Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [33,4,Mod(2,33)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(33, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([5, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("33.2");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 33 = 3 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 33.f (of order \(10\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(1.94706303019\) |
Analytic rank: | \(0\) |
Dimension: | \(40\) |
Relative dimension: | \(10\) over \(\Q(\zeta_{10})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{10}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2.1 | −1.66959 | + | 5.13848i | −2.33142 | − | 4.64375i | −17.1443 | − | 12.4560i | −7.03009 | + | 2.28422i | 27.7543 | − | 4.22679i | −8.32735 | + | 11.4616i | 57.6606 | − | 41.8928i | −16.1289 | + | 21.6531i | − | 39.9377i | |
2.2 | −1.27640 | + | 3.92834i | 0.664082 | + | 5.15354i | −7.33056 | − | 5.32596i | 0.616497 | − | 0.200312i | −21.0925 | − | 3.96922i | 8.50755 | − | 11.7096i | 3.54571 | − | 2.57611i | −26.1180 | + | 6.84475i | 2.67749i | ||
2.3 | −0.882408 | + | 2.71577i | 4.90539 | − | 1.71383i | −0.124638 | − | 0.0905550i | 4.91761 | − | 1.59783i | 0.325809 | + | 14.8342i | −9.45167 | + | 13.0091i | −18.1255 | + | 13.1689i | 21.1256 | − | 16.8139i | 14.7651i | ||
2.4 | −0.448331 | + | 1.37982i | −5.12333 | + | 0.866882i | 4.76923 | + | 3.46505i | −14.6309 | + | 4.75385i | 1.10081 | − | 7.45793i | −7.94038 | + | 10.9290i | −16.3093 | + | 11.8494i | 25.4970 | − | 8.88265i | − | 22.3193i | |
2.5 | −0.325060 | + | 1.00043i | −1.99228 | − | 4.79904i | 5.57694 | + | 4.05188i | 11.6880 | − | 3.79766i | 5.44873 | − | 0.433161i | 13.1668 | − | 18.1225i | −12.6746 | + | 9.20865i | −19.0617 | + | 19.1221i | 12.9275i | ||
2.6 | 0.325060 | − | 1.00043i | 3.94851 | + | 3.37776i | 5.57694 | + | 4.05188i | −11.6880 | + | 3.79766i | 4.66272 | − | 2.85225i | 13.1668 | − | 18.1225i | 12.6746 | − | 9.20865i | 4.18154 | + | 26.6742i | 12.9275i | ||
2.7 | 0.448331 | − | 1.37982i | −2.40765 | + | 4.60470i | 4.76923 | + | 3.46505i | 14.6309 | − | 4.75385i | 5.27423 | + | 5.38655i | −7.94038 | + | 10.9290i | 16.3093 | − | 11.8494i | −15.4064 | − | 22.1730i | − | 22.3193i | |
2.8 | 0.882408 | − | 2.71577i | 3.14579 | − | 4.13570i | −0.124638 | − | 0.0905550i | −4.91761 | + | 1.59783i | −8.45574 | − | 12.1926i | −9.45167 | + | 13.0091i | 18.1255 | − | 13.1689i | −7.20798 | − | 26.0201i | 14.7651i | ||
2.9 | 1.27640 | − | 3.92834i | −4.69610 | − | 2.22411i | −7.33056 | − | 5.32596i | −0.616497 | + | 0.200312i | −14.7312 | + | 15.6090i | 8.50755 | − | 11.7096i | −3.54571 | + | 2.57611i | 17.1067 | + | 20.8893i | 2.67749i | ||
2.10 | 1.66959 | − | 5.13848i | 3.69602 | + | 3.65232i | −17.1443 | − | 12.4560i | 7.03009 | − | 2.28422i | 24.9382 | − | 12.8940i | −8.32735 | + | 11.4616i | −57.6606 | + | 41.8928i | 0.321176 | + | 26.9981i | − | 39.9377i | |
8.1 | −3.83133 | + | 2.78363i | 2.59912 | − | 4.49940i | 4.45840 | − | 13.7215i | 2.11757 | − | 2.91459i | 2.56657 | + | 24.4737i | 28.5187 | + | 9.26628i | 9.40652 | + | 28.9503i | −13.4892 | − | 23.3889i | 17.0613i | ||
8.2 | −3.30778 | + | 2.40324i | 2.27962 | + | 4.66940i | 2.69368 | − | 8.29030i | −3.98805 | + | 5.48909i | −18.7622 | − | 9.96686i | −17.8876 | − | 5.81204i | 0.905818 | + | 2.78782i | −16.6067 | + | 21.2889i | − | 27.7409i | |
8.3 | −2.97363 | + | 2.16047i | −5.19431 | + | 0.138465i | 1.70270 | − | 5.24038i | 10.1182 | − | 13.9265i | 15.1468 | − | 11.6339i | −16.0632 | − | 5.21926i | −2.82814 | − | 8.70411i | 26.9617 | − | 1.43845i | 63.2724i | ||
8.4 | −1.29832 | + | 0.943283i | −2.93846 | − | 4.28549i | −1.67629 | + | 5.15909i | −10.7269 | + | 14.7643i | 7.85748 | + | 2.79213i | −4.11498 | − | 1.33704i | −6.65743 | − | 20.4895i | −9.73090 | + | 25.1855i | − | 29.2872i | |
8.5 | −0.315290 | + | 0.229071i | 5.06463 | + | 1.16169i | −2.42520 | + | 7.46400i | 2.50207 | − | 3.44380i | −1.86294 | + | 0.793892i | 11.0922 | + | 3.60409i | −1.90859 | − | 5.87403i | 24.3009 | + | 11.7671i | 1.65895i | ||
8.6 | 0.315290 | − | 0.229071i | −3.41455 | + | 3.91674i | −2.42520 | + | 7.46400i | −2.50207 | + | 3.44380i | −0.179357 | + | 2.01708i | 11.0922 | + | 3.60409i | 1.90859 | + | 5.87403i | −3.68176 | − | 26.7478i | 1.65895i | ||
8.7 | 1.29832 | − | 0.943283i | −0.141685 | − | 5.19422i | −1.67629 | + | 5.15909i | 10.7269 | − | 14.7643i | −5.08357 | − | 6.61010i | −4.11498 | − | 1.33704i | 6.65743 | + | 20.4895i | −26.9599 | + | 1.47188i | − | 29.2872i | |
8.8 | 2.97363 | − | 2.16047i | 4.28367 | − | 2.94112i | 1.70270 | − | 5.24038i | −10.1182 | + | 13.9265i | 6.38385 | − | 18.0005i | −16.0632 | − | 5.21926i | 2.82814 | + | 8.70411i | 9.69966 | − | 25.1976i | 63.2724i | ||
8.9 | 3.30778 | − | 2.40324i | 0.900354 | + | 5.11755i | 2.69368 | − | 8.29030i | 3.98805 | − | 5.48909i | 15.2769 | + | 14.7640i | −17.8876 | − | 5.81204i | −0.905818 | − | 2.78782i | −25.3787 | + | 9.21522i | − | 27.7409i | |
8.10 | 3.83133 | − | 2.78363i | −4.74741 | − | 2.11237i | 4.45840 | − | 13.7215i | −2.11757 | + | 2.91459i | −24.0689 | + | 5.12183i | 28.5187 | + | 9.26628i | −9.40652 | − | 28.9503i | 18.0758 | + | 20.0566i | 17.0613i | ||
See all 40 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
11.d | odd | 10 | 1 | inner |
33.f | even | 10 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 33.4.f.a | ✓ | 40 |
3.b | odd | 2 | 1 | inner | 33.4.f.a | ✓ | 40 |
11.c | even | 5 | 1 | 363.4.d.d | 40 | ||
11.d | odd | 10 | 1 | inner | 33.4.f.a | ✓ | 40 |
11.d | odd | 10 | 1 | 363.4.d.d | 40 | ||
33.f | even | 10 | 1 | inner | 33.4.f.a | ✓ | 40 |
33.f | even | 10 | 1 | 363.4.d.d | 40 | ||
33.h | odd | 10 | 1 | 363.4.d.d | 40 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
33.4.f.a | ✓ | 40 | 1.a | even | 1 | 1 | trivial |
33.4.f.a | ✓ | 40 | 3.b | odd | 2 | 1 | inner |
33.4.f.a | ✓ | 40 | 11.d | odd | 10 | 1 | inner |
33.4.f.a | ✓ | 40 | 33.f | even | 10 | 1 | inner |
363.4.d.d | 40 | 11.c | even | 5 | 1 | ||
363.4.d.d | 40 | 11.d | odd | 10 | 1 | ||
363.4.d.d | 40 | 33.f | even | 10 | 1 | ||
363.4.d.d | 40 | 33.h | odd | 10 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{4}^{\mathrm{new}}(33, [\chi])\).