Properties

Label 336.3.m.a.127.3
Level $336$
Weight $3$
Character 336.127
Analytic conductor $9.155$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,3,Mod(127,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 336.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.15533688251\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.3
Root \(-0.895644 + 1.09445i\) of defining polynomial
Character \(\chi\) \(=\) 336.127
Dual form 336.3.m.a.127.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.73205i q^{3} -9.58258 q^{5} +2.64575i q^{7} -3.00000 q^{9} +O(q^{10})\) \(q+1.73205i q^{3} -9.58258 q^{5} +2.64575i q^{7} -3.00000 q^{9} -8.03260i q^{11} +17.1652 q^{13} -16.5975i q^{15} +9.58258 q^{17} -21.1660i q^{19} -4.58258 q^{21} -41.2276i q^{23} +66.8258 q^{25} -5.19615i q^{27} -32.3303 q^{29} +20.7846i q^{31} +13.9129 q^{33} -25.3531i q^{35} -42.8348 q^{37} +29.7309i q^{39} +55.0780 q^{41} -35.0224i q^{43} +28.7477 q^{45} -12.4104i q^{47} -7.00000 q^{49} +16.5975i q^{51} -36.1561 q^{53} +76.9730i q^{55} +36.6606 q^{57} +46.2886i q^{59} +5.33939 q^{61} -7.93725i q^{63} -164.486 q^{65} -109.405i q^{67} +71.4083 q^{69} -70.3864i q^{71} +37.8258 q^{73} +115.746i q^{75} +21.2523 q^{77} -43.0152i q^{79} +9.00000 q^{81} -115.650i q^{83} -91.8258 q^{85} -55.9977i q^{87} +36.0871 q^{89} +45.4147i q^{91} -36.0000 q^{93} +202.825i q^{95} -121.826 q^{97} +24.0978i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 20 q^{5} - 12 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 20 q^{5} - 12 q^{9} + 32 q^{13} + 20 q^{17} + 84 q^{25} - 56 q^{29} - 36 q^{33} - 208 q^{37} + 92 q^{41} + 60 q^{45} - 28 q^{49} + 112 q^{53} + 168 q^{61} - 328 q^{65} + 84 q^{69} - 32 q^{73} + 140 q^{77} + 36 q^{81} - 184 q^{85} + 236 q^{89} - 144 q^{93} - 304 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.73205i 0.577350i
\(4\) 0 0
\(5\) −9.58258 −1.91652 −0.958258 0.285906i \(-0.907705\pi\)
−0.958258 + 0.285906i \(0.907705\pi\)
\(6\) 0 0
\(7\) 2.64575i 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) − 8.03260i − 0.730237i −0.930961 0.365118i \(-0.881029\pi\)
0.930961 0.365118i \(-0.118971\pi\)
\(12\) 0 0
\(13\) 17.1652 1.32040 0.660198 0.751091i \(-0.270472\pi\)
0.660198 + 0.751091i \(0.270472\pi\)
\(14\) 0 0
\(15\) − 16.5975i − 1.10650i
\(16\) 0 0
\(17\) 9.58258 0.563681 0.281840 0.959461i \(-0.409055\pi\)
0.281840 + 0.959461i \(0.409055\pi\)
\(18\) 0 0
\(19\) − 21.1660i − 1.11400i −0.830512 0.557000i \(-0.811952\pi\)
0.830512 0.557000i \(-0.188048\pi\)
\(20\) 0 0
\(21\) −4.58258 −0.218218
\(22\) 0 0
\(23\) − 41.2276i − 1.79251i −0.443544 0.896253i \(-0.646279\pi\)
0.443544 0.896253i \(-0.353721\pi\)
\(24\) 0 0
\(25\) 66.8258 2.67303
\(26\) 0 0
\(27\) − 5.19615i − 0.192450i
\(28\) 0 0
\(29\) −32.3303 −1.11484 −0.557419 0.830231i \(-0.688208\pi\)
−0.557419 + 0.830231i \(0.688208\pi\)
\(30\) 0 0
\(31\) 20.7846i 0.670471i 0.942134 + 0.335236i \(0.108816\pi\)
−0.942134 + 0.335236i \(0.891184\pi\)
\(32\) 0 0
\(33\) 13.9129 0.421602
\(34\) 0 0
\(35\) − 25.3531i − 0.724375i
\(36\) 0 0
\(37\) −42.8348 −1.15770 −0.578849 0.815435i \(-0.696498\pi\)
−0.578849 + 0.815435i \(0.696498\pi\)
\(38\) 0 0
\(39\) 29.7309i 0.762331i
\(40\) 0 0
\(41\) 55.0780 1.34337 0.671683 0.740838i \(-0.265572\pi\)
0.671683 + 0.740838i \(0.265572\pi\)
\(42\) 0 0
\(43\) − 35.0224i − 0.814475i −0.913322 0.407237i \(-0.866492\pi\)
0.913322 0.407237i \(-0.133508\pi\)
\(44\) 0 0
\(45\) 28.7477 0.638838
\(46\) 0 0
\(47\) − 12.4104i − 0.264051i −0.991246 0.132026i \(-0.957852\pi\)
0.991246 0.132026i \(-0.0421481\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 16.5975i 0.325441i
\(52\) 0 0
\(53\) −36.1561 −0.682190 −0.341095 0.940029i \(-0.610798\pi\)
−0.341095 + 0.940029i \(0.610798\pi\)
\(54\) 0 0
\(55\) 76.9730i 1.39951i
\(56\) 0 0
\(57\) 36.6606 0.643169
\(58\) 0 0
\(59\) 46.2886i 0.784553i 0.919847 + 0.392276i \(0.128312\pi\)
−0.919847 + 0.392276i \(0.871688\pi\)
\(60\) 0 0
\(61\) 5.33939 0.0875311 0.0437655 0.999042i \(-0.486065\pi\)
0.0437655 + 0.999042i \(0.486065\pi\)
\(62\) 0 0
\(63\) − 7.93725i − 0.125988i
\(64\) 0 0
\(65\) −164.486 −2.53056
\(66\) 0 0
\(67\) − 109.405i − 1.63291i −0.577406 0.816457i \(-0.695935\pi\)
0.577406 0.816457i \(-0.304065\pi\)
\(68\) 0 0
\(69\) 71.4083 1.03490
\(70\) 0 0
\(71\) − 70.3864i − 0.991358i −0.868506 0.495679i \(-0.834919\pi\)
0.868506 0.495679i \(-0.165081\pi\)
\(72\) 0 0
\(73\) 37.8258 0.518161 0.259081 0.965856i \(-0.416580\pi\)
0.259081 + 0.965856i \(0.416580\pi\)
\(74\) 0 0
\(75\) 115.746i 1.54327i
\(76\) 0 0
\(77\) 21.2523 0.276004
\(78\) 0 0
\(79\) − 43.0152i − 0.544496i −0.962227 0.272248i \(-0.912233\pi\)
0.962227 0.272248i \(-0.0877672\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 115.650i − 1.39338i −0.717374 0.696688i \(-0.754656\pi\)
0.717374 0.696688i \(-0.245344\pi\)
\(84\) 0 0
\(85\) −91.8258 −1.08030
\(86\) 0 0
\(87\) − 55.9977i − 0.643652i
\(88\) 0 0
\(89\) 36.0871 0.405473 0.202737 0.979233i \(-0.435016\pi\)
0.202737 + 0.979233i \(0.435016\pi\)
\(90\) 0 0
\(91\) 45.4147i 0.499063i
\(92\) 0 0
\(93\) −36.0000 −0.387097
\(94\) 0 0
\(95\) 202.825i 2.13500i
\(96\) 0 0
\(97\) −121.826 −1.25594 −0.627968 0.778239i \(-0.716113\pi\)
−0.627968 + 0.778239i \(0.716113\pi\)
\(98\) 0 0
\(99\) 24.0978i 0.243412i
\(100\) 0 0
\(101\) −101.060 −1.00059 −0.500296 0.865854i \(-0.666776\pi\)
−0.500296 + 0.865854i \(0.666776\pi\)
\(102\) 0 0
\(103\) 52.1522i 0.506332i 0.967423 + 0.253166i \(0.0814719\pi\)
−0.967423 + 0.253166i \(0.918528\pi\)
\(104\) 0 0
\(105\) 43.9129 0.418218
\(106\) 0 0
\(107\) 3.69460i 0.0345290i 0.999851 + 0.0172645i \(0.00549573\pi\)
−0.999851 + 0.0172645i \(0.994504\pi\)
\(108\) 0 0
\(109\) 158.661 1.45560 0.727801 0.685788i \(-0.240542\pi\)
0.727801 + 0.685788i \(0.240542\pi\)
\(110\) 0 0
\(111\) − 74.1921i − 0.668398i
\(112\) 0 0
\(113\) −2.66061 −0.0235452 −0.0117726 0.999931i \(-0.503747\pi\)
−0.0117726 + 0.999931i \(0.503747\pi\)
\(114\) 0 0
\(115\) 395.067i 3.43536i
\(116\) 0 0
\(117\) −51.4955 −0.440132
\(118\) 0 0
\(119\) 25.3531i 0.213051i
\(120\) 0 0
\(121\) 56.4773 0.466754
\(122\) 0 0
\(123\) 95.3979i 0.775593i
\(124\) 0 0
\(125\) −400.798 −3.20639
\(126\) 0 0
\(127\) 237.164i 1.86743i 0.358012 + 0.933717i \(0.383455\pi\)
−0.358012 + 0.933717i \(0.616545\pi\)
\(128\) 0 0
\(129\) 60.6606 0.470237
\(130\) 0 0
\(131\) 83.5198i 0.637556i 0.947829 + 0.318778i \(0.103272\pi\)
−0.947829 + 0.318778i \(0.896728\pi\)
\(132\) 0 0
\(133\) 56.0000 0.421053
\(134\) 0 0
\(135\) 49.7925i 0.368834i
\(136\) 0 0
\(137\) −107.495 −0.784638 −0.392319 0.919829i \(-0.628327\pi\)
−0.392319 + 0.919829i \(0.628327\pi\)
\(138\) 0 0
\(139\) − 53.5186i − 0.385026i −0.981294 0.192513i \(-0.938336\pi\)
0.981294 0.192513i \(-0.0616638\pi\)
\(140\) 0 0
\(141\) 21.4955 0.152450
\(142\) 0 0
\(143\) − 137.881i − 0.964202i
\(144\) 0 0
\(145\) 309.808 2.13660
\(146\) 0 0
\(147\) − 12.1244i − 0.0824786i
\(148\) 0 0
\(149\) −30.1742 −0.202512 −0.101256 0.994860i \(-0.532286\pi\)
−0.101256 + 0.994860i \(0.532286\pi\)
\(150\) 0 0
\(151\) − 280.942i − 1.86054i −0.366871 0.930272i \(-0.619571\pi\)
0.366871 0.930272i \(-0.380429\pi\)
\(152\) 0 0
\(153\) −28.7477 −0.187894
\(154\) 0 0
\(155\) − 199.170i − 1.28497i
\(156\) 0 0
\(157\) 58.3485 0.371646 0.185823 0.982583i \(-0.440505\pi\)
0.185823 + 0.982583i \(0.440505\pi\)
\(158\) 0 0
\(159\) − 62.6241i − 0.393862i
\(160\) 0 0
\(161\) 109.078 0.677503
\(162\) 0 0
\(163\) − 85.3472i − 0.523603i −0.965122 0.261801i \(-0.915683\pi\)
0.965122 0.261801i \(-0.0843165\pi\)
\(164\) 0 0
\(165\) −133.321 −0.808007
\(166\) 0 0
\(167\) 102.858i 0.615919i 0.951399 + 0.307959i \(0.0996461\pi\)
−0.951399 + 0.307959i \(0.900354\pi\)
\(168\) 0 0
\(169\) 125.642 0.743446
\(170\) 0 0
\(171\) 63.4980i 0.371334i
\(172\) 0 0
\(173\) −0.399241 −0.00230775 −0.00115388 0.999999i \(-0.500367\pi\)
−0.00115388 + 0.999999i \(0.500367\pi\)
\(174\) 0 0
\(175\) 176.804i 1.01031i
\(176\) 0 0
\(177\) −80.1742 −0.452962
\(178\) 0 0
\(179\) − 89.1214i − 0.497885i −0.968518 0.248943i \(-0.919917\pi\)
0.968518 0.248943i \(-0.0800830\pi\)
\(180\) 0 0
\(181\) −273.826 −1.51285 −0.756425 0.654081i \(-0.773056\pi\)
−0.756425 + 0.654081i \(0.773056\pi\)
\(182\) 0 0
\(183\) 9.24810i 0.0505361i
\(184\) 0 0
\(185\) 410.468 2.21875
\(186\) 0 0
\(187\) − 76.9730i − 0.411621i
\(188\) 0 0
\(189\) 13.7477 0.0727393
\(190\) 0 0
\(191\) − 240.318i − 1.25821i −0.777320 0.629105i \(-0.783422\pi\)
0.777320 0.629105i \(-0.216578\pi\)
\(192\) 0 0
\(193\) 50.1742 0.259970 0.129985 0.991516i \(-0.458507\pi\)
0.129985 + 0.991516i \(0.458507\pi\)
\(194\) 0 0
\(195\) − 284.899i − 1.46102i
\(196\) 0 0
\(197\) 160.156 0.812975 0.406487 0.913656i \(-0.366753\pi\)
0.406487 + 0.913656i \(0.366753\pi\)
\(198\) 0 0
\(199\) − 382.355i − 1.92138i −0.277624 0.960690i \(-0.589547\pi\)
0.277624 0.960690i \(-0.410453\pi\)
\(200\) 0 0
\(201\) 189.495 0.942763
\(202\) 0 0
\(203\) − 85.5379i − 0.421369i
\(204\) 0 0
\(205\) −527.789 −2.57458
\(206\) 0 0
\(207\) 123.683i 0.597502i
\(208\) 0 0
\(209\) −170.018 −0.813484
\(210\) 0 0
\(211\) 126.837i 0.601123i 0.953763 + 0.300561i \(0.0971740\pi\)
−0.953763 + 0.300561i \(0.902826\pi\)
\(212\) 0 0
\(213\) 121.913 0.572361
\(214\) 0 0
\(215\) 335.605i 1.56095i
\(216\) 0 0
\(217\) −54.9909 −0.253414
\(218\) 0 0
\(219\) 65.5161i 0.299160i
\(220\) 0 0
\(221\) 164.486 0.744282
\(222\) 0 0
\(223\) − 271.503i − 1.21750i −0.793361 0.608752i \(-0.791671\pi\)
0.793361 0.608752i \(-0.208329\pi\)
\(224\) 0 0
\(225\) −200.477 −0.891010
\(226\) 0 0
\(227\) 89.9870i 0.396419i 0.980160 + 0.198209i \(0.0635126\pi\)
−0.980160 + 0.198209i \(0.936487\pi\)
\(228\) 0 0
\(229\) 267.459 1.16794 0.583972 0.811774i \(-0.301498\pi\)
0.583972 + 0.811774i \(0.301498\pi\)
\(230\) 0 0
\(231\) 36.8100i 0.159351i
\(232\) 0 0
\(233\) −93.8621 −0.402842 −0.201421 0.979505i \(-0.564556\pi\)
−0.201421 + 0.979505i \(0.564556\pi\)
\(234\) 0 0
\(235\) 118.924i 0.506058i
\(236\) 0 0
\(237\) 74.5045 0.314365
\(238\) 0 0
\(239\) − 49.9036i − 0.208802i −0.994535 0.104401i \(-0.966708\pi\)
0.994535 0.104401i \(-0.0332925\pi\)
\(240\) 0 0
\(241\) −250.450 −1.03921 −0.519606 0.854406i \(-0.673921\pi\)
−0.519606 + 0.854406i \(0.673921\pi\)
\(242\) 0 0
\(243\) 15.5885i 0.0641500i
\(244\) 0 0
\(245\) 67.0780 0.273788
\(246\) 0 0
\(247\) − 363.318i − 1.47092i
\(248\) 0 0
\(249\) 200.312 0.804466
\(250\) 0 0
\(251\) 103.081i 0.410680i 0.978691 + 0.205340i \(0.0658300\pi\)
−0.978691 + 0.205340i \(0.934170\pi\)
\(252\) 0 0
\(253\) −331.165 −1.30895
\(254\) 0 0
\(255\) − 159.047i − 0.623713i
\(256\) 0 0
\(257\) 367.078 1.42832 0.714160 0.699983i \(-0.246809\pi\)
0.714160 + 0.699983i \(0.246809\pi\)
\(258\) 0 0
\(259\) − 113.330i − 0.437569i
\(260\) 0 0
\(261\) 96.9909 0.371613
\(262\) 0 0
\(263\) 424.265i 1.61318i 0.591114 + 0.806588i \(0.298688\pi\)
−0.591114 + 0.806588i \(0.701312\pi\)
\(264\) 0 0
\(265\) 346.468 1.30743
\(266\) 0 0
\(267\) 62.5047i 0.234100i
\(268\) 0 0
\(269\) 354.033 1.31611 0.658053 0.752972i \(-0.271380\pi\)
0.658053 + 0.752972i \(0.271380\pi\)
\(270\) 0 0
\(271\) − 32.5118i − 0.119970i −0.998199 0.0599849i \(-0.980895\pi\)
0.998199 0.0599849i \(-0.0191053\pi\)
\(272\) 0 0
\(273\) −78.6606 −0.288134
\(274\) 0 0
\(275\) − 536.785i − 1.95194i
\(276\) 0 0
\(277\) 130.174 0.469943 0.234972 0.972002i \(-0.424500\pi\)
0.234972 + 0.972002i \(0.424500\pi\)
\(278\) 0 0
\(279\) − 62.3538i − 0.223490i
\(280\) 0 0
\(281\) 8.46818 0.0301359 0.0150679 0.999886i \(-0.495204\pi\)
0.0150679 + 0.999886i \(0.495204\pi\)
\(282\) 0 0
\(283\) 27.7128i 0.0979251i 0.998801 + 0.0489626i \(0.0155915\pi\)
−0.998801 + 0.0489626i \(0.984408\pi\)
\(284\) 0 0
\(285\) −351.303 −1.23264
\(286\) 0 0
\(287\) 145.723i 0.507745i
\(288\) 0 0
\(289\) −197.174 −0.682264
\(290\) 0 0
\(291\) − 211.008i − 0.725115i
\(292\) 0 0
\(293\) 525.161 1.79236 0.896180 0.443691i \(-0.146331\pi\)
0.896180 + 0.443691i \(0.146331\pi\)
\(294\) 0 0
\(295\) − 443.564i − 1.50361i
\(296\) 0 0
\(297\) −41.7386 −0.140534
\(298\) 0 0
\(299\) − 707.678i − 2.36682i
\(300\) 0 0
\(301\) 92.6606 0.307843
\(302\) 0 0
\(303\) − 175.041i − 0.577692i
\(304\) 0 0
\(305\) −51.1652 −0.167755
\(306\) 0 0
\(307\) 134.465i 0.437996i 0.975725 + 0.218998i \(0.0702789\pi\)
−0.975725 + 0.218998i \(0.929721\pi\)
\(308\) 0 0
\(309\) −90.3303 −0.292331
\(310\) 0 0
\(311\) 459.789i 1.47842i 0.673475 + 0.739210i \(0.264801\pi\)
−0.673475 + 0.739210i \(0.735199\pi\)
\(312\) 0 0
\(313\) −579.909 −1.85274 −0.926372 0.376609i \(-0.877090\pi\)
−0.926372 + 0.376609i \(0.877090\pi\)
\(314\) 0 0
\(315\) 76.0593i 0.241458i
\(316\) 0 0
\(317\) −28.1561 −0.0888204 −0.0444102 0.999013i \(-0.514141\pi\)
−0.0444102 + 0.999013i \(0.514141\pi\)
\(318\) 0 0
\(319\) 259.697i 0.814096i
\(320\) 0 0
\(321\) −6.39924 −0.0199353
\(322\) 0 0
\(323\) − 202.825i − 0.627941i
\(324\) 0 0
\(325\) 1147.07 3.52946
\(326\) 0 0
\(327\) 274.808i 0.840392i
\(328\) 0 0
\(329\) 32.8348 0.0998020
\(330\) 0 0
\(331\) 51.7708i 0.156407i 0.996937 + 0.0782037i \(0.0249184\pi\)
−0.996937 + 0.0782037i \(0.975082\pi\)
\(332\) 0 0
\(333\) 128.505 0.385900
\(334\) 0 0
\(335\) 1048.38i 3.12950i
\(336\) 0 0
\(337\) −410.936 −1.21940 −0.609698 0.792634i \(-0.708709\pi\)
−0.609698 + 0.792634i \(0.708709\pi\)
\(338\) 0 0
\(339\) − 4.60830i − 0.0135938i
\(340\) 0 0
\(341\) 166.955 0.489603
\(342\) 0 0
\(343\) − 18.5203i − 0.0539949i
\(344\) 0 0
\(345\) −684.276 −1.98341
\(346\) 0 0
\(347\) 532.447i 1.53443i 0.641391 + 0.767214i \(0.278358\pi\)
−0.641391 + 0.767214i \(0.721642\pi\)
\(348\) 0 0
\(349\) −30.6242 −0.0877485 −0.0438743 0.999037i \(-0.513970\pi\)
−0.0438743 + 0.999037i \(0.513970\pi\)
\(350\) 0 0
\(351\) − 89.1927i − 0.254110i
\(352\) 0 0
\(353\) −189.023 −0.535477 −0.267739 0.963492i \(-0.586276\pi\)
−0.267739 + 0.963492i \(0.586276\pi\)
\(354\) 0 0
\(355\) 674.483i 1.89995i
\(356\) 0 0
\(357\) −43.9129 −0.123005
\(358\) 0 0
\(359\) 56.7688i 0.158130i 0.996869 + 0.0790652i \(0.0251935\pi\)
−0.996869 + 0.0790652i \(0.974806\pi\)
\(360\) 0 0
\(361\) −87.0000 −0.240997
\(362\) 0 0
\(363\) 97.8215i 0.269481i
\(364\) 0 0
\(365\) −362.468 −0.993064
\(366\) 0 0
\(367\) − 60.4468i − 0.164705i −0.996603 0.0823526i \(-0.973757\pi\)
0.996603 0.0823526i \(-0.0262434\pi\)
\(368\) 0 0
\(369\) −165.234 −0.447789
\(370\) 0 0
\(371\) − 95.6599i − 0.257844i
\(372\) 0 0
\(373\) −370.661 −0.993728 −0.496864 0.867828i \(-0.665515\pi\)
−0.496864 + 0.867828i \(0.665515\pi\)
\(374\) 0 0
\(375\) − 694.203i − 1.85121i
\(376\) 0 0
\(377\) −554.955 −1.47203
\(378\) 0 0
\(379\) 337.734i 0.891119i 0.895252 + 0.445560i \(0.146995\pi\)
−0.895252 + 0.445560i \(0.853005\pi\)
\(380\) 0 0
\(381\) −410.780 −1.07816
\(382\) 0 0
\(383\) − 381.433i − 0.995908i −0.867204 0.497954i \(-0.834085\pi\)
0.867204 0.497954i \(-0.165915\pi\)
\(384\) 0 0
\(385\) −203.652 −0.528965
\(386\) 0 0
\(387\) 105.067i 0.271492i
\(388\) 0 0
\(389\) 605.579 1.55676 0.778379 0.627795i \(-0.216042\pi\)
0.778379 + 0.627795i \(0.216042\pi\)
\(390\) 0 0
\(391\) − 395.067i − 1.01040i
\(392\) 0 0
\(393\) −144.661 −0.368093
\(394\) 0 0
\(395\) 412.197i 1.04354i
\(396\) 0 0
\(397\) −82.3121 −0.207335 −0.103668 0.994612i \(-0.533058\pi\)
−0.103668 + 0.994612i \(0.533058\pi\)
\(398\) 0 0
\(399\) 96.9948i 0.243095i
\(400\) 0 0
\(401\) −124.468 −0.310394 −0.155197 0.987884i \(-0.549601\pi\)
−0.155197 + 0.987884i \(0.549601\pi\)
\(402\) 0 0
\(403\) 356.771i 0.885288i
\(404\) 0 0
\(405\) −86.2432 −0.212946
\(406\) 0 0
\(407\) 344.075i 0.845394i
\(408\) 0 0
\(409\) −225.826 −0.552141 −0.276071 0.961137i \(-0.589032\pi\)
−0.276071 + 0.961137i \(0.589032\pi\)
\(410\) 0 0
\(411\) − 186.188i − 0.453011i
\(412\) 0 0
\(413\) −122.468 −0.296533
\(414\) 0 0
\(415\) 1108.23i 2.67043i
\(416\) 0 0
\(417\) 92.6970 0.222295
\(418\) 0 0
\(419\) 162.924i 0.388840i 0.980918 + 0.194420i \(0.0622824\pi\)
−0.980918 + 0.194420i \(0.937718\pi\)
\(420\) 0 0
\(421\) 21.5136 0.0511013 0.0255506 0.999674i \(-0.491866\pi\)
0.0255506 + 0.999674i \(0.491866\pi\)
\(422\) 0 0
\(423\) 37.2312i 0.0880171i
\(424\) 0 0
\(425\) 640.363 1.50674
\(426\) 0 0
\(427\) 14.1267i 0.0330836i
\(428\) 0 0
\(429\) 238.817 0.556682
\(430\) 0 0
\(431\) − 373.861i − 0.867427i −0.901051 0.433713i \(-0.857203\pi\)
0.901051 0.433713i \(-0.142797\pi\)
\(432\) 0 0
\(433\) 618.973 1.42950 0.714749 0.699381i \(-0.246541\pi\)
0.714749 + 0.699381i \(0.246541\pi\)
\(434\) 0 0
\(435\) 536.602i 1.23357i
\(436\) 0 0
\(437\) −872.624 −1.99685
\(438\) 0 0
\(439\) 349.906i 0.797052i 0.917157 + 0.398526i \(0.130478\pi\)
−0.917157 + 0.398526i \(0.869522\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) − 654.501i − 1.47743i −0.674018 0.738715i \(-0.735433\pi\)
0.674018 0.738715i \(-0.264567\pi\)
\(444\) 0 0
\(445\) −345.808 −0.777096
\(446\) 0 0
\(447\) − 52.2633i − 0.116920i
\(448\) 0 0
\(449\) 490.348 1.09209 0.546045 0.837756i \(-0.316133\pi\)
0.546045 + 0.837756i \(0.316133\pi\)
\(450\) 0 0
\(451\) − 442.420i − 0.980976i
\(452\) 0 0
\(453\) 486.606 1.07419
\(454\) 0 0
\(455\) − 435.190i − 0.956462i
\(456\) 0 0
\(457\) −19.9818 −0.0437239 −0.0218619 0.999761i \(-0.506959\pi\)
−0.0218619 + 0.999761i \(0.506959\pi\)
\(458\) 0 0
\(459\) − 49.7925i − 0.108480i
\(460\) 0 0
\(461\) −193.096 −0.418864 −0.209432 0.977823i \(-0.567161\pi\)
−0.209432 + 0.977823i \(0.567161\pi\)
\(462\) 0 0
\(463\) − 830.257i − 1.79321i −0.442830 0.896606i \(-0.646025\pi\)
0.442830 0.896606i \(-0.353975\pi\)
\(464\) 0 0
\(465\) 344.973 0.741877
\(466\) 0 0
\(467\) 375.665i 0.804422i 0.915547 + 0.402211i \(0.131758\pi\)
−0.915547 + 0.402211i \(0.868242\pi\)
\(468\) 0 0
\(469\) 289.459 0.617184
\(470\) 0 0
\(471\) 101.063i 0.214570i
\(472\) 0 0
\(473\) −281.321 −0.594759
\(474\) 0 0
\(475\) − 1414.43i − 2.97776i
\(476\) 0 0
\(477\) 108.468 0.227397
\(478\) 0 0
\(479\) 291.509i 0.608577i 0.952580 + 0.304289i \(0.0984187\pi\)
−0.952580 + 0.304289i \(0.901581\pi\)
\(480\) 0 0
\(481\) −735.267 −1.52862
\(482\) 0 0
\(483\) 188.929i 0.391157i
\(484\) 0 0
\(485\) 1167.40 2.40702
\(486\) 0 0
\(487\) 254.914i 0.523438i 0.965144 + 0.261719i \(0.0842893\pi\)
−0.965144 + 0.261719i \(0.915711\pi\)
\(488\) 0 0
\(489\) 147.826 0.302302
\(490\) 0 0
\(491\) 655.025i 1.33406i 0.745029 + 0.667032i \(0.232436\pi\)
−0.745029 + 0.667032i \(0.767564\pi\)
\(492\) 0 0
\(493\) −309.808 −0.628413
\(494\) 0 0
\(495\) − 230.919i − 0.466503i
\(496\) 0 0
\(497\) 186.225 0.374698
\(498\) 0 0
\(499\) − 134.909i − 0.270359i −0.990821 0.135180i \(-0.956839\pi\)
0.990821 0.135180i \(-0.0431611\pi\)
\(500\) 0 0
\(501\) −178.156 −0.355601
\(502\) 0 0
\(503\) 1002.84i 1.99372i 0.0791778 + 0.996861i \(0.474771\pi\)
−0.0791778 + 0.996861i \(0.525229\pi\)
\(504\) 0 0
\(505\) 968.414 1.91765
\(506\) 0 0
\(507\) 217.619i 0.429229i
\(508\) 0 0
\(509\) −196.922 −0.386880 −0.193440 0.981112i \(-0.561965\pi\)
−0.193440 + 0.981112i \(0.561965\pi\)
\(510\) 0 0
\(511\) 100.078i 0.195846i
\(512\) 0 0
\(513\) −109.982 −0.214390
\(514\) 0 0
\(515\) − 499.753i − 0.970393i
\(516\) 0 0
\(517\) −99.6879 −0.192820
\(518\) 0 0
\(519\) − 0.691506i − 0.00133238i
\(520\) 0 0
\(521\) 282.831 0.542862 0.271431 0.962458i \(-0.412503\pi\)
0.271431 + 0.962458i \(0.412503\pi\)
\(522\) 0 0
\(523\) − 451.859i − 0.863975i −0.901880 0.431987i \(-0.857812\pi\)
0.901880 0.431987i \(-0.142188\pi\)
\(524\) 0 0
\(525\) −306.234 −0.583303
\(526\) 0 0
\(527\) 199.170i 0.377932i
\(528\) 0 0
\(529\) −1170.72 −2.21307
\(530\) 0 0
\(531\) − 138.866i − 0.261518i
\(532\) 0 0
\(533\) 945.423 1.77378
\(534\) 0 0
\(535\) − 35.4038i − 0.0661754i
\(536\) 0 0
\(537\) 154.363 0.287454
\(538\) 0 0
\(539\) 56.2282i 0.104320i
\(540\) 0 0
\(541\) 94.1379 0.174007 0.0870036 0.996208i \(-0.472271\pi\)
0.0870036 + 0.996208i \(0.472271\pi\)
\(542\) 0 0
\(543\) − 474.280i − 0.873444i
\(544\) 0 0
\(545\) −1520.38 −2.78968
\(546\) 0 0
\(547\) 834.356i 1.52533i 0.646793 + 0.762665i \(0.276110\pi\)
−0.646793 + 0.762665i \(0.723890\pi\)
\(548\) 0 0
\(549\) −16.0182 −0.0291770
\(550\) 0 0
\(551\) 684.304i 1.24193i
\(552\) 0 0
\(553\) 113.808 0.205800
\(554\) 0 0
\(555\) 710.952i 1.28099i
\(556\) 0 0
\(557\) −624.395 −1.12100 −0.560499 0.828155i \(-0.689390\pi\)
−0.560499 + 0.828155i \(0.689390\pi\)
\(558\) 0 0
\(559\) − 601.165i − 1.07543i
\(560\) 0 0
\(561\) 133.321 0.237649
\(562\) 0 0
\(563\) − 186.697i − 0.331610i −0.986159 0.165805i \(-0.946978\pi\)
0.986159 0.165805i \(-0.0530223\pi\)
\(564\) 0 0
\(565\) 25.4955 0.0451247
\(566\) 0 0
\(567\) 23.8118i 0.0419961i
\(568\) 0 0
\(569\) 670.871 1.17904 0.589518 0.807755i \(-0.299318\pi\)
0.589518 + 0.807755i \(0.299318\pi\)
\(570\) 0 0
\(571\) 532.725i 0.932969i 0.884529 + 0.466485i \(0.154480\pi\)
−0.884529 + 0.466485i \(0.845520\pi\)
\(572\) 0 0
\(573\) 416.243 0.726428
\(574\) 0 0
\(575\) − 2755.07i − 4.79142i
\(576\) 0 0
\(577\) −783.670 −1.35818 −0.679090 0.734055i \(-0.737625\pi\)
−0.679090 + 0.734055i \(0.737625\pi\)
\(578\) 0 0
\(579\) 86.9043i 0.150094i
\(580\) 0 0
\(581\) 305.982 0.526647
\(582\) 0 0
\(583\) 290.427i 0.498160i
\(584\) 0 0
\(585\) 493.459 0.843520
\(586\) 0 0
\(587\) − 36.4054i − 0.0620195i −0.999519 0.0310097i \(-0.990128\pi\)
0.999519 0.0310097i \(-0.00987229\pi\)
\(588\) 0 0
\(589\) 439.927 0.746905
\(590\) 0 0
\(591\) 277.398i 0.469371i
\(592\) 0 0
\(593\) −379.354 −0.639720 −0.319860 0.947465i \(-0.603636\pi\)
−0.319860 + 0.947465i \(0.603636\pi\)
\(594\) 0 0
\(595\) − 242.948i − 0.408316i
\(596\) 0 0
\(597\) 662.258 1.10931
\(598\) 0 0
\(599\) − 778.304i − 1.29934i −0.760217 0.649669i \(-0.774907\pi\)
0.760217 0.649669i \(-0.225093\pi\)
\(600\) 0 0
\(601\) 241.724 0.402203 0.201102 0.979570i \(-0.435548\pi\)
0.201102 + 0.979570i \(0.435548\pi\)
\(602\) 0 0
\(603\) 328.216i 0.544305i
\(604\) 0 0
\(605\) −541.198 −0.894542
\(606\) 0 0
\(607\) 612.733i 1.00944i 0.863282 + 0.504722i \(0.168405\pi\)
−0.863282 + 0.504722i \(0.831595\pi\)
\(608\) 0 0
\(609\) 148.156 0.243278
\(610\) 0 0
\(611\) − 213.027i − 0.348652i
\(612\) 0 0
\(613\) 1071.84 1.74851 0.874255 0.485467i \(-0.161351\pi\)
0.874255 + 0.485467i \(0.161351\pi\)
\(614\) 0 0
\(615\) − 914.158i − 1.48644i
\(616\) 0 0
\(617\) −681.753 −1.10495 −0.552474 0.833530i \(-0.686316\pi\)
−0.552474 + 0.833530i \(0.686316\pi\)
\(618\) 0 0
\(619\) − 1102.38i − 1.78091i −0.455076 0.890453i \(-0.650388\pi\)
0.455076 0.890453i \(-0.349612\pi\)
\(620\) 0 0
\(621\) −214.225 −0.344968
\(622\) 0 0
\(623\) 95.4775i 0.153254i
\(624\) 0 0
\(625\) 2170.04 3.47206
\(626\) 0 0
\(627\) − 294.480i − 0.469665i
\(628\) 0 0
\(629\) −410.468 −0.652573
\(630\) 0 0
\(631\) − 151.578i − 0.240219i −0.992761 0.120109i \(-0.961675\pi\)
0.992761 0.120109i \(-0.0383245\pi\)
\(632\) 0 0
\(633\) −219.688 −0.347058
\(634\) 0 0
\(635\) − 2272.64i − 3.57897i
\(636\) 0 0
\(637\) −120.156 −0.188628
\(638\) 0 0
\(639\) 211.159i 0.330453i
\(640\) 0 0
\(641\) −161.550 −0.252028 −0.126014 0.992028i \(-0.540218\pi\)
−0.126014 + 0.992028i \(0.540218\pi\)
\(642\) 0 0
\(643\) − 274.395i − 0.426742i −0.976971 0.213371i \(-0.931556\pi\)
0.976971 0.213371i \(-0.0684444\pi\)
\(644\) 0 0
\(645\) −581.285 −0.901217
\(646\) 0 0
\(647\) − 499.355i − 0.771800i −0.922541 0.385900i \(-0.873891\pi\)
0.922541 0.385900i \(-0.126109\pi\)
\(648\) 0 0
\(649\) 371.818 0.572909
\(650\) 0 0
\(651\) − 95.2470i − 0.146309i
\(652\) 0 0
\(653\) 511.670 0.783568 0.391784 0.920057i \(-0.371858\pi\)
0.391784 + 0.920057i \(0.371858\pi\)
\(654\) 0 0
\(655\) − 800.335i − 1.22189i
\(656\) 0 0
\(657\) −113.477 −0.172720
\(658\) 0 0
\(659\) 479.834i 0.728124i 0.931375 + 0.364062i \(0.118610\pi\)
−0.931375 + 0.364062i \(0.881390\pi\)
\(660\) 0 0
\(661\) 231.633 0.350429 0.175214 0.984530i \(-0.443938\pi\)
0.175214 + 0.984530i \(0.443938\pi\)
\(662\) 0 0
\(663\) 284.899i 0.429712i
\(664\) 0 0
\(665\) −536.624 −0.806954
\(666\) 0 0
\(667\) 1332.90i 1.99835i
\(668\) 0 0
\(669\) 470.258 0.702926
\(670\) 0 0
\(671\) − 42.8892i − 0.0639184i
\(672\) 0 0
\(673\) −655.423 −0.973882 −0.486941 0.873435i \(-0.661887\pi\)
−0.486941 + 0.873435i \(0.661887\pi\)
\(674\) 0 0
\(675\) − 347.237i − 0.514425i
\(676\) 0 0
\(677\) −773.960 −1.14322 −0.571610 0.820525i \(-0.693681\pi\)
−0.571610 + 0.820525i \(0.693681\pi\)
\(678\) 0 0
\(679\) − 322.321i − 0.474699i
\(680\) 0 0
\(681\) −155.862 −0.228872
\(682\) 0 0
\(683\) 585.425i 0.857137i 0.903509 + 0.428569i \(0.140982\pi\)
−0.903509 + 0.428569i \(0.859018\pi\)
\(684\) 0 0
\(685\) 1030.08 1.50377
\(686\) 0 0
\(687\) 463.253i 0.674313i
\(688\) 0 0
\(689\) −620.624 −0.900761
\(690\) 0 0
\(691\) − 779.995i − 1.12879i −0.825504 0.564396i \(-0.809109\pi\)
0.825504 0.564396i \(-0.190891\pi\)
\(692\) 0 0
\(693\) −63.7568 −0.0920012
\(694\) 0 0
\(695\) 512.846i 0.737908i
\(696\) 0 0
\(697\) 527.789 0.757230
\(698\) 0 0
\(699\) − 162.574i − 0.232581i
\(700\) 0 0
\(701\) 1299.98 1.85447 0.927234 0.374483i \(-0.122180\pi\)
0.927234 + 0.374483i \(0.122180\pi\)
\(702\) 0 0
\(703\) 906.643i 1.28968i
\(704\) 0 0
\(705\) −205.982 −0.292173
\(706\) 0 0
\(707\) − 267.379i − 0.378188i
\(708\) 0 0
\(709\) −545.891 −0.769945 −0.384972 0.922928i \(-0.625789\pi\)
−0.384972 + 0.922928i \(0.625789\pi\)
\(710\) 0 0
\(711\) 129.046i 0.181499i
\(712\) 0 0
\(713\) 856.900 1.20182
\(714\) 0 0
\(715\) 1321.25i 1.84791i
\(716\) 0 0
\(717\) 86.4356 0.120552
\(718\) 0 0
\(719\) − 610.922i − 0.849683i −0.905268 0.424842i \(-0.860330\pi\)
0.905268 0.424842i \(-0.139670\pi\)
\(720\) 0 0
\(721\) −137.982 −0.191376
\(722\) 0 0
\(723\) − 433.792i − 0.599989i
\(724\) 0 0
\(725\) −2160.50 −2.98000
\(726\) 0 0
\(727\) 1068.12i 1.46922i 0.678491 + 0.734608i \(0.262634\pi\)
−0.678491 + 0.734608i \(0.737366\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) − 335.605i − 0.459104i
\(732\) 0 0
\(733\) 445.056 0.607171 0.303585 0.952804i \(-0.401816\pi\)
0.303585 + 0.952804i \(0.401816\pi\)
\(734\) 0 0
\(735\) 116.183i 0.158072i
\(736\) 0 0
\(737\) −878.809 −1.19241
\(738\) 0 0
\(739\) − 1194.50i − 1.61637i −0.588929 0.808184i \(-0.700450\pi\)
0.588929 0.808184i \(-0.299550\pi\)
\(740\) 0 0
\(741\) 629.285 0.849237
\(742\) 0 0
\(743\) − 86.0536i − 0.115819i −0.998322 0.0579096i \(-0.981556\pi\)
0.998322 0.0579096i \(-0.0184435\pi\)
\(744\) 0 0
\(745\) 289.147 0.388117
\(746\) 0 0
\(747\) 346.951i 0.464459i
\(748\) 0 0
\(749\) −9.77500 −0.0130507
\(750\) 0 0
\(751\) 408.383i 0.543785i 0.962328 + 0.271893i \(0.0876495\pi\)
−0.962328 + 0.271893i \(0.912350\pi\)
\(752\) 0 0
\(753\) −178.541 −0.237106
\(754\) 0 0
\(755\) 2692.15i 3.56576i
\(756\) 0 0
\(757\) −62.6970 −0.0828229 −0.0414115 0.999142i \(-0.513185\pi\)
−0.0414115 + 0.999142i \(0.513185\pi\)
\(758\) 0 0
\(759\) − 573.595i − 0.755724i
\(760\) 0 0
\(761\) −20.6099 −0.0270826 −0.0135413 0.999908i \(-0.504310\pi\)
−0.0135413 + 0.999908i \(0.504310\pi\)
\(762\) 0 0
\(763\) 419.777i 0.550166i
\(764\) 0 0
\(765\) 275.477 0.360101
\(766\) 0 0
\(767\) 794.551i 1.03592i
\(768\) 0 0
\(769\) 950.936 1.23659 0.618294 0.785947i \(-0.287824\pi\)
0.618294 + 0.785947i \(0.287824\pi\)
\(770\) 0 0
\(771\) 635.798i 0.824640i
\(772\) 0 0
\(773\) −1018.77 −1.31794 −0.658969 0.752170i \(-0.729007\pi\)
−0.658969 + 0.752170i \(0.729007\pi\)
\(774\) 0 0
\(775\) 1388.95i 1.79219i
\(776\) 0 0
\(777\) 196.294 0.252631
\(778\) 0 0
\(779\) − 1165.78i − 1.49651i
\(780\) 0 0
\(781\) −565.386 −0.723926
\(782\) 0 0
\(783\) 167.993i 0.214551i
\(784\) 0 0
\(785\) −559.129 −0.712266
\(786\) 0 0
\(787\) 516.597i 0.656413i 0.944606 + 0.328207i \(0.106444\pi\)
−0.944606 + 0.328207i \(0.893556\pi\)
\(788\) 0 0
\(789\) −734.849 −0.931368
\(790\) 0 0
\(791\) − 7.03930i − 0.00889924i
\(792\) 0 0
\(793\) 91.6515 0.115576
\(794\) 0 0
\(795\) 600.100i 0.754843i
\(796\) 0 0
\(797\) 407.673 0.511510 0.255755 0.966742i \(-0.417676\pi\)
0.255755 + 0.966742i \(0.417676\pi\)
\(798\) 0 0
\(799\) − 118.924i − 0.148841i
\(800\) 0 0
\(801\) −108.261 −0.135158
\(802\) 0 0
\(803\) − 303.839i − 0.378380i
\(804\) 0 0
\(805\) −1045.25 −1.29845
\(806\) 0 0
\(807\) 613.202i 0.759854i
\(808\) 0 0
\(809\) 940.221 1.16220 0.581101 0.813832i \(-0.302622\pi\)
0.581101 + 0.813832i \(0.302622\pi\)
\(810\) 0 0
\(811\) 880.359i 1.08552i 0.839887 + 0.542762i \(0.182621\pi\)
−0.839887 + 0.542762i \(0.817379\pi\)
\(812\) 0 0
\(813\) 56.3121 0.0692646
\(814\) 0 0
\(815\) 817.846i 1.00349i
\(816\) 0 0
\(817\) −741.285 −0.907325
\(818\) 0 0
\(819\) − 136.244i − 0.166354i
\(820\) 0 0
\(821\) 567.532 0.691269 0.345634 0.938369i \(-0.387664\pi\)
0.345634 + 0.938369i \(0.387664\pi\)
\(822\) 0 0
\(823\) − 1280.21i − 1.55554i −0.628550 0.777770i \(-0.716351\pi\)
0.628550 0.777770i \(-0.283649\pi\)
\(824\) 0 0
\(825\) 929.739 1.12696
\(826\) 0 0
\(827\) − 1473.95i − 1.78229i −0.453720 0.891144i \(-0.649903\pi\)
0.453720 0.891144i \(-0.350097\pi\)
\(828\) 0 0
\(829\) 70.1742 0.0846493 0.0423246 0.999104i \(-0.486524\pi\)
0.0423246 + 0.999104i \(0.486524\pi\)
\(830\) 0 0
\(831\) 225.468i 0.271322i
\(832\) 0 0
\(833\) −67.0780 −0.0805258
\(834\) 0 0
\(835\) − 985.649i − 1.18042i
\(836\) 0 0
\(837\) 108.000 0.129032
\(838\) 0 0
\(839\) 648.883i 0.773401i 0.922205 + 0.386700i \(0.126385\pi\)
−0.922205 + 0.386700i \(0.873615\pi\)
\(840\) 0 0
\(841\) 204.248 0.242864
\(842\) 0 0
\(843\) 14.6673i 0.0173990i
\(844\) 0 0
\(845\) −1203.98 −1.42483
\(846\) 0 0
\(847\) 149.425i 0.176417i
\(848\) 0 0
\(849\) −48.0000 −0.0565371
\(850\) 0 0
\(851\) 1765.98i 2.07518i
\(852\) 0 0
\(853\) −687.873 −0.806416 −0.403208 0.915108i \(-0.632105\pi\)
−0.403208 + 0.915108i \(0.632105\pi\)
\(854\) 0 0
\(855\) − 608.475i − 0.711666i
\(856\) 0 0
\(857\) −253.786 −0.296133 −0.148066 0.988977i \(-0.547305\pi\)
−0.148066 + 0.988977i \(0.547305\pi\)
\(858\) 0 0
\(859\) − 802.305i − 0.933999i −0.884258 0.467000i \(-0.845335\pi\)
0.884258 0.467000i \(-0.154665\pi\)
\(860\) 0 0
\(861\) −252.399 −0.293147
\(862\) 0 0
\(863\) 548.210i 0.635238i 0.948218 + 0.317619i \(0.102883\pi\)
−0.948218 + 0.317619i \(0.897117\pi\)
\(864\) 0 0
\(865\) 3.82576 0.00442284
\(866\) 0 0
\(867\) − 341.516i − 0.393905i
\(868\) 0 0
\(869\) −345.524 −0.397611
\(870\) 0 0
\(871\) − 1877.96i − 2.15609i
\(872\) 0 0
\(873\) 365.477 0.418645
\(874\) 0 0
\(875\) − 1060.41i − 1.21190i
\(876\) 0 0
\(877\) −607.176 −0.692333 −0.346166 0.938173i \(-0.612517\pi\)
−0.346166 + 0.938173i \(0.612517\pi\)
\(878\) 0 0
\(879\) 909.606i 1.03482i
\(880\) 0 0
\(881\) 383.492 0.435291 0.217646 0.976028i \(-0.430162\pi\)
0.217646 + 0.976028i \(0.430162\pi\)
\(882\) 0 0
\(883\) 826.204i 0.935678i 0.883814 + 0.467839i \(0.154967\pi\)
−0.883814 + 0.467839i \(0.845033\pi\)
\(884\) 0 0
\(885\) 768.276 0.868108
\(886\) 0 0
\(887\) 628.513i 0.708583i 0.935135 + 0.354291i \(0.115278\pi\)
−0.935135 + 0.354291i \(0.884722\pi\)
\(888\) 0 0
\(889\) −627.477 −0.705824
\(890\) 0 0
\(891\) − 72.2934i − 0.0811374i
\(892\) 0 0
\(893\) −262.679 −0.294153
\(894\) 0 0
\(895\) 854.013i 0.954204i
\(896\) 0 0
\(897\) 1225.73 1.36648
\(898\) 0 0
\(899\) − 671.973i − 0.747467i
\(900\) 0 0
\(901\) −346.468 −0.384537
\(902\) 0 0
\(903\) 160.493i 0.177733i
\(904\) 0 0
\(905\) 2623.96 2.89940
\(906\) 0 0
\(907\) 895.201i 0.986991i 0.869748 + 0.493495i \(0.164281\pi\)
−0.869748 + 0.493495i \(0.835719\pi\)
\(908\) 0 0
\(909\) 303.180 0.333531
\(910\) 0 0
\(911\) 174.930i 0.192019i 0.995380 + 0.0960097i \(0.0306080\pi\)
−0.995380 + 0.0960097i \(0.969392\pi\)
\(912\) 0 0
\(913\) −928.973 −1.01749
\(914\) 0 0
\(915\) − 88.6206i − 0.0968532i
\(916\) 0 0
\(917\) −220.973 −0.240974
\(918\) 0 0
\(919\) 336.971i 0.366672i 0.983050 + 0.183336i \(0.0586896\pi\)
−0.983050 + 0.183336i \(0.941310\pi\)
\(920\) 0 0
\(921\) −232.900 −0.252877
\(922\) 0 0
\(923\) − 1208.19i − 1.30899i
\(924\) 0 0
\(925\) −2862.47 −3.09456
\(926\) 0 0
\(927\) − 156.457i − 0.168777i
\(928\) 0 0
\(929\) −552.225 −0.594429 −0.297215 0.954811i \(-0.596058\pi\)
−0.297215 + 0.954811i \(0.596058\pi\)
\(930\) 0 0
\(931\) 148.162i 0.159143i
\(932\) 0 0
\(933\) −796.377 −0.853566
\(934\) 0 0
\(935\) 737.600i 0.788877i
\(936\) 0 0
\(937\) 1178.83 1.25809 0.629043 0.777370i \(-0.283447\pi\)
0.629043 + 0.777370i \(0.283447\pi\)
\(938\) 0 0
\(939\) − 1004.43i − 1.06968i
\(940\) 0 0
\(941\) −272.958 −0.290073 −0.145036 0.989426i \(-0.546330\pi\)
−0.145036 + 0.989426i \(0.546330\pi\)
\(942\) 0 0
\(943\) − 2270.74i − 2.40799i
\(944\) 0 0
\(945\) −131.739 −0.139406
\(946\) 0 0
\(947\) − 531.366i − 0.561104i −0.959839 0.280552i \(-0.909482\pi\)
0.959839 0.280552i \(-0.0905175\pi\)
\(948\) 0 0
\(949\) 649.285 0.684178
\(950\) 0 0
\(951\) − 48.7677i − 0.0512805i
\(952\) 0 0
\(953\) −510.000 −0.535152 −0.267576 0.963537i \(-0.586223\pi\)
−0.267576 + 0.963537i \(0.586223\pi\)
\(954\) 0 0
\(955\) 2302.87i 2.41138i
\(956\) 0 0
\(957\) −449.808 −0.470018
\(958\) 0 0
\(959\) − 284.406i − 0.296565i
\(960\) 0 0
\(961\) 529.000 0.550468
\(962\) 0 0
\(963\) − 11.0838i − 0.0115097i
\(964\) 0 0
\(965\) −480.798 −0.498237
\(966\) 0 0
\(967\) 580.079i 0.599875i 0.953959 + 0.299937i \(0.0969658\pi\)
−0.953959 + 0.299937i \(0.903034\pi\)
\(968\) 0 0
\(969\) 351.303 0.362542
\(970\) 0 0
\(971\) 1351.19i 1.39155i 0.718261 + 0.695773i \(0.244938\pi\)
−0.718261 + 0.695773i \(0.755062\pi\)
\(972\) 0 0
\(973\) 141.597 0.145526
\(974\) 0 0
\(975\) 1986.79i 2.03773i
\(976\) 0 0
\(977\) −63.5318 −0.0650275 −0.0325137 0.999471i \(-0.510351\pi\)
−0.0325137 + 0.999471i \(0.510351\pi\)
\(978\) 0 0
\(979\) − 289.874i − 0.296091i
\(980\) 0 0
\(981\) −475.982 −0.485201
\(982\) 0 0
\(983\) − 1473.52i − 1.49900i −0.662005 0.749499i \(-0.730294\pi\)
0.662005 0.749499i \(-0.269706\pi\)
\(984\) 0 0
\(985\) −1534.71 −1.55808
\(986\) 0 0
\(987\) 56.8716i 0.0576207i
\(988\) 0 0
\(989\) −1443.89 −1.45995
\(990\) 0 0
\(991\) − 999.028i − 1.00810i −0.863674 0.504050i \(-0.831843\pi\)
0.863674 0.504050i \(-0.168157\pi\)
\(992\) 0 0
\(993\) −89.6697 −0.0903018
\(994\) 0 0
\(995\) 3663.94i 3.68235i
\(996\) 0 0
\(997\) −1076.88 −1.08012 −0.540061 0.841626i \(-0.681599\pi\)
−0.540061 + 0.841626i \(0.681599\pi\)
\(998\) 0 0
\(999\) 222.576i 0.222799i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.3.m.a.127.3 yes 4
3.2 odd 2 1008.3.m.f.127.4 4
4.3 odd 2 inner 336.3.m.a.127.1 4
7.6 odd 2 2352.3.m.k.1471.2 4
8.3 odd 2 1344.3.m.c.127.4 4
8.5 even 2 1344.3.m.c.127.2 4
12.11 even 2 1008.3.m.f.127.3 4
28.27 even 2 2352.3.m.k.1471.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.m.a.127.1 4 4.3 odd 2 inner
336.3.m.a.127.3 yes 4 1.1 even 1 trivial
1008.3.m.f.127.3 4 12.11 even 2
1008.3.m.f.127.4 4 3.2 odd 2
1344.3.m.c.127.2 4 8.5 even 2
1344.3.m.c.127.4 4 8.3 odd 2
2352.3.m.k.1471.2 4 7.6 odd 2
2352.3.m.k.1471.4 4 28.27 even 2