0
\(601\) 9.13735 + 15.8264i 0.372720 + 0.645571i 0.989983 0.141187i \(-0.0450917\pi\)
−0.617263 + 0.786757i \(0.711758\pi\)
\(602\) 0 0
\(603\) −6.87023 −0.279777
\(604\) 0 0
\(605\) 12.8685 + 22.2889i 0.523179 + 0.906173i
\(606\) 0 0
\(607\) −14.9078 −0.605088 −0.302544 0.953135i \(-0.597836\pi\)
−0.302544 + 0.953135i \(0.597836\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 21.0812 + 7.96286i 0.852853 + 0.322143i
\(612\) 0 0
\(613\) 4.64348 0.187548 0.0937742 0.995593i \(-0.470107\pi\)
0.0937742 + 0.995593i \(0.470107\pi\)
\(614\) 0 0
\(615\) 13.8768 24.0353i 0.559566 0.969197i
\(616\) 0 0
\(617\) −5.34393 + 9.25597i −0.215139 + 0.372631i −0.953315 0.301976i \(-0.902354\pi\)
0.738177 + 0.674607i \(0.235687\pi\)
\(618\) 0 0
\(619\) −10.2913 + 17.8250i −0.413642 + 0.716448i −0.995285 0.0969957i \(-0.969077\pi\)
0.581643 + 0.813444i \(0.302410\pi\)
\(620\) 0 0
\(621\) 13.9940 24.2383i 0.561559 0.972648i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 12.2112 + 21.1505i 0.488449 + 0.846019i
\(626\) 0 0
\(627\) 9.73799 0.388898
\(628\) 0 0
\(629\) 22.1225 0.882083
\(630\) 0 0
\(631\) −21.9750 + 38.0619i −0.874812 + 1.51522i −0.0178498 + 0.999841i \(0.505682\pi\)
−0.856963 + 0.515379i \(0.827651\pi\)
\(632\) 0 0
\(633\) −5.28748 9.15818i −0.210158 0.364005i
\(634\) 0 0
\(635\) −28.7426 + 49.7837i −1.14062 + 1.97560i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.84415 6.65827i 0.152072 0.263397i
\(640\) 0 0
\(641\) −24.3981 42.2587i −0.963666 1.66912i −0.713157 0.701005i \(-0.752735\pi\)
−0.250509 0.968114i \(-0.580598\pi\)
\(642\) 0 0
\(643\) 2.08350 3.60873i 0.0821653 0.142315i −0.822014 0.569467i \(-0.807150\pi\)
0.904180 + 0.427152i \(0.140483\pi\)
\(644\) 0 0
\(645\) −37.1580 −1.46310
\(646\) 0 0
\(647\) −16.2616 −0.639310 −0.319655 0.947534i \(-0.603567\pi\)
−0.319655 + 0.947534i \(0.603567\pi\)
\(648\) 0 0
\(649\) 2.29673 + 3.97806i 0.0901546 + 0.156152i
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.91378 + 6.77886i −0.153158 + 0.265277i −0.932387 0.361462i \(-0.882278\pi\)
0.779229 + 0.626740i \(0.215611\pi\)
\(654\) 0 0
\(655\) 29.7419 51.5145i 1.16211 2.01284i
\(656\) 0 0
\(657\) 11.2189 19.4316i 0.437690 0.758100i
\(658\) 0 0
\(659\) 20.3114 35.1805i 0.791221 1.37044i −0.133990 0.990983i \(-0.542779\pi\)
0.925211 0.379453i \(-0.123888\pi\)
\(660\) 0 0
\(661\) 30.8684 1.20064 0.600320 0.799760i \(-0.295040\pi\)
0.600320 + 0.799760i \(0.295040\pi\)
\(662\) 0 0
\(663\) −9.82720 3.71196i −0.381657 0.144161i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −41.7287 −1.61574
\(668\) 0 0
\(669\) −1.38794 2.40399i −0.0536610 0.0929436i
\(670\) 0 0
\(671\) −11.5543 −0.446047
\(672\) 0 0
\(673\) −13.5310 23.4364i −0.521581 0.903405i −0.999685 0.0251020i \(-0.992009\pi\)
0.478104 0.878303i \(-0.341324\pi\)
\(674\) 0 0
\(675\) 13.0805 22.6562i 0.503470 0.872036i
\(676\) 0 0
\(677\) 8.42360 + 14.5901i 0.323745 + 0.560743i 0.981258 0.192701i \(-0.0617246\pi\)
−0.657512 + 0.753444i \(0.728391\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) −13.0855 22.6648i −0.501438 0.868516i
\(682\) 0 0
\(683\) −9.89038 17.1306i −0.378445 0.655486i 0.612391 0.790555i \(-0.290208\pi\)
−0.990836 + 0.135069i \(0.956874\pi\)
\(684\) 0 0
\(685\) 35.7996 62.0067i 1.36783 2.36915i
\(686\) 0 0
\(687\) −6.40322 11.0907i −0.244298 0.423137i
\(688\) 0 0
\(689\) −1.07418 6.55442i −0.0409230 0.249704i
\(690\) 0 0
\(691\) −4.64021 + 8.03707i −0.176522 + 0.305745i −0.940687 0.339276i \(-0.889818\pi\)
0.764165 + 0.645021i \(0.223151\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 22.9802 0.871690
\(696\) 0 0
\(697\) 11.7422 20.3382i 0.444769 0.770363i
\(698\) 0 0
\(699\) 11.0006 + 19.0536i 0.416081 + 0.720673i
\(700\) 0 0
\(701\) 34.6015 1.30688 0.653441 0.756977i \(-0.273325\pi\)
0.653441 + 0.756977i \(0.273325\pi\)
\(702\) 0 0
\(703\) 21.6843 37.5583i 0.817839 1.41654i
\(704\) 0 0
\(705\) 10.3408 17.9107i 0.389456 0.674558i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −15.1165 −0.567711 −0.283855 0.958867i \(-0.591614\pi\)
−0.283855 + 0.958867i \(0.591614\pi\)
\(710\) 0 0
\(711\) 12.6961 + 21.9903i 0.476141 + 0.824700i
\(712\) 0 0
\(713\) −6.89116 11.9358i −0.258076 0.447001i
\(714\) 0 0
\(715\) 18.2877 + 6.90769i 0.683920 + 0.258333i
\(716\) 0 0
\(717\) −28.5091 −1.06469
\(718\) 0 0
\(719\) 21.2760 0.793460 0.396730 0.917935i \(-0.370145\pi\)
0.396730 + 0.917935i \(0.370145\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 8.92581 + 15.4600i 0.331955 + 0.574962i
\(724\) 0 0
\(725\) −39.0049 −1.44861
\(726\) 0 0
\(727\) −10.5609 −0.391684 −0.195842 0.980635i \(-0.562744\pi\)
−0.195842 + 0.980635i \(0.562744\pi\)
\(728\) 0 0
\(729\) 15.1520 0.561186
\(730\) 0 0
\(731\) −31.4423 −1.16294
\(732\) 0 0
\(733\) 4.40828 + 7.63536i 0.162824 + 0.282019i 0.935880 0.352318i \(-0.114607\pi\)
−0.773057 + 0.634337i \(0.781273\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.10936 −0.225041
\(738\) 0 0
\(739\) 29.0768 1.06961 0.534803 0.844977i \(-0.320386\pi\)
0.534803 + 0.844977i \(0.320386\pi\)
\(740\) 0 0
\(741\) −15.9345 + 13.0456i −0.585368 + 0.479242i
\(742\) 0 0
\(743\) −19.3225 33.4675i −0.708872 1.22780i −0.965276 0.261233i \(-0.915871\pi\)
0.256404 0.966570i \(-0.417462\pi\)
\(744\) 0 0
\(745\) 11.9231 + 20.6515i 0.436830 + 0.756611i
\(746\) 0 0
\(747\) 16.3991 0.600013
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.1942 34.9775i 0.736898 1.27635i −0.216987 0.976174i \(-0.569623\pi\)
0.953885 0.300171i \(-0.0970437\pi\)
\(752\) 0 0
\(753\) 13.9920 24.2349i 0.509897 0.883168i
\(754\) 0 0
\(755\) −6.31293 −0.229751
\(756\) 0 0
\(757\) 11.2192 + 19.4322i 0.407768 + 0.706275i 0.994639 0.103405i \(-0.0329739\pi\)
−0.586871 + 0.809680i \(0.699641\pi\)
\(758\) 0 0
\(759\) 4.85206 8.40401i 0.176118 0.305046i
\(760\) 0 0
\(761\) 17.1650 0.622231 0.311115 0.950372i \(-0.399297\pi\)
0.311115 + 0.950372i \(0.399297\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 8.53599 14.7848i 0.308619 0.534544i
\(766\) 0 0
\(767\) −9.08744 3.43254i −0.328128 0.123942i
\(768\) 0 0
\(769\) −21.4658 37.1798i −0.774076 1.34074i −0.935312 0.353823i \(-0.884881\pi\)
0.161236 0.986916i \(-0.448452\pi\)
\(770\) 0 0
\(771\) −5.87912 + 10.1829i −0.211731 + 0.366729i
\(772\) 0 0
\(773\) 3.36534 + 5.82893i 0.121043 + 0.209652i 0.920179 0.391498i \(-0.128043\pi\)
−0.799136 + 0.601150i \(0.794710\pi\)
\(774\) 0 0
\(775\) −6.44136 11.1568i −0.231380 0.400762i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −23.0193 39.8706i −0.824752 1.42851i
\(780\) 0 0
\(781\) 3.41842 5.92088i 0.122321 0.211866i
\(782\) 0 0
\(783\) −19.5165 33.8035i −0.697461 1.20804i
\(784\) 0 0
\(785\) −12.7989 −0.456811
\(786\) 0 0
\(787\) 19.1240 + 33.1238i 0.681699 + 1.18074i 0.974462 + 0.224552i \(0.0720918\pi\)
−0.292764 + 0.956185i \(0.594575\pi\)
\(788\) 0 0
\(789\) −1.03792 −0.0369508
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 18.9065 15.4788i 0.671389 0.549668i
\(794\) 0 0
\(795\) −6.09560 −0.216189
\(796\) 0 0
\(797\) 21.3120 36.9134i 0.754909 1.30754i −0.190511 0.981685i \(-0.561015\pi\)
0.945420 0.325855i \(-0.105652\pi\)
\(798\) 0 0
\(799\) 8.75014 15.1557i 0.309558 0.536170i
\(800\) 0 0
\(801\) −0.201431 + 0.348888i −0.00711721 + 0.0123274i
\(802\) 0 0
\(803\) 9.97640 17.2796i 0.352059 0.609785i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 6.83018 + 11.8302i 0.240434 + 0.416443i
\(808\) 0 0
\(809\) −37.4897 −1.31807 −0.659033 0.752114i \(-0.729034\pi\)
−0.659033 + 0.752114i \(0.729034\pi\)
\(810\) 0 0
\(811\) 25.4069 0.892156 0.446078 0.894994i \(-0.352820\pi\)
0.446078 + 0.894994i \(0.352820\pi\)
\(812\) 0 0
\(813\) 3.35179 5.80547i 0.117552 0.203607i
\(814\) 0 0
\(815\) 6.33975 + 10.9808i 0.222072 + 0.384640i
\(816\) 0 0
\(817\) −30.8195 + 53.3809i −1.07824 + 1.86756i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.0406154 0.0703480i 0.00141749 0.00245516i −0.865316 0.501227i \(-0.832882\pi\)
0.866733 + 0.498772i \(0.166215\pi\)
\(822\) 0 0
\(823\) 0.624767 + 1.08213i 0.0217780 + 0.0377206i 0.876709 0.481021i \(-0.159734\pi\)
−0.854931 + 0.518742i \(0.826401\pi\)
\(824\) 0 0
\(825\) 4.53535 7.85545i 0.157901 0.273492i
\(826\) 0 0
\(827\) 32.9535 1.14591 0.572954 0.819588i \(-0.305798\pi\)
0.572954 + 0.819588i \(0.305798\pi\)
\(828\) 0 0
\(829\) 17.2241 0.598218 0.299109 0.954219i \(-0.403311\pi\)
0.299109 + 0.954219i \(0.403311\pi\)
\(830\) 0 0
\(831\) 12.4768 + 21.6104i 0.432815 + 0.749658i
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 6.32569 10.9564i 0.218909 0.379162i
\(836\) 0 0
\(837\) 6.44598 11.1648i 0.222806 0.385910i
\(838\) 0 0
\(839\) −14.7357 + 25.5229i −0.508731 + 0.881149i 0.491217 + 0.871037i \(0.336552\pi\)
−0.999949 + 0.0101117i \(0.996781\pi\)
\(840\) 0 0
\(841\) −14.5981 + 25.2847i −0.503383 + 0.871886i
\(842\) 0 0
\(843\) −10.7802 −0.371289
\(844\) 0 0
\(845\) −39.1785 + 13.1961i −1.34778 + 0.453959i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −31.1257 −1.06823
\(850\) 0 0
\(851\) −21.6089 37.4276i −0.740742 1.28300i
\(852\) 0 0
\(853\) −17.8668 −0.611747 −0.305873 0.952072i \(-0.598948\pi\)
−0.305873 + 0.952072i \(0.598948\pi\)
\(854\) 0 0
\(855\) −16.7338 28.9838i −0.572284 0.991225i
\(856\) 0 0
\(857\) 10.0807 17.4603i 0.344351 0.596433i −0.640885 0.767637i \(-0.721432\pi\)
0.985236 + 0.171204i \(0.0547657\pi\)
\(858\) 0 0
\(859\) 5.98669 + 10.3692i 0.204263 + 0.353794i 0.949898 0.312561i \(-0.101187\pi\)
−0.745635 + 0.666355i \(0.767854\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −19.8505 34.3821i −0.675719 1.17038i −0.976258 0.216610i \(-0.930500\pi\)
0.300540 0.953769i \(-0.402833\pi\)
\(864\) 0 0
\(865\) 36.1267 + 62.5732i 1.22834 + 2.12755i
\(866\) 0 0
\(867\) 4.76564 8.25432i 0.161849 0.280331i
\(868\) 0 0
\(869\) 11.2900 + 19.5549i 0.382988 + 0.663355i
\(870\) 0 0
\(871\) 9.99688 8.18447i 0.338731 0.277320i
\(872\) 0 0
\(873\) 12.1378 21.0233i 0.410803 0.711532i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −45.6656 −1.54202 −0.771010 0.636823i \(-0.780248\pi\)
−0.771010 + 0.636823i \(0.780248\pi\)
\(878\) 0 0
\(879\) −0.191875 + 0.332337i −0.00647178 + 0.0112095i
\(880\) 0 0
\(881\) 16.6420 + 28.8249i 0.560685 + 0.971134i 0.997437 + 0.0715523i \(0.0227953\pi\)
−0.436752 + 0.899582i \(0.643871\pi\)
\(882\) 0 0
\(883\) 32.3115 1.08737 0.543685 0.839289i \(-0.317029\pi\)
0.543685 + 0.839289i \(0.317029\pi\)
\(884\) 0 0
\(885\) −4.45758 + 7.72076i −0.149840 + 0.259530i
\(886\) 0 0
\(887\) −16.7530 + 29.0170i −0.562509 + 0.974295i 0.434767 + 0.900543i \(0.356831\pi\)
−0.997277 + 0.0737520i \(0.976503\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) −0.729316 −0.0244330
\(892\) 0 0
\(893\) −17.1536 29.7109i −0.574024 0.994239i
\(894\) 0 0
\(895\) 6.56721 + 11.3747i 0.219517 + 0.380215i
\(896\) 0 0
\(897\) 3.31899 + 20.2518i 0.110818 + 0.676187i
\(898\) 0 0
\(899\) −19.2213 −0.641066
\(900\) 0 0
\(901\) −5.15796 −0.171837
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 4.18891 + 7.25541i 0.139244 + 0.241178i
\(906\) 0 0
\(907\) −38.8901 −1.29133 −0.645663 0.763623i \(-0.723419\pi\)
−0.645663 + 0.763623i \(0.723419\pi\)
\(908\) 0 0
\(909\) 22.1519 0.734733
\(910\) 0 0
\(911\) −41.0133 −1.35883 −0.679415 0.733754i \(-0.737766\pi\)
−0.679415 + 0.733754i \(0.737766\pi\)
\(912\) 0 0
\(913\) 14.5830 0.482626
\(914\) 0 0
\(915\) −11.2125 19.4206i −0.370673 0.642024i
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 23.9148 0.788875 0.394438 0.918923i \(-0.370939\pi\)
0.394438 + 0.918923i \(0.370939\pi\)
\(920\) 0 0
\(921\) 14.4306 0.475506
\(922\) 0 0
\(923\) 2.33833 + 14.2680i 0.0769671 + 0.469637i
\(924\) 0 0
\(925\) −20.1984 34.9846i −0.664119 1.15029i
\(926\) 0 0
\(927\) 11.6979 + 20.2614i 0.384211 + 0.665473i
\(928\) 0 0
\(929\) 15.4825 0.507964 0.253982 0.967209i \(-0.418260\pi\)
0.253982 + 0.967209i \(0.418260\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −0.614538 + 1.06441i −0.0201191 + 0.0348472i
\(934\) 0 0
\(935\) 7.59064 13.1474i 0.248241 0.429965i
\(936\) 0 0
\(937\) −38.8172 −1.26810 −0.634052 0.773290i \(-0.718609\pi\)
−0.634052 + 0.773290i \(0.718609\pi\)
\(938\) 0 0
\(939\) −5.50770 9.53961i −0.179737 0.311313i
\(940\) 0 0
\(941\) −2.64172 + 4.57560i −0.0861177 + 0.149160i −0.905867 0.423562i \(-0.860779\pi\)
0.819749 + 0.572723i \(0.194113\pi\)
\(942\) 0 0
\(943\) −45.8784 −1.49401
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.98486 + 6.90198i −0.129491 + 0.224284i −0.923479 0.383648i \(-0.874668\pi\)
0.793989 + 0.607932i \(0.208001\pi\)
\(948\) 0 0
\(949\) 6.82424 + 41.6400i 0.221524 + 1.35169i
\(950\) 0 0
\(951\) −4.41651 7.64963i −0.143215 0.248056i
\(952\) 0 0
\(953\) −8.48138 + 14.6902i −0.274739 + 0.475862i −0.970069 0.242829i \(-0.921925\pi\)
0.695330 + 0.718690i \(0.255258\pi\)
\(954\) 0 0
\(955\) 7.44157 + 12.8892i 0.240804 + 0.417084i
\(956\) 0 0
\(957\) −6.76684 11.7205i −0.218741 0.378870i
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 12.3258 + 21.3488i 0.397605 + 0.688672i
\(962\) 0 0
\(963\) −2.17910 + 3.77431i −0.0702204 + 0.121625i
\(964\) 0 0
\(965\) 28.5199 + 49.3980i 0.918089 + 1.59018i
\(966\) 0 0
\(967\) 21.4177 0.688746 0.344373 0.938833i \(-0.388092\pi\)
0.344373 + 0.938833i \(0.388092\pi\)
\(968\) 0 0
\(969\) 7.99633 + 13.8500i 0.256879 + 0.444927i
\(970\) 0 0
\(971\) 16.9302 0.543318 0.271659 0.962394i \(-0.412428\pi\)
0.271659 + 0.962394i \(0.412428\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 3.10235 + 18.9299i 0.0993547 + 0.606241i
\(976\) 0 0
\(977\) 40.8774 1.30778 0.653891 0.756588i \(-0.273135\pi\)
0.653891 + 0.756588i \(0.273135\pi\)
\(978\) 0 0
\(979\) −0.179123 + 0.310250i −0.00572479 + 0.00991562i
\(980\) 0 0
\(981\) −4.65145 + 8.05655i −0.148509 + 0.257226i
\(982\) 0 0
\(983\) −4.26867 + 7.39355i −0.136149 + 0.235817i −0.926036 0.377435i \(-0.876806\pi\)
0.789887 + 0.613253i \(0.210139\pi\)
\(984\) 0 0
\(985\) 36.1022 62.5308i 1.15031 1.99240i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 30.7123 + 53.1952i 0.976593 + 1.69151i
\(990\) 0 0
\(991\) 35.1748 1.11736 0.558682 0.829382i \(-0.311307\pi\)
0.558682 + 0.829382i \(0.311307\pi\)
\(992\) 0 0
\(993\) 4.52032 0.143448
\(994\) 0 0
\(995\) −12.6561 + 21.9211i −0.401226 + 0.694944i
\(996\) 0 0
\(997\) −20.3109 35.1795i −0.643252 1.11414i −0.984702 0.174245i \(-0.944251\pi\)
0.341450 0.939900i \(-0.389082\pi\)
\(998\) 0 0
\(999\) 20.2129 35.0097i 0.639507 1.10766i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.l.n.1537.7 18
7.2 even 3 2548.2.i.n.1745.3 18
7.3 odd 6 2548.2.k.h.393.7 18
7.4 even 3 2548.2.k.i.393.3 18
7.5 odd 6 364.2.i.a.289.7 yes 18
7.6 odd 2 364.2.l.a.81.3 yes 18
13.9 even 3 2548.2.i.n.165.3 18
21.5 even 6 3276.2.u.k.289.1 18
21.20 even 2 3276.2.x.k.2629.1 18
91.9 even 3 inner 2548.2.l.n.373.7 18
91.48 odd 6 364.2.i.a.165.7 18
91.61 odd 6 364.2.l.a.9.3 yes 18
91.74 even 3 2548.2.k.i.1569.3 18
91.87 odd 6 2548.2.k.h.1569.7 18
273.152 even 6 3276.2.x.k.2557.1 18
273.230 even 6 3276.2.u.k.1621.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.i.a.165.7 18 91.48 odd 6
364.2.i.a.289.7 yes 18 7.5 odd 6
364.2.l.a.9.3 yes 18 91.61 odd 6
364.2.l.a.81.3 yes 18 7.6 odd 2
2548.2.i.n.165.3 18 13.9 even 3
2548.2.i.n.1745.3 18 7.2 even 3
2548.2.k.h.393.7 18 7.3 odd 6
2548.2.k.h.1569.7 18 91.87 odd 6
2548.2.k.i.393.3 18 7.4 even 3
2548.2.k.i.1569.3 18 91.74 even 3
2548.2.l.n.373.7 18 91.9 even 3 inner
2548.2.l.n.1537.7 18 1.1 even 1 trivial
3276.2.u.k.289.1 18 21.5 even 6
3276.2.u.k.1621.1 18 273.230 even 6
3276.2.x.k.2557.1 18 273.152 even 6
3276.2.x.k.2629.1 18 21.20 even 2