Properties

Label 336.3.m.b.127.1
Level 336336
Weight 33
Character 336.127
Analytic conductor 9.1559.155
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [336,3,Mod(127,336)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(336, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 0, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("336.127");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: N N == 336=2437 336 = 2^{4} \cdot 3 \cdot 7
Weight: k k == 3 3
Character orbit: [χ][\chi] == 336.m (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 9.155336882519.15533688251
Analytic rank: 00
Dimension: 44
Coefficient field: Q(3,7)\Q(\sqrt{-3}, \sqrt{-7})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x3x22x+4 x^{4} - x^{3} - x^{2} - 2x + 4 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 24 2^{4}
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

Embedding invariants

Embedding label 127.1
Root 1.39564+0.228425i1.39564 + 0.228425i of defining polynomial
Character χ\chi == 336.127
Dual form 336.3.m.b.127.4

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1.73205iq32.00000q52.64575iq73.00000q93.65480iq1116.3303q13+3.46410iq154.33030q17+14.2378iq194.58258q2131.3676iq2321.0000q25+5.19615iq2750.6606q29+27.7128iq316.33030q33+5.29150iq3510.6606q37+28.2849iq39+8.33030q416.54680iq43+6.00000q4535.7852iq477.00000q49+7.50030iq5126.6606q53+7.30960iq55+24.6606q570.381401iq5924.3303q61+7.93725iq63+32.6606q65+55.4256iq6754.3303q6994.8656iq71+94.6606q73+36.3731iq759.66970q7796.9948iq79+9.00000q81105.449iq83+8.66061q85+87.7467iq87+92.9909q89+43.2059iq91+48.0000q9328.4756iq95+51.3212q97+10.9644iq99+O(q100)q-1.73205i q^{3} -2.00000 q^{5} -2.64575i q^{7} -3.00000 q^{9} -3.65480i q^{11} -16.3303 q^{13} +3.46410i q^{15} -4.33030 q^{17} +14.2378i q^{19} -4.58258 q^{21} -31.3676i q^{23} -21.0000 q^{25} +5.19615i q^{27} -50.6606 q^{29} +27.7128i q^{31} -6.33030 q^{33} +5.29150i q^{35} -10.6606 q^{37} +28.2849i q^{39} +8.33030 q^{41} -6.54680i q^{43} +6.00000 q^{45} -35.7852i q^{47} -7.00000 q^{49} +7.50030i q^{51} -26.6606 q^{53} +7.30960i q^{55} +24.6606 q^{57} -0.381401i q^{59} -24.3303 q^{61} +7.93725i q^{63} +32.6606 q^{65} +55.4256i q^{67} -54.3303 q^{69} -94.8656i q^{71} +94.6606 q^{73} +36.3731i q^{75} -9.66970 q^{77} -96.9948i q^{79} +9.00000 q^{81} -105.449i q^{83} +8.66061 q^{85} +87.7467i q^{87} +92.9909 q^{89} +43.2059i q^{91} +48.0000 q^{93} -28.4756i q^{95} +51.3212 q^{97} +10.9644i q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q8q512q9+8q13+56q1784q2556q29+48q33+104q3740q41+24q4528q49+40q5348q5724q6116q65144q69+232q73+88q97+O(q100) 4 q - 8 q^{5} - 12 q^{9} + 8 q^{13} + 56 q^{17} - 84 q^{25} - 56 q^{29} + 48 q^{33} + 104 q^{37} - 40 q^{41} + 24 q^{45} - 28 q^{49} + 40 q^{53} - 48 q^{57} - 24 q^{61} - 16 q^{65} - 144 q^{69} + 232 q^{73}+ \cdots - 88 q^{97}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/336Z)×\left(\mathbb{Z}/336\mathbb{Z}\right)^\times.

nn 8585 113113 127127 241241
χ(n)\chi(n) 11 11 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 − 1.73205i − 0.577350i
44 0 0
55 −2.00000 −0.400000 −0.200000 0.979796i 0.564094π-0.564094\pi
−0.200000 + 0.979796i 0.564094π0.564094\pi
66 0 0
77 − 2.64575i − 0.377964i
88 0 0
99 −3.00000 −0.333333
1010 0 0
1111 − 3.65480i − 0.332255i −0.986104 0.166127i 0.946874π-0.946874\pi
0.986104 0.166127i 0.0531263π-0.0531263\pi
1212 0 0
1313 −16.3303 −1.25618 −0.628089 0.778142i 0.716162π-0.716162\pi
−0.628089 + 0.778142i 0.716162π0.716162\pi
1414 0 0
1515 3.46410i 0.230940i
1616 0 0
1717 −4.33030 −0.254724 −0.127362 0.991856i 0.540651π-0.540651\pi
−0.127362 + 0.991856i 0.540651π0.540651\pi
1818 0 0
1919 14.2378i 0.749358i 0.927155 + 0.374679i 0.122247π0.122247\pi
−0.927155 + 0.374679i 0.877753π0.877753\pi
2020 0 0
2121 −4.58258 −0.218218
2222 0 0
2323 − 31.3676i − 1.36381i −0.731441 0.681905i 0.761152π-0.761152\pi
0.731441 0.681905i 0.238848π-0.238848\pi
2424 0 0
2525 −21.0000 −0.840000
2626 0 0
2727 5.19615i 0.192450i
2828 0 0
2929 −50.6606 −1.74692 −0.873459 0.486898i 0.838128π-0.838128\pi
−0.873459 + 0.486898i 0.838128π0.838128\pi
3030 0 0
3131 27.7128i 0.893962i 0.894544 + 0.446981i 0.147501π0.147501\pi
−0.894544 + 0.446981i 0.852499π0.852499\pi
3232 0 0
3333 −6.33030 −0.191827
3434 0 0
3535 5.29150i 0.151186i
3636 0 0
3737 −10.6606 −0.288124 −0.144062 0.989569i 0.546017π-0.546017\pi
−0.144062 + 0.989569i 0.546017π0.546017\pi
3838 0 0
3939 28.2849i 0.725254i
4040 0 0
4141 8.33030 0.203178 0.101589 0.994826i 0.467607π-0.467607\pi
0.101589 + 0.994826i 0.467607π0.467607\pi
4242 0 0
4343 − 6.54680i − 0.152251i −0.997098 0.0761256i 0.975745π-0.975745\pi
0.997098 0.0761256i 0.0242550π-0.0242550\pi
4444 0 0
4545 6.00000 0.133333
4646 0 0
4747 − 35.7852i − 0.761388i −0.924701 0.380694i 0.875685π-0.875685\pi
0.924701 0.380694i 0.124315π-0.124315\pi
4848 0 0
4949 −7.00000 −0.142857
5050 0 0
5151 7.50030i 0.147065i
5252 0 0
5353 −26.6606 −0.503030 −0.251515 0.967853i 0.580929π-0.580929\pi
−0.251515 + 0.967853i 0.580929π0.580929\pi
5454 0 0
5555 7.30960i 0.132902i
5656 0 0
5757 24.6606 0.432642
5858 0 0
5959 − 0.381401i − 0.00646442i −0.999995 0.00323221i 0.998971π-0.998971\pi
0.999995 0.00323221i 0.00102885π-0.00102885\pi
6060 0 0
6161 −24.3303 −0.398857 −0.199429 0.979912i 0.563909π-0.563909\pi
−0.199429 + 0.979912i 0.563909π0.563909\pi
6262 0 0
6363 7.93725i 0.125988i
6464 0 0
6565 32.6606 0.502471
6666 0 0
6767 55.4256i 0.827248i 0.910448 + 0.413624i 0.135737π0.135737\pi
−0.910448 + 0.413624i 0.864263π0.864263\pi
6868 0 0
6969 −54.3303 −0.787396
7070 0 0
7171 − 94.8656i − 1.33614i −0.744100 0.668068i 0.767122π-0.767122\pi
0.744100 0.668068i 0.232878π-0.232878\pi
7272 0 0
7373 94.6606 1.29672 0.648360 0.761334i 0.275455π-0.275455\pi
0.648360 + 0.761334i 0.275455π0.275455\pi
7474 0 0
7575 36.3731i 0.484974i
7676 0 0
7777 −9.66970 −0.125580
7878 0 0
7979 − 96.9948i − 1.22778i −0.789390 0.613891i 0.789603π-0.789603\pi
0.789390 0.613891i 0.210397π-0.210397\pi
8080 0 0
8181 9.00000 0.111111
8282 0 0
8383 − 105.449i − 1.27047i −0.772321 0.635233i 0.780904π-0.780904\pi
0.772321 0.635233i 0.219096π-0.219096\pi
8484 0 0
8585 8.66061 0.101889
8686 0 0
8787 87.7467i 1.00858i
8888 0 0
8989 92.9909 1.04484 0.522421 0.852688i 0.325029π-0.325029\pi
0.522421 + 0.852688i 0.325029π0.325029\pi
9090 0 0
9191 43.2059i 0.474790i
9292 0 0
9393 48.0000 0.516129
9494 0 0
9595 − 28.4756i − 0.299743i
9696 0 0
9797 51.3212 0.529085 0.264542 0.964374i 0.414779π-0.414779\pi
0.264542 + 0.964374i 0.414779π0.414779\pi
9898 0 0
9999 10.9644i 0.110752i
100100 0 0
101101 74.6606 0.739214 0.369607 0.929188i 0.379492π-0.379492\pi
0.369607 + 0.929188i 0.379492π0.379492\pi
102102 0 0
103103 140.090i 1.36009i 0.733169 + 0.680047i 0.238041π0.238041\pi
−0.733169 + 0.680047i 0.761959π0.761959\pi
104104 0 0
105105 9.16515 0.0872872
106106 0 0
107107 − 198.407i − 1.85427i −0.374723 0.927137i 0.622262π-0.622262\pi
0.374723 0.927137i 0.377738π-0.377738\pi
108108 0 0
109109 −33.3394 −0.305866 −0.152933 0.988237i 0.548872π-0.548872\pi
−0.152933 + 0.988237i 0.548872π0.548872\pi
110110 0 0
111111 18.4647i 0.166349i
112112 0 0
113113 11.3212 0.100188 0.0500939 0.998745i 0.484048π-0.484048\pi
0.0500939 + 0.998745i 0.484048π0.484048\pi
114114 0 0
115115 62.7352i 0.545524i
116116 0 0
117117 48.9909 0.418726
118118 0 0
119119 11.4569i 0.0962765i
120120 0 0
121121 107.642 0.889607
122122 0 0
123123 − 14.4285i − 0.117305i
124124 0 0
125125 92.0000 0.736000
126126 0 0
127127 84.6640i 0.666646i 0.942813 + 0.333323i 0.108170π0.108170\pi
−0.942813 + 0.333323i 0.891830π0.891830\pi
128128 0 0
129129 −11.3394 −0.0879023
130130 0 0
131131 160.111i 1.22223i 0.791544 + 0.611113i 0.209278π0.209278\pi
−0.791544 + 0.611113i 0.790722π0.790722\pi
132132 0 0
133133 37.6697 0.283231
134134 0 0
135135 − 10.3923i − 0.0769800i
136136 0 0
137137 193.303 1.41097 0.705486 0.708724i 0.250729π-0.250729\pi
0.705486 + 0.708724i 0.250729π0.250729\pi
138138 0 0
139139 − 60.8282i − 0.437613i −0.975768 0.218807i 0.929784π-0.929784\pi
0.975768 0.218807i 0.0702164π-0.0702164\pi
140140 0 0
141141 −61.9818 −0.439587
142142 0 0
143143 59.6840i 0.417371i
144144 0 0
145145 101.321 0.698767
146146 0 0
147147 12.1244i 0.0824786i
148148 0 0
149149 −131.982 −0.885784 −0.442892 0.896575i 0.646047π-0.646047\pi
−0.442892 + 0.896575i 0.646047π0.646047\pi
150150 0 0
151151 62.7352i 0.415465i 0.978186 + 0.207733i 0.0666084π0.0666084\pi
−0.978186 + 0.207733i 0.933392π0.933392\pi
152152 0 0
153153 12.9909 0.0849079
154154 0 0
155155 − 55.4256i − 0.357585i
156156 0 0
157157 −86.3121 −0.549759 −0.274879 0.961479i 0.588638π-0.588638\pi
−0.274879 + 0.961479i 0.588638π0.588638\pi
158158 0 0
159159 46.1775i 0.290425i
160160 0 0
161161 −82.9909 −0.515471
162162 0 0
163163 − 165.514i − 1.01542i −0.861527 0.507712i 0.830491π-0.830491\pi
0.861527 0.507712i 0.169509π-0.169509\pi
164164 0 0
165165 12.6606 0.0767309
166166 0 0
167167 − 270.581i − 1.62025i −0.586259 0.810124i 0.699400π-0.699400\pi
0.586259 0.810124i 0.300600π-0.300600\pi
168168 0 0
169169 97.6788 0.577981
170170 0 0
171171 − 42.7134i − 0.249786i
172172 0 0
173173 −332.642 −1.92279 −0.961394 0.275175i 0.911264π-0.911264\pi
−0.961394 + 0.275175i 0.911264π0.911264\pi
174174 0 0
175175 55.5608i 0.317490i
176176 0 0
177177 −0.660606 −0.00373223
178178 0 0
179179 170.694i 0.953600i 0.879012 + 0.476800i 0.158203π0.158203\pi
−0.879012 + 0.476800i 0.841797π0.841797\pi
180180 0 0
181181 −169.652 −0.937301 −0.468651 0.883384i 0.655260π-0.655260\pi
−0.468651 + 0.883384i 0.655260π0.655260\pi
182182 0 0
183183 42.1413i 0.230280i
184184 0 0
185185 21.3212 0.115250
186186 0 0
187187 15.8264i 0.0846332i
188188 0 0
189189 13.7477 0.0727393
190190 0 0
191191 − 301.949i − 1.58088i −0.612537 0.790442i 0.709851π-0.709851\pi
0.612537 0.790442i 0.290149π-0.290149\pi
192192 0 0
193193 −224.642 −1.16395 −0.581975 0.813207i 0.697720π-0.697720\pi
−0.581975 + 0.813207i 0.697720π0.697720\pi
194194 0 0
195195 − 56.5698i − 0.290102i
196196 0 0
197197 7.98182 0.0405168 0.0202584 0.999795i 0.493551π-0.493551\pi
0.0202584 + 0.999795i 0.493551π0.493551\pi
198198 0 0
199199 369.102i 1.85478i 0.374093 + 0.927391i 0.377954π0.377954\pi
−0.374093 + 0.927391i 0.622046π0.622046\pi
200200 0 0
201201 96.0000 0.477612
202202 0 0
203203 134.035i 0.660273i
204204 0 0
205205 −16.6606 −0.0812712
206206 0 0
207207 94.1028i 0.454603i
208208 0 0
209209 52.0364 0.248978
210210 0 0
211211 − 344.440i − 1.63242i −0.577757 0.816209i 0.696072π-0.696072\pi
0.577757 0.816209i 0.303928π-0.303928\pi
212212 0 0
213213 −164.312 −0.771418
214214 0 0
215215 13.0936i 0.0609005i
216216 0 0
217217 73.3212 0.337886
218218 0 0
219219 − 163.957i − 0.748662i
220220 0 0
221221 70.7152 0.319978
222222 0 0
223223 − 386.009i − 1.73098i −0.500923 0.865492i 0.667006π-0.667006\pi
0.500923 0.865492i 0.332994π-0.332994\pi
224224 0 0
225225 63.0000 0.280000
226226 0 0
227227 268.230i 1.18163i 0.806807 + 0.590815i 0.201194π0.201194\pi
−0.806807 + 0.590815i 0.798806π0.798806\pi
228228 0 0
229229 −89.6515 −0.391491 −0.195746 0.980655i 0.562713π-0.562713\pi
−0.195746 + 0.980655i 0.562713π0.562713\pi
230230 0 0
231231 16.7484i 0.0725039i
232232 0 0
233233 −298.661 −1.28181 −0.640903 0.767622i 0.721440π-0.721440\pi
−0.640903 + 0.767622i 0.721440π0.721440\pi
234234 0 0
235235 71.5704i 0.304555i
236236 0 0
237237 −168.000 −0.708861
238238 0 0
239239 151.054i 0.632025i 0.948755 + 0.316013i 0.102344π0.102344\pi
−0.948755 + 0.316013i 0.897656π0.897656\pi
240240 0 0
241241 −326.000 −1.35270 −0.676349 0.736582i 0.736439π-0.736439\pi
−0.676349 + 0.736582i 0.736439π0.736439\pi
242242 0 0
243243 − 15.5885i − 0.0641500i
244244 0 0
245245 14.0000 0.0571429
246246 0 0
247247 − 232.508i − 0.941327i
248248 0 0
249249 −182.642 −0.733504
250250 0 0
251251 379.844i 1.51332i 0.653807 + 0.756661i 0.273171π0.273171\pi
−0.653807 + 0.756661i 0.726829π0.726829\pi
252252 0 0
253253 −114.642 −0.453132
254254 0 0
255255 − 15.0006i − 0.0588259i
256256 0 0
257257 −53.6515 −0.208761 −0.104380 0.994537i 0.533286π-0.533286\pi
−0.104380 + 0.994537i 0.533286π0.533286\pi
258258 0 0
259259 28.2053i 0.108901i
260260 0 0
261261 151.982 0.582306
262262 0 0
263263 34.8632i 0.132560i 0.997801 + 0.0662799i 0.0211130π0.0211130\pi
−0.997801 + 0.0662799i 0.978887π0.978887\pi
264264 0 0
265265 53.3212 0.201212
266266 0 0
267267 − 161.065i − 0.603240i
268268 0 0
269269 −191.982 −0.713687 −0.356844 0.934164i 0.616147π-0.616147\pi
−0.356844 + 0.934164i 0.616147π0.616147\pi
270270 0 0
271271 111.614i 0.411860i 0.978567 + 0.205930i 0.0660219π0.0660219\pi
−0.978567 + 0.205930i 0.933978π0.933978\pi
272272 0 0
273273 74.8348 0.274120
274274 0 0
275275 76.7508i 0.279094i
276276 0 0
277277 195.321 0.705131 0.352565 0.935787i 0.385309π-0.385309\pi
0.352565 + 0.935787i 0.385309π0.385309\pi
278278 0 0
279279 − 83.1384i − 0.297987i
280280 0 0
281281 −253.303 −0.901434 −0.450717 0.892667i 0.648832π-0.648832\pi
−0.450717 + 0.892667i 0.648832π0.648832\pi
282282 0 0
283283 − 141.997i − 0.501755i −0.968019 0.250878i 0.919281π-0.919281\pi
0.968019 0.250878i 0.0807191π-0.0807191\pi
284284 0 0
285285 −49.3212 −0.173057
286286 0 0
287287 − 22.0399i − 0.0767941i
288288 0 0
289289 −270.248 −0.935116
290290 0 0
291291 − 88.8909i − 0.305467i
292292 0 0
293293 518.624 1.77005 0.885024 0.465545i 0.154142π-0.154142\pi
0.885024 + 0.465545i 0.154142π0.154142\pi
294294 0 0
295295 0.762802i 0.00258577i
296296 0 0
297297 18.9909 0.0639425
298298 0 0
299299 512.243i 1.71319i
300300 0 0
301301 −17.3212 −0.0575456
302302 0 0
303303 − 129.316i − 0.426785i
304304 0 0
305305 48.6606 0.159543
306306 0 0
307307 139.708i 0.455076i 0.973769 + 0.227538i 0.0730676π0.0730676\pi
−0.973769 + 0.227538i 0.926932π0.926932\pi
308308 0 0
309309 242.642 0.785251
310310 0 0
311311 299.057i 0.961598i 0.876831 + 0.480799i 0.159653π0.159653\pi
−0.876831 + 0.480799i 0.840347π0.840347\pi
312312 0 0
313313 −66.6606 −0.212973 −0.106487 0.994314i 0.533960π-0.533960\pi
−0.106487 + 0.994314i 0.533960π0.533960\pi
314314 0 0
315315 − 15.8745i − 0.0503953i
316316 0 0
317317 −85.3758 −0.269324 −0.134662 0.990892i 0.542995π-0.542995\pi
−0.134662 + 0.990892i 0.542995π0.542995\pi
318318 0 0
319319 185.154i 0.580422i
320320 0 0
321321 −343.652 −1.07057
322322 0 0
323323 − 61.6540i − 0.190879i
324324 0 0
325325 342.936 1.05519
326326 0 0
327327 57.7455i 0.176592i
328328 0 0
329329 −94.6788 −0.287777
330330 0 0
331331 − 612.289i − 1.84981i −0.380192 0.924907i 0.624142π-0.624142\pi
0.380192 0.924907i 0.375858π-0.375858\pi
332332 0 0
333333 31.9818 0.0960415
334334 0 0
335335 − 110.851i − 0.330899i
336336 0 0
337337 445.964 1.32333 0.661667 0.749798i 0.269849π-0.269849\pi
0.661667 + 0.749798i 0.269849π0.269849\pi
338338 0 0
339339 − 19.6089i − 0.0578434i
340340 0 0
341341 101.285 0.297023
342342 0 0
343343 18.5203i 0.0539949i
344344 0 0
345345 108.661 0.314958
346346 0 0
347347 259.173i 0.746895i 0.927651 + 0.373447i 0.121824π0.121824\pi
−0.927651 + 0.373447i 0.878176π0.878176\pi
348348 0 0
349349 −332.991 −0.954129 −0.477064 0.878868i 0.658299π-0.658299\pi
−0.477064 + 0.878868i 0.658299π0.658299\pi
350350 0 0
351351 − 84.8547i − 0.241751i
352352 0 0
353353 75.0455 0.212593 0.106297 0.994334i 0.466101π-0.466101\pi
0.106297 + 0.994334i 0.466101π0.466101\pi
354354 0 0
355355 189.731i 0.534454i
356356 0 0
357357 19.8439 0.0555853
358358 0 0
359359 − 345.044i − 0.961125i −0.876961 0.480562i 0.840433π-0.840433\pi
0.876961 0.480562i 0.159567π-0.159567\pi
360360 0 0
361361 158.285 0.438462
362362 0 0
363363 − 186.442i − 0.513615i
364364 0 0
365365 −189.321 −0.518688
366366 0 0
367367 − 177.400i − 0.483380i −0.970354 0.241690i 0.922298π-0.922298\pi
0.970354 0.241690i 0.0777017π-0.0777017\pi
368368 0 0
369369 −24.9909 −0.0677260
370370 0 0
371371 70.5373i 0.190128i
372372 0 0
373373 635.248 1.70308 0.851540 0.524290i 0.175669π-0.175669\pi
0.851540 + 0.524290i 0.175669π0.175669\pi
374374 0 0
375375 − 159.349i − 0.424930i
376376 0 0
377377 827.303 2.19444
378378 0 0
379379 − 31.2084i − 0.0823441i −0.999152 0.0411720i 0.986891π-0.986891\pi
0.999152 0.0411720i 0.0131092π-0.0131092\pi
380380 0 0
381381 146.642 0.384888
382382 0 0
383383 − 28.4756i − 0.0743489i −0.999309 0.0371744i 0.988164π-0.988164\pi
0.999309 0.0371744i 0.0118357π-0.0118357\pi
384384 0 0
385385 19.3394 0.0502322
386386 0 0
387387 19.6404i 0.0507504i
388388 0 0
389389 405.267 1.04182 0.520908 0.853613i 0.325593π-0.325593\pi
0.520908 + 0.853613i 0.325593π0.325593\pi
390390 0 0
391391 135.831i 0.347395i
392392 0 0
393393 277.321 0.705652
394394 0 0
395395 193.990i 0.491113i
396396 0 0
397397 490.936 1.23662 0.618308 0.785936i 0.287819π-0.287819\pi
0.618308 + 0.785936i 0.287819π0.287819\pi
398398 0 0
399399 − 65.2458i − 0.163523i
400400 0 0
401401 −248.018 −0.618499 −0.309250 0.950981i 0.600078π-0.600078\pi
−0.309250 + 0.950981i 0.600078π0.600078\pi
402402 0 0
403403 − 452.559i − 1.12297i
404404 0 0
405405 −18.0000 −0.0444444
406406 0 0
407407 38.9624i 0.0957307i
408408 0 0
409409 −369.964 −0.904557 −0.452278 0.891877i 0.649389π-0.649389\pi
−0.452278 + 0.891877i 0.649389π0.649389\pi
410410 0 0
411411 − 334.811i − 0.814624i
412412 0 0
413413 −1.00909 −0.00244332
414414 0 0
415415 210.897i 0.508186i
416416 0 0
417417 −105.358 −0.252656
418418 0 0
419419 68.9006i 0.164441i 0.996614 + 0.0822203i 0.0262011π0.0262011\pi
−0.996614 + 0.0822203i 0.973799π0.973799\pi
420420 0 0
421421 296.606 0.704527 0.352264 0.935901i 0.385412π-0.385412\pi
0.352264 + 0.935901i 0.385412π0.385412\pi
422422 0 0
423423 107.356i 0.253796i
424424 0 0
425425 90.9364 0.213968
426426 0 0
427427 64.3719i 0.150754i
428428 0 0
429429 103.376 0.240969
430430 0 0
431431 373.075i 0.865603i 0.901489 + 0.432802i 0.142475π0.142475\pi
−0.901489 + 0.432802i 0.857525π0.857525\pi
432432 0 0
433433 −775.945 −1.79202 −0.896011 0.444032i 0.853548π-0.853548\pi
−0.896011 + 0.444032i 0.853548π0.853548\pi
434434 0 0
435435 − 175.493i − 0.403433i
436436 0 0
437437 446.606 1.02198
438438 0 0
439439 − 744.750i − 1.69647i −0.529620 0.848235i 0.677665π-0.677665\pi
0.529620 0.848235i 0.322335π-0.322335\pi
440440 0 0
441441 21.0000 0.0476190
442442 0 0
443443 737.156i 1.66401i 0.554770 + 0.832004i 0.312806π0.312806\pi
−0.554770 + 0.832004i 0.687194π0.687194\pi
444444 0 0
445445 −185.982 −0.417937
446446 0 0
447447 228.599i 0.511408i
448448 0 0
449449 −851.285 −1.89596 −0.947979 0.318334i 0.896877π-0.896877\pi
−0.947979 + 0.318334i 0.896877π0.896877\pi
450450 0 0
451451 − 30.4456i − 0.0675069i
452452 0 0
453453 108.661 0.239869
454454 0 0
455455 − 86.4118i − 0.189916i
456456 0 0
457457 601.927 1.31713 0.658564 0.752525i 0.271164π-0.271164\pi
0.658564 + 0.752525i 0.271164π0.271164\pi
458458 0 0
459459 − 22.5009i − 0.0490216i
460460 0 0
461461 758.000 1.64425 0.822126 0.569306i 0.192788π-0.192788\pi
0.822126 + 0.569306i 0.192788π0.192788\pi
462462 0 0
463463 414.929i 0.896176i 0.893990 + 0.448088i 0.147895π0.147895\pi
−0.893990 + 0.448088i 0.852105π0.852105\pi
464464 0 0
465465 −96.0000 −0.206452
466466 0 0
467467 − 45.7646i − 0.0979971i −0.998799 0.0489985i 0.984397π-0.984397\pi
0.998799 0.0489985i 0.0156030π-0.0156030\pi
468468 0 0
469469 146.642 0.312670
470470 0 0
471471 149.497i 0.317403i
472472 0 0
473473 −23.9273 −0.0505862
474474 0 0
475475 − 298.994i − 0.629461i
476476 0 0
477477 79.9818 0.167677
478478 0 0
479479 − 140.534i − 0.293391i −0.989182 0.146695i 0.953136π-0.953136\pi
0.989182 0.146695i 0.0468637π-0.0468637\pi
480480 0 0
481481 174.091 0.361935
482482 0 0
483483 143.744i 0.297608i
484484 0 0
485485 −102.642 −0.211634
486486 0 0
487487 302.108i 0.620345i 0.950680 + 0.310173i 0.100387π0.100387\pi
−0.950680 + 0.310173i 0.899613π0.899613\pi
488488 0 0
489489 −286.679 −0.586255
490490 0 0
491491 − 78.7208i − 0.160328i −0.996782 0.0801638i 0.974456π-0.974456\pi
0.996782 0.0801638i 0.0255443π-0.0255443\pi
492492 0 0
493493 219.376 0.444981
494494 0 0
495495 − 21.9288i − 0.0443006i
496496 0 0
497497 −250.991 −0.505012
498498 0 0
499499 616.991i 1.23646i 0.785999 + 0.618228i 0.212149π0.212149\pi
−0.785999 + 0.618228i 0.787851π0.787851\pi
500500 0 0
501501 −468.661 −0.935450
502502 0 0
503503 − 309.418i − 0.615145i −0.951525 0.307572i 0.900483π-0.900483\pi
0.951525 0.307572i 0.0995166π-0.0995166\pi
504504 0 0
505505 −149.321 −0.295686
506506 0 0
507507 − 169.185i − 0.333697i
508508 0 0
509509 −722.624 −1.41969 −0.709847 0.704356i 0.751236π-0.751236\pi
−0.709847 + 0.704356i 0.751236π0.751236\pi
510510 0 0
511511 − 250.448i − 0.490114i
512512 0 0
513513 −73.9818 −0.144214
514514 0 0
515515 − 280.179i − 0.544038i
516516 0 0
517517 −130.788 −0.252975
518518 0 0
519519 576.154i 1.11012i
520520 0 0
521521 743.633 1.42732 0.713660 0.700493i 0.247036π-0.247036\pi
0.713660 + 0.700493i 0.247036π0.247036\pi
522522 0 0
523523 694.283i 1.32750i 0.747954 + 0.663750i 0.231036π0.231036\pi
−0.747954 + 0.663750i 0.768964π0.768964\pi
524524 0 0
525525 96.2341 0.183303
526526 0 0
527527 − 120.005i − 0.227713i
528528 0 0
529529 −454.927 −0.859976
530530 0 0
531531 1.14420i 0.00215481i
532532 0 0
533533 −136.036 −0.255228
534534 0 0
535535 396.815i 0.741710i
536536 0 0
537537 295.652 0.550561
538538 0 0
539539 25.5836i 0.0474650i
540540 0 0
541541 −480.570 −0.888299 −0.444149 0.895953i 0.646494π-0.646494\pi
−0.444149 + 0.895953i 0.646494π0.646494\pi
542542 0 0
543543 293.845i 0.541151i
544544 0 0
545545 66.6788 0.122346
546546 0 0
547547 − 724.347i − 1.32422i −0.749408 0.662109i 0.769662π-0.769662\pi
0.749408 0.662109i 0.230338π-0.230338\pi
548548 0 0
549549 72.9909 0.132952
550550 0 0
551551 − 721.296i − 1.30907i
552552 0 0
553553 −256.624 −0.464058
554554 0 0
555555 − 36.9294i − 0.0665395i
556556 0 0
557557 449.303 0.806648 0.403324 0.915057i 0.367855π-0.367855\pi
0.403324 + 0.915057i 0.367855π0.367855\pi
558558 0 0
559559 106.911i 0.191255i
560560 0 0
561561 27.4121 0.0488630
562562 0 0
563563 − 964.101i − 1.71244i −0.516615 0.856218i 0.672808π-0.672808\pi
0.516615 0.856218i 0.327192π-0.327192\pi
564564 0 0
565565 −22.6424 −0.0400751
566566 0 0
567567 − 23.8118i − 0.0419961i
568568 0 0
569569 −843.909 −1.48314 −0.741572 0.670873i 0.765919π-0.765919\pi
−0.741572 + 0.670873i 0.765919π0.765919\pi
570570 0 0
571571 − 622.013i − 1.08934i −0.838651 0.544670i 0.816655π-0.816655\pi
0.838651 0.544670i 0.183345π-0.183345\pi
572572 0 0
573573 −522.991 −0.912724
574574 0 0
575575 658.720i 1.14560i
576576 0 0
577577 −91.3576 −0.158332 −0.0791660 0.996861i 0.525226π-0.525226\pi
−0.0791660 + 0.996861i 0.525226π0.525226\pi
578578 0 0
579579 389.092i 0.672007i
580580 0 0
581581 −278.991 −0.480191
582582 0 0
583583 97.4392i 0.167134i
584584 0 0
585585 −97.9818 −0.167490
586586 0 0
587587 471.499i 0.803235i 0.915807 + 0.401618i 0.131552π0.131552\pi
−0.915807 + 0.401618i 0.868448π0.868448\pi
588588 0 0
589589 −394.570 −0.669898
590590 0 0
591591 − 13.8249i − 0.0233924i
592592 0 0
593593 −863.524 −1.45620 −0.728098 0.685473i 0.759595π-0.759595\pi
−0.728098 + 0.685473i 0.759595π0.759595\pi
594594 0 0
595595 − 22.9138i − 0.0385106i
596596 0 0
597597 639.303 1.07086
598598 0 0
599599 − 842.223i − 1.40605i −0.711166 0.703024i 0.751833π-0.751833\pi
0.711166 0.703024i 0.248167π-0.248167\pi
600600 0 0
601601 −240.642 −0.400403 −0.200202 0.979755i 0.564160π-0.564160\pi
−0.200202 + 0.979755i 0.564160π0.564160\pi
602602 0 0
603603 − 166.277i − 0.275749i
604604 0 0
605605 −215.285 −0.355843
606606 0 0
607607 − 85.1084i − 0.140212i −0.997540 0.0701058i 0.977666π-0.977666\pi
0.997540 0.0701058i 0.0223337π-0.0223337\pi
608608 0 0
609609 232.156 0.381209
610610 0 0
611611 584.383i 0.956438i
612612 0 0
613613 −147.982 −0.241406 −0.120703 0.992689i 0.538515π-0.538515\pi
−0.120703 + 0.992689i 0.538515π0.538515\pi
614614 0 0
615615 28.8570i 0.0469220i
616616 0 0
617617 73.2303 0.118688 0.0593438 0.998238i 0.481099π-0.481099\pi
0.0593438 + 0.998238i 0.481099π0.481099\pi
618618 0 0
619619 − 748.946i − 1.20993i −0.796253 0.604964i 0.793187π-0.793187\pi
0.796253 0.604964i 0.206813π-0.206813\pi
620620 0 0
621621 162.991 0.262465
622622 0 0
623623 − 246.031i − 0.394913i
624624 0 0
625625 341.000 0.545600
626626 0 0
627627 − 90.1296i − 0.143747i
628628 0 0
629629 46.1636 0.0733921
630630 0 0
631631 1214.66i 1.92498i 0.271321 + 0.962489i 0.412539π0.412539\pi
−0.271321 + 0.962489i 0.587461π0.587461\pi
632632 0 0
633633 −596.588 −0.942477
634634 0 0
635635 − 169.328i − 0.266658i
636636 0 0
637637 114.312 0.179454
638638 0 0
639639 284.597i 0.445379i
640640 0 0
641641 −610.588 −0.952555 −0.476278 0.879295i 0.658014π-0.658014\pi
−0.476278 + 0.879295i 0.658014π0.658014\pi
642642 0 0
643643 734.008i 1.14154i 0.821111 + 0.570768i 0.193355π0.193355\pi
−0.821111 + 0.570768i 0.806645π0.806645\pi
644644 0 0
645645 22.6788 0.0351609
646646 0 0
647647 − 810.855i − 1.25325i −0.779319 0.626627i 0.784435π-0.784435\pi
0.779319 0.626627i 0.215565π-0.215565\pi
648648 0 0
649649 −1.39394 −0.00214783
650650 0 0
651651 − 126.996i − 0.195078i
652652 0 0
653653 −754.661 −1.15568 −0.577841 0.816149i 0.696105π-0.696105\pi
−0.577841 + 0.816149i 0.696105π0.696105\pi
654654 0 0
655655 − 320.223i − 0.488890i
656656 0 0
657657 −283.982 −0.432240
658658 0 0
659659 − 717.197i − 1.08831i −0.838984 0.544155i 0.816850π-0.816850\pi
0.838984 0.544155i 0.183150π-0.183150\pi
660660 0 0
661661 −461.615 −0.698359 −0.349179 0.937056i 0.613540π-0.613540\pi
−0.349179 + 0.937056i 0.613540π0.613540\pi
662662 0 0
663663 − 122.482i − 0.184739i
664664 0 0
665665 −75.3394 −0.113292
666666 0 0
667667 1589.10i 2.38246i
668668 0 0
669669 −668.588 −0.999384
670670 0 0
671671 88.9224i 0.132522i
672672 0 0
673673 −575.248 −0.854753 −0.427376 0.904074i 0.640562π-0.640562\pi
−0.427376 + 0.904074i 0.640562π0.640562\pi
674674 0 0
675675 − 109.119i − 0.161658i
676676 0 0
677677 321.964 0.475574 0.237787 0.971317i 0.423578π-0.423578\pi
0.237787 + 0.971317i 0.423578π0.423578\pi
678678 0 0
679679 − 135.783i − 0.199975i
680680 0 0
681681 464.588 0.682214
682682 0 0
683683 − 1044.73i − 1.52962i −0.644257 0.764809i 0.722833π-0.722833\pi
0.644257 0.764809i 0.277167π-0.277167\pi
684684 0 0
685685 −386.606 −0.564388
686686 0 0
687687 155.281i 0.226028i
688688 0 0
689689 435.376 0.631895
690690 0 0
691691 − 544.914i − 0.788587i −0.918985 0.394294i 0.870989π-0.870989\pi
0.918985 0.394294i 0.129011π-0.129011\pi
692692 0 0
693693 29.0091 0.0418602
694694 0 0
695695 121.656i 0.175045i
696696 0 0
697697 −36.0727 −0.0517543
698698 0 0
699699 517.295i 0.740051i
700700 0 0
701701 −368.018 −0.524990 −0.262495 0.964933i 0.584545π-0.584545\pi
−0.262495 + 0.964933i 0.584545π0.584545\pi
702702 0 0
703703 − 151.784i − 0.215908i
704704 0 0
705705 123.964 0.175835
706706 0 0
707707 − 197.533i − 0.279397i
708708 0 0
709709 434.697 0.613113 0.306556 0.951852i 0.400823π-0.400823\pi
0.306556 + 0.951852i 0.400823π0.400823\pi
710710 0 0
711711 290.985i 0.409261i
712712 0 0
713713 869.285 1.21919
714714 0 0
715715 − 119.368i − 0.166948i
716716 0 0
717717 261.633 0.364900
718718 0 0
719719 − 752.060i − 1.04598i −0.852339 0.522990i 0.824816π-0.824816\pi
0.852339 0.522990i 0.175184π-0.175184\pi
720720 0 0
721721 370.642 0.514067
722722 0 0
723723 564.649i 0.780980i
724724 0 0
725725 1063.87 1.46741
726726 0 0
727727 174.794i 0.240431i 0.992748 + 0.120216i 0.0383586π0.0383586\pi
−0.992748 + 0.120216i 0.961641π0.961641\pi
728728 0 0
729729 −27.0000 −0.0370370
730730 0 0
731731 28.3496i 0.0387820i
732732 0 0
733733 416.294 0.567932 0.283966 0.958834i 0.408350π-0.408350\pi
0.283966 + 0.958834i 0.408350π0.408350\pi
734734 0 0
735735 − 24.2487i − 0.0329914i
736736 0 0
737737 202.570 0.274857
738738 0 0
739739 1280.77i 1.73311i 0.499084 + 0.866553i 0.333670π0.333670\pi
−0.499084 + 0.866553i 0.666330π0.666330\pi
740740 0 0
741741 −402.715 −0.543475
742742 0 0
743743 − 57.8732i − 0.0778913i −0.999241 0.0389457i 0.987600π-0.987600\pi
0.999241 0.0389457i 0.0123999π-0.0123999\pi
744744 0 0
745745 263.964 0.354314
746746 0 0
747747 316.346i 0.423489i
748748 0 0
749749 −524.936 −0.700850
750750 0 0
751751 399.866i 0.532444i 0.963912 + 0.266222i 0.0857755π0.0857755\pi
−0.963912 + 0.266222i 0.914224π0.914224\pi
752752 0 0
753753 657.909 0.873717
754754 0 0
755755 − 125.470i − 0.166186i
756756 0 0
757757 846.661 1.11844 0.559221 0.829019i 0.311100π-0.311100\pi
0.559221 + 0.829019i 0.311100π0.311100\pi
758758 0 0
759759 198.567i 0.261616i
760760 0 0
761761 −206.348 −0.271154 −0.135577 0.990767i 0.543289π-0.543289\pi
−0.135577 + 0.990767i 0.543289π0.543289\pi
762762 0 0
763763 88.2077i 0.115606i
764764 0 0
765765 −25.9818 −0.0339632
766766 0 0
767767 6.22839i 0.00812046i
768768 0 0
769769 −203.982 −0.265256 −0.132628 0.991166i 0.542342π-0.542342\pi
−0.132628 + 0.991166i 0.542342π0.542342\pi
770770 0 0
771771 92.9271i 0.120528i
772772 0 0
773773 −466.697 −0.603748 −0.301874 0.953348i 0.597612π-0.597612\pi
−0.301874 + 0.953348i 0.597612π0.597612\pi
774774 0 0
775775 − 581.969i − 0.750928i
776776 0 0
777777 48.8530 0.0628739
778778 0 0
779779 118.605i 0.152253i
780780 0 0
781781 −346.715 −0.443937
782782 0 0
783783 − 263.240i − 0.336194i
784784 0 0
785785 172.624 0.219903
786786 0 0
787787 − 482.749i − 0.613404i −0.951806 0.306702i 0.900775π-0.900775\pi
0.951806 0.306702i 0.0992255π-0.0992255\pi
788788 0 0
789789 60.3849 0.0765334
790790 0 0
791791 − 29.9531i − 0.0378674i
792792 0 0
793793 397.321 0.501036
794794 0 0
795795 − 92.3550i − 0.116170i
796796 0 0
797797 1387.28 1.74063 0.870317 0.492492i 0.163914π-0.163914\pi
0.870317 + 0.492492i 0.163914π0.163914\pi
798798 0 0
799799 154.961i 0.193943i
800800 0 0
801801 −278.973 −0.348281
802802 0 0
803803 − 345.966i − 0.430842i
804804 0 0
805805 165.982 0.206189
806806 0 0
807807 332.522i 0.412047i
808808 0 0
809809 976.606 1.20718 0.603588 0.797296i 0.293737π-0.293737\pi
0.603588 + 0.797296i 0.293737π0.293737\pi
810810 0 0
811811 1258.58i 1.55189i 0.630801 + 0.775944i 0.282726π0.282726\pi
−0.630801 + 0.775944i 0.717274π0.717274\pi
812812 0 0
813813 193.321 0.237787
814814 0 0
815815 331.028i 0.406170i
816816 0 0
817817 93.2121 0.114091
818818 0 0
819819 − 129.618i − 0.158263i
820820 0 0
821821 −984.018 −1.19856 −0.599280 0.800539i 0.704546π-0.704546\pi
−0.599280 + 0.800539i 0.704546π0.704546\pi
822822 0 0
823823 138.438i 0.168212i 0.996457 + 0.0841058i 0.0268034π0.0268034\pi
−0.996457 + 0.0841058i 0.973197π0.973197\pi
824824 0 0
825825 132.936 0.161135
826826 0 0
827827 − 577.870i − 0.698754i −0.936982 0.349377i 0.886393π-0.886393\pi
0.936982 0.349377i 0.113607π-0.113607\pi
828828 0 0
829829 −45.0636 −0.0543590 −0.0271795 0.999631i 0.508653π-0.508653\pi
−0.0271795 + 0.999631i 0.508653π0.508653\pi
830830 0 0
831831 − 338.306i − 0.407107i
832832 0 0
833833 30.3121 0.0363891
834834 0 0
835835 541.163i 0.648099i
836836 0 0
837837 −144.000 −0.172043
838838 0 0
839839 − 214.267i − 0.255384i −0.991814 0.127692i 0.959243π-0.959243\pi
0.991814 0.127692i 0.0407569π-0.0407569\pi
840840 0 0
841841 1725.50 2.05172
842842 0 0
843843 438.734i 0.520443i
844844 0 0
845845 −195.358 −0.231192
846846 0 0
847847 − 284.795i − 0.336240i
848848 0 0
849849 −245.945 −0.289688
850850 0 0
851851 334.398i 0.392947i
852852 0 0
853853 −787.670 −0.923411 −0.461706 0.887033i 0.652762π-0.652762\pi
−0.461706 + 0.887033i 0.652762π0.652762\pi
854854 0 0
855855 85.4268i 0.0999144i
856856 0 0
857857 1034.83 1.20750 0.603750 0.797174i 0.293673π-0.293673\pi
0.603750 + 0.797174i 0.293673π0.293673\pi
858858 0 0
859859 − 939.440i − 1.09364i −0.837249 0.546822i 0.815838π-0.815838\pi
0.837249 0.546822i 0.184162π-0.184162\pi
860860 0 0
861861 −38.1742 −0.0443371
862862 0 0
863863 1259.44i 1.45937i 0.683781 + 0.729687i 0.260334π0.260334\pi
−0.683781 + 0.729687i 0.739666π0.739666\pi
864864 0 0
865865 665.285 0.769115
866866 0 0
867867 468.084i 0.539889i
868868 0 0
869869 −354.497 −0.407937
870870 0 0
871871 − 905.117i − 1.03917i
872872 0 0
873873 −153.964 −0.176362
874874 0 0
875875 − 243.409i − 0.278182i
876876 0 0
877877 −309.376 −0.352766 −0.176383 0.984322i 0.556440π-0.556440\pi
−0.176383 + 0.984322i 0.556440π0.556440\pi
878878 0 0
879879 − 898.284i − 1.02194i
880880 0 0
881881 1365.47 1.54991 0.774954 0.632017i 0.217773π-0.217773\pi
0.774954 + 0.632017i 0.217773π0.217773\pi
882882 0 0
883883 − 190.620i − 0.215878i −0.994158 0.107939i 0.965575π-0.965575\pi
0.994158 0.107939i 0.0344251π-0.0344251\pi
884884 0 0
885885 1.32121 0.00149289
886886 0 0
887887 − 1126.63i − 1.27015i −0.772449 0.635077i 0.780968π-0.780968\pi
0.772449 0.635077i 0.219032π-0.219032\pi
888888 0 0
889889 224.000 0.251969
890890 0 0
891891 − 32.8932i − 0.0369172i
892892 0 0
893893 509.503 0.570552
894894 0 0
895895 − 341.389i − 0.381440i
896896 0 0
897897 887.230 0.989108
898898 0 0
899899 − 1403.95i − 1.56168i
900900 0 0
901901 115.448 0.128134
902902 0 0
903903 30.0012i 0.0332239i
904904 0 0
905905 339.303 0.374920
906906 0 0
907907 − 1526.69i − 1.68323i −0.540081 0.841613i 0.681607π-0.681607\pi
0.540081 0.841613i 0.318393π-0.318393\pi
908908 0 0
909909 −223.982 −0.246405
910910 0 0
911911 1389.93i 1.52572i 0.646563 + 0.762861i 0.276206π0.276206\pi
−0.646563 + 0.762861i 0.723794π0.723794\pi
912912 0 0
913913 −385.394 −0.422118
914914 0 0
915915 − 84.2826i − 0.0921122i
916916 0 0
917917 423.615 0.461958
918918 0 0
919919 140.534i 0.152921i 0.997073 + 0.0764603i 0.0243619π0.0243619\pi
−0.997073 + 0.0764603i 0.975638π0.975638\pi
920920 0 0
921921 241.982 0.262738
922922 0 0
923923 1549.18i 1.67842i
924924 0 0
925925 223.873 0.242025
926926 0 0
927927 − 420.269i − 0.453365i
928928 0 0
929929 290.900 0.313132 0.156566 0.987667i 0.449958π-0.449958\pi
0.156566 + 0.987667i 0.449958π0.449958\pi
930930 0 0
931931 − 99.6647i − 0.107051i
932932 0 0
933933 517.982 0.555179
934934 0 0
935935 − 31.6528i − 0.0338533i
936936 0 0
937937 805.891 0.860076 0.430038 0.902811i 0.358500π-0.358500\pi
0.430038 + 0.902811i 0.358500π0.358500\pi
938938 0 0
939939 115.460i 0.122960i
940940 0 0
941941 −1233.85 −1.31122 −0.655608 0.755101i 0.727588π-0.727588\pi
−0.655608 + 0.755101i 0.727588π0.727588\pi
942942 0 0
943943 − 261.302i − 0.277096i
944944 0 0
945945 −27.4955 −0.0290957
946946 0 0
947947 − 145.907i − 0.154073i −0.997028 0.0770364i 0.975454π-0.975454\pi
0.997028 0.0770364i 0.0245458π-0.0245458\pi
948948 0 0
949949 −1545.84 −1.62891
950950 0 0
951951 147.875i 0.155494i
952952 0 0
953953 −1833.96 −1.92441 −0.962205 0.272324i 0.912208π-0.912208\pi
−0.962205 + 0.272324i 0.912208π0.912208\pi
954954 0 0
955955 603.898i 0.632354i
956956 0 0
957957 320.697 0.335107
958958 0 0
959959 − 511.432i − 0.533297i
960960 0 0
961961 193.000 0.200832
962962 0 0
963963 595.222i 0.618091i
964964 0 0
965965 449.285 0.465580
966966 0 0
967967 1255.34i 1.29818i 0.760711 + 0.649091i 0.224850π0.224850\pi
−0.760711 + 0.649091i 0.775150π0.775150\pi
968968 0 0
969969 −106.788 −0.110204
970970 0 0
971971 1303.08i 1.34199i 0.741460 + 0.670997i 0.234134π0.234134\pi
−0.741460 + 0.670997i 0.765866π0.765866\pi
972972 0 0
973973 −160.936 −0.165402
974974 0 0
975975 − 593.983i − 0.609214i
976976 0 0
977977 259.945 0.266065 0.133032 0.991112i 0.457529π-0.457529\pi
0.133032 + 0.991112i 0.457529π0.457529\pi
978978 0 0
979979 − 339.863i − 0.347154i
980980 0 0
981981 100.018 0.101955
982982 0 0
983983 − 153.946i − 0.156608i −0.996930 0.0783042i 0.975049π-0.975049\pi
0.996930 0.0783042i 0.0249505π-0.0249505\pi
984984 0 0
985985 −15.9636 −0.0162067
986986 0 0
987987 163.988i 0.166148i
988988 0 0
989989 −205.358 −0.207642
990990 0 0
991991 − 577.585i − 0.582830i −0.956597 0.291415i 0.905874π-0.905874\pi
0.956597 0.291415i 0.0941261π-0.0941261\pi
992992 0 0
993993 −1060.52 −1.06799
994994 0 0
995995 − 738.204i − 0.741913i
996996 0 0
997997 567.670 0.569378 0.284689 0.958620i 0.408110π-0.408110\pi
0.284689 + 0.958620i 0.408110π0.408110\pi
998998 0 0
999999 − 55.3941i − 0.0554496i
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 336.3.m.b.127.1 4
3.2 odd 2 1008.3.m.e.127.1 4
4.3 odd 2 inner 336.3.m.b.127.4 yes 4
7.6 odd 2 2352.3.m.i.1471.3 4
8.3 odd 2 1344.3.m.b.127.2 4
8.5 even 2 1344.3.m.b.127.3 4
12.11 even 2 1008.3.m.e.127.4 4
28.27 even 2 2352.3.m.i.1471.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
336.3.m.b.127.1 4 1.1 even 1 trivial
336.3.m.b.127.4 yes 4 4.3 odd 2 inner
1008.3.m.e.127.1 4 3.2 odd 2
1008.3.m.e.127.4 4 12.11 even 2
1344.3.m.b.127.2 4 8.3 odd 2
1344.3.m.b.127.3 4 8.5 even 2
2352.3.m.i.1471.2 4 28.27 even 2
2352.3.m.i.1471.3 4 7.6 odd 2