Properties

Label 336.3.m.b.127.1
Level $336$
Weight $3$
Character 336.127
Analytic conductor $9.155$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,3,Mod(127,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 336 = 2^{4} \cdot 3 \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 336.m (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.15533688251\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-7})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - x^{2} - 2x + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 127.1
Root \(1.39564 + 0.228425i\) of defining polynomial
Character \(\chi\) \(=\) 336.127
Dual form 336.3.m.b.127.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.73205i q^{3} -2.00000 q^{5} -2.64575i q^{7} -3.00000 q^{9} -3.65480i q^{11} -16.3303 q^{13} +3.46410i q^{15} -4.33030 q^{17} +14.2378i q^{19} -4.58258 q^{21} -31.3676i q^{23} -21.0000 q^{25} +5.19615i q^{27} -50.6606 q^{29} +27.7128i q^{31} -6.33030 q^{33} +5.29150i q^{35} -10.6606 q^{37} +28.2849i q^{39} +8.33030 q^{41} -6.54680i q^{43} +6.00000 q^{45} -35.7852i q^{47} -7.00000 q^{49} +7.50030i q^{51} -26.6606 q^{53} +7.30960i q^{55} +24.6606 q^{57} -0.381401i q^{59} -24.3303 q^{61} +7.93725i q^{63} +32.6606 q^{65} +55.4256i q^{67} -54.3303 q^{69} -94.8656i q^{71} +94.6606 q^{73} +36.3731i q^{75} -9.66970 q^{77} -96.9948i q^{79} +9.00000 q^{81} -105.449i q^{83} +8.66061 q^{85} +87.7467i q^{87} +92.9909 q^{89} +43.2059i q^{91} +48.0000 q^{93} -28.4756i q^{95} +51.3212 q^{97} +10.9644i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 8 q^{5} - 12 q^{9} + 8 q^{13} + 56 q^{17} - 84 q^{25} - 56 q^{29} + 48 q^{33} + 104 q^{37} - 40 q^{41} + 24 q^{45} - 28 q^{49} + 40 q^{53} - 48 q^{57} - 24 q^{61} - 16 q^{65} - 144 q^{69} + 232 q^{73}+ \cdots - 88 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/336\mathbb{Z}\right)^\times\).

\(n\) \(85\) \(113\) \(127\) \(241\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) − 1.73205i − 0.577350i
\(4\) 0 0
\(5\) −2.00000 −0.400000 −0.200000 0.979796i \(-0.564094\pi\)
−0.200000 + 0.979796i \(0.564094\pi\)
\(6\) 0 0
\(7\) − 2.64575i − 0.377964i
\(8\) 0 0
\(9\) −3.00000 −0.333333
\(10\) 0 0
\(11\) − 3.65480i − 0.332255i −0.986104 0.166127i \(-0.946874\pi\)
0.986104 0.166127i \(-0.0531263\pi\)
\(12\) 0 0
\(13\) −16.3303 −1.25618 −0.628089 0.778142i \(-0.716162\pi\)
−0.628089 + 0.778142i \(0.716162\pi\)
\(14\) 0 0
\(15\) 3.46410i 0.230940i
\(16\) 0 0
\(17\) −4.33030 −0.254724 −0.127362 0.991856i \(-0.540651\pi\)
−0.127362 + 0.991856i \(0.540651\pi\)
\(18\) 0 0
\(19\) 14.2378i 0.749358i 0.927155 + 0.374679i \(0.122247\pi\)
−0.927155 + 0.374679i \(0.877753\pi\)
\(20\) 0 0
\(21\) −4.58258 −0.218218
\(22\) 0 0
\(23\) − 31.3676i − 1.36381i −0.731441 0.681905i \(-0.761152\pi\)
0.731441 0.681905i \(-0.238848\pi\)
\(24\) 0 0
\(25\) −21.0000 −0.840000
\(26\) 0 0
\(27\) 5.19615i 0.192450i
\(28\) 0 0
\(29\) −50.6606 −1.74692 −0.873459 0.486898i \(-0.838128\pi\)
−0.873459 + 0.486898i \(0.838128\pi\)
\(30\) 0 0
\(31\) 27.7128i 0.893962i 0.894544 + 0.446981i \(0.147501\pi\)
−0.894544 + 0.446981i \(0.852499\pi\)
\(32\) 0 0
\(33\) −6.33030 −0.191827
\(34\) 0 0
\(35\) 5.29150i 0.151186i
\(36\) 0 0
\(37\) −10.6606 −0.288124 −0.144062 0.989569i \(-0.546017\pi\)
−0.144062 + 0.989569i \(0.546017\pi\)
\(38\) 0 0
\(39\) 28.2849i 0.725254i
\(40\) 0 0
\(41\) 8.33030 0.203178 0.101589 0.994826i \(-0.467607\pi\)
0.101589 + 0.994826i \(0.467607\pi\)
\(42\) 0 0
\(43\) − 6.54680i − 0.152251i −0.997098 0.0761256i \(-0.975745\pi\)
0.997098 0.0761256i \(-0.0242550\pi\)
\(44\) 0 0
\(45\) 6.00000 0.133333
\(46\) 0 0
\(47\) − 35.7852i − 0.761388i −0.924701 0.380694i \(-0.875685\pi\)
0.924701 0.380694i \(-0.124315\pi\)
\(48\) 0 0
\(49\) −7.00000 −0.142857
\(50\) 0 0
\(51\) 7.50030i 0.147065i
\(52\) 0 0
\(53\) −26.6606 −0.503030 −0.251515 0.967853i \(-0.580929\pi\)
−0.251515 + 0.967853i \(0.580929\pi\)
\(54\) 0 0
\(55\) 7.30960i 0.132902i
\(56\) 0 0
\(57\) 24.6606 0.432642
\(58\) 0 0
\(59\) − 0.381401i − 0.00646442i −0.999995 0.00323221i \(-0.998971\pi\)
0.999995 0.00323221i \(-0.00102885\pi\)
\(60\) 0 0
\(61\) −24.3303 −0.398857 −0.199429 0.979912i \(-0.563909\pi\)
−0.199429 + 0.979912i \(0.563909\pi\)
\(62\) 0 0
\(63\) 7.93725i 0.125988i
\(64\) 0 0
\(65\) 32.6606 0.502471
\(66\) 0 0
\(67\) 55.4256i 0.827248i 0.910448 + 0.413624i \(0.135737\pi\)
−0.910448 + 0.413624i \(0.864263\pi\)
\(68\) 0 0
\(69\) −54.3303 −0.787396
\(70\) 0 0
\(71\) − 94.8656i − 1.33614i −0.744100 0.668068i \(-0.767122\pi\)
0.744100 0.668068i \(-0.232878\pi\)
\(72\) 0 0
\(73\) 94.6606 1.29672 0.648360 0.761334i \(-0.275455\pi\)
0.648360 + 0.761334i \(0.275455\pi\)
\(74\) 0 0
\(75\) 36.3731i 0.484974i
\(76\) 0 0
\(77\) −9.66970 −0.125580
\(78\) 0 0
\(79\) − 96.9948i − 1.22778i −0.789390 0.613891i \(-0.789603\pi\)
0.789390 0.613891i \(-0.210397\pi\)
\(80\) 0 0
\(81\) 9.00000 0.111111
\(82\) 0 0
\(83\) − 105.449i − 1.27047i −0.772321 0.635233i \(-0.780904\pi\)
0.772321 0.635233i \(-0.219096\pi\)
\(84\) 0 0
\(85\) 8.66061 0.101889
\(86\) 0 0
\(87\) 87.7467i 1.00858i
\(88\) 0 0
\(89\) 92.9909 1.04484 0.522421 0.852688i \(-0.325029\pi\)
0.522421 + 0.852688i \(0.325029\pi\)
\(90\) 0 0
\(91\) 43.2059i 0.474790i
\(92\) 0 0
\(93\) 48.0000 0.516129
\(94\) 0 0
\(95\) − 28.4756i − 0.299743i
\(96\) 0 0
\(97\) 51.3212 0.529085 0.264542 0.964374i \(-0.414779\pi\)
0.264542 + 0.964374i \(0.414779\pi\)
\(98\) 0 0
\(99\) 10.9644i 0.110752i
\(100\) 0 0
\(101\) 74.6606 0.739214 0.369607 0.929188i \(-0.379492\pi\)
0.369607 + 0.929188i \(0.379492\pi\)
\(102\) 0 0
\(103\) 140.090i 1.36009i 0.733169 + 0.680047i \(0.238041\pi\)
−0.733169 + 0.680047i \(0.761959\pi\)
\(104\) 0 0
\(105\) 9.16515 0.0872872
\(106\) 0 0
\(107\) − 198.407i − 1.85427i −0.374723 0.927137i \(-0.622262\pi\)
0.374723 0.927137i \(-0.377738\pi\)
\(108\) 0 0
\(109\) −33.3394 −0.305866 −0.152933 0.988237i \(-0.548872\pi\)
−0.152933 + 0.988237i \(0.548872\pi\)
\(110\) 0 0
\(111\) 18.4647i 0.166349i
\(112\) 0 0
\(113\) 11.3212 0.100188 0.0500939 0.998745i \(-0.484048\pi\)
0.0500939 + 0.998745i \(0.484048\pi\)
\(114\) 0 0
\(115\) 62.7352i 0.545524i
\(116\) 0 0
\(117\) 48.9909 0.418726
\(118\) 0 0
\(119\) 11.4569i 0.0962765i
\(120\) 0 0
\(121\) 107.642 0.889607
\(122\) 0 0
\(123\) − 14.4285i − 0.117305i
\(124\) 0 0
\(125\) 92.0000 0.736000
\(126\) 0 0
\(127\) 84.6640i 0.666646i 0.942813 + 0.333323i \(0.108170\pi\)
−0.942813 + 0.333323i \(0.891830\pi\)
\(128\) 0 0
\(129\) −11.3394 −0.0879023
\(130\) 0 0
\(131\) 160.111i 1.22223i 0.791544 + 0.611113i \(0.209278\pi\)
−0.791544 + 0.611113i \(0.790722\pi\)
\(132\) 0 0
\(133\) 37.6697 0.283231
\(134\) 0 0
\(135\) − 10.3923i − 0.0769800i
\(136\) 0 0
\(137\) 193.303 1.41097 0.705486 0.708724i \(-0.250729\pi\)
0.705486 + 0.708724i \(0.250729\pi\)
\(138\) 0 0
\(139\) − 60.8282i − 0.437613i −0.975768 0.218807i \(-0.929784\pi\)
0.975768 0.218807i \(-0.0702164\pi\)
\(140\) 0 0
\(141\) −61.9818 −0.439587
\(142\) 0 0
\(143\) 59.6840i 0.417371i
\(144\) 0 0
\(145\) 101.321 0.698767
\(146\) 0 0
\(147\) 12.1244i 0.0824786i
\(148\) 0 0
\(149\) −131.982 −0.885784 −0.442892 0.896575i \(-0.646047\pi\)
−0.442892 + 0.896575i \(0.646047\pi\)
\(150\) 0 0
\(151\) 62.7352i 0.415465i 0.978186 + 0.207733i \(0.0666084\pi\)
−0.978186 + 0.207733i \(0.933392\pi\)
\(152\) 0 0
\(153\) 12.9909 0.0849079
\(154\) 0 0
\(155\) − 55.4256i − 0.357585i
\(156\) 0 0
\(157\) −86.3121 −0.549759 −0.274879 0.961479i \(-0.588638\pi\)
−0.274879 + 0.961479i \(0.588638\pi\)
\(158\) 0 0
\(159\) 46.1775i 0.290425i
\(160\) 0 0
\(161\) −82.9909 −0.515471
\(162\) 0 0
\(163\) − 165.514i − 1.01542i −0.861527 0.507712i \(-0.830491\pi\)
0.861527 0.507712i \(-0.169509\pi\)
\(164\) 0 0
\(165\) 12.6606 0.0767309
\(166\) 0 0
\(167\) − 270.581i − 1.62025i −0.586259 0.810124i \(-0.699400\pi\)
0.586259 0.810124i \(-0.300600\pi\)
\(168\) 0 0
\(169\) 97.6788 0.577981
\(170\) 0 0
\(171\) − 42.7134i − 0.249786i
\(172\) 0 0
\(173\) −332.642 −1.92279 −0.961394 0.275175i \(-0.911264\pi\)
−0.961394 + 0.275175i \(0.911264\pi\)
\(174\) 0 0
\(175\) 55.5608i 0.317490i
\(176\) 0 0
\(177\) −0.660606 −0.00373223
\(178\) 0 0
\(179\) 170.694i 0.953600i 0.879012 + 0.476800i \(0.158203\pi\)
−0.879012 + 0.476800i \(0.841797\pi\)
\(180\) 0 0
\(181\) −169.652 −0.937301 −0.468651 0.883384i \(-0.655260\pi\)
−0.468651 + 0.883384i \(0.655260\pi\)
\(182\) 0 0
\(183\) 42.1413i 0.230280i
\(184\) 0 0
\(185\) 21.3212 0.115250
\(186\) 0 0
\(187\) 15.8264i 0.0846332i
\(188\) 0 0
\(189\) 13.7477 0.0727393
\(190\) 0 0
\(191\) − 301.949i − 1.58088i −0.612537 0.790442i \(-0.709851\pi\)
0.612537 0.790442i \(-0.290149\pi\)
\(192\) 0 0
\(193\) −224.642 −1.16395 −0.581975 0.813207i \(-0.697720\pi\)
−0.581975 + 0.813207i \(0.697720\pi\)
\(194\) 0 0
\(195\) − 56.5698i − 0.290102i
\(196\) 0 0
\(197\) 7.98182 0.0405168 0.0202584 0.999795i \(-0.493551\pi\)
0.0202584 + 0.999795i \(0.493551\pi\)
\(198\) 0 0
\(199\) 369.102i 1.85478i 0.374093 + 0.927391i \(0.377954\pi\)
−0.374093 + 0.927391i \(0.622046\pi\)
\(200\) 0 0
\(201\) 96.0000 0.477612
\(202\) 0 0
\(203\) 134.035i 0.660273i
\(204\) 0 0
\(205\) −16.6606 −0.0812712
\(206\) 0 0
\(207\) 94.1028i 0.454603i
\(208\) 0 0
\(209\) 52.0364 0.248978
\(210\) 0 0
\(211\) − 344.440i − 1.63242i −0.577757 0.816209i \(-0.696072\pi\)
0.577757 0.816209i \(-0.303928\pi\)
\(212\) 0 0
\(213\) −164.312 −0.771418
\(214\) 0 0
\(215\) 13.0936i 0.0609005i
\(216\) 0 0
\(217\) 73.3212 0.337886
\(218\) 0 0
\(219\) − 163.957i − 0.748662i
\(220\) 0 0
\(221\) 70.7152 0.319978
\(222\) 0 0
\(223\) − 386.009i − 1.73098i −0.500923 0.865492i \(-0.667006\pi\)
0.500923 0.865492i \(-0.332994\pi\)
\(224\) 0 0
\(225\) 63.0000 0.280000
\(226\) 0 0
\(227\) 268.230i 1.18163i 0.806807 + 0.590815i \(0.201194\pi\)
−0.806807 + 0.590815i \(0.798806\pi\)
\(228\) 0 0
\(229\) −89.6515 −0.391491 −0.195746 0.980655i \(-0.562713\pi\)
−0.195746 + 0.980655i \(0.562713\pi\)
\(230\) 0 0
\(231\) 16.7484i 0.0725039i
\(232\) 0 0
\(233\) −298.661 −1.28181 −0.640903 0.767622i \(-0.721440\pi\)
−0.640903 + 0.767622i \(0.721440\pi\)
\(234\) 0 0
\(235\) 71.5704i 0.304555i
\(236\) 0 0
\(237\) −168.000 −0.708861
\(238\) 0 0
\(239\) 151.054i 0.632025i 0.948755 + 0.316013i \(0.102344\pi\)
−0.948755 + 0.316013i \(0.897656\pi\)
\(240\) 0 0
\(241\) −326.000 −1.35270 −0.676349 0.736582i \(-0.736439\pi\)
−0.676349 + 0.736582i \(0.736439\pi\)
\(242\) 0 0
\(243\) − 15.5885i − 0.0641500i
\(244\) 0 0
\(245\) 14.0000 0.0571429
\(246\) 0 0
\(247\) − 232.508i − 0.941327i
\(248\) 0 0
\(249\) −182.642 −0.733504
\(250\) 0 0
\(251\) 379.844i 1.51332i 0.653807 + 0.756661i \(0.273171\pi\)
−0.653807 + 0.756661i \(0.726829\pi\)
\(252\) 0 0
\(253\) −114.642 −0.453132
\(254\) 0 0
\(255\) − 15.0006i − 0.0588259i
\(256\) 0 0
\(257\) −53.6515 −0.208761 −0.104380 0.994537i \(-0.533286\pi\)
−0.104380 + 0.994537i \(0.533286\pi\)
\(258\) 0 0
\(259\) 28.2053i 0.108901i
\(260\) 0 0
\(261\) 151.982 0.582306
\(262\) 0 0
\(263\) 34.8632i 0.132560i 0.997801 + 0.0662799i \(0.0211130\pi\)
−0.997801 + 0.0662799i \(0.978887\pi\)
\(264\) 0 0
\(265\) 53.3212 0.201212
\(266\) 0 0
\(267\) − 161.065i − 0.603240i
\(268\) 0 0
\(269\) −191.982 −0.713687 −0.356844 0.934164i \(-0.616147\pi\)
−0.356844 + 0.934164i \(0.616147\pi\)
\(270\) 0 0
\(271\) 111.614i 0.411860i 0.978567 + 0.205930i \(0.0660219\pi\)
−0.978567 + 0.205930i \(0.933978\pi\)
\(272\) 0 0
\(273\) 74.8348 0.274120
\(274\) 0 0
\(275\) 76.7508i 0.279094i
\(276\) 0 0
\(277\) 195.321 0.705131 0.352565 0.935787i \(-0.385309\pi\)
0.352565 + 0.935787i \(0.385309\pi\)
\(278\) 0 0
\(279\) − 83.1384i − 0.297987i
\(280\) 0 0
\(281\) −253.303 −0.901434 −0.450717 0.892667i \(-0.648832\pi\)
−0.450717 + 0.892667i \(0.648832\pi\)
\(282\) 0 0
\(283\) − 141.997i − 0.501755i −0.968019 0.250878i \(-0.919281\pi\)
0.968019 0.250878i \(-0.0807191\pi\)
\(284\) 0 0
\(285\) −49.3212 −0.173057
\(286\) 0 0
\(287\) − 22.0399i − 0.0767941i
\(288\) 0 0
\(289\) −270.248 −0.935116
\(290\) 0 0
\(291\) − 88.8909i − 0.305467i
\(292\) 0 0
\(293\) 518.624 1.77005 0.885024 0.465545i \(-0.154142\pi\)
0.885024 + 0.465545i \(0.154142\pi\)
\(294\) 0 0
\(295\) 0.762802i 0.00258577i
\(296\) 0 0
\(297\) 18.9909 0.0639425
\(298\) 0 0
\(299\) 512.243i 1.71319i
\(300\) 0 0
\(301\) −17.3212 −0.0575456
\(302\) 0 0
\(303\) − 129.316i − 0.426785i
\(304\) 0 0
\(305\) 48.6606 0.159543
\(306\) 0 0
\(307\) 139.708i 0.455076i 0.973769 + 0.227538i \(0.0730676\pi\)
−0.973769 + 0.227538i \(0.926932\pi\)
\(308\) 0 0
\(309\) 242.642 0.785251
\(310\) 0 0
\(311\) 299.057i 0.961598i 0.876831 + 0.480799i \(0.159653\pi\)
−0.876831 + 0.480799i \(0.840347\pi\)
\(312\) 0 0
\(313\) −66.6606 −0.212973 −0.106487 0.994314i \(-0.533960\pi\)
−0.106487 + 0.994314i \(0.533960\pi\)
\(314\) 0 0
\(315\) − 15.8745i − 0.0503953i
\(316\) 0 0
\(317\) −85.3758 −0.269324 −0.134662 0.990892i \(-0.542995\pi\)
−0.134662 + 0.990892i \(0.542995\pi\)
\(318\) 0 0
\(319\) 185.154i 0.580422i
\(320\) 0 0
\(321\) −343.652 −1.07057
\(322\) 0 0
\(323\) − 61.6540i − 0.190879i
\(324\) 0 0
\(325\) 342.936 1.05519
\(326\) 0 0
\(327\) 57.7455i 0.176592i
\(328\) 0 0
\(329\) −94.6788 −0.287777
\(330\) 0 0
\(331\) − 612.289i − 1.84981i −0.380192 0.924907i \(-0.624142\pi\)
0.380192 0.924907i \(-0.375858\pi\)
\(332\) 0 0
\(333\) 31.9818 0.0960415
\(334\) 0 0
\(335\) − 110.851i − 0.330899i
\(336\) 0 0
\(337\) 445.964 1.32333 0.661667 0.749798i \(-0.269849\pi\)
0.661667 + 0.749798i \(0.269849\pi\)
\(338\) 0 0
\(339\) − 19.6089i − 0.0578434i
\(340\) 0 0
\(341\) 101.285 0.297023
\(342\) 0 0
\(343\) 18.5203i 0.0539949i
\(344\) 0 0
\(345\) 108.661 0.314958
\(346\) 0 0
\(347\) 259.173i 0.746895i 0.927651 + 0.373447i \(0.121824\pi\)
−0.927651 + 0.373447i \(0.878176\pi\)
\(348\) 0 0
\(349\) −332.991 −0.954129 −0.477064 0.878868i \(-0.658299\pi\)
−0.477064 + 0.878868i \(0.658299\pi\)
\(350\) 0 0
\(351\) − 84.8547i − 0.241751i
\(352\) 0 0
\(353\) 75.0455 0.212593 0.106297 0.994334i \(-0.466101\pi\)
0.106297 + 0.994334i \(0.466101\pi\)
\(354\) 0 0
\(355\) 189.731i 0.534454i
\(356\) 0 0
\(357\) 19.8439 0.0555853
\(358\) 0 0
\(359\) − 345.044i − 0.961125i −0.876961 0.480562i \(-0.840433\pi\)
0.876961 0.480562i \(-0.159567\pi\)
\(360\) 0 0
\(361\) 158.285 0.438462
\(362\) 0 0
\(363\) − 186.442i − 0.513615i
\(364\) 0 0
\(365\) −189.321 −0.518688
\(366\) 0 0
\(367\) − 177.400i − 0.483380i −0.970354 0.241690i \(-0.922298\pi\)
0.970354 0.241690i \(-0.0777017\pi\)
\(368\) 0 0
\(369\) −24.9909 −0.0677260
\(370\) 0 0
\(371\) 70.5373i 0.190128i
\(372\) 0 0
\(373\) 635.248 1.70308 0.851540 0.524290i \(-0.175669\pi\)
0.851540 + 0.524290i \(0.175669\pi\)
\(374\) 0 0
\(375\) − 159.349i − 0.424930i
\(376\) 0 0
\(377\) 827.303 2.19444
\(378\) 0 0
\(379\) − 31.2084i − 0.0823441i −0.999152 0.0411720i \(-0.986891\pi\)
0.999152 0.0411720i \(-0.0131092\pi\)
\(380\) 0 0
\(381\) 146.642 0.384888
\(382\) 0 0
\(383\) − 28.4756i − 0.0743489i −0.999309 0.0371744i \(-0.988164\pi\)
0.999309 0.0371744i \(-0.0118357\pi\)
\(384\) 0 0
\(385\) 19.3394 0.0502322
\(386\) 0 0
\(387\) 19.6404i 0.0507504i
\(388\) 0 0
\(389\) 405.267 1.04182 0.520908 0.853613i \(-0.325593\pi\)
0.520908 + 0.853613i \(0.325593\pi\)
\(390\) 0 0
\(391\) 135.831i 0.347395i
\(392\) 0 0
\(393\) 277.321 0.705652
\(394\) 0 0
\(395\) 193.990i 0.491113i
\(396\) 0 0
\(397\) 490.936 1.23662 0.618308 0.785936i \(-0.287819\pi\)
0.618308 + 0.785936i \(0.287819\pi\)
\(398\) 0 0
\(399\) − 65.2458i − 0.163523i
\(400\) 0 0
\(401\) −248.018 −0.618499 −0.309250 0.950981i \(-0.600078\pi\)
−0.309250 + 0.950981i \(0.600078\pi\)
\(402\) 0 0
\(403\) − 452.559i − 1.12297i
\(404\) 0 0
\(405\) −18.0000 −0.0444444
\(406\) 0 0
\(407\) 38.9624i 0.0957307i
\(408\) 0 0
\(409\) −369.964 −0.904557 −0.452278 0.891877i \(-0.649389\pi\)
−0.452278 + 0.891877i \(0.649389\pi\)
\(410\) 0 0
\(411\) − 334.811i − 0.814624i
\(412\) 0 0
\(413\) −1.00909 −0.00244332
\(414\) 0 0
\(415\) 210.897i 0.508186i
\(416\) 0 0
\(417\) −105.358 −0.252656
\(418\) 0 0
\(419\) 68.9006i 0.164441i 0.996614 + 0.0822203i \(0.0262011\pi\)
−0.996614 + 0.0822203i \(0.973799\pi\)
\(420\) 0 0
\(421\) 296.606 0.704527 0.352264 0.935901i \(-0.385412\pi\)
0.352264 + 0.935901i \(0.385412\pi\)
\(422\) 0 0
\(423\) 107.356i 0.253796i
\(424\) 0 0
\(425\) 90.9364 0.213968
\(426\) 0 0
\(427\) 64.3719i 0.150754i
\(428\) 0 0
\(429\) 103.376 0.240969
\(430\) 0 0
\(431\) 373.075i 0.865603i 0.901489 + 0.432802i \(0.142475\pi\)
−0.901489 + 0.432802i \(0.857525\pi\)
\(432\) 0 0
\(433\) −775.945 −1.79202 −0.896011 0.444032i \(-0.853548\pi\)
−0.896011 + 0.444032i \(0.853548\pi\)
\(434\) 0 0
\(435\) − 175.493i − 0.403433i
\(436\) 0 0
\(437\) 446.606 1.02198
\(438\) 0 0
\(439\) − 744.750i − 1.69647i −0.529620 0.848235i \(-0.677665\pi\)
0.529620 0.848235i \(-0.322335\pi\)
\(440\) 0 0
\(441\) 21.0000 0.0476190
\(442\) 0 0
\(443\) 737.156i 1.66401i 0.554770 + 0.832004i \(0.312806\pi\)
−0.554770 + 0.832004i \(0.687194\pi\)
\(444\) 0 0
\(445\) −185.982 −0.417937
\(446\) 0 0
\(447\) 228.599i 0.511408i
\(448\) 0 0
\(449\) −851.285 −1.89596 −0.947979 0.318334i \(-0.896877\pi\)
−0.947979 + 0.318334i \(0.896877\pi\)
\(450\) 0 0
\(451\) − 30.4456i − 0.0675069i
\(452\) 0 0
\(453\) 108.661 0.239869
\(454\) 0 0
\(455\) − 86.4118i − 0.189916i
\(456\) 0 0
\(457\) 601.927 1.31713 0.658564 0.752525i \(-0.271164\pi\)
0.658564 + 0.752525i \(0.271164\pi\)
\(458\) 0 0
\(459\) − 22.5009i − 0.0490216i
\(460\) 0 0
\(461\) 758.000 1.64425 0.822126 0.569306i \(-0.192788\pi\)
0.822126 + 0.569306i \(0.192788\pi\)
\(462\) 0 0
\(463\) 414.929i 0.896176i 0.893990 + 0.448088i \(0.147895\pi\)
−0.893990 + 0.448088i \(0.852105\pi\)
\(464\) 0 0
\(465\) −96.0000 −0.206452
\(466\) 0 0
\(467\) − 45.7646i − 0.0979971i −0.998799 0.0489985i \(-0.984397\pi\)
0.998799 0.0489985i \(-0.0156030\pi\)
\(468\) 0 0
\(469\) 146.642 0.312670
\(470\) 0 0
\(471\) 149.497i 0.317403i
\(472\) 0 0
\(473\) −23.9273 −0.0505862
\(474\) 0 0
\(475\) − 298.994i − 0.629461i
\(476\) 0 0
\(477\) 79.9818 0.167677
\(478\) 0 0
\(479\) − 140.534i − 0.293391i −0.989182 0.146695i \(-0.953136\pi\)
0.989182 0.146695i \(-0.0468637\pi\)
\(480\) 0 0
\(481\) 174.091 0.361935
\(482\) 0 0
\(483\) 143.744i 0.297608i
\(484\) 0 0
\(485\) −102.642 −0.211634
\(486\) 0 0
\(487\) 302.108i 0.620345i 0.950680 + 0.310173i \(0.100387\pi\)
−0.950680 + 0.310173i \(0.899613\pi\)
\(488\) 0 0
\(489\) −286.679 −0.586255
\(490\) 0 0
\(491\) − 78.7208i − 0.160328i −0.996782 0.0801638i \(-0.974456\pi\)
0.996782 0.0801638i \(-0.0255443\pi\)
\(492\) 0 0
\(493\) 219.376 0.444981
\(494\) 0 0
\(495\) − 21.9288i − 0.0443006i
\(496\) 0 0
\(497\) −250.991 −0.505012
\(498\) 0 0
\(499\) 616.991i 1.23646i 0.785999 + 0.618228i \(0.212149\pi\)
−0.785999 + 0.618228i \(0.787851\pi\)
\(500\) 0 0
\(501\) −468.661 −0.935450
\(502\) 0 0
\(503\) − 309.418i − 0.615145i −0.951525 0.307572i \(-0.900483\pi\)
0.951525 0.307572i \(-0.0995166\pi\)
\(504\) 0 0
\(505\) −149.321 −0.295686
\(506\) 0 0
\(507\) − 169.185i − 0.333697i
\(508\) 0 0
\(509\) −722.624 −1.41969 −0.709847 0.704356i \(-0.751236\pi\)
−0.709847 + 0.704356i \(0.751236\pi\)
\(510\) 0 0
\(511\) − 250.448i − 0.490114i
\(512\) 0 0
\(513\) −73.9818 −0.144214
\(514\) 0 0
\(515\) − 280.179i − 0.544038i
\(516\) 0 0
\(517\) −130.788 −0.252975
\(518\) 0 0
\(519\) 576.154i 1.11012i
\(520\) 0 0
\(521\) 743.633 1.42732 0.713660 0.700493i \(-0.247036\pi\)
0.713660 + 0.700493i \(0.247036\pi\)
\(522\) 0 0
\(523\) 694.283i 1.32750i 0.747954 + 0.663750i \(0.231036\pi\)
−0.747954 + 0.663750i \(0.768964\pi\)
\(524\) 0 0
\(525\) 96.2341 0.183303
\(526\) 0 0
\(527\) − 120.005i − 0.227713i
\(528\) 0 0
\(529\) −454.927 −0.859976
\(530\) 0 0
\(531\) 1.14420i 0.00215481i
\(532\) 0 0
\(533\) −136.036 −0.255228
\(534\) 0 0
\(535\) 396.815i 0.741710i
\(536\) 0 0
\(537\) 295.652 0.550561
\(538\) 0 0
\(539\) 25.5836i 0.0474650i
\(540\) 0 0
\(541\) −480.570 −0.888299 −0.444149 0.895953i \(-0.646494\pi\)
−0.444149 + 0.895953i \(0.646494\pi\)
\(542\) 0 0
\(543\) 293.845i 0.541151i
\(544\) 0 0
\(545\) 66.6788 0.122346
\(546\) 0 0
\(547\) − 724.347i − 1.32422i −0.749408 0.662109i \(-0.769662\pi\)
0.749408 0.662109i \(-0.230338\pi\)
\(548\) 0 0
\(549\) 72.9909 0.132952
\(550\) 0 0
\(551\) − 721.296i − 1.30907i
\(552\) 0 0
\(553\) −256.624 −0.464058
\(554\) 0 0
\(555\) − 36.9294i − 0.0665395i
\(556\) 0 0
\(557\) 449.303 0.806648 0.403324 0.915057i \(-0.367855\pi\)
0.403324 + 0.915057i \(0.367855\pi\)
\(558\) 0 0
\(559\) 106.911i 0.191255i
\(560\) 0 0
\(561\) 27.4121 0.0488630
\(562\) 0 0
\(563\) − 964.101i − 1.71244i −0.516615 0.856218i \(-0.672808\pi\)
0.516615 0.856218i \(-0.327192\pi\)
\(564\) 0 0
\(565\) −22.6424 −0.0400751
\(566\) 0 0
\(567\) − 23.8118i − 0.0419961i
\(568\) 0 0
\(569\) −843.909 −1.48314 −0.741572 0.670873i \(-0.765919\pi\)
−0.741572 + 0.670873i \(0.765919\pi\)
\(570\) 0 0
\(571\) − 622.013i − 1.08934i −0.838651 0.544670i \(-0.816655\pi\)
0.838651 0.544670i \(-0.183345\pi\)
\(572\) 0 0
\(573\) −522.991 −0.912724
\(574\) 0 0
\(575\) 658.720i 1.14560i
\(576\) 0 0
\(577\) −91.3576 −0.158332 −0.0791660 0.996861i \(-0.525226\pi\)
−0.0791660 + 0.996861i \(0.525226\pi\)
\(578\) 0 0
\(579\) 389.092i 0.672007i
\(580\) 0 0
\(581\) −278.991 −0.480191
\(582\) 0 0
\(583\) 97.4392i 0.167134i
\(584\) 0 0
\(585\) −97.9818 −0.167490
\(586\) 0 0
\(587\) 471.499i 0.803235i 0.915807 + 0.401618i \(0.131552\pi\)
−0.915807 + 0.401618i \(0.868448\pi\)
\(588\) 0 0
\(589\) −394.570 −0.669898
\(590\) 0 0
\(591\) − 13.8249i − 0.0233924i
\(592\) 0 0
\(593\) −863.524 −1.45620 −0.728098 0.685473i \(-0.759595\pi\)
−0.728098 + 0.685473i \(0.759595\pi\)
\(594\) 0 0
\(595\) − 22.9138i − 0.0385106i
\(596\) 0 0
\(597\) 639.303 1.07086
\(598\) 0 0
\(599\) − 842.223i − 1.40605i −0.711166 0.703024i \(-0.751833\pi\)
0.711166 0.703024i \(-0.248167\pi\)
\(600\) 0 0
\(601\) −240.642 −0.400403 −0.200202 0.979755i \(-0.564160\pi\)
−0.200202 + 0.979755i \(0.564160\pi\)
\(602\) 0 0
\(603\) − 166.277i − 0.275749i
\(604\) 0 0
\(605\) −215.285 −0.355843
\(606\) 0 0
\(607\) − 85.1084i − 0.140212i −0.997540 0.0701058i \(-0.977666\pi\)
0.997540 0.0701058i \(-0.0223337\pi\)
\(608\) 0 0
\(609\) 232.156 0.381209
\(610\) 0 0
\(611\) 584.383i 0.956438i
\(612\) 0 0
\(613\) −147.982 −0.241406 −0.120703 0.992689i \(-0.538515\pi\)
−0.120703 + 0.992689i \(0.538515\pi\)
\(614\) 0 0
\(615\) 28.8570i 0.0469220i
\(616\) 0 0
\(617\) 73.2303 0.118688 0.0593438 0.998238i \(-0.481099\pi\)
0.0593438 + 0.998238i \(0.481099\pi\)
\(618\) 0 0
\(619\) − 748.946i − 1.20993i −0.796253 0.604964i \(-0.793187\pi\)
0.796253 0.604964i \(-0.206813\pi\)
\(620\) 0 0
\(621\) 162.991 0.262465
\(622\) 0 0
\(623\) − 246.031i − 0.394913i
\(624\) 0 0
\(625\) 341.000 0.545600
\(626\) 0 0
\(627\) − 90.1296i − 0.143747i
\(628\) 0 0
\(629\) 46.1636 0.0733921
\(630\) 0 0
\(631\) 1214.66i 1.92498i 0.271321 + 0.962489i \(0.412539\pi\)
−0.271321 + 0.962489i \(0.587461\pi\)
\(632\) 0 0
\(633\) −596.588 −0.942477
\(634\) 0 0
\(635\) − 169.328i − 0.266658i
\(636\) 0 0
\(637\) 114.312 0.179454
\(638\) 0 0
\(639\) 284.597i 0.445379i
\(640\) 0 0
\(641\) −610.588 −0.952555 −0.476278 0.879295i \(-0.658014\pi\)
−0.476278 + 0.879295i \(0.658014\pi\)
\(642\) 0 0
\(643\) 734.008i 1.14154i 0.821111 + 0.570768i \(0.193355\pi\)
−0.821111 + 0.570768i \(0.806645\pi\)
\(644\) 0 0
\(645\) 22.6788 0.0351609
\(646\) 0 0
\(647\) − 810.855i − 1.25325i −0.779319 0.626627i \(-0.784435\pi\)
0.779319 0.626627i \(-0.215565\pi\)
\(648\) 0 0
\(649\) −1.39394 −0.00214783
\(650\) 0 0
\(651\) − 126.996i − 0.195078i
\(652\) 0 0
\(653\) −754.661 −1.15568 −0.577841 0.816149i \(-0.696105\pi\)
−0.577841 + 0.816149i \(0.696105\pi\)
\(654\) 0 0
\(655\) − 320.223i − 0.488890i
\(656\) 0 0
\(657\) −283.982 −0.432240
\(658\) 0 0
\(659\) − 717.197i − 1.08831i −0.838984 0.544155i \(-0.816850\pi\)
0.838984 0.544155i \(-0.183150\pi\)
\(660\) 0 0
\(661\) −461.615 −0.698359 −0.349179 0.937056i \(-0.613540\pi\)
−0.349179 + 0.937056i \(0.613540\pi\)
\(662\) 0 0
\(663\) − 122.482i − 0.184739i
\(664\) 0 0
\(665\) −75.3394 −0.113292
\(666\) 0 0
\(667\) 1589.10i 2.38246i
\(668\) 0 0
\(669\) −668.588 −0.999384
\(670\) 0 0
\(671\) 88.9224i 0.132522i
\(672\) 0 0
\(673\) −575.248 −0.854753 −0.427376 0.904074i \(-0.640562\pi\)
−0.427376 + 0.904074i \(0.640562\pi\)
\(674\) 0 0
\(675\) − 109.119i − 0.161658i
\(676\) 0 0
\(677\) 321.964 0.475574 0.237787 0.971317i \(-0.423578\pi\)
0.237787 + 0.971317i \(0.423578\pi\)
\(678\) 0 0
\(679\) − 135.783i − 0.199975i
\(680\) 0 0
\(681\) 464.588 0.682214
\(682\) 0 0
\(683\) − 1044.73i − 1.52962i −0.644257 0.764809i \(-0.722833\pi\)
0.644257 0.764809i \(-0.277167\pi\)
\(684\) 0 0
\(685\) −386.606 −0.564388
\(686\) 0 0
\(687\) 155.281i 0.226028i
\(688\) 0 0
\(689\) 435.376 0.631895
\(690\) 0 0
\(691\) − 544.914i − 0.788587i −0.918985 0.394294i \(-0.870989\pi\)
0.918985 0.394294i \(-0.129011\pi\)
\(692\) 0 0
\(693\) 29.0091 0.0418602
\(694\) 0 0
\(695\) 121.656i 0.175045i
\(696\) 0 0
\(697\) −36.0727 −0.0517543
\(698\) 0 0
\(699\) 517.295i 0.740051i
\(700\) 0 0
\(701\) −368.018 −0.524990 −0.262495 0.964933i \(-0.584545\pi\)
−0.262495 + 0.964933i \(0.584545\pi\)
\(702\) 0 0
\(703\) − 151.784i − 0.215908i
\(704\) 0 0
\(705\) 123.964 0.175835
\(706\) 0 0
\(707\) − 197.533i − 0.279397i
\(708\) 0 0
\(709\) 434.697 0.613113 0.306556 0.951852i \(-0.400823\pi\)
0.306556 + 0.951852i \(0.400823\pi\)
\(710\) 0 0
\(711\) 290.985i 0.409261i
\(712\) 0 0
\(713\) 869.285 1.21919
\(714\) 0 0
\(715\) − 119.368i − 0.166948i
\(716\) 0 0
\(717\) 261.633 0.364900
\(718\) 0 0
\(719\) − 752.060i − 1.04598i −0.852339 0.522990i \(-0.824816\pi\)
0.852339 0.522990i \(-0.175184\pi\)
\(720\) 0 0
\(721\) 370.642 0.514067
\(722\) 0 0
\(723\) 564.649i 0.780980i
\(724\) 0 0
\(725\) 1063.87 1.46741
\(726\) 0 0
\(727\) 174.794i 0.240431i 0.992748 + 0.120216i \(0.0383586\pi\)
−0.992748 + 0.120216i \(0.961641\pi\)
\(728\) 0 0
\(729\) −27.0000 −0.0370370
\(730\) 0 0
\(731\) 28.3496i 0.0387820i
\(732\) 0 0
\(733\) 416.294 0.567932 0.283966 0.958834i \(-0.408350\pi\)
0.283966 + 0.958834i \(0.408350\pi\)
\(734\) 0 0
\(735\) − 24.2487i − 0.0329914i
\(736\) 0 0
\(737\) 202.570 0.274857
\(738\) 0 0
\(739\) 1280.77i 1.73311i 0.499084 + 0.866553i \(0.333670\pi\)
−0.499084 + 0.866553i \(0.666330\pi\)
\(740\) 0 0
\(741\) −402.715 −0.543475
\(742\) 0 0
\(743\) − 57.8732i − 0.0778913i −0.999241 0.0389457i \(-0.987600\pi\)
0.999241 0.0389457i \(-0.0123999\pi\)
\(744\) 0 0
\(745\) 263.964 0.354314
\(746\) 0 0
\(747\) 316.346i 0.423489i
\(748\) 0 0
\(749\) −524.936 −0.700850
\(750\) 0 0
\(751\) 399.866i 0.532444i 0.963912 + 0.266222i \(0.0857755\pi\)
−0.963912 + 0.266222i \(0.914224\pi\)
\(752\) 0 0
\(753\) 657.909 0.873717
\(754\) 0 0
\(755\) − 125.470i − 0.166186i
\(756\) 0 0
\(757\) 846.661 1.11844 0.559221 0.829019i \(-0.311100\pi\)
0.559221 + 0.829019i \(0.311100\pi\)
\(758\) 0 0
\(759\) 198.567i 0.261616i
\(760\) 0 0
\(761\) −206.348 −0.271154 −0.135577 0.990767i \(-0.543289\pi\)
−0.135577 + 0.990767i \(0.543289\pi\)
\(762\) 0 0
\(763\) 88.2077i 0.115606i
\(764\) 0 0
\(765\) −25.9818 −0.0339632
\(766\) 0 0
\(767\) 6.22839i 0.00812046i
\(768\) 0 0
\(769\) −203.982 −0.265256 −0.132628 0.991166i \(-0.542342\pi\)
−0.132628 + 0.991166i \(0.542342\pi\)
\(770\) 0 0
\(771\) 92.9271i 0.120528i
\(772\) 0 0
\(773\) −466.697 −0.603748 −0.301874 0.953348i \(-0.597612\pi\)
−0.301874 + 0.953348i \(0.597612\pi\)
\(774\) 0 0
\(775\) − 581.969i − 0.750928i
\(776\) 0 0
\(777\) 48.8530 0.0628739
\(778\) 0 0
\(779\) 118.605i 0.152253i
\(780\) 0 0
\(781\) −346.715 −0.443937
\(782\) 0 0
\(783\) − 263.240i − 0.336194i
\(784\) 0 0
\(785\) 172.624 0.219903
\(786\) 0 0
\(787\) − 482.749i − 0.613404i −0.951806 0.306702i \(-0.900775\pi\)
0.951806 0.306702i \(-0.0992255\pi\)
\(788\) 0 0
\(789\) 60.3849 0.0765334
\(790\) 0 0
\(791\) − 29.9531i − 0.0378674i
\(792\) 0 0
\(793\) 397.321 0.501036
\(794\) 0 0
\(795\) − 92.3550i − 0.116170i
\(796\) 0 0
\(797\) 1387.28 1.74063 0.870317 0.492492i \(-0.163914\pi\)
0.870317 + 0.492492i \(0.163914\pi\)
\(798\) 0 0
\(799\) 154.961i 0.193943i
\(800\) 0 0
\(801\) −278.973 −0.348281
\(802\) 0 0
\(803\) − 345.966i − 0.430842i
\(804\) 0 0
\(805\) 165.982 0.206189
\(806\) 0 0
\(807\) 332.522i 0.412047i
\(808\) 0 0
\(809\) 976.606 1.20718 0.603588 0.797296i \(-0.293737\pi\)
0.603588 + 0.797296i \(0.293737\pi\)
\(810\) 0 0
\(811\) 1258.58i 1.55189i 0.630801 + 0.775944i \(0.282726\pi\)
−0.630801 + 0.775944i \(0.717274\pi\)
\(812\) 0 0
\(813\) 193.321 0.237787
\(814\) 0 0
\(815\) 331.028i 0.406170i
\(816\) 0 0
\(817\) 93.2121 0.114091
\(818\) 0 0
\(819\) − 129.618i − 0.158263i
\(820\) 0 0
\(821\) −984.018 −1.19856 −0.599280 0.800539i \(-0.704546\pi\)
−0.599280 + 0.800539i \(0.704546\pi\)
\(822\) 0 0
\(823\) 138.438i 0.168212i 0.996457 + 0.0841058i \(0.0268034\pi\)
−0.996457 + 0.0841058i \(0.973197\pi\)
\(824\) 0 0
\(825\) 132.936 0.161135
\(826\) 0 0
\(827\) − 577.870i − 0.698754i −0.936982 0.349377i \(-0.886393\pi\)
0.936982 0.349377i \(-0.113607\pi\)
\(828\) 0 0
\(829\) −45.0636 −0.0543590 −0.0271795 0.999631i \(-0.508653\pi\)
−0.0271795 + 0.999631i \(0.508653\pi\)
\(830\) 0 0
\(831\) − 338.306i − 0.407107i
\(832\) 0 0
\(833\) 30.3121 0.0363891
\(834\) 0 0
\(835\) 541.163i 0.648099i
\(836\) 0 0
\(837\) −144.000 −0.172043
\(838\) 0 0
\(839\) − 214.267i − 0.255384i −0.991814 0.127692i \(-0.959243\pi\)
0.991814 0.127692i \(-0.0407569\pi\)
\(840\) 0 0
\(841\) 1725.50 2.05172
\(842\) 0 0
\(843\) 438.734i 0.520443i
\(844\) 0 0
\(845\) −195.358 −0.231192
\(846\) 0 0
\(847\) − 284.795i − 0.336240i
\(848\) 0 0
\(849\) −245.945 −0.289688
\(850\) 0 0
\(851\) 334.398i 0.392947i
\(852\) 0 0
\(853\) −787.670 −0.923411 −0.461706 0.887033i \(-0.652762\pi\)
−0.461706 + 0.887033i \(0.652762\pi\)
\(854\) 0 0
\(855\) 85.4268i 0.0999144i
\(856\) 0 0
\(857\) 1034.83 1.20750 0.603750 0.797174i \(-0.293673\pi\)
0.603750 + 0.797174i \(0.293673\pi\)
\(858\) 0 0
\(859\) − 939.440i − 1.09364i −0.837249 0.546822i \(-0.815838\pi\)
0.837249 0.546822i \(-0.184162\pi\)
\(860\) 0 0
\(861\) −38.1742 −0.0443371
\(862\) 0 0
\(863\) 1259.44i 1.45937i 0.683781 + 0.729687i \(0.260334\pi\)
−0.683781 + 0.729687i \(0.739666\pi\)
\(864\) 0 0
\(865\) 665.285 0.769115
\(866\) 0 0
\(867\) 468.084i 0.539889i
\(868\) 0 0
\(869\) −354.497 −0.407937
\(870\) 0 0
\(871\) − 905.117i − 1.03917i
\(872\) 0 0
\(873\) −153.964 −0.176362
\(874\) 0 0
\(875\) − 243.409i − 0.278182i
\(876\) 0 0
\(877\) −309.376 −0.352766 −0.176383 0.984322i \(-0.556440\pi\)
−0.176383 + 0.984322i \(0.556440\pi\)
\(878\) 0 0
\(879\) − 898.284i − 1.02194i
\(880\) 0 0
\(881\) 1365.47 1.54991 0.774954 0.632017i \(-0.217773\pi\)
0.774954 + 0.632017i \(0.217773\pi\)
\(882\) 0 0
\(883\) − 190.620i − 0.215878i −0.994158 0.107939i \(-0.965575\pi\)
0.994158 0.107939i \(-0.0344251\pi\)
\(884\) 0 0
\(885\) 1.32121 0.00149289
\(886\) 0 0
\(887\) − 1126.63i − 1.27015i −0.772449 0.635077i \(-0.780968\pi\)
0.772449 0.635077i \(-0.219032\pi\)
\(888\) 0 0
\(889\) 224.000 0.251969
\(890\) 0 0
\(891\) − 32.8932i − 0.0369172i
\(892\) 0 0
\(893\) 509.503 0.570552
\(894\) 0 0
\(895\) − 341.389i − 0.381440i
\(896\) 0 0
\(897\) 887.230 0.989108
\(898\) 0 0
\(899\) − 1403.95i − 1.56168i
\(900\) 0 0
\(901\) 115.448 0.128134
\(902\) 0 0
\(903\) 30.0012i 0.0332239i
\(904\) 0 0
\(905\) 339.303 0.374920
\(906\) 0 0
\(907\) − 1526.69i − 1.68323i −0.540081 0.841613i \(-0.681607\pi\)
0.540081 0.841613i \(-0.318393\pi\)
\(908\) 0 0
\(909\) −223.982 −0.246405
\(910\) 0 0
\(911\) 1389.93i 1.52572i 0.646563 + 0.762861i \(0.276206\pi\)
−0.646563 + 0.762861i \(0.723794\pi\)
\(912\) 0 0
\(913\) −385.394 −0.422118
\(914\) 0 0
\(915\) − 84.2826i − 0.0921122i
\(916\) 0 0
\(917\) 423.615 0.461958
\(918\) 0 0
\(919\) 140.534i 0.152921i 0.997073 + 0.0764603i \(0.0243619\pi\)
−0.997073 + 0.0764603i \(0.975638\pi\)
\(920\) 0 0
\(921\) 241.982 0.262738
\(922\) 0 0
\(923\) 1549.18i 1.67842i
\(924\) 0 0
\(925\) 223.873 0.242025
\(926\) 0 0
\(927\) − 420.269i − 0.453365i
\(928\) 0 0
\(929\) 290.900 0.313132 0.156566 0.987667i \(-0.449958\pi\)
0.156566 + 0.987667i \(0.449958\pi\)
\(930\) 0 0
\(931\) − 99.6647i − 0.107051i
\(932\) 0 0
\(933\) 517.982 0.555179
\(934\) 0 0
\(935\) − 31.6528i − 0.0338533i
\(936\) 0 0
\(937\) 805.891 0.860076 0.430038 0.902811i \(-0.358500\pi\)
0.430038 + 0.902811i \(0.358500\pi\)
\(938\) 0 0
\(939\) 115.460i 0.122960i
\(940\) 0 0
\(941\) −1233.85 −1.31122 −0.655608 0.755101i \(-0.727588\pi\)
−0.655608 + 0.755101i \(0.727588\pi\)
\(942\) 0 0
\(943\) − 261.302i − 0.277096i
\(944\) 0 0
\(945\) −27.4955 −0.0290957
\(946\) 0 0
\(947\) − 145.907i − 0.154073i −0.997028 0.0770364i \(-0.975454\pi\)
0.997028 0.0770364i \(-0.0245458\pi\)
\(948\) 0 0
\(949\) −1545.84 −1.62891
\(950\) 0 0
\(951\) 147.875i 0.155494i
\(952\) 0 0
\(953\) −1833.96 −1.92441 −0.962205 0.272324i \(-0.912208\pi\)
−0.962205 + 0.272324i \(0.912208\pi\)
\(954\) 0 0
\(955\) 603.898i 0.632354i
\(956\) 0 0
\(957\) 320.697 0.335107
\(958\) 0 0
\(959\) − 511.432i − 0.533297i
\(960\) 0 0
\(961\) 193.000 0.200832
\(962\) 0 0
\(963\) 595.222i 0.618091i
\(964\) 0 0
\(965\) 449.285 0.465580
\(966\) 0 0
\(967\) 1255.34i 1.29818i 0.760711 + 0.649091i \(0.224850\pi\)
−0.760711 + 0.649091i \(0.775150\pi\)
\(968\) 0 0
\(969\) −106.788 −0.110204
\(970\) 0 0
\(971\) 1303.08i 1.34199i 0.741460 + 0.670997i \(0.234134\pi\)
−0.741460 + 0.670997i \(0.765866\pi\)
\(972\) 0 0
\(973\) −160.936 −0.165402
\(974\) 0 0
\(975\) − 593.983i − 0.609214i
\(976\) 0 0
\(977\) 259.945 0.266065 0.133032 0.991112i \(-0.457529\pi\)
0.133032 + 0.991112i \(0.457529\pi\)
\(978\) 0 0
\(979\) − 339.863i − 0.347154i
\(980\) 0 0
\(981\) 100.018 0.101955
\(982\) 0 0
\(983\) − 153.946i − 0.156608i −0.996930 0.0783042i \(-0.975049\pi\)
0.996930 0.0783042i \(-0.0249505\pi\)
\(984\) 0 0
\(985\) −15.9636 −0.0162067
\(986\) 0 0
\(987\) 163.988i 0.166148i
\(988\) 0 0
\(989\) −205.358 −0.207642
\(990\) 0 0
\(991\) − 577.585i − 0.582830i −0.956597 0.291415i \(-0.905874\pi\)
0.956597 0.291415i \(-0.0941261\pi\)
\(992\) 0 0
\(993\) −1060.52 −1.06799
\(994\) 0 0
\(995\) − 738.204i − 0.741913i
\(996\) 0 0
\(997\) 567.670 0.569378 0.284689 0.958620i \(-0.408110\pi\)
0.284689 + 0.958620i \(0.408110\pi\)
\(998\) 0 0
\(999\) − 55.3941i − 0.0554496i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.3.m.b.127.1 4
3.2 odd 2 1008.3.m.e.127.1 4
4.3 odd 2 inner 336.3.m.b.127.4 yes 4
7.6 odd 2 2352.3.m.i.1471.3 4
8.3 odd 2 1344.3.m.b.127.2 4
8.5 even 2 1344.3.m.b.127.3 4
12.11 even 2 1008.3.m.e.127.4 4
28.27 even 2 2352.3.m.i.1471.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.m.b.127.1 4 1.1 even 1 trivial
336.3.m.b.127.4 yes 4 4.3 odd 2 inner
1008.3.m.e.127.1 4 3.2 odd 2
1008.3.m.e.127.4 4 12.11 even 2
1344.3.m.b.127.2 4 8.3 odd 2
1344.3.m.b.127.3 4 8.5 even 2
2352.3.m.i.1471.2 4 28.27 even 2
2352.3.m.i.1471.3 4 7.6 odd 2