Properties

Label 2548.2.k.i.1569.3
Level $2548$
Weight $2$
Character 2548.1569
Analytic conductor $20.346$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [2548,2,Mod(393,2548)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2548, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 0, 2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("2548.393");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 2548 = 2^{2} \cdot 7^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 2548.k (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(20.3458824350\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - x^{17} + 19 x^{16} - 16 x^{15} + 244 x^{14} - 181 x^{13} + 1600 x^{12} - 607 x^{11} + \cdots + 1296 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 3^{4} \)
Twist minimal: no (minimal twist has level 364)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 1569.3
Root \(-0.520270 + 0.901135i\) of defining polynomial
Character \(\chi\) \(=\) 2548.1569
Dual form 2548.2.k.i.393.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.520270 + 0.901135i) q^{3} +3.18009 q^{5} +(0.958637 + 1.66041i) q^{9} +(0.852470 - 1.47652i) q^{11} +(2.78983 + 2.28404i) q^{13} +(-1.65451 + 2.86569i) q^{15} +(-1.40001 - 2.42488i) q^{17} +(2.74455 + 4.75370i) q^{19} +(-2.73500 + 4.73716i) q^{23} +5.11296 q^{25} -5.11663 q^{27} +(3.81432 - 6.60660i) q^{29} +2.51962 q^{31} +(0.887030 + 1.53638i) q^{33} +(-3.95043 + 6.84235i) q^{37} +(-3.50970 + 1.32569i) q^{39} +(4.19364 - 7.26359i) q^{41} +(5.61467 + 9.72490i) q^{43} +(3.04855 + 5.28024i) q^{45} -6.25007 q^{47} +2.91353 q^{51} -1.84212 q^{53} +(2.71093 - 4.69547i) q^{55} -5.71163 q^{57} +(-1.34710 - 2.33325i) q^{59} +(-3.38846 - 5.86899i) q^{61} +(8.87191 + 7.26345i) q^{65} +(-1.79166 + 3.10325i) q^{67} +(-2.84588 - 4.92921i) q^{69} +(-2.00501 - 3.47278i) q^{71} +11.7029 q^{73} +(-2.66012 + 4.60746i) q^{75} +13.2439 q^{79} +(-0.213883 + 0.370457i) q^{81} -8.55336 q^{83} +(-4.45215 - 7.71134i) q^{85} +(3.96896 + 6.87444i) q^{87} +(0.105061 - 0.181971i) q^{89} +(-1.31088 + 2.27052i) q^{93} +(8.72791 + 15.1172i) q^{95} +(-6.33077 - 10.9652i) q^{97} +3.26884 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + q^{3} - 10 q^{9} + 2 q^{11} - 4 q^{13} - 10 q^{15} + 6 q^{17} + q^{19} + 6 q^{23} + 10 q^{25} + 4 q^{27} + 2 q^{29} + 14 q^{31} + 14 q^{33} - 8 q^{37} + 11 q^{39} - 7 q^{41} - 2 q^{43} + 10 q^{45}+ \cdots - 8 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/2548\mathbb{Z}\right)^\times\).

\(n\) \(197\) \(885\) \(1275\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.520270 + 0.901135i −0.300378 + 0.520270i −0.976222 0.216775i \(-0.930446\pi\)
0.675843 + 0.737045i \(0.263780\pi\)
\(4\) 0 0
\(5\) 3.18009 1.42218 0.711089 0.703102i \(-0.248202\pi\)
0.711089 + 0.703102i \(0.248202\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0.958637 + 1.66041i 0.319546 + 0.553470i
\(10\) 0 0
\(11\) 0.852470 1.47652i 0.257029 0.445188i −0.708415 0.705796i \(-0.750590\pi\)
0.965445 + 0.260608i \(0.0839229\pi\)
\(12\) 0 0
\(13\) 2.78983 + 2.28404i 0.773760 + 0.633479i
\(14\) 0 0
\(15\) −1.65451 + 2.86569i −0.427192 + 0.739917i
\(16\) 0 0
\(17\) −1.40001 2.42488i −0.339552 0.588121i 0.644797 0.764354i \(-0.276942\pi\)
−0.984348 + 0.176233i \(0.943609\pi\)
\(18\) 0 0
\(19\) 2.74455 + 4.75370i 0.629643 + 1.09057i 0.987623 + 0.156844i \(0.0501321\pi\)
−0.357981 + 0.933729i \(0.616535\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −2.73500 + 4.73716i −0.570287 + 0.987766i 0.426249 + 0.904606i \(0.359835\pi\)
−0.996536 + 0.0831603i \(0.973499\pi\)
\(24\) 0 0
\(25\) 5.11296 1.02259
\(26\) 0 0
\(27\) −5.11663 −0.984695
\(28\) 0 0
\(29\) 3.81432 6.60660i 0.708302 1.22682i −0.257185 0.966362i \(-0.582795\pi\)
0.965487 0.260453i \(-0.0838718\pi\)
\(30\) 0 0
\(31\) 2.51962 0.452537 0.226269 0.974065i \(-0.427347\pi\)
0.226269 + 0.974065i \(0.427347\pi\)
\(32\) 0 0
\(33\) 0.887030 + 1.53638i 0.154412 + 0.267450i
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −3.95043 + 6.84235i −0.649447 + 1.12487i 0.333808 + 0.942641i \(0.391666\pi\)
−0.983255 + 0.182234i \(0.941667\pi\)
\(38\) 0 0
\(39\) −3.50970 + 1.32569i −0.562001 + 0.212281i
\(40\) 0 0
\(41\) 4.19364 7.26359i 0.654936 1.13438i −0.326974 0.945033i \(-0.606029\pi\)
0.981910 0.189349i \(-0.0606379\pi\)
\(42\) 0 0
\(43\) 5.61467 + 9.72490i 0.856230 + 1.48303i 0.875499 + 0.483219i \(0.160533\pi\)
−0.0192697 + 0.999814i \(0.506134\pi\)
\(44\) 0 0
\(45\) 3.04855 + 5.28024i 0.454451 + 0.787132i
\(46\) 0 0
\(47\) −6.25007 −0.911666 −0.455833 0.890065i \(-0.650659\pi\)
−0.455833 + 0.890065i \(0.650659\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 2.91353 0.407976
\(52\) 0 0
\(53\) −1.84212 −0.253035 −0.126517 0.991964i \(-0.540380\pi\)
−0.126517 + 0.991964i \(0.540380\pi\)
\(54\) 0 0
\(55\) 2.71093 4.69547i 0.365542 0.633137i
\(56\) 0 0
\(57\) −5.71163 −0.756524
\(58\) 0 0
\(59\) −1.34710 2.33325i −0.175378 0.303764i 0.764914 0.644132i \(-0.222781\pi\)
−0.940292 + 0.340369i \(0.889448\pi\)
\(60\) 0 0
\(61\) −3.38846 5.86899i −0.433848 0.751447i 0.563353 0.826217i \(-0.309511\pi\)
−0.997201 + 0.0747693i \(0.976178\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 8.87191 + 7.26345i 1.10042 + 0.900920i
\(66\) 0 0
\(67\) −1.79166 + 3.10325i −0.218887 + 0.379123i −0.954468 0.298314i \(-0.903576\pi\)
0.735581 + 0.677437i \(0.236909\pi\)
\(68\) 0 0
\(69\) −2.84588 4.92921i −0.342604 0.593407i
\(70\) 0 0
\(71\) −2.00501 3.47278i −0.237951 0.412143i 0.722175 0.691710i \(-0.243142\pi\)
−0.960126 + 0.279567i \(0.909809\pi\)
\(72\) 0 0
\(73\) 11.7029 1.36972 0.684862 0.728673i \(-0.259862\pi\)
0.684862 + 0.728673i \(0.259862\pi\)
\(74\) 0 0
\(75\) −2.66012 + 4.60746i −0.307164 + 0.532024i
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 13.2439 1.49005 0.745027 0.667034i \(-0.232436\pi\)
0.745027 + 0.667034i \(0.232436\pi\)
\(80\) 0 0
\(81\) −0.213883 + 0.370457i −0.0237648 + 0.0411618i
\(82\) 0 0
\(83\) −8.55336 −0.938853 −0.469426 0.882972i \(-0.655539\pi\)
−0.469426 + 0.882972i \(0.655539\pi\)
\(84\) 0 0
\(85\) −4.45215 7.71134i −0.482903 0.836413i
\(86\) 0 0
\(87\) 3.96896 + 6.87444i 0.425517 + 0.737017i
\(88\) 0 0
\(89\) 0.105061 0.181971i 0.0111364 0.0192889i −0.860403 0.509613i \(-0.829788\pi\)
0.871540 + 0.490325i \(0.163122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −1.31088 + 2.27052i −0.135932 + 0.235442i
\(94\) 0 0
\(95\) 8.72791 + 15.1172i 0.895464 + 1.55099i
\(96\) 0 0
\(97\) −6.33077 10.9652i −0.642792 1.11335i −0.984807 0.173654i \(-0.944443\pi\)
0.342015 0.939695i \(-0.388891\pi\)
\(98\) 0 0
\(99\) 3.26884 0.328531
\(100\) 0 0
\(101\) 5.77693 10.0059i 0.574826 0.995628i −0.421234 0.906952i \(-0.638403\pi\)
0.996061 0.0886761i \(-0.0282636\pi\)
\(102\) 0 0
\(103\) 12.2027 1.20237 0.601183 0.799111i \(-0.294696\pi\)
0.601183 + 0.799111i \(0.294696\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 1.13656 1.96858i 0.109875 0.190310i −0.805844 0.592128i \(-0.798288\pi\)
0.915720 + 0.401818i \(0.131621\pi\)
\(108\) 0 0
\(109\) −4.85215 −0.464751 −0.232376 0.972626i \(-0.574650\pi\)
−0.232376 + 0.972626i \(0.574650\pi\)
\(110\) 0 0
\(111\) −4.11058 7.11974i −0.390159 0.675776i
\(112\) 0 0
\(113\) −0.333301 0.577294i −0.0313543 0.0543072i 0.849922 0.526908i \(-0.176649\pi\)
−0.881277 + 0.472601i \(0.843315\pi\)
\(114\) 0 0
\(115\) −8.69754 + 15.0646i −0.811050 + 1.40478i
\(116\) 0 0
\(117\) −1.11801 + 6.82183i −0.103360 + 0.630678i
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 4.04659 + 7.00890i 0.367872 + 0.637172i
\(122\) 0 0
\(123\) 4.36365 + 7.55807i 0.393457 + 0.681488i
\(124\) 0 0
\(125\) 0.359215 0.0321292
\(126\) 0 0
\(127\) −9.03831 + 15.6548i −0.802020 + 1.38914i 0.116264 + 0.993218i \(0.462908\pi\)
−0.918284 + 0.395922i \(0.870425\pi\)
\(128\) 0 0
\(129\) −11.6846 −1.02877
\(130\) 0 0
\(131\) −18.7051 −1.63427 −0.817135 0.576446i \(-0.804439\pi\)
−0.817135 + 0.576446i \(0.804439\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −16.2713 −1.40041
\(136\) 0 0
\(137\) 11.2574 + 19.4984i 0.961786 + 1.66586i 0.718012 + 0.696031i \(0.245052\pi\)
0.243775 + 0.969832i \(0.421614\pi\)
\(138\) 0 0
\(139\) −3.61314 6.25815i −0.306463 0.530809i 0.671123 0.741346i \(-0.265812\pi\)
−0.977586 + 0.210537i \(0.932479\pi\)
\(140\) 0 0
\(141\) 3.25173 5.63215i 0.273845 0.474313i
\(142\) 0 0
\(143\) 5.75068 2.17217i 0.480896 0.181646i
\(144\) 0 0
\(145\) 12.1299 21.0096i 1.00733 1.74475i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 3.74931 + 6.49399i 0.307155 + 0.532009i 0.977739 0.209825i \(-0.0672895\pi\)
−0.670584 + 0.741834i \(0.733956\pi\)
\(150\) 0 0
\(151\) −1.98514 −0.161549 −0.0807743 0.996732i \(-0.525739\pi\)
−0.0807743 + 0.996732i \(0.525739\pi\)
\(152\) 0 0
\(153\) 2.68420 4.64917i 0.217005 0.375863i
\(154\) 0 0
\(155\) 8.01261 0.643589
\(156\) 0 0
\(157\) −4.02469 −0.321205 −0.160603 0.987019i \(-0.551344\pi\)
−0.160603 + 0.987019i \(0.551344\pi\)
\(158\) 0 0
\(159\) 0.958401 1.66000i 0.0760061 0.131646i
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 1.99358 + 3.45298i 0.156149 + 0.270458i 0.933477 0.358638i \(-0.116759\pi\)
−0.777328 + 0.629096i \(0.783425\pi\)
\(164\) 0 0
\(165\) 2.82083 + 4.88583i 0.219602 + 0.380361i
\(166\) 0 0
\(167\) 1.98915 3.44532i 0.153925 0.266607i −0.778742 0.627345i \(-0.784142\pi\)
0.932667 + 0.360738i \(0.117475\pi\)
\(168\) 0 0
\(169\) 2.56631 + 12.7442i 0.197409 + 0.980321i
\(170\) 0 0
\(171\) −5.26206 + 9.11415i −0.402399 + 0.696976i
\(172\) 0 0
\(173\) 11.3603 + 19.6766i 0.863706 + 1.49598i 0.868326 + 0.495993i \(0.165196\pi\)
−0.00462066 + 0.999989i \(0.501471\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 2.80343 0.210719
\(178\) 0 0
\(179\) 2.06510 3.57686i 0.154353 0.267347i −0.778470 0.627681i \(-0.784004\pi\)
0.932823 + 0.360334i \(0.117337\pi\)
\(180\) 0 0
\(181\) −2.63446 −0.195818 −0.0979091 0.995195i \(-0.531215\pi\)
−0.0979091 + 0.995195i \(0.531215\pi\)
\(182\) 0 0
\(183\) 7.05167 0.521274
\(184\) 0 0
\(185\) −12.5627 + 21.7593i −0.923629 + 1.59977i
\(186\) 0 0
\(187\) −4.77386 −0.349099
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 2.34005 + 4.05309i 0.169320 + 0.293271i 0.938181 0.346145i \(-0.112509\pi\)
−0.768861 + 0.639416i \(0.779176\pi\)
\(192\) 0 0
\(193\) 8.96829 15.5335i 0.645551 1.11813i −0.338622 0.940922i \(-0.609961\pi\)
0.984174 0.177206i \(-0.0567057\pi\)
\(194\) 0 0
\(195\) −11.1611 + 4.21583i −0.799266 + 0.301902i
\(196\) 0 0
\(197\) 11.3526 19.6632i 0.808838 1.40095i −0.104832 0.994490i \(-0.533430\pi\)
0.913669 0.406458i \(-0.133236\pi\)
\(198\) 0 0
\(199\) −3.97980 6.89322i −0.282121 0.488648i 0.689786 0.724013i \(-0.257705\pi\)
−0.971907 + 0.235366i \(0.924371\pi\)
\(200\) 0 0
\(201\) −1.86430 3.22906i −0.131498 0.227761i
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) 13.3361 23.0989i 0.931436 1.61329i
\(206\) 0 0
\(207\) −10.4875 −0.728931
\(208\) 0 0
\(209\) 9.35859 0.647347
\(210\) 0 0
\(211\) −5.08147 + 8.80136i −0.349823 + 0.605911i −0.986218 0.165453i \(-0.947092\pi\)
0.636395 + 0.771363i \(0.280425\pi\)
\(212\) 0 0
\(213\) 4.17259 0.285901
\(214\) 0 0
\(215\) 17.8552 + 30.9260i 1.21771 + 2.10914i
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −6.08869 + 10.5459i −0.411435 + 0.712627i
\(220\) 0 0
\(221\) 1.63275 9.96269i 0.109831 0.670163i
\(222\) 0 0
\(223\) −1.33387 + 2.31033i −0.0893224 + 0.154711i −0.907225 0.420646i \(-0.861803\pi\)
0.817902 + 0.575357i \(0.195137\pi\)
\(224\) 0 0
\(225\) 4.90147 + 8.48960i 0.326765 + 0.565973i
\(226\) 0 0
\(227\) −12.5757 21.7817i −0.834677 1.44570i −0.894293 0.447482i \(-0.852321\pi\)
0.0596159 0.998221i \(-0.481012\pi\)
\(228\) 0 0
\(229\) 12.3075 0.813301 0.406651 0.913584i \(-0.366697\pi\)
0.406651 + 0.913584i \(0.366697\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) −21.1440 −1.38519 −0.692594 0.721327i \(-0.743532\pi\)
−0.692594 + 0.721327i \(0.743532\pi\)
\(234\) 0 0
\(235\) −19.8758 −1.29655
\(236\) 0 0
\(237\) −6.89041 + 11.9345i −0.447580 + 0.775231i
\(238\) 0 0
\(239\) −27.3984 −1.77225 −0.886127 0.463443i \(-0.846614\pi\)
−0.886127 + 0.463443i \(0.846614\pi\)
\(240\) 0 0
\(241\) 8.57805 + 14.8576i 0.552561 + 0.957064i 0.998089 + 0.0617955i \(0.0196827\pi\)
−0.445528 + 0.895268i \(0.646984\pi\)
\(242\) 0 0
\(243\) −7.89749 13.6789i −0.506624 0.877499i
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −3.20082 + 19.5307i −0.203663 + 1.24271i
\(248\) 0 0
\(249\) 4.45006 7.70773i 0.282011 0.488457i
\(250\) 0 0
\(251\) 13.4469 + 23.2907i 0.848759 + 1.47009i 0.882317 + 0.470656i \(0.155983\pi\)
−0.0335582 + 0.999437i \(0.510684\pi\)
\(252\) 0 0
\(253\) 4.66301 + 8.07658i 0.293161 + 0.507770i
\(254\) 0 0
\(255\) 9.26528 0.580214
\(256\) 0 0
\(257\) −5.65006 + 9.78619i −0.352441 + 0.610446i −0.986677 0.162694i \(-0.947982\pi\)
0.634235 + 0.773140i \(0.281315\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 14.6262 0.905340
\(262\) 0 0
\(263\) 0.498739 0.863842i 0.0307536 0.0532668i −0.850239 0.526397i \(-0.823543\pi\)
0.880993 + 0.473130i \(0.156876\pi\)
\(264\) 0 0
\(265\) −5.85810 −0.359860
\(266\) 0 0
\(267\) 0.109320 + 0.189348i 0.00669029 + 0.0115879i
\(268\) 0 0
\(269\) 6.56406 + 11.3693i 0.400218 + 0.693198i 0.993752 0.111611i \(-0.0356010\pi\)
−0.593534 + 0.804809i \(0.702268\pi\)
\(270\) 0 0
\(271\) 3.22120 5.57928i 0.195674 0.338917i −0.751447 0.659793i \(-0.770644\pi\)
0.947121 + 0.320876i \(0.103977\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 4.35864 7.54939i 0.262836 0.455246i
\(276\) 0 0
\(277\) 11.9907 + 20.7685i 0.720451 + 1.24786i 0.960819 + 0.277175i \(0.0893983\pi\)
−0.240369 + 0.970682i \(0.577268\pi\)
\(278\) 0 0
\(279\) 2.41540 + 4.18360i 0.144606 + 0.250466i
\(280\) 0 0
\(281\) −10.3602 −0.618035 −0.309018 0.951056i \(-0.600000\pi\)
−0.309018 + 0.951056i \(0.600000\pi\)
\(282\) 0 0
\(283\) 14.9565 25.9054i 0.889071 1.53992i 0.0480964 0.998843i \(-0.484685\pi\)
0.840975 0.541074i \(-0.181982\pi\)
\(284\) 0 0
\(285\) −18.1635 −1.07591
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) 4.57996 7.93272i 0.269409 0.466631i
\(290\) 0 0
\(291\) 13.1748 0.772323
\(292\) 0 0
\(293\) −0.184399 0.319389i −0.0107727 0.0186589i 0.860589 0.509300i \(-0.170096\pi\)
−0.871362 + 0.490642i \(0.836762\pi\)
\(294\) 0 0
\(295\) −4.28391 7.41995i −0.249419 0.432006i
\(296\) 0 0
\(297\) −4.36177 + 7.55481i −0.253096 + 0.438374i
\(298\) 0 0
\(299\) −18.4501 + 6.96902i −1.06699 + 0.403029i
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 6.01113 + 10.4116i 0.345331 + 0.598130i
\(304\) 0 0
\(305\) −10.7756 18.6639i −0.617010 1.06869i
\(306\) 0 0
\(307\) 13.8684 0.791511 0.395756 0.918356i \(-0.370483\pi\)
0.395756 + 0.918356i \(0.370483\pi\)
\(308\) 0 0
\(309\) −6.34869 + 10.9963i −0.361165 + 0.625555i
\(310\) 0 0
\(311\) 1.18119 0.0669791 0.0334895 0.999439i \(-0.489338\pi\)
0.0334895 + 0.999439i \(0.489338\pi\)
\(312\) 0 0
\(313\) 10.5862 0.598368 0.299184 0.954195i \(-0.403286\pi\)
0.299184 + 0.954195i \(0.403286\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 8.48888 0.476783 0.238392 0.971169i \(-0.423380\pi\)
0.238392 + 0.971169i \(0.423380\pi\)
\(318\) 0 0
\(319\) −6.50319 11.2639i −0.364109 0.630655i
\(320\) 0 0
\(321\) 1.18264 + 2.04839i 0.0660084 + 0.114330i
\(322\) 0 0
\(323\) 7.68478 13.3104i 0.427592 0.740612i
\(324\) 0 0
\(325\) 14.2643 + 11.6782i 0.791240 + 0.647790i
\(326\) 0 0
\(327\) 2.52443 4.37244i 0.139601 0.241796i
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −2.17210 3.76219i −0.119389 0.206788i 0.800136 0.599818i \(-0.204760\pi\)
−0.919526 + 0.393030i \(0.871427\pi\)
\(332\) 0 0
\(333\) −15.1481 −0.830112
\(334\) 0 0
\(335\) −5.69765 + 9.86862i −0.311296 + 0.539180i
\(336\) 0 0
\(337\) 8.59397 0.468143 0.234072 0.972219i \(-0.424795\pi\)
0.234072 + 0.972219i \(0.424795\pi\)
\(338\) 0 0
\(339\) 0.693626 0.0376726
\(340\) 0 0
\(341\) 2.14790 3.72027i 0.116315 0.201464i
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) −9.05015 15.6753i −0.487244 0.843931i
\(346\) 0 0
\(347\) −10.4098 18.0304i −0.558829 0.967920i −0.997595 0.0693188i \(-0.977917\pi\)
0.438765 0.898602i \(-0.355416\pi\)
\(348\) 0 0
\(349\) 0.115786 0.200546i 0.00619786 0.0107350i −0.862910 0.505358i \(-0.831360\pi\)
0.869108 + 0.494623i \(0.164694\pi\)
\(350\) 0 0
\(351\) −14.2745 11.6866i −0.761917 0.623784i
\(352\) 0 0
\(353\) −9.09972 + 15.7612i −0.484329 + 0.838883i −0.999838 0.0180014i \(-0.994270\pi\)
0.515509 + 0.856884i \(0.327603\pi\)
\(354\) 0 0
\(355\) −6.37611 11.0437i −0.338409 0.586141i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.54298 0.239769 0.119885 0.992788i \(-0.461748\pi\)
0.119885 + 0.992788i \(0.461748\pi\)
\(360\) 0 0
\(361\) −5.56510 + 9.63904i −0.292900 + 0.507318i
\(362\) 0 0
\(363\) −8.42128 −0.442003
\(364\) 0 0
\(365\) 37.2163 1.94799
\(366\) 0 0
\(367\) 5.01139 8.67998i 0.261592 0.453091i −0.705073 0.709135i \(-0.749086\pi\)
0.966665 + 0.256044i \(0.0824190\pi\)
\(368\) 0 0
\(369\) 16.0807 0.837128
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −4.21567 7.30176i −0.218279 0.378071i 0.736003 0.676979i \(-0.236711\pi\)
−0.954282 + 0.298908i \(0.903378\pi\)
\(374\) 0 0
\(375\) −0.186889 + 0.323702i −0.00965092 + 0.0167159i
\(376\) 0 0
\(377\) 25.7311 9.71923i 1.32522 0.500566i
\(378\) 0 0
\(379\) −5.15804 + 8.93398i −0.264951 + 0.458908i −0.967551 0.252677i \(-0.918689\pi\)
0.702600 + 0.711585i \(0.252022\pi\)
\(380\) 0 0
\(381\) −9.40473 16.2895i −0.481819 0.834535i
\(382\) 0 0
\(383\) −1.09813 1.90201i −0.0561116 0.0971881i 0.836605 0.547806i \(-0.184537\pi\)
−0.892717 + 0.450618i \(0.851204\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −10.7649 + 18.6453i −0.547209 + 0.947794i
\(388\) 0 0
\(389\) −32.7955 −1.66280 −0.831398 0.555677i \(-0.812459\pi\)
−0.831398 + 0.555677i \(0.812459\pi\)
\(390\) 0 0
\(391\) 15.3161 0.774568
\(392\) 0 0
\(393\) 9.73170 16.8558i 0.490899 0.850262i
\(394\) 0 0
\(395\) 42.1167 2.11912
\(396\) 0 0
\(397\) −2.75848 4.77782i −0.138444 0.239792i 0.788464 0.615081i \(-0.210877\pi\)
−0.926908 + 0.375289i \(0.877543\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 9.66790 16.7453i 0.482792 0.836220i −0.517013 0.855977i \(-0.672956\pi\)
0.999805 + 0.0197577i \(0.00628949\pi\)
\(402\) 0 0
\(403\) 7.02931 + 5.75492i 0.350155 + 0.286673i
\(404\) 0 0
\(405\) −0.680167 + 1.17808i −0.0337978 + 0.0585395i
\(406\) 0 0
\(407\) 6.73525 + 11.6658i 0.333854 + 0.578252i
\(408\) 0 0
\(409\) −18.0322 31.2326i −0.891633 1.54435i −0.837918 0.545797i \(-0.816227\pi\)
−0.0537150 0.998556i \(-0.517106\pi\)
\(410\) 0 0
\(411\) −23.4276 −1.15560
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −27.2004 −1.33522
\(416\) 0 0
\(417\) 7.51925 0.368219
\(418\) 0 0
\(419\) 4.22915 7.32510i 0.206607 0.357854i −0.744036 0.668139i \(-0.767091\pi\)
0.950644 + 0.310285i \(0.100424\pi\)
\(420\) 0 0
\(421\) −40.2697 −1.96262 −0.981312 0.192424i \(-0.938365\pi\)
−0.981312 + 0.192424i \(0.938365\pi\)
\(422\) 0 0
\(423\) −5.99155 10.3777i −0.291319 0.504579i
\(424\) 0 0
\(425\) −7.15818 12.3983i −0.347223 0.601407i
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) −1.03449 + 6.31226i −0.0499458 + 0.304759i
\(430\) 0 0
\(431\) 6.53799 11.3241i 0.314924 0.545464i −0.664498 0.747290i \(-0.731354\pi\)
0.979421 + 0.201827i \(0.0646877\pi\)
\(432\) 0 0
\(433\) −9.78438 16.9470i −0.470207 0.814423i 0.529212 0.848490i \(-0.322488\pi\)
−0.999420 + 0.0340664i \(0.989154\pi\)
\(434\) 0 0
\(435\) 12.6216 + 21.8613i 0.605161 + 1.04817i
\(436\) 0 0
\(437\) −30.0254 −1.43631
\(438\) 0 0
\(439\) 7.19768 12.4667i 0.343527 0.595006i −0.641558 0.767074i \(-0.721712\pi\)
0.985085 + 0.172069i \(0.0550451\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 8.63764 0.410386 0.205193 0.978721i \(-0.434218\pi\)
0.205193 + 0.978721i \(0.434218\pi\)
\(444\) 0 0
\(445\) 0.334103 0.578684i 0.0158380 0.0274322i
\(446\) 0 0
\(447\) −7.80262 −0.369051
\(448\) 0 0
\(449\) −11.4447 19.8228i −0.540110 0.935498i −0.998897 0.0469519i \(-0.985049\pi\)
0.458787 0.888546i \(-0.348284\pi\)
\(450\) 0 0
\(451\) −7.14990 12.3840i −0.336676 0.583140i
\(452\) 0 0
\(453\) 1.03281 1.78888i 0.0485257 0.0840490i
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 12.9024 22.3476i 0.603548 1.04538i −0.388732 0.921351i \(-0.627087\pi\)
0.992279 0.124024i \(-0.0395800\pi\)
\(458\) 0 0
\(459\) 7.16331 + 12.4072i 0.334355 + 0.579119i
\(460\) 0 0
\(461\) 3.84106 + 6.65291i 0.178896 + 0.309857i 0.941503 0.337005i \(-0.109414\pi\)
−0.762607 + 0.646862i \(0.776081\pi\)
\(462\) 0 0
\(463\) 7.95930 0.369900 0.184950 0.982748i \(-0.440788\pi\)
0.184950 + 0.982748i \(0.440788\pi\)
\(464\) 0 0
\(465\) −4.16873 + 7.22044i −0.193320 + 0.334840i
\(466\) 0 0
\(467\) −21.5156 −0.995621 −0.497810 0.867286i \(-0.665862\pi\)
−0.497810 + 0.867286i \(0.665862\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 2.09393 3.62679i 0.0964831 0.167114i
\(472\) 0 0
\(473\) 19.1454 0.880305
\(474\) 0 0
\(475\) 14.0328 + 24.3055i 0.643867 + 1.11521i
\(476\) 0 0
\(477\) −1.76593 3.05867i −0.0808562 0.140047i
\(478\) 0 0
\(479\) 16.7505 29.0126i 0.765348 1.32562i −0.174715 0.984619i \(-0.555900\pi\)
0.940063 0.341002i \(-0.110766\pi\)
\(480\) 0 0
\(481\) −26.6492 + 10.0660i −1.21510 + 0.458972i
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −20.1324 34.8703i −0.914165 1.58338i
\(486\) 0 0
\(487\) −7.62298 13.2034i −0.345430 0.598303i 0.640001 0.768374i \(-0.278934\pi\)
−0.985432 + 0.170071i \(0.945600\pi\)
\(488\) 0 0
\(489\) −4.14880 −0.187615
\(490\) 0 0
\(491\) 10.9575 18.9790i 0.494507 0.856510i −0.505473 0.862842i \(-0.668682\pi\)
0.999980 + 0.00633175i \(0.00201547\pi\)
\(492\) 0 0
\(493\) −21.3603 −0.962020
\(494\) 0 0
\(495\) 10.3952 0.467229
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) −36.3127 −1.62558 −0.812791 0.582555i \(-0.802053\pi\)
−0.812791 + 0.582555i \(0.802053\pi\)
\(500\) 0 0
\(501\) 2.06980 + 3.58499i 0.0924717 + 0.160166i
\(502\) 0 0
\(503\) −13.2906 23.0199i −0.592597 1.02641i −0.993881 0.110454i \(-0.964769\pi\)
0.401285 0.915953i \(-0.368564\pi\)
\(504\) 0 0
\(505\) 18.3711 31.8198i 0.817505 1.41596i
\(506\) 0 0
\(507\) −12.8194 4.31782i −0.569329 0.191761i
\(508\) 0 0
\(509\) 17.5859 30.4597i 0.779483 1.35010i −0.152757 0.988264i \(-0.548815\pi\)
0.932240 0.361841i \(-0.117852\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) −14.0428 24.3229i −0.620006 1.07388i
\(514\) 0 0
\(515\) 38.8056 1.70998
\(516\) 0 0
\(517\) −5.32800 + 9.22836i −0.234325 + 0.405863i
\(518\) 0 0
\(519\) −23.6417 −1.03775
\(520\) 0 0
\(521\) −7.61490 −0.333615 −0.166807 0.985989i \(-0.553346\pi\)
−0.166807 + 0.985989i \(0.553346\pi\)
\(522\) 0 0
\(523\) 19.0037 32.9154i 0.830975 1.43929i −0.0662915 0.997800i \(-0.521117\pi\)
0.897266 0.441490i \(-0.145550\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −3.52749 6.10979i −0.153660 0.266146i
\(528\) 0 0
\(529\) −3.46046 5.99369i −0.150455 0.260595i
\(530\) 0 0
\(531\) 2.58277 4.47349i 0.112083 0.194133i
\(532\) 0 0
\(533\) 28.2899 10.6858i 1.22537 0.462852i
\(534\) 0 0
\(535\) 3.61436 6.26026i 0.156262 0.270654i
\(536\) 0 0
\(537\) 2.14882 + 3.72187i 0.0927286 + 0.160611i
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −8.91225 −0.383168 −0.191584 0.981476i \(-0.561362\pi\)
−0.191584 + 0.981476i \(0.561362\pi\)
\(542\) 0 0
\(543\) 1.37063 2.37401i 0.0588195 0.101878i
\(544\) 0 0
\(545\) −15.4303 −0.660960
\(546\) 0 0
\(547\) −16.7066 −0.714321 −0.357161 0.934043i \(-0.616255\pi\)
−0.357161 + 0.934043i \(0.616255\pi\)
\(548\) 0 0
\(549\) 6.49662 11.2525i 0.277269 0.480244i
\(550\) 0 0
\(551\) 41.8744 1.78391
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) −13.0720 22.6414i −0.554876 0.961074i
\(556\) 0 0
\(557\) 18.3262 31.7419i 0.776507 1.34495i −0.157437 0.987529i \(-0.550323\pi\)
0.933944 0.357420i \(-0.116343\pi\)
\(558\) 0 0
\(559\) −6.54808 + 39.9550i −0.276954 + 1.68992i
\(560\) 0 0
\(561\) 2.48370 4.30189i 0.104862 0.181626i
\(562\) 0 0
\(563\) −1.96094 3.39646i −0.0826440 0.143144i 0.821741 0.569861i \(-0.193003\pi\)
−0.904385 + 0.426718i \(0.859670\pi\)
\(564\) 0 0
\(565\) −1.05993 1.83585i −0.0445914 0.0772346i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 1.00915 1.74790i 0.0423058 0.0732757i −0.844097 0.536190i \(-0.819863\pi\)
0.886403 + 0.462914i \(0.153196\pi\)
\(570\) 0 0
\(571\) 5.56366 0.232832 0.116416 0.993201i \(-0.462859\pi\)
0.116416 + 0.993201i \(0.462859\pi\)
\(572\) 0 0
\(573\) −4.86984 −0.203441
\(574\) 0 0
\(575\) −13.9839 + 24.2209i −0.583171 + 1.01008i
\(576\) 0 0
\(577\) 1.08138 0.0450186 0.0225093 0.999747i \(-0.492834\pi\)
0.0225093 + 0.999747i \(0.492834\pi\)
\(578\) 0 0
\(579\) 9.33187 + 16.1633i 0.387819 + 0.671723i
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −1.57035 + 2.71993i −0.0650374 + 0.112648i
\(584\) 0 0
\(585\) −3.55536 + 21.6940i −0.146996 + 0.896937i
\(586\) 0 0
\(587\) 11.3515 19.6613i 0.468526 0.811510i −0.530827 0.847480i \(-0.678119\pi\)
0.999353 + 0.0359699i \(0.0114520\pi\)
\(588\) 0 0
\(589\) 6.91522 + 11.9775i 0.284937 + 0.493525i
\(590\) 0 0
\(591\) 11.8128 + 20.4604i 0.485915 + 0.841629i
\(592\) 0 0
\(593\) −22.0550 −0.905692 −0.452846 0.891589i \(-0.649591\pi\)
−0.452846 + 0.891589i \(0.649591\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 8.28230 0.338972
\(598\) 0 0
\(599\) 6.16283 0.251807 0.125903 0.992043i \(-0.459817\pi\)
0.125903 + 0.992043i \(0.459817\pi\)
\(600\) 0 0
\(601\) 9.13735 15.8264i 0.372720 0.645571i −0.617263 0.786757i \(-0.711758\pi\)
0.989983 + 0.141187i \(0.0450917\pi\)
\(602\) 0 0
\(603\) −6.87023 −0.279777
\(604\) 0 0
\(605\) 12.8685 + 22.2889i 0.523179 + 0.906173i
\(606\) 0 0
\(607\) 7.45389 + 12.9105i 0.302544 + 0.524022i 0.976712 0.214557i \(-0.0688307\pi\)
−0.674167 + 0.738579i \(0.735497\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −17.4366 14.2754i −0.705411 0.577521i
\(612\) 0 0
\(613\) −2.32174 + 4.02137i −0.0937742 + 0.162422i −0.909096 0.416586i \(-0.863227\pi\)
0.815322 + 0.579008i \(0.196560\pi\)
\(614\) 0 0
\(615\) 13.8768 + 24.0353i 0.559566 + 0.969197i
\(616\) 0 0
\(617\) −5.34393 9.25597i −0.215139 0.372631i 0.738177 0.674607i \(-0.235687\pi\)
−0.953315 + 0.301976i \(0.902354\pi\)
\(618\) 0 0
\(619\) 20.5826 0.827283 0.413642 0.910440i \(-0.364257\pi\)
0.413642 + 0.910440i \(0.364257\pi\)
\(620\) 0 0
\(621\) 13.9940 24.2383i 0.561559 0.972648i
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −24.4225 −0.976898
\(626\) 0 0
\(627\) −4.86900 + 8.43335i −0.194449 + 0.336796i
\(628\) 0 0
\(629\) 22.1225 0.882083
\(630\) 0 0
\(631\) −21.9750 38.0619i −0.874812 1.51522i −0.856963 0.515379i \(-0.827651\pi\)
−0.0178498 0.999841i \(-0.505682\pi\)
\(632\) 0 0
\(633\) −5.28748 9.15818i −0.210158 0.364005i
\(634\) 0 0
\(635\) −28.7426 + 49.7837i −1.14062 + 1.97560i
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 3.84415 6.65827i 0.152072 0.263397i
\(640\) 0 0
\(641\) −24.3981 42.2587i −0.963666 1.66912i −0.713157 0.701005i \(-0.752735\pi\)
−0.250509 0.968114i \(-0.580598\pi\)
\(642\) 0 0
\(643\) 2.08350 + 3.60873i 0.0821653 + 0.142315i 0.904180 0.427152i \(-0.140483\pi\)
−0.822014 + 0.569467i \(0.807150\pi\)
\(644\) 0 0
\(645\) −37.1580 −1.46310
\(646\) 0 0
\(647\) 8.13081 14.0830i 0.319655 0.553659i −0.660761 0.750596i \(-0.729766\pi\)
0.980416 + 0.196938i \(0.0630996\pi\)
\(648\) 0 0
\(649\) −4.59346 −0.180309
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −3.91378 + 6.77886i −0.153158 + 0.265277i −0.932387 0.361462i \(-0.882278\pi\)
0.779229 + 0.626740i \(0.215611\pi\)
\(654\) 0 0
\(655\) −59.4838 −2.32422
\(656\) 0 0
\(657\) 11.2189 + 19.4316i 0.437690 + 0.758100i
\(658\) 0 0
\(659\) 20.3114 + 35.1805i 0.791221 + 1.37044i 0.925211 + 0.379453i \(0.123888\pi\)
−0.133990 + 0.990983i \(0.542779\pi\)
\(660\) 0 0
\(661\) −15.4342 + 26.7328i −0.600320 + 1.03979i 0.392452 + 0.919773i \(0.371627\pi\)
−0.992772 + 0.120013i \(0.961706\pi\)
\(662\) 0 0
\(663\) 8.12825 + 6.65462i 0.315675 + 0.258444i
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 20.8644 + 36.1381i 0.807871 + 1.39927i
\(668\) 0 0
\(669\) −1.38794 2.40399i −0.0536610 0.0929436i
\(670\) 0 0
\(671\) −11.5543 −0.446047
\(672\) 0 0
\(673\) −13.5310 + 23.4364i −0.521581 + 0.903405i 0.478104 + 0.878303i \(0.341324\pi\)
−0.999685 + 0.0251020i \(0.992009\pi\)
\(674\) 0 0
\(675\) −26.1611 −1.00694
\(676\) 0 0
\(677\) −16.8472 −0.647490 −0.323745 0.946144i \(-0.604942\pi\)
−0.323745 + 0.946144i \(0.604942\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 26.1710 1.00288
\(682\) 0 0
\(683\) −9.89038 17.1306i −0.378445 0.655486i 0.612391 0.790555i \(-0.290208\pi\)
−0.990836 + 0.135069i \(0.956874\pi\)
\(684\) 0 0
\(685\) 35.7996 + 62.0067i 1.36783 + 2.36915i
\(686\) 0 0
\(687\) −6.40322 + 11.0907i −0.244298 + 0.423137i
\(688\) 0 0
\(689\) −5.13920 4.20748i −0.195788 0.160292i
\(690\) 0 0
\(691\) −4.64021 + 8.03707i −0.176522 + 0.305745i −0.940687 0.339276i \(-0.889818\pi\)
0.764165 + 0.645021i \(0.223151\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −11.4901 19.9015i −0.435845 0.754905i
\(696\) 0 0
\(697\) −23.4845 −0.889539
\(698\) 0 0
\(699\) 11.0006 19.0536i 0.416081 0.720673i
\(700\) 0 0
\(701\) 34.6015 1.30688 0.653441 0.756977i \(-0.273325\pi\)
0.653441 + 0.756977i \(0.273325\pi\)
\(702\) 0 0
\(703\) −43.3686 −1.63568
\(704\) 0 0
\(705\) 10.3408 17.9107i 0.389456 0.674558i
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 7.55823 + 13.0912i 0.283855 + 0.491652i 0.972331 0.233608i \(-0.0750531\pi\)
−0.688476 + 0.725260i \(0.741720\pi\)
\(710\) 0 0
\(711\) 12.6961 + 21.9903i 0.476141 + 0.824700i
\(712\) 0 0
\(713\) −6.89116 + 11.9358i −0.258076 + 0.447001i
\(714\) 0 0
\(715\) 18.2877 6.90769i 0.683920 0.258333i
\(716\) 0 0
\(717\) 14.2546 24.6896i 0.532346 0.922051i
\(718\) 0 0
\(719\) −10.6380 18.4255i −0.396730 0.687157i 0.596590 0.802546i \(-0.296522\pi\)
−0.993320 + 0.115389i \(0.963188\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) −17.8516 −0.663909
\(724\) 0 0
\(725\) 19.5025 33.7793i 0.724304 1.25453i
\(726\) 0 0
\(727\) −10.5609 −0.391684 −0.195842 0.980635i \(-0.562744\pi\)
−0.195842 + 0.980635i \(0.562744\pi\)
\(728\) 0 0
\(729\) 15.1520 0.561186
\(730\) 0 0
\(731\) 15.7212 27.2299i 0.581468 1.00713i
\(732\) 0 0
\(733\) −8.81656 −0.325647 −0.162824 0.986655i \(-0.552060\pi\)
−0.162824 + 0.986655i \(0.552060\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 3.05468 + 5.29086i 0.112521 + 0.194891i
\(738\) 0 0
\(739\) −14.5384 + 25.1812i −0.534803 + 0.926307i 0.464369 + 0.885642i \(0.346281\pi\)
−0.999173 + 0.0406651i \(0.987052\pi\)
\(740\) 0 0
\(741\) −15.9345 13.0456i −0.585368 0.479242i
\(742\) 0 0
\(743\) −19.3225 + 33.4675i −0.708872 + 1.22780i 0.256404 + 0.966570i \(0.417462\pi\)
−0.965276 + 0.261233i \(0.915871\pi\)
\(744\) 0 0
\(745\) 11.9231 + 20.6515i 0.436830 + 0.756611i
\(746\) 0 0
\(747\) −8.19957 14.2021i −0.300006 0.519626i
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) 20.1942 34.9775i 0.736898 1.27635i −0.216987 0.976174i \(-0.569623\pi\)
0.953885 0.300171i \(-0.0970437\pi\)
\(752\) 0 0
\(753\) −27.9840 −1.01979
\(754\) 0 0
\(755\) −6.31293 −0.229751
\(756\) 0 0
\(757\) 11.2192 19.4322i 0.407768 0.706275i −0.586871 0.809680i \(-0.699641\pi\)
0.994639 + 0.103405i \(0.0329739\pi\)
\(758\) 0 0
\(759\) −9.70411 −0.352237
\(760\) 0 0
\(761\) −8.58250 14.8653i −0.311115 0.538868i 0.667489 0.744620i \(-0.267369\pi\)
−0.978604 + 0.205752i \(0.934036\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 8.53599 14.7848i 0.308619 0.534544i
\(766\) 0 0
\(767\) 1.57105 9.58622i 0.0567274 0.346138i
\(768\) 0 0
\(769\) −21.4658 + 37.1798i −0.774076 + 1.34074i 0.161236 + 0.986916i \(0.448452\pi\)
−0.935312 + 0.353823i \(0.884881\pi\)
\(770\) 0 0
\(771\) −5.87912 10.1829i −0.211731 0.366729i
\(772\) 0 0
\(773\) 3.36534 + 5.82893i 0.121043 + 0.209652i 0.920179 0.391498i \(-0.128043\pi\)
−0.799136 + 0.601150i \(0.794710\pi\)
\(774\) 0 0
\(775\) 12.8827 0.462761
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 46.0386 1.64950
\(780\) 0 0
\(781\) −6.83685 −0.244642
\(782\) 0 0
\(783\) −19.5165 + 33.8035i −0.697461 + 1.20804i
\(784\) 0 0
\(785\) −12.7989 −0.456811
\(786\) 0 0
\(787\) 19.1240 + 33.1238i 0.681699 + 1.18074i 0.974462 + 0.224552i \(0.0720918\pi\)
−0.292764 + 0.956185i \(0.594575\pi\)
\(788\) 0 0
\(789\) 0.518959 + 0.898863i 0.0184754 + 0.0320004i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 3.95178 24.1129i 0.140332 0.856274i
\(794\) 0 0
\(795\) 3.04780 5.27894i 0.108094 0.187225i
\(796\) 0 0
\(797\) 21.3120 + 36.9134i 0.754909 + 1.30754i 0.945420 + 0.325855i \(0.105652\pi\)
−0.190511 + 0.981685i \(0.561015\pi\)
\(798\) 0 0
\(799\) 8.75014 + 15.1557i 0.309558 + 0.536170i
\(800\) 0 0
\(801\) 0.402862 0.0142344
\(802\) 0 0
\(803\) 9.97640 17.2796i 0.352059 0.609785i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −13.6604 −0.480867
\(808\) 0 0
\(809\) 18.7448 32.4670i 0.659033 1.14148i −0.321833 0.946797i \(-0.604299\pi\)
0.980866 0.194683i \(-0.0623678\pi\)
\(810\) 0 0
\(811\) 25.4069 0.892156 0.446078 0.894994i \(-0.352820\pi\)
0.446078 + 0.894994i \(0.352820\pi\)
\(812\) 0 0
\(813\) 3.35179 + 5.80547i 0.117552 + 0.203607i
\(814\) 0 0
\(815\) 6.33975 + 10.9808i 0.222072 + 0.384640i
\(816\) 0 0
\(817\) −30.8195 + 53.3809i −1.07824 + 1.86756i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 0.0406154 0.0703480i 0.00141749 0.00245516i −0.865316 0.501227i \(-0.832882\pi\)
0.866733 + 0.498772i \(0.166215\pi\)
\(822\) 0 0
\(823\) 0.624767 + 1.08213i 0.0217780 + 0.0377206i 0.876709 0.481021i \(-0.159734\pi\)
−0.854931 + 0.518742i \(0.826401\pi\)
\(824\) 0 0
\(825\) 4.53535 + 7.85545i 0.157901 + 0.273492i
\(826\) 0 0
\(827\) 32.9535 1.14591 0.572954 0.819588i \(-0.305798\pi\)
0.572954 + 0.819588i \(0.305798\pi\)
\(828\) 0 0
\(829\) −8.61206 + 14.9165i −0.299109 + 0.518072i −0.975932 0.218073i \(-0.930023\pi\)
0.676823 + 0.736146i \(0.263356\pi\)
\(830\) 0 0
\(831\) −24.9536 −0.865631
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 6.32569 10.9564i 0.218909 0.379162i
\(836\) 0 0
\(837\) −12.8920 −0.445611
\(838\) 0 0
\(839\) −14.7357 25.5229i −0.508731 0.881149i −0.999949 0.0101117i \(-0.996781\pi\)
0.491217 0.871037i \(-0.336552\pi\)
\(840\) 0 0
\(841\) −14.5981 25.2847i −0.503383 0.871886i
\(842\) 0 0
\(843\) 5.39008 9.33590i 0.185644 0.321545i
\(844\) 0 0
\(845\) 8.16110 + 40.5276i 0.280750 + 1.39419i
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 15.5628 + 26.9556i 0.534115 + 0.925115i
\(850\) 0 0
\(851\) −21.6089 37.4276i −0.740742 1.28300i
\(852\) 0 0
\(853\) −17.8668 −0.611747 −0.305873 0.952072i \(-0.598948\pi\)
−0.305873 + 0.952072i \(0.598948\pi\)
\(854\) 0 0
\(855\) −16.7338 + 28.9838i −0.572284 + 0.991225i
\(856\) 0 0
\(857\) −20.1614 −0.688701 −0.344351 0.938841i \(-0.611901\pi\)
−0.344351 + 0.938841i \(0.611901\pi\)
\(858\) 0 0
\(859\) −11.9734 −0.408526 −0.204263 0.978916i \(-0.565480\pi\)
−0.204263 + 0.978916i \(0.565480\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 39.7010 1.35144 0.675719 0.737160i \(-0.263833\pi\)
0.675719 + 0.737160i \(0.263833\pi\)
\(864\) 0 0
\(865\) 36.1267 + 62.5732i 1.22834 + 2.12755i
\(866\) 0 0
\(867\) 4.76564 + 8.25432i 0.161849 + 0.280331i
\(868\) 0 0
\(869\) 11.2900 19.5549i 0.382988 0.663355i
\(870\) 0 0
\(871\) −12.0864 + 4.56532i −0.409532 + 0.154690i
\(872\) 0 0
\(873\) 12.1378 21.0233i 0.410803 0.711532i
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 22.8328 + 39.5476i 0.771010 + 1.33543i 0.937010 + 0.349302i \(0.113581\pi\)
−0.166000 + 0.986126i \(0.553085\pi\)
\(878\) 0 0
\(879\) 0.383750 0.0129436
\(880\) 0 0
\(881\) 16.6420 28.8249i 0.560685 0.971134i −0.436752 0.899582i \(-0.643871\pi\)
0.997437 0.0715523i \(-0.0227953\pi\)
\(882\) 0 0
\(883\) 32.3115 1.08737 0.543685 0.839289i \(-0.317029\pi\)
0.543685 + 0.839289i \(0.317029\pi\)
\(884\) 0 0
\(885\) 8.91516 0.299680
\(886\) 0 0
\(887\) −16.7530 + 29.0170i −0.562509 + 0.974295i 0.434767 + 0.900543i \(0.356831\pi\)
−0.997277 + 0.0737520i \(0.976503\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0.364658 + 0.631606i 0.0122165 + 0.0211596i
\(892\) 0 0
\(893\) −17.1536 29.7109i −0.574024 0.994239i
\(894\) 0 0
\(895\) 6.56721 11.3747i 0.219517 0.380215i
\(896\) 0 0
\(897\) 3.31899 20.2518i 0.110818 0.676187i
\(898\) 0 0
\(899\) 9.61064 16.6461i 0.320533 0.555179i
\(900\) 0 0
\(901\) 2.57898 + 4.46693i 0.0859183 + 0.148815i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −8.37783 −0.278488
\(906\) 0 0
\(907\) 19.4451 33.6798i 0.645663 1.11832i −0.338485 0.940972i \(-0.609915\pi\)
0.984148 0.177349i \(-0.0567521\pi\)
\(908\) 0 0
\(909\) 22.1519 0.734733
\(910\) 0 0
\(911\) −41.0133 −1.35883 −0.679415 0.733754i \(-0.737766\pi\)
−0.679415 + 0.733754i \(0.737766\pi\)
\(912\) 0 0
\(913\) −7.29148 + 12.6292i −0.241313 + 0.417966i
\(914\) 0 0
\(915\) 22.4249 0.741345
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −11.9574 20.7108i −0.394438 0.683186i 0.598592 0.801054i \(-0.295727\pi\)
−0.993029 + 0.117868i \(0.962394\pi\)
\(920\) 0 0
\(921\) −7.21532 + 12.4973i −0.237753 + 0.411800i
\(922\) 0 0
\(923\) 2.33833 14.2680i 0.0769671 0.469637i
\(924\) 0 0
\(925\) −20.1984 + 34.9846i −0.664119 + 1.15029i
\(926\) 0 0
\(927\) 11.6979 + 20.2614i 0.384211 + 0.665473i
\(928\) 0 0
\(929\) −7.74124 13.4082i −0.253982 0.439909i 0.710637 0.703559i \(-0.248407\pi\)
−0.964618 + 0.263650i \(0.915074\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −0.614538 + 1.06441i −0.0201191 + 0.0348472i
\(934\) 0 0
\(935\) −15.1813 −0.496481
\(936\) 0 0
\(937\) −38.8172 −1.26810 −0.634052 0.773290i \(-0.718609\pi\)
−0.634052 + 0.773290i \(0.718609\pi\)
\(938\) 0 0
\(939\) −5.50770 + 9.53961i −0.179737 + 0.311313i
\(940\) 0 0
\(941\) 5.28344 0.172235 0.0861177 0.996285i \(-0.472554\pi\)
0.0861177 + 0.996285i \(0.472554\pi\)
\(942\) 0 0
\(943\) 22.9392 + 39.7319i 0.747003 + 1.29385i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −3.98486 + 6.90198i −0.129491 + 0.224284i −0.923479 0.383648i \(-0.874668\pi\)
0.793989 + 0.607932i \(0.208001\pi\)
\(948\) 0 0
\(949\) 32.6492 + 26.7300i 1.05984 + 0.867691i
\(950\) 0 0
\(951\) −4.41651 + 7.64963i −0.143215 + 0.248056i
\(952\) 0 0
\(953\) −8.48138 14.6902i −0.274739 0.475862i 0.695330 0.718690i \(-0.255258\pi\)
−0.970069 + 0.242829i \(0.921925\pi\)
\(954\) 0 0
\(955\) 7.44157 + 12.8892i 0.240804 + 0.417084i
\(956\) 0 0
\(957\) 13.5337 0.437482
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −24.6515 −0.795210
\(962\) 0 0
\(963\) 4.35820 0.140441
\(964\) 0 0
\(965\) 28.5199 49.3980i 0.918089 1.59018i
\(966\) 0 0
\(967\) 21.4177 0.688746 0.344373 0.938833i \(-0.388092\pi\)
0.344373 + 0.938833i \(0.388092\pi\)
\(968\) 0 0
\(969\) 7.99633 + 13.8500i 0.256879 + 0.444927i
\(970\) 0 0
\(971\) −8.46512 14.6620i −0.271659 0.470527i 0.697628 0.716460i \(-0.254239\pi\)
−0.969287 + 0.245933i \(0.920906\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) −17.9449 + 6.77822i −0.574698 + 0.217077i
\(976\) 0 0
\(977\) −20.4387 + 35.4008i −0.653891 + 1.13257i 0.328279 + 0.944581i \(0.393531\pi\)
−0.982171 + 0.187992i \(0.939802\pi\)
\(978\) 0 0
\(979\) −0.179123 0.310250i −0.00572479 0.00991562i
\(980\) 0 0
\(981\) −4.65145 8.05655i −0.148509 0.257226i
\(982\) 0 0
\(983\) 8.53733 0.272299 0.136149 0.990688i \(-0.456527\pi\)
0.136149 + 0.990688i \(0.456527\pi\)
\(984\) 0 0
\(985\) 36.1022 62.5308i 1.15031 1.99240i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −61.4245 −1.95319
\(990\) 0 0
\(991\) −17.5874 + 30.4623i −0.558682 + 0.967666i 0.438924 + 0.898524i \(0.355360\pi\)
−0.997607 + 0.0691423i \(0.977974\pi\)
\(992\) 0 0
\(993\) 4.52032 0.143448
\(994\) 0 0
\(995\) −12.6561 21.9211i −0.401226 0.694944i
\(996\) 0 0
\(997\) −20.3109 35.1795i −0.643252 1.11414i −0.984702 0.174245i \(-0.944251\pi\)
0.341450 0.939900i \(-0.389082\pi\)
\(998\) 0 0
\(999\) 20.2129 35.0097i 0.639507 1.10766i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 2548.2.k.i.1569.3 18
7.2 even 3 2548.2.i.n.165.3 18
7.3 odd 6 364.2.l.a.9.3 yes 18
7.4 even 3 2548.2.l.n.373.7 18
7.5 odd 6 364.2.i.a.165.7 18
7.6 odd 2 2548.2.k.h.1569.7 18
13.3 even 3 inner 2548.2.k.i.393.3 18
21.5 even 6 3276.2.u.k.1621.1 18
21.17 even 6 3276.2.x.k.2557.1 18
91.3 odd 6 364.2.i.a.289.7 yes 18
91.16 even 3 2548.2.l.n.1537.7 18
91.55 odd 6 2548.2.k.h.393.7 18
91.68 odd 6 364.2.l.a.81.3 yes 18
91.81 even 3 2548.2.i.n.1745.3 18
273.68 even 6 3276.2.x.k.2629.1 18
273.185 even 6 3276.2.u.k.289.1 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
364.2.i.a.165.7 18 7.5 odd 6
364.2.i.a.289.7 yes 18 91.3 odd 6
364.2.l.a.9.3 yes 18 7.3 odd 6
364.2.l.a.81.3 yes 18 91.68 odd 6
2548.2.i.n.165.3 18 7.2 even 3
2548.2.i.n.1745.3 18 91.81 even 3
2548.2.k.h.393.7 18 91.55 odd 6
2548.2.k.h.1569.7 18 7.6 odd 2
2548.2.k.i.393.3 18 13.3 even 3 inner
2548.2.k.i.1569.3 18 1.1 even 1 trivial
2548.2.l.n.373.7 18 7.4 even 3
2548.2.l.n.1537.7 18 91.16 even 3
3276.2.u.k.289.1 18 273.185 even 6
3276.2.u.k.1621.1 18 21.5 even 6
3276.2.x.k.2557.1 18 21.17 even 6
3276.2.x.k.2629.1 18 273.68 even 6